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Propagation of Singularities in the Ramified Cauchy
Problem for a Class of Operators with Non-involutive

Multiple Characteristics

By

Katsuju IGARI*

Abstract

In the ramified Cauchy problem, analytic continuation of holomorphic solutions has been mainly

studied. In this paper, we prove the propagation of singularities for a class of linear partial

differential equations with non-involutive multiple characteristics.

§1. Introduction

In this paper, we consider the Cauchy problem in a complex domain with
singular initial data and study the propagation of singularities of the solution.

It is one of the most fundamental problems in the theory of partial
differential equations, and its study goes back to J. Leray [10]. Since then,
many important articles have been published for this problem, especially Y.
Hamada, J. Leray and C. Wagschal [4] for operators with characteristics of
constant multiplicity, D. Schiltz, J. Vaillant and C. Wagschal [14] and C.
Wagschal [16] for operators with involutive multiple characteristics. There are
also several interesting papers for operators with non-involutive multiple
characteristics, e.g., J. Urabe [15]. C. Wagschal [17], J. Persson [13], S. Ouchi
[12] and S. Fujiie [2]. In those papers, the analytic continuation of the
holomorphic solution was mainly studied.

Consider the following Cauchy problem first.

\Pa}u--={J%-ziPt+'Zl-ibJDj+c}u = Q
(1)
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where z— G*i,— ,*„) ^Cn, z' = (z2,°~,Zn), n>2, Dj = d/dzj, the coefficients are all
holomorphic in Qr'-~ (z'\z^<ri, Vi} with r= (rif'",r«), fi>0.

Denote S1-— {^i = 0} and T' = tg:i=:^»=0}f and suppose the initial data^-C?')
are both holomorphic at a point z = a' ^ (S — T) H fl and have a holomorphic
extension in the universal covering space ffl{(S — T) fl ,0} each, that is, each
tti (*') can be analytically continued along any path (continuous curve) in (S —

T) n Q issued from a. Note Kl:= {zn + z2
1/2 = Q} and K2' = (zn~ 4/2 = 0} are

characteristic surfaces of P(1) issued from T.
By the Cauchy-Kovalevskaya theorem, there is a unique holomorphic

solution u (z) to 'the Cauchy problem (l) in a neighborhood of a = (0, a') . Note
one may replace the starting point a= (0, a') with another one arbitrarily. Then
it follows from the result of C. Wagschal [17] that there exists p — (pi,"°,p«) ,
Pi>0, such that the local holomorphic solution u (z} at a— (0, a') ^ (S-~T) r\Qp

has a holomorphic extension in the universal covering space yt(Qp—Kl\JK2}. (j.
Persson [13] proved it with a different method. J. Urabe [15] gave an
expression of the solution in terms of hypergeometric functions when the initial
data are meromorphic and bn (0, z} is constant.)

Now, let us say z^K1 (J K2 is a weak singular point of u if there is a path
issued from a and traced in Qp— K1 \J K2 except the end point z along which
u(z) can not be analytically continued up to £ (See Definition 2.1.) Then one of
our aims in this article is to investigate the equality

w.sing.supp. [u] = (K1UK2} D Qp

where w.sing.supp. [u] denotes the weak singular support of u in the above
sense. This equality is a complex version of the branching of singularities of
solutions in real domains (cf. S. Alinhac [1], N. Ranges [5] and T. Oaku [11]).

Consider the following Cauchy problem as well.

, v

u(Q,z')=uQ(z')

where the coefficients are all holomorphic in Qr and the initial datum UQ(Z') is
holomorphic at a point z'=a'€= (S~T) D Q and has a holomorphic extension in
the universal covering space $H(S — T) C\Q}.

The operator P(2) is of Fuchs type in the sense of Baouendi-Goulaouic.
Kl'-= (zn + ^i = 0} and K2'- = (zn ~ zi = 0} are characteristic surfaces issued from
T, and the initial surface S1 is also characteristic. If bi (0) =£0, — 1, — 2,°°% there
is a unique holomorphic solution u (z) to the Cauchy problem (2) in a
neighborhood of a= (0, a) by the Cauchy-Kovalevskaya type theorem due to Y.
Hasegawa [6]. Moreover, it follows from S. Ouchi [12] that there exists /o= (pi,
"-,pn) , P/>0, such that this local holomorphic solution u (z) ata= (0, a) & (S~
T) f\Qp has a holomorphic extension in the universal covering space
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K1 U K2) . (Cf. S. Fujiie [2], too.) It is also our aim to investigate how the
singularities of the initial datum propagate in this case.

By the way, the operators P(1) and P(2) have a common property. Denote

Xl = z^n, 2
2=~z^n,a = l for P(1), and &=&, *2= ~ &., a = *i for P(2). Let P2

denote their principal part. Then P(1) and P(2) both satisfy the following
condition.

Condition N. There are X1 (z, £'), i = 1, 2, holomorphic in a neighborhood of
(z, £') = (0, i/) such that the following 1) ~3) hold:

1) P2(z, 0 =aU) (Ci-^fe, COHCi-^k CO)
2) Q1^ O—SPa/SCik-Ji'w^O on U-0, £'
3) ^—{Ci-^fe. O, aU) (Ci-;i2(z, CO)

(z) is the coefficient of Df, i/= (0,---,0, 1) ̂ Cw-1 and { , } stands for the
Poisson bracket.

In this paper we generally study the operators satisfying this condition.
In Section 2, the main results will be stated. The main theorem (Theorem

2.2) is on removable singularities of solutions of Pu = 0, where P is an
arbitrary operator satisfying the above condition. The problems mentioned
above will be answered for more general operators by its corollaries
(Corollaries 2.3 and 2.4).

The main theorem will be proved in Sections 3 and 4. Hartogs' method,
Cauchy-Kovalevskaya type theorem obtained in our preceding paper [8] and
Zerner's method [18] are essentially used there. It is remarkable that there are
three standard forms of the operators satisfying the above condition
(Proposition 4.2).

In Section 5, an extension of the main theorem to higher order operators
will be given.

The following notations are employed in this article:

n>2, z=(zl,-,zn),
z' = (z2,~\ ZH) , DJ = d/dzj,
D=(D1,-,Dn), D'=(D2,-,Dn),
r= (ri,— ,rw), r,>0 Q=Qr={z]\Zi\<rit Vi},
S={z1 = 0}, T={z1=zn=Q},
$( ' ) : universal covering space of •

§2. Statement of the Main Results

2.1. Main Theorem

Let P = P(z, D) be a linear partial differential operator of 2nd order with
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holomorphic coefficients in Q = Qr and its principal symbol P^Oz, 0. (*» 0 e^
X CM, satisfy the Condition N stated in Introduction.

Denote by 0l (z) the solution of the Cauchy problem

Difl-J'fe, D'0) = 0, 0(0, *') =zn.

(Since £>'<!> (0) = i/, the Cauchy Kovalevskaya theorem applies to this problem.)
By the implicit function theorem, taking r = (rit ••• ,rn) appropriately, one may
suppose that the equation 0* (z) = 0 is solved by zn

 = 9* (zi,~°,zn-i) in ,0r with a
holomorphic function <pf in {k/|<f;, V/<n — 1} satisfying <p* (0, Z2,"°,zn-i) =0
and |p'(*i,-",Zfi-i)l<rn.

Denote 1C = (zn — <p* Ui, "° £n-i)} . They are characteristic surfaces of P
issued from T. By replacing (n,* - • ,rn-i) with smaller ones if necessary, one may
also suppose K1f]K2 = T. (See Section 4, 4.7.)

Let A1 be the constant appearing in 3) of Condition N and set A2= — A1.
Besides, set Bi = P0i (0). We call F* (/*) : = A(0+£' the indicial polynomial of P
with respect to the characteristic surface Kl, and its zero the characteristic
index. We assume the so-called indicial condition

(3) F*(p)=*0f V^e{0, 1, 2 f-} f i = l, 2.

Definition 2.1. L0£ F 50 an open connected set in Cn, dV stand for the
boundary of V, u (z) be holomorphic at a point z° ^ V and it have a holomorphic
extension in the universal covering space 31 (V) . We say z^ dV is a point of strong
(weak) analytic continuation of u (z) , if u (z) is analytically continued along any

path (some path respectively) z=z(t), 0<£<1, satisfying

(4) *(0)=*°, z(l)=z, z(t)<EVio

If not, we call it a weak (strong respectively) singular point of u.

Theorem 2.2 (Main theorem) . Suppose the Condition N and the indicial
condition (3) . Let V=Q~S(JK1U K2, u (z) be a function holomorphic in a
neighborhood of a point z° ̂  V, satisfy the equation Pu = 0 and have a holomorphic
extension in the universal covering 91 (V) . Then, if u (z) has a point of strong
analytic continuation z^- (K1 U K2) fl Q and a point of weak one a^S r\ Q, it has a
unique holomorphic extension in Q. (Removable singularities)

This theorem will be proved in Sections 3 and 4.

2.2. Standard Forms of the Operators

Consider the following three operators.
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y (z)Dj+c (z)

where all the coefficients are holomorphic, a (0) =£0, a«(0) ^0 and ann (0) ^=0 in
every case.

P(1> is a special case of PA and of PB, and P(2) is a special one of Pc. It is
easy to see that these three operators satisfy Condition N. Conversely, we will
see that any operator satisfying Condition N can be reduced to one of these
three operators by a suitable change of variables (Proposition 4.2).

We will also see the indicial conditions of P4, PB and Pc are respectively
written in terms of their coefficients as follows.

Fi:=±a(0)a»(0){20+l}+MO)*0 V^eft) , 1, 2,-},
V^efo, 1, 2.-},

^eft), 1, 2f-}.

(See Section 4, 4.7.)

2.3. Propagation of Singularities

For P=PA or P5, consider the Cauchy problem

(5) Pu = Q, Dlu (0, /) =u,- fe') , i = 0, 1

where wf- (/) are holomorphic at a point a'^ (S — T) C\Q and have a holomorphic
extension in the universal covering 31 {(S~T) ClQ} each.

Under the corresponding indicial condition, the following corollary directly
follows from Theorem 2.2. It is a complex version of the branching of
singularities in real domains (Cf. [1], [5] and [11]) and gives an answer to the
first problem mentioned in Introduction.

Corollary 2.3. Let V=Q—K1(JK2, u(z) be the local holomorphic solution of
(5) in a neighborhood of a= (0, a) ^ (S~ T) fl Q and have a holomorphic extension

in the universal covering 91 (V). Then, if U i=0,i sing.supp. [w*(z')] =£ 0 , it holds
that

w.sing.supp. [M] = t^1 UK2} H Q

where w.sing.supp. [u] denotes the set of weak singular points of u in the sense of
Definition 2.1.

Remark. When m (zf) is holomorphic in ^ { (S — T) D Q} , a weak singular
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point F' ^ T is a strong singular point (cf. Proposition 3.3), so we need not
distinguish these two types of singularities for initial data.

For P=PC, consider the Cauchy problem

(6) Pu = Q, tt(Of2')=ttoO*'),

where UQ(Z] is holomorphic at a point a ^ (S~T) fl Q and has a holomorphic
extension in the universal covering $,{(S — T) fl Q] . Under the corresponding
indicial condition, we also have the following corollary. It gives an answer to
the second problem stated in Introduction.

Corollary 2A. Let V=Q — SUK1UK2, u(z] be a local holomorphic solution
of (6) in a neighborhood of a— (0, a') ^ (S — T) fl Q and it have a holomorphic
extension in the universal covering 91 (V) . Then, if sing.supp. [1*0(2')] ^ 0 , it holds
that

w.sing.supp. \u\ ^ (Kl U K2) fl Q.

Remark. The assumption that u (z) is holomorphic at a= (0, a') ^ (S~ T) D
£? and has a holomorphic extension in the universal covering 91 (V) is equal to
say that u (z) is holomorphic at a point z° ̂  F, has a holomorphic extension in
the universal covering 91 (V) and has a point of weak analytic continuation a =

§38 Hartog's Method

In this section, we prepare several propositions on the analytic continuation
of holomorphic functions to prove the Main theorem.

Let Q<a'i<at(i = l,—&) and denote G-= fe;kl< ait Vi} and H'={\Zt\<a'i V
i<n~l, U«|<a»} U {|^-|<az- V i < n ~ 1, an<\zn\<a^ . The following theorem is
due to Hartogs and fundamental in the theory of several complex variables.

Theorem 3,1 [Hartogs. Cf. [3]] . Every holomorphic function u (z) in H has a
unique holomorphic extension in G.

Let z— (zi,°-,£n) and denote G£a
:— (z\ z~z^G} and H^a,a'

:= (z\ z—
where a= (ai,-8-,aw) and a — (ai,oeo,oi). Theorem 3.1 holds for (G^, Hz>aa'} , too.
The pair {GzflMz^ is called a (euclidian) Hartogs figure.

Next, let /Oi>0(i = l,'",w) and denote U'= {z;\Zi\<pi, Vf}. Let ^(^i,'00,^-!)
be a holomorphic function defined in {Ui|<pf-, i^n~ 1} with |^>(^i, eoo,^-i)|</ow

and denote K'- ={zn = (p (zi, ' • • ,^-i) } .

Proposition 3.2 [Cf. [3, Chap. II , Th.1.5.]] . Let a) be a neighborhood of a
point z^K. Every holomorphic function u(z) in (U — K) U a) has a holomorphic
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extension in U.

Proof. Let z* be an arbitrary point on K and 7: z = z(i), 0< f< l , be a path
on K with z(0) ^Fand z(l) =2:*. Then one can easily see by using Theorem 3.1
finite times that u (z) is continued analytically along 7 up to z*. (Q.E.D.)

The following proposition is a simple modification of the above one.

Proposition 3.3. Suppose u(z) is holomorphic at a point z° e ([/ — #) and
/ias a holomorphic extension in the universal covering space 3l(U—K). Then, if u (z)
has a point of weak analytic continuation z^-K, it has a holomorphic extension in U.

Proof, u (z) is holomorphic in a neighborhood a) of z^K and it is easy to see
that any closed path in U~K is homotope with a path in a) — K. Hence u(z)
must be single valued and one can apply Proposition 3.2. (Q.E.D.)

Let Q = {z\\Zi\<r{, V i} , r,->0 and <p'fei,-'-,zw-i) , i = 1, 2, be holomorphic
functions in {(zi,"'^«-i) ;k,-|<r,-, i<n — 1} satisfying I #>''(*!,••• ,2w-i) |<rw, (p'^O
on zi = 0f and (p1=£(p2 for zi^O. Denote Ki={zn = <Pi(#i,m"£n-i)}-

Proposition 3.4. Let V=Q—SVK1UK2 and suppose u (z) is holomorphic at
a point z° ̂  V and has a holmorphic extension in the universal covering 91 (V) . Then
the following (a) , (b) and (c) are equivalent:
(a) There is a point of strong analytic continuation F^ (K2—T) r\Qofu(z).
(b) Every z*^ (K2 — T) HjQ is a point of strong analytic continuation of u (z) .
(c) u (z) has a holomorphic extension in the universal covering

Proof. We first prove (a)=> (b). Let z* be an arbitrary point in K2~T and
let us prove that u (z) can be analytically continued up to z* along any path 7:
z=z(i) (0<t<l) satisfying *(0)=*°, z(l) =z* and z ( t ) <^V for t*l.

Since K2~T is connected, there exists a path <5: z=L>(t) (0<t<l) such that
C(0) =z, C(D =** and CM e= (K2-T] for all t.

Let 0<£<1 and set Cf to := G (0 + fe (1 - e) - G ( D > ^ for t <n, &: =

V ° (Cf , • ' • ,CJ-i) with p = p2 and Q (f) : = G W + (zn (1 - e) " 5 (D > t. Define a
path <5e by *=C e W (0<^<l) . Clearly, C£(0) =Ff C£(l) =^(l-e), and if we
take e sufficiently small, Ce(0 e^ except for t=0.

Prolong u (z) along 7 up to z (1 — e) firstly. Since z is a point of strong
analytic continuation of u, one can successively prolong it up to z along — <5e: z
= ££(1— t), (0<£<l). The function element of w at Fdoes not depend on e.

By the way, there exist p?->0 (l <i <n) such that for any t, Ut
:== {z',\Zj —

Q(0 |<p,} C (Q~S U ^) and \<p (z^-^n-i) ~ C. W I<P» for {k~
\<i<n — 1}. Besides, there is a sequence Q = t0<ti<-'<tN = l such that
C/^. for t ^ [fi,fri+i] . Moreover, if e is sufficiently small, we have ^£ (t) ^ Utt for
t^ [tt, ti+i], too.
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By Proposition 3.3, u(z) has a holomorphic extension in Uto, which is at

the same time a direct extension of u at C e(^i)« Recurrently we see u(z) at Cfe)
has a holomorphic extension in Utf, which is a direct extension of u(z) at

C£(£/+i). Therefore w(sr) at Cefev) = £(l — e) has a holomorphic extension in
UtN.v Since z*^UtN..1 and zO) ^C/^.j for £^ [1~£, 1] if £ is sufficiently small, it
means u (z) is analytically continued along 7 up to z*. Thus we have proved
(b).

Next we prove (b)=^(c). Let 7: z = z(t) (0<t<l) be an arbitrary path
satisfying 2(6) = z° and z(t) ^ (@~S U Kl) . We show u can be analytically
continued up to z (l) along 7.

Set /:= U; z 0) ^ K2 - T} . If /= 0 , there are nothing to prove. So, we
suppose /=£ 0 . Clearly there are pi>0 (1 <i <n) such that for any £^/, Ut

:= (z\

\zi-Zi(t)\<pi}c:(Q-S^Kr) and |pfeif-,*f.-i) -zn(f)\<pn for {h-*<(f)J<M
l<i<n — 1}. Besides there exists a positive constant 5 such that k* (/) — z/ (r)
|<p,- for every i, every r^/ and every f^ [r— 5, r+5] fl [0, 1].

Let r0:= min{r^/} . Since Z(TQ) ^ (K2 — T) is a point of strong analytic
continuation of u and z(f) touches K2 firstly at t = To, u(z) can be analytically
continued up to Z(TQ) along 7. By Proposition 3.3, u(z) at z(r0) has a unique
holomorphic extension in UTQ. It means that u can be continued along 7 up to
*(f) with t = min{l, r0 + 5}. If r0 + 5>l, the proof is complete. But, if r0+<5<l,
we need to prolongs beyond z(rQ+S) .

Denote Ti = max{0, r0~ 5} and r2=ro + 5. Since UTQ~K2 is connected and
z(n) e (UTo—K2), there is a path z=z*(i) in the interval [zi, r2] such that

even if z (r2) ^ ^2. Let f denote the modified path of 7 with z = z* (f) in the
interval [ri, r2] .

The analytic continuation along 7 and that along 7 give same function

element at *(r2). Set^= fa; J(0 ^^2). If /^ 0 , denote f0: = minfa^/}. Because
F(TO) =2(fo) is a point of strong analytic continuation of u and J(t) touches .K"2

firstly at t = f o, it is possible to prolong u along f (consequently along 7 as
well) up to Z(TQ) . Note TO — TO ̂ (5 and d is independent of r^/. Then we see, by
repreating the above reasoning finite times, u can be analytically continued
along 7 up to z (l) . Thus (c) has been proved. (Q.E.D.)

One can prove the following proposition exactly in the same way.

Proposition 3.5. Let V=Q—Kl UK2 and suppose u (z) is holomorphic at z°
^ V and has a holomorphic extension in 9t(V) . Then, if u (z) has a point of strong
analytic continuation z^ (K2 — T) U JO, it has a holomorphic extension in ^(Q—K1} .
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The following proposition seems similar to the above one, but there is an
essential difference between them.

Proposition 3.6. Let V=@—S(JK, u (z) be holomorphic at z°^V and have
a holomorphic extension in the universal covering space ffl(V). Then, if u (z) has a
point of weak analytic continuation z^- (S — T) fl Q, it has a unique holomorphic
extension in 91 (Q~K) .

Proof. Since zis a point of weak analytic continuation, there is a path 7: z =
£0), 0<£<1, satisfying

(7)

along which u (z} is analytically continued up to z.

Let f: 2 = £ ( 0 , 0<£<1, be another arbitrary path satisfying (7) and set
d'-=~r+r- One can write d: z=z(t), 0<£<1, by defining z ( t ) =£(l-2f) for 0

<t<l/2 and*(f )=C(2f- l ) for l/2<t<l. It satisfies

(8) z(Q)=z(l)=z,z(t)^Viortl=Q, 1.

One can easily see there is a 1-parameter group of paths 7": z = zv(t} , Q<t
<1, being continuous in {0<y<l,0<t<l} such that zl(t) =z(t), zv(t) satisfies
(8) for y>0 and ZQ (t) e (S-T) H Q for all t.

By the same way as the proof of Proposition 3.2, one can see that u(z) is
analytically continued from z to itself along 7° c (s — T) fl Q, The obtained
function element is holomorphic in a neighborhood a) of z.

From the assumption, u (z) is also analytically continued along 7^ for all y
except the end point z. Since z^(t) is continuous in {0<y<l, 0:< £:<!}, the
analytic continuation along 7^ agrees with that along 7° in a)\(z} . Hence we see
u (z) is continued analytically up to the end point z along any 7y and therefore
along 71.

It means u (z) can be continued analytically along 7 up to z, namely F is a
point of strong analytic continuation. By the same way as the proof of
Proposition 3.4, one can prove u (z) has a holomorphic extension in 3l(Q—K).

(Q.E.D.)

Remark 3.7. There is a topological difference between Propositions 3.5 and
3.6. We give an example to explain the necessity of assuming strong analytic
continuation in Proposition 3.5. Let &^{1, 2,-"}, fl:={U/|<l, i = l, ••-,%}, Kl'- =

{zn
 = Q} and K2'-={£n

 = zi}- If k>2, the function logUi— Zn/k] is holomorphic in
the universal covering space $t(Q~- Kl^K2). It can be analytically continued up
to z^ (K2~T} along some path but can not along some other path. When fe = l,
however, there are no such functions, because Proposition 3.6 applies with S1^
K1 and K—K2 by exchanging z\ with zn.
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Proposition 3.8. Denote V= Q~ S U K1 U K2. Let u (z) be holomorphic at a
point z° ̂  V and have a holomorphic extension in ^ (V) . Then, if u (z) has a point of
weak analytic continuation z an T, it has a unique holomorphic extension in Q.

Proof. u(z) is holomorphic in a neighborhood a) of F^ T and it is easy to see
that any closed path in V is homotope with a closed path in a) fl V. Hence u (z)
must be single valued and one can prove this proposition in the same way as
the proof of Proposition 3 . 2. (Q££.)

§4. Proof of Main Theorem

In this section we prove the Main theorem. Hence Condition N and the
indicial condition (3) are supposed.

4olc Proposition 4.1

Let K be one of Kvs. Then the following proposition holds.

Proposition 4.1. Suppose the Condition N and the indicial condition (3).
Let u (z) be holomorphic in a neighborhood of z°& (Q~K) , satisfy the equation Pu =
0 there and have a holomorphic extension in the universal covering $l(Q — K). Then
the origin z = O^K is a point of weak analytic continuation of u (z) .

4.2. Change of Variables

From now on we will prove Proposition 4.1. For that purpose we will make
change of variables of the following form several times.

(9) wi=zi, Wj=fj(z), j = 2,"-yi

with/XO, z) =Zj. Correspondingly £ is transformed as

for />2

It is clear that fei = 0}, {zi=zn = Q} and fei = 0, C' = ^ correspond
i=wn

 = Q} and {i0i = 0, r}' = v'} respectively.
Set fjL*= — Si (dwk/dzi) rik+Xl. Then we easily see

dP2dP2

Condition N is thus invariant, and hence so are A1 and Bl and the indicial
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polynomials Fl (JJL) .

4.3o Reduction to Three Standard Forms

Now, write the operators P in the form

P=a(z)
j Lk j

where ]C/ and Sy* denote the sum for j'^2 and for/ , fe>2 respectively. It easily
follows from 1) of Condition N that all the coefficients are holomorphic in a
neighborhood of the origin. (Note &(0) ̂ 0 is not assumed.)

Define /,•(*) by

i = 2,-~)n, and change the variables by

Denote w by z again. Then the transformed operator, denoted by P again, has
the following form.

(10) P=a (z) {Dl-aj

where a, ajk, bi, bj and c are all holomorphic in a neighborhood of the origin.
Besides, Condition N, the phase functions (pl and the indicial polynomials Fl (fi)
are all invariant under this change of variables.

Taking a branch of v/ appropriately, we have

which are, by the assumption, holomorphic in a neighborhood of (z, C) ~ (0, i-O .
It follows from 2) of Condition N that

= on i = , = i

Since a and d are holomorphic, we have

a(0, /)=0 or

Next, note that
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= (Ci-<5, a) (Ci~<5) +2{£i, a<5}-2{<5, a}5.

Then we have

Al = 2—^ T^O.

Hence the following two cases are possibe.

1st case: a (0, z') = 0, Dm (0) =£ 0, <5 (0, i/) * 0
2nd case: a (0) =£0, d (0, *', i/) =0, (dd/dzj (0, i/) ^0

In the 1st case, one can write a = zia, a(Q) ^0, and, by omitting ~, P is
written as

(11)

where a (0) 9^0, aww (0) =£0.

In the 2nd case, one can write aww=2iai,,f oiw(0) =£0. Omit~ and set

/ J,k

where 2J and 2/,* denote the sum for 2 </ <n — 1 and for 2 </, fe <n — 1
respectively.

By Condition N, JA (z, C') is holomorphic in a conic neighborhood of (z,
CO = (0, v'), say F£:={(Z, C) ;k« l<£ Vi^njG/Cwl^ 5 V i<n —1}. Therefore 4
can not have simple zeros there.

Suppose a/n(0, 2') ^0 for some 2 </<% — !. Fix 2' near the origin and let z\
= 0, Cfr — 0 for fe=£/. Then

which vanishes on ^ = 0 with degree 1. It is a contradiction, and hence we see
«/«(0, /) =0 for all 2</<w-l.

Denote ajn—ziajn, omit~ and write

A (z, C) — a

where a (a, C") = T.",(ain/ann) 0 and ̂  (z, C") = ~ S« WO C/C* + «2 (2, C") .

Put/ -F', C«=l, C"=TC- T^C, then
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It vanishes on

f r, CO ±y0fei.F', CO) -o
Suppose a (0, *', CO * 0. Suppose also 0(*i, *', CO * 0. Since a, £ are

holomorphie, there are (£', CO such that a(0, * ', CO =£0 and f}(zlt z', CO ^0
as a function of z\. Therefore there is a z\=z\ with 0<|£i|<£ such that A has at
least one simple zero r with |r|<l. Therefore, if a(0, z, CO ^0, then $(zi, zf,
CO must vanish identically and so the operator P can be written in the form

(12)

where the coefficients are all holomorphie in a neighborhood of z — 0, a (0) ^0
and an (0)^0.

Next, suppose a(0, z, CO = 0. If £(0, *', CO * 0, by the same reason as
above, A has simple zeros in Ve. Else if ^8(0, z, C'O =0 and (d&/dzi) (0, /, CO
^0, then

which vanishes on 2:1 = 0 with degree 1 at some (z', CO- Thus we see, if a(z\, z,

CO =0 (*i) , then ^3 (zlf /, CO =O (^i) - It follows from this that

ay»=0(zi) for 2<;<n-l,a /A = OUf) for

as ^i—^O. Denoting a^=2io}w, ajk=zlajk, and omitting ~, one can write

(13) P=a{D2
l-zlJ\ijkDjDk} + b,D1

j,k j

where the coefficients are all holomorphie in a neighborhood of z — 0, a (0) ^ 0
and ann (0)=£0.

Thus the following proposition has been proved.

Proposition 4.2. Every operator satisfying Condition N is reduced to one of

the following three operators.
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where the coefficients are all holamorphic in a neighborhood of the origin, 2J denotes
the sum for 2</<n-l, a(0) =£0, a»(0) =£0 and aWM(0) =£0.

4o40 Cauehy-Kovalevskaya Type Theorem

Recall the Cauchy Kovalevskaya type theorem obtained in our preceding
paper [8] .

Definition 4.3« Let m,r be integers with 0<r<m and 0 be a real number

with 0<(J<1. gm'r-ff denotes the set of operators with the form

£; = (z) UiDi) r-Z>rr+ ba (z) z[MDa

s=0 s=0 a&A(m— s)

where A (m — s) = {a;\a\ = m — s, an ^m — r, a^ (r~s, 0, °°° ,0, m ~ r) } , the
coefficents are all holomorphic in a neighborhood Q of the origin z~Q and each I (a)
is a non-negative integer satisfying

Setting

(14) IL(X):

we call it the indicial polynomial of L with respect to

Note the hyperplane zn — h, h&C, is characteristic for L with multiplicity at
least r. Let U={z'\Zj\<p}^-Q and consider the characteristic Cauchy problem

(15) as

Theorem 4.4 [8, Th.l] . Suppose a0 (0) * 0 and h U) =£ 0, V X e {0, 1, 2, • • •} .
Then there are two positive constants K, p' (<p) such that for any h ^ C with
\h\<K and any w holomorphic in U there exists a unique holomorphic solution v (z)
to the Cauchy problem (15) in U'h—{z'\Zj\<pforj<n\zn~~h\<pr}.

4.5. Proof of Proposition 4.1

To apply the above theorem to the operators satisfying Condition N, we
need to change the variables. We will consider only the case K=Kl.
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First, consider the case P=PA. Define //(z) by

j = 2,'~,n, where X1(zt £') =

Change the variables by

101=21, Wj=fj (z) , / = 2f"-,n.

Denote w; by z again and the transformed operator by PA. As we have remarked
before, the Condition N, phase functions <pl and the indicial polynomials Fl (/JL)
are invariant under this change of variables.

Besides, PA has the following form.

F*=a (z)

where a (0) =£ 0 and aw (0) =£ 0. It is easy to see that the transformed operator

belongs to g2-1-* with a=0.
Since ^J1 is the solution of Di(p = Q, cp (0, z') =z», we have (pi = zn and #1=:

{zw^O}. Besides,

=a (0)a« (0)

and 51=PAz,, = frB(0). So we have I^(fi) =Fl({i). Therefore, if we take p>0 so

small, Theorem 4.4 applies to F4 in Up=
z{z'\Zj\<p} .

Let Q<h<mm{tc, p'} and put zh= (0,---,0, /i) . Continue u (z) along a path in
Q — Kl up to z*. Its function element at z^ determines a single valued
holomorphic function in UPC\ {Re zn>Q}.

Consider the characteristic Cauchy problem

PAv = Q, v— w=0(zn— h) as zn—*h

with w=u(zi,'",Zn-i, h). By the Theorem 4.4, there exists a unique holomorphic
solution v (z) in UH = (z; |zy | <p' V j <n — 1, \zn — h \ <p'} . Since v = u in a
neighborhood of zh and 0 €= i7i, v is a holomorphic extension of u to a
neighborhood of the origin. Thus Proposition 4.1 has been proved in the case of
P=PA.

Next, consider the case P = PB. Set <5(z, C) :=: V2y,*a/*GC* . ^1:=2i5 and
^ 2 '=— Zi5 in a neighborhood of (z, ^') = (0, i/)-

Recall ^)L is the solution of

Xl(z, D'<p) =0, <p(Q, z') =zw
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and change the variables by

% — Zj, j = l,"',n — l,Wn=(p1(z)

The Condition N, phase functions <pl and the indicial polynomials FI(II) are
invariant under this change of variables.

Denote w by z again and the transformed operator by P B. Then the
principal symbol is decomposed as

pj(z, O^Ci-^fe COMCi-si^fe CO)
where [i1 (z, C) are holomorphic near (0, i/) and ̂ (2, I/) =0.

Note (pl — £w and Kl — {zn — 0} . It is easy to see that PB has the following
form.

where the coefficients are all holomorphic, a\n (0) =^= 0 and ann (z) = 0. Therefore

PB belongs to ^2'1'ff with a=l/2.
By the way, one can see

Since ^(0, v') =0, we have A^oCOa^CO). Clearly, J31=Pfe2w = 6«(0). Hence we

have Ip*(fJL) =Fl(ii) . Therefore Theorem 4.4 applies to the operator P5, and one
can prove Proposition 4.1 in the same way as in the case P=PA.

Lastly, consider the case P=PC. Set 21(z, 0 ' = v^MflyftGC* an(i /i2-'—""^1

in a neighborhood of (z, C) = (0. ^0 •
Recall ^ is the solution of

Dicp-Al (z, D'<p) =0, (p (0, /) =zn

and change the variables by

Wj=Zj,j = l,"-,n — l, wn=<pi(z)

The Condition N, phase functions <p* and the indicial polynomials Fl (ft) are
invariant under this change of variables.

Denote w by z again and the transformed operator by Pc. Then the
principal symbol is decomposed as

^2fe CO)
where JJLI(Z, O are holomorphic near (0, i/) and /z1^ v') =0.
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Note cpl — zn and K1 = (zn
 = 0} . It is easy to see that Pc has the following

form.

where the coefficients are all holomorphic, a\n (0) =£ 0 and ann (2) = 0. Therefore

Pc belongs to £2>l'a with a=l.
By the way, one can see

=a(0){/£1(0, V'}-!*2 (0, i/) }.

Since ^(Q, i/) =0, we have A1:=a(0)aiw(0). Clearly, B1=Pfc^« = 6n(0). Hence we

have Ipc(fi) =F1(//). Therefore Theorem 4.4 applies to the operator Pc, and one
can prove Proposition 4.1 in the same way as in the case P=PA.

We have thus finished the proof of Proposition 4.1.

4.6. End of the Proof

By the assumption, u(z] is holomorphic at z°^V=Q — S U^U^2 , satisfies
the equation Pu = 0, has a holomorphic extension in the universal covering
$ (V) , and has a point of strong analytic continuation z on Kl U K2 and a point
of weak one a^ (S—T}Q.

If z^T, u (z) has a holomorphic extension in Q by Proposition 3.8. If F^
(#2 - T) (or e (K1 - T)) f it follows from Proposition 3.4 that u U) has a
holomorphic extension in the universal covering $l(Q— S(JKl) (or in 3l(Q— S1 U
jfif2) respectively) .

By Proposition 3.6, 14(2) has a holomorphic extension in Q — K. (K is one
of K*'s.} Next, by Proposition 4.1, 2 = 0 is a point of weak analytic continuation.
Lastly by Proposition 3.3, u (z) has a holomorphic extension in Q. Thus we
have finished the proof of the Main theorem.

4.7. Remarks

A. Concrete expression of the indicial equation. We give a concrete
expression of the indicial equation in terms of the coefficients of P4, PB and Pc.

In the case P=PA, set ^±= ± (Z7ayG+*ifl»C») . Let ^± be the solution of

-X± (2, , 2 =

where the sign + and — should be taken in its order. K±'-= (z;^ (2) ̂ O} are
characteristic surfaces issued from T.

By the definition
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B+=Pcp+(0) =a(0)D2
l(p

+(0) +&i(0)l>i0>+(0) +bn(0)Dn<p+ (0)
=a(0)fl f,(0)+fc l(0)

In the same way

^-=-2a(0)aw(0),B-=-a(0)aw(0)+5w(0)

Hence the indicial polynomial of PA corresponding to K± is respectively

(16)

In the case P = PB, set d'- = V^/.ta/t (z) OC* in a neighborhood of (2, £') =

(0, y') and /l±I=±zi<5(,z, ^'). Define ip* and 7T* in the same way as in the case P
=PA.

By the definition

= 2a (0)

In the same way

A-= -2a (0) Jann (0) , 5~= -a (0) VaBB(0) +&w (0)

Hence the indicial polynomial of PB corresponding to K± is respectively

(17) /^W

In the case P = P°, set 5^ = ^^'j^jk (z) GG in a neighborhood of (z, £') =
(0, y') and ^±:=it<5(2', CO- Define <^± and ^ in the same way as in the case P
=PA

By the definition

— 2a (0) v^

In the same way

Hence the indicial polynomial of Pc corresponding to K* is respectively

(18)
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B. On Kl C]K2 = T. It is mentioned in §2 that one may suppose Kl 0 K2 = T
by taking r appropriately. One can verify it by Proposition 4.2 easily, however
it should be proved directly without using change of variables.

It follows from 2) of Condition N that

aWU' fe , G)-^2Cz, C)}=0on fei = 0, C = ̂ >.

Since a and /l*'s are holomorphic, we have two cases.

Case A: a = 0 on zi=0

CaseB: Xl-X2 = Q on ^=0, £'=)/

In the case A, we have

Hence, by 3) of Condition N,

Therefore

Di^CO) -Difl^CO) =^(0, i/) ~^2(0, i/) =jfcQ.

It means J^fl^^T near the origin.
In the case B, we have

= a - - ^ 1 o n

Hence, by 3) of Condition N,

a (0)^=0, (G-^1, Ci-^2W<^=<ox>^0.

It is easy to see that

DiW-DiW^Pb, D'0l) -A2(z, D'02} =0 on ̂

and that

- i - ^ , i - c ^ 1 on ^-0, = J .

Here we used D/Dfc(P'(Of *') =0 for/, J^>2 and ̂ (0, /, y') =4(0, /, ^) for />
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2. We thus see Kl fl K2=T near the origin in the case B, too.

§5. Extension to Higher Order Equations

5.1. Generalization of Main Theorem

Let P be a partial differential operator of second order satisfying Condition
N and put

(19) L:=Pr+QlP
r-l + ~'+Qr

where Qk = Qk (z, D) are partial differential operators of order k with
holomorphic coefficients.

Let A1, K* and F'(fjL) be those introduced in §2 for the operator P and set

(20) Gi(n): = {Fi([jL)}r+C{{Fi(iJL)}r-i+-+&

where Cl = Ql(z, Olci=^te.C'),(z,c')=(o,i/) and Ql stands for the homogenuous part of
order k of Qk.

Theorem 5.1. Assume

(21) G'(0)=£0 V^e{0, 1, 2 , - - -} , t = l, 2

Then the Main theorem holds also for the equation Lu = 0.

5.2, Algebra of Operators in gm'r'a

Proposition 5.2* The following (a) and (b) hold.

(a) // 0<5<r, L^gm>r'a and £/ €=#"•-*•'-*•* then

L+L> ez».'*t IL+L, U) =IL U) +/r U) .

(b) IfL<EE£m'r'°and L'e £"'•''•*, then

LL'fEym+m'.r+r'^ ^ (j) =/L(^)/I/(^).

Proo/. (a) is trivial. So we prove (b) . Consider the following four terms.

Al=as(z)

A2=as(z)

, (z) (z.D,} ''"-D?"'

where a^A (m—s) and fi^A (m'—s] .
First, remark
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where Cf denote the binomial coefficients and Ckj is the sequence defined by
Ck+i,i=icici+ck,i-i with cki=ckk = l for all k>l.

It is then easy to see that Al can be written as
r"-s"

Al = YfM feiDi)r*-^-'Z>r-r" + £ ^
i j^lq^Q

where mff=m+m ', r"=r+r', s" =s +s', aoo~ asfls', a*o = OCzi) as #r-K) for i>l.
Moreover, since order (DlDf"~r"~j] —m"—s"—t with £=/' — s"+/ — q and a<?

+ (1 — or) q = q> q—j = r"—s" — t, we see Al belongs to the class <F*"-s"*r"-s".<r

It is also easy to verify that A2 can be written as

A 2 = ?p« W zrrs~9+mDr

P,Q

Since order (Drs~qDf~r~pD^ =m"-s"-t with t=p+q and

we see A 2 belongs to £""-s"'r"-s".*m it is clear that 7^ = 0.
A3 can be written as

with 4<ai. Since order (Da~"Dr~s'~^Df~^) =m"-s"-t with f=|o|+/> and

the term A3 also belongs to #«"-*">'"'-*".«'.

A3 may contain some terms with form a (z) (ziD^)pDf+m'~r~r' . Let
~s) with a= (ai, a", m—r). Since a'^O, we have ai<r~ s. When a— 0, there
are no such a, because al (a) + (l — a) ai = ai>r — s. When cr> 0, we have
a(l (a) — a\) >r— s~ ai>0 and consequently / (a) >ai. Therefore, even if there
are such terms, it holds that a(z)=0 (zi) as zr~ *0. Hence /A3 = 0.

A 4 can be written as



306 KATSUJU IGARI

Since order (Da^~&} =mf'-s"-t with t=\ah and

ok) + (1-a) (

,44 belongs to <£**"-*-*'•'"-*-*' and 7^=0.

Now that LL' is the sum of such terms as Al, A2, A3 and .A4, by using (a)
one can see (b) immediately. (Q.E.D.)

When r = 0, the class '̂°'cr is free from a, and so one may simply write

£m>Q. Every operator Q (2, D) of order m with holomorphic coefficients belongs

to 3?m'°.

Corollary 5-3. Let P e £2'l'a and Q, e F''°. 77ien tfw curator L

(19) **Zon*s to S2r'r'a and

where v= (0,— ,0, l) eCn.

5.3, Proof of Theorem 5.1
As we have observed in the preceding section, by appropriate change of

variables reducing one of Kl to zn = 0, the operator P belongs to £2>1>a with (7=0,
1/2 or 1. Besides, the operator L conserves its form. Therefore L belongs to

£2r'r'a by Corollary 5.3.
Since C,i = Al (z, CO corresponds to 7?i = jj.t (w, 17') and ^'(0, w, v) =0, we

see Ci are invariant. It means /i (//) =Gt (ft) .
Noting the above, one can prove this theorem in the same way as the proof

of Main theorem. (Q.E.D.)
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