Characterization of the Pull-Back of \mathcal{D} -Modules

By

Takayuki TAKAHASHI*

§1. Introduction

Let $f: X \to Y$ be a smooth morphism of smooth algebraic varieties X and Y over \mathbb{C} . If a coherent \mathcal{D}_X -module \mathcal{M} is the pull-back of a coherent \mathcal{D}_Y -module, \mathcal{M} satisfies $\operatorname{Ch}(\mathcal{M}) \subset X \times_Y T^*Y$. Conversely let \mathcal{M} be an algebraic \mathcal{D}_X -module such that $\operatorname{Ch}(\mathcal{M}) \subset X \times_Y T^*Y$. It is a natural question to ask when such an \mathcal{M} is the pull-back of a \mathcal{D}_Y -module. In this paper we will prove that the condition $\operatorname{Ch}(\mathcal{M}) \subset X \times_Y T^*Y$ implies that \mathcal{M} is always the pull-back of a coherent \mathcal{D}_Y -module globally on X if f is a proper smooth morphism with simply connected fiber (Theorem 3.1).

A local result below is known in the analytic category. We denote by X_{an} the associated complex manifold of X and by $f_{an}: X_{an} \to Y_{an}$ the associated holomorphic map. We define \mathcal{M}_{an} by $\mathfrak{D}_{X_{an}} \otimes_{\mathfrak{D}_X} \mathcal{M}$. Let \mathscr{J} be the ideal of the functions on T^*X that vanish on $X \times_Y T^*Y$. The necessary and sufficient condition for \mathcal{M}_{an} to be isomorphic to $(\mathbb{D}f^*\mathcal{N})_{an}$ locally on X_{an} for a \mathfrak{D}_Y -module \mathcal{N} is that \mathcal{M} has a good filtration F such that, $\mathscr{J}\operatorname{Gr}^F \mathcal{M}=0$ (in such a case we say that \mathcal{M} is regular singular along $X \times_Y T^*Y$). Note that the condition $\operatorname{Ch}(\mathcal{M}) \subset X \times_Y T^*Y$ does not imply the regular singular condition. In the case of $\mathfrak{D}^*_{X_{an}}$ -module, such an \mathcal{N} always exists under the condition $\operatorname{Ch}(\mathcal{M}) \subset X \times_Y T^*Y$ (see Theorem 3.2).

§2. Notations

Let X be a smooth algebraic variety over \mathbb{C} . We denote by \mathcal{D}_X the sheaf of rings of algebraic differential operators on X. For a coherent \mathcal{D}_X -module \mathcal{M} , we denote by Ch \mathcal{M} its characteristics variety. Let Y be another smooth algebraic variety over \mathbb{C} , and f a morphism $f: X \longrightarrow Y$.

We define $\mathscr{D}_{X \to Y}$, $\mathscr{D}_{Y \leftarrow X}$ as follows:

Communicated by M. Kashiwara, January 5, 1999.

¹⁹⁹¹ Mathematics Subject Classification (s): 32C38, 16S32.

^{*}Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502 Japan.

e-mail: takayuki@kurims.kyoto-u.ac.jp

$$\mathcal{D}_{X \to Y} \stackrel{\text{def}}{=} \mathcal{H}_{\mathcal{A}_{f}}^{d_{Y}}(\mathcal{O}_{X \times Y}^{(0, d_{Y})}) \text{ and } \mathcal{D}_{Y \leftarrow X} \stackrel{\text{def}}{=} \mathcal{H}_{\mathcal{A}_{f}}^{d_{Y}}(\mathcal{O}_{X \times Y}^{(d_{X}, 0)})$$

(where Δ_f is the image of $X \hookrightarrow X \times Y$).

We define the direct image \mathbb{D}_{f*M} of a \mathcal{D}_{X} -module \mathcal{M} by f, and the pull-back $\mathbb{D}_{f}^{*}\mathcal{N}$ of a \mathcal{D}_{Y} -module \mathcal{N} by f as follows:

$$\mathbb{D} f * \mathscr{M} \stackrel{\text{def}}{=} \mathbb{R} f * (\mathscr{D}_{Y \leftarrow X} \bigotimes^{\mathbf{L}}_{\mathscr{D}_{X}} \mathscr{M}), \qquad \mathbb{D} f^{*} \mathscr{N} \stackrel{\text{def}}{=} \mathscr{D}_{X \rightarrow Y} \bigotimes^{\mathbf{L}}_{f^{-1} \mathscr{D}_{Y}} f^{-1} \mathscr{N}.$$

We denote their k-th cohomology groups by:

$$D^k f_* \mathcal{M} \stackrel{\text{def}}{=} H^k \mathbb{D} f_* \mathcal{M}, \qquad D^k f^* \mathcal{N} \stackrel{\text{def}}{=} H^k \mathbb{D} f^* \mathcal{N}.$$

We denote by $\mathscr{D}_{X_{an}}$ the sheaf of rings of analytic differential operators on the associated complex manifold X_{an} , and by $\mathscr{D}_{X_{an}}^{\infty}$ the sheaf of rings of infinite-order analytic differential operators on X_{an} .

Let $f: X \to Y$ be a morphism of algebraic varieties. We define $\mathscr{D}_{X_{an} \to Y_{an}}^{\infty}$, $\mathscr{D}_{Y_{an} \leftarrow X_{an}}^{\infty}$ as follows:

$$\mathcal{D}_{X_{an} \to Y_{an}}^{\infty} \stackrel{\text{def}}{=} \mathcal{H}_{A_{f}^{dn}}^{dn}(\mathcal{O}_{X_{an} \times Y_{an}}^{(0,d_{f})}) \text{ and } \mathcal{D}_{Y_{an} \leftarrow X_{an}}^{\infty} \stackrel{\text{def}}{=} \mathcal{H}_{A_{f}^{dn}}^{dn}(\mathcal{O}_{X_{an} \times Y_{an}}^{(d_{X},0)})$$

(where Δ_f^{an} is the image of $X_{an} \hookrightarrow X_{an} \times Y_{an}$).

For a \mathcal{D}_X -module \mathcal{M} , We define

$$\mathcal{M}^{\infty} \stackrel{\mathrm{def}}{=} \mathcal{D}^{\infty}_{X_{an}} \otimes_{\mathcal{D}_X} \mathcal{M}.$$

We have the following properties ([SKK]).

1. $\mathscr{D}_{X_{an}}^{\infty}$ is faithfully flat over \mathscr{D}_{X} .

2. If a coherent \mathcal{D}_{Y} -module \mathcal{N} is non-characteristic for f, then we have

$$(\mathcal{D}_{X \to Y} \bigotimes_{\mathcal{D}_Y} \mathcal{N})^{\infty} \xrightarrow{\sim} \mathcal{D}_{X_{an} \to Y_{an}}^{\infty} \bigotimes_{\mathcal{D}_{Y_{an}}} \mathcal{N}^{\infty}.$$

In particular, if f is smooth then this holds for any coherent \mathscr{D}_{Y} -module \mathcal{N} .

3. If $f: X \rightarrow Y$ is proper and if \mathcal{M} is a coherent \mathcal{D}_X -module, then we have

 $\mathscr{D}_{Y_{an}}^{\infty} \bigotimes_{\mathscr{D}_{Y}} \mathbf{R} f_{*}(\mathscr{D}_{Y \leftarrow X} \bigotimes^{\mathbf{L}}_{\mathscr{D}_{X}} \mathscr{M}) \cong \mathbf{R} f_{an*}(\mathscr{D}_{X_{an}} \bigotimes^{\mathbf{L}}_{\mathscr{D}_{X_{an}}^{\infty}} \bigotimes^{\mathcal{D}}_{\mathscr{D}_{X}} \mathscr{M})).$

In particular, for coherent \mathscr{D}_X -modules \mathscr{M} and \mathscr{M}' , we have

 $\mathscr{M}^{\infty} \cong \mathscr{M}'^{\infty} \Longrightarrow (\mathbb{D}f_*\mathscr{M})^{\infty} \cong (\mathbb{D}f_*\mathscr{M}')^{\infty}.$

§3. Main Theorem

Theorem 3.1. Let X and Y be smooth algebraic varieties over \mathbb{C} , and let $f: X \rightarrow Y$ be a proper smooth morphism of fiber dimension d. Assume that any fiber of

 $f_{an}: X_{an} \to Y_{an}$ is simpley connected. Let \mathcal{M} be a coherent \mathcal{D}_X -module such that $\operatorname{Ch}(\mathcal{M}) \subset X \times_Y T^*Y$. Then $\mathcal{M} \cong \mathbb{D} f^*\mathcal{N}$ for some coherent \mathcal{D}_Y -module \mathcal{N} .

To prove this theorem we use the following results.

Theorem 3.2 ([SKK]). Let s: $Y \to X$ be a section of $f: X \to Y$, and \mathcal{M} a coherent \mathcal{D}_X -module. If $Ch(\mathcal{M}) \subset X \times_Y T^*Y$, then

$$\mathcal{M}^{\infty} \cong (\mathbf{D} f^* \mathbf{D} s^*)^{\infty}.$$

in a neighborhood of s(Y).

Theorem 3.3 ([SKK]). Let \mathcal{M}_1 and \mathcal{M}_2 be coherent \mathcal{D}_X -modules such that $\operatorname{Ch}_{\mathcal{M}_i} \subset X \times_Y T^*Y$ (i = 1, 2), then $\operatorname{Hom}_{\mathcal{D}^{\times}_{X_{ns}}}(\mathcal{M}^{\infty}_1, \mathcal{M}^{\infty}_2)$ is locally constant along the fiber of f.

Lemma 3.4. Under the same assumption as in Theorem 3.1, there exists locally on Y a coherent $\mathfrak{D}_{\mathbf{Y}}$ -module \mathcal{N} such that $\mathcal{M}^{\infty} \cong (\mathbb{D}f^*\mathcal{N})^{\infty}$.

Proof. There exists a section $s: Y \to X$ locally on Y. Since the fiber of f is simply connected, the sheaves $\mathscr{H}om_{\mathfrak{D}_{\mathbf{X}_{m}}}(\mathscr{M}^{\infty}, (\mathbb{D}f^*\mathbb{D}s^*\mathscr{M})^{\infty})$ and $\mathscr{H}om_{\mathfrak{D}_{\mathbf{X}_{m}}}((\mathbb{D}f^*\mathbb{D}s^*\mathscr{M})^{\infty}, \mathscr{M}^{\infty})$ are constant along the fiber of f. Therefore the isomorphism $\mathscr{M}^{\infty} \xrightarrow{\sim} (\mathbb{D}f^*\mathbb{D}s^*\mathscr{M})^{\infty}$ on s(Y) and its inverse extend to the whole X.

§4. Proof of Main Theorem

Because the fiber of $f: X \rightarrow Y$ is simply connected, we have

$$D^{k}f_{*}(\mathcal{O}_{X}) \cong \mathcal{O}_{Y} \otimes R^{k+d}f_{*}(\mathbb{C}_{X}) \cong \begin{cases} \mathcal{O}_{Y} & \text{for } k = -d, \\ 0 & \text{for } k = 1-d. \end{cases}$$

For any coherent \mathscr{D}_{Y} -module \mathcal{N} , $\mathbb{D}_{f*}\mathbb{D}_{f}^{*}\mathcal{N}$ is isomorphic to $\mathcal{N} \otimes^{\mathbf{L}} \mathbb{D}_{f*}(\mathcal{O}_{X})$. Hence we have

(4.1)
$$D^{k}f_{*}\mathbb{D}f^{*}\mathcal{N} \cong \begin{cases} \mathcal{N} & \text{for } k = -d, \\ 0 & \text{for } k = 1-d. \end{cases}$$

We shall prove Main Theorem (Theorem 3.1). First we shall prove Main Theorem in the following special case.

Lemma 4.1. Under the same assumption as in Theorem 3.1, assume further $D^{-d}f_*\mathcal{M}=0$. Then $\mathcal{M}=0$.

Proof. From Lemma 3.4, there exists a coherent $\mathscr{D}_{\mathbf{Y}}$ -module \mathcal{N} such that $\mathscr{M}^{\infty} \cong (\mathbb{D}f^*\mathcal{N})^{\infty}$. Hence we have

$$(\mathbb{D}f_*\mathcal{M})^{\infty} \cong \mathbb{D}f_{an*}(\mathcal{M}^{\infty}) \cong \mathbb{D}f_{an*}((\mathbb{D}f^*\mathcal{N})^{\infty}) \cong (\mathbb{D}f_*\mathbb{D}f^*\mathcal{N})^{\infty}.$$

By taking the -d-th cohomology, we have

$$(D^{-d}f_*\mathcal{M})^{\infty} \cong (D^{-d}f_*\mathbb{D}f^*\mathcal{N})^{\infty},$$

where the left-hand side is 0 by assumption, and the right-hand side is isomorphic to \mathcal{N}^{∞} by (4.1). Hence we have

$$\mathcal{N}^{\infty}=0,$$

and the faithfully flatness of $\mathscr{D}^{\infty}_{Yan}$ over \mathscr{D}_{Y} implies

 $\mathcal{N}=0.$

Therefore $\mathcal{M}^{\infty} \cong (\mathbb{D}f^*\mathcal{N})^{\infty} = 0$. Finally the faithfully flatness of $\mathcal{D}_{X_{an}}^{\infty}$ over \mathcal{D}_{X} implies $\mathcal{M} = 0$.

Let us prove Main Theorem , in the general case. For any coherent $\mathcal{D}_{\mathbf{Y}}\text{-}\mathsf{module}\ \mathcal{N},$ we have

$$\mathbb{R}\mathrm{Hom}_{\mathscr{D}_{\mathbf{r}}}(\mathcal{N},\mathbb{D}_{f*\mathcal{M}}[-d])\cong\mathbb{R}\mathrm{Hom}_{\mathscr{D}_{\mathbf{r}}}(\mathbb{D}_{f}^{*}\mathcal{N},\mathcal{M}).$$

By taking the 0-th cohomology, we have

$$\operatorname{Hom}_{\mathfrak{D}_{r}}(\mathcal{N}, D^{-d}f_{*}\mathcal{M}) \cong \operatorname{Hom}_{\mathfrak{D}_{r}}(\mathbb{D}f^{*}\mathcal{N}, \mathcal{M}).$$

Hence, by setting $\mathcal{N} = D^{-d} f_* \mathcal{M}$, there exists a morphism

$$\alpha: \mathbb{D}f^*\mathcal{N} \to \mathcal{M}$$

such that the composition

$$\mathcal{N} \xrightarrow{\sim} D^{-d} f_* \mathbb{D} f^* \mathcal{N} \xrightarrow{D^{-d} f_* \alpha} D^{-d} f_* \mathcal{M}$$

coincides with the isomorphism $\mathcal{N} \xrightarrow{\sim} D^{-d} f_* \mathcal{M}$. From the short exact sequence

 $(4.2) 0 \to \mathscr{L} \to \mathbb{D}f^*\mathcal{N} \to \operatorname{Im}(\alpha) \to 0,$

where \mathscr{L} is the kernel of α , we obtain the exact sequence

$$0 \to D^{-d} f_* \mathscr{L} \to D^{-d} f_* \mathbb{D} f^* \mathcal{N} \xrightarrow{\beta} D^{-d} f_* (\operatorname{Im} \alpha)$$

Because the composition of

$$D^{-d}f_*\mathbb{D}f^*\mathcal{N} \xrightarrow{\beta} D^{-d}f_*(\mathrm{Im}\alpha) \longrightarrow D^{-d}f_*\mathcal{M}$$

is an isomorphism, β is injective. Therefore $D^{-d}f_*\mathcal{L}=0$. Because $Ch(\mathcal{L}) \subset X \times_Y T^*Y$ by the exact sequence (4.2), Lemma 4.1 shows $\mathcal{L}=0$, and hence α is injective. So we have a short exact sequence

$$0 \longrightarrow \mathbb{D} f^* \mathcal{N} \xrightarrow{\alpha} \mathcal{M} \longrightarrow \mathcal{M}' \longrightarrow 0,$$

where \mathcal{M}' is the cokernel of α . The associated long exact sequence gives

318

$$0 \to D^{-d}f_*\mathbb{D}f^*\mathcal{N} \xrightarrow{\sim} D^{-d}f_*\mathcal{M} \to D^{-d}f_*\mathcal{M}' \to D^{1-d}f_*\mathbb{D}f^*\mathcal{N}.$$

Because $D^{1-d}f_*\mathbb{D}f^*\mathcal{N}=0$ by (4.1), $D^{-d}f_*\mathcal{M}'$ must vanish. Lemma 4.1 shows $\mathcal{M}'=0$. Hence

$$\alpha: \mathbb{D}f^*\mathcal{N} \to \mathcal{M}$$

is an isomorphism. This completes the proof of Main Theorem.

References

[SKK] Sato, M., Kawai, T. and Kashiwara, M., Microfunctions and pseudo-differential equations, Hyperfunctions and pseudo-differential equations, *Lecture Notes in Math.*, Springer-Verlag, 287 (1973) 265-529.