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On Defining Relations of Affine Lie Superalgebras and
Affine Quantized Universal Enveloping Superalgebras

By

Hiroyuki YAMANE *

Introduction

0.1. In this paper, we give defining relations satisfied by the Chevalley generators
He#, E;, F;, (0<i<n=rank ¥—1) of affine Lie superalgebras ¢, and defining
relations satisfied by the Chevalley generators of affine quantized universal
enveloping superalgebras U, (%) except for U,(A(m, m)®) and U,(A(m, m)®).
Moreover, for U,((A(m, m)P)*) and U,(sI(m, n)P) (m+#n), we also get
defining relations for the Drinfeld realization (see 1.5 for the notation
(A(m, m)®)*).

In 0.3 and 0.5, we give outlines how we get the defining relations of 4 and
U,(%).

Part of the results of this paper has been announced in [Y2]. Similar results
for finite dimensional simple Lie superalgebras of type A-G have been obtained
in [Y1].

0.2. Let (&, II, p) be a triple of a finite dimensional complex linear space & with
a non-degenerate symmetric bilinear form (, ), a linearly independent subset I]=
{ao, ..., a,} of &, and a function p: II—{0, 1}. We call such a triple (&, II, p) a
datum.

We say that a Lie superalgebra 4*=%*(&, II, p) is admissible with respect to
(&, II, p) if ¥ satisfies the following conditions (see Definition 1.2.1).

(x) #=&* is embedded into ¥,

(y) Asa Lie superalgebra, %* is generated by the generators {H, E;, F} with
parities p(H) =0, p(E)=pF)=p(a;). (We call {H, E;, F;} the Chevalley
generators of %*.)

(z) The Chevalley generators of %* satisfy
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(H, H]=0(H, HE#), [H, E]l=a;(H)E,, [H, F]=—a;(H)F,
[Ei, F}] =5ina,.

where H,, is a unique element of # such that u(Hai) =(y, a,) for any vE&.

Let 9*=9%(¢&, II, p) and ¥*=%*(¢&, II, p) be admissible with respect to an
(&, I1, p). Then we write ¥*>%* if there is an epimorphism ¥'=V[%¥ &*]. &*
—%* such that ¥ (H) =H, ¥(E,) =E; and ¥ (F,) =F;. Then there exists a unique
minimal (resp. maximal) one ¥=%(&, I1, p) (resp. 4=%(&, II, p)) with respect
to >. The Lie superalgebra 4 (&, I1, p) is called the Kac-Moody Lie superalgebra.

Van de Leur [VdL1-2] classified Kac-Moody Lie superalgebras of finite
growth; they are:

(1) the finite dimensional Kac-Moody Lie superalgebras,
or

(IT) the affine Lie superalgebras (see [K2] and 1.5 for the notation below):

(i) simyn—m+1® (m>2,1<m<n, 2m+#n+1),
(i) (A5, "2;1)(”)” (see 1.5) (>3, n=o0dd),

(iii) sl@n—2m+1,2m)®@ (n>1,1<m<n),

(iv) siQm, 2n—2m)® >3, 1<m<n, 2m+#*n),
(v) AG—1,n—1D® (n>4, n=even),

(vi) sl@m+1,2n—2m+1)® (n=1,0<m<n, 2m+#n),
(vii) A, n)® (n>2, n=even),

(viii)  osp(n—2m+1, 2m)® (n>1,1<m<n),

(ix)  osp(2m, 2n—2m)® (n>3,1<m<n),

(x) osp@m,2n—2m+2)® (n>1,1<m<n),

(xi) D@ 1;x)® (x+#0, —1) (n=3),

(xii) F@® (n=4),

i) GGBR)YW (n=3).

In §4 and §5, we state and prove a Serre-type theorem for the affine Lie
superalgebra 4=%(&, II, p). In other words, we get defining relations of ¥
satisfied by the Chevalley generators (Theorem 4.5.1, Theorem 5.1.1, Theorem
5.2.1 and Theorem 5.3.1).

0.3. We are going to give an outline how we get the defining relations of ¥=
%(&,11,p). Let (&, 11, p) be a datum such that ¥=%(&, II, p) is one of (i )-(xii).
To prove our theorems, we associate with each 4 a (non-super) affine Lie algebra
%' as in the table below (see 2.4, 5.1 and 5.2; in the text, instead of giving %', we
give only the datum of %").
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s | @G Gii), (vii)) | (), (v), (ix)
7' sliin+1)® siQn+1)@ sp(2n)®

vi), (viD), (%) (xi) (xii)
s0(2n+2)® sp(6)® F,®

|
|

Let P! be the root lattice of 4'. Let W be the Weyl group of P!. Then we define
an action of W on a set of data (&', IT, p") such that ¥(&’, IT, p’) are isomorphic
to ¥ (Definition 3.4.2). For yEW, let (8, °II, °p) =y.(&, II, p), and *%=
%(&,°I1,p). For the unit element e of W, e. (&, I, p) = (&, II, p) and ‘9 =%. In
general, there exists a y & W such that (&, ’I1,’p) is not isomorphic to (&, II, p) as
a datum. Let”P be the root lattice of ’4. For each yE W, we fix an identification
of P and P! (see Definition 2.4.1). Then we show that, for w, y W, there exists
an isomorphism *L,, : ’Y9—>"'% such that

€)) yLw(ygT) =%,y for y&P

where’¥, and V9, are weight spaces (see Theorem 2.5.1; in the text, we only give
’L,,=L; with a simple reflection s;). This construction has been inspired by [FSS],
[LSS], etc. Let?®(C”P) be the set of roots of 4. Under the above identification,
the lowest positive imaginary root 6'&P' is identified with a root 6&’®. Then @
is a union’®="®,, U’®,, of *®,, =Z 5\ {0} and’®,.="®VP,,. Using’L,’s, we get
a uniform proof that dim ’%4,=1 for « =®,, (see Proposition 3.1.1).

We also define admissible Lie superalgebras *%" ’s with respect to (&, *I1, ’p)’s
for y=W, by using concrete defining relations, so that the following condition
holds:

For each y, wE W, there exists an isomorphism ’L}: *%*—*'%" satisfying the
same equalities as in (1)

(see Steps 1-2 of Proof of Theorem 4.1.1, Proofs of Theorem 5.1.1 and Theorem
5.2.1; in the text, >L}, is simply denoted by L}). Using ’L}’s, we can prove

@) dim’%9:=1 for a&’d,.
Likewise we can prove
3) dim’%!=0 for y&’P\C®U {0})
(see Step 3 of Proof of Theorem 4.1.1).
Denote ‘%’ by 4°. Let 4 =%"(&, IT, p) be a unique maximal Lie superalgebra
among admissible ones with respect to the datum (&, I1, p) satisfying the properties

(2) and (3) (Definition 3.1.2). By definition, the epimorphism ¥’ =¥ [%', %']
exists, and we have ker ¥*"C @,.,%%. However, since none of the defining
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relations of %’ has weight 6 (#0), ¥*" is an isomorphism (see Step 4 of Proof of
Theorem 4.1.1). Thus we get the defining relations of 4* (Theorem 4.1.1). Using
the defining relations of %', we get defining relations of 4 (Theorem 4.5.1,
Theorem 5.1.1 and Theorem 5.2.1). We note that ¥#%" if and only if ¢ is (i),
(v) or (vii) (Theorem 3.5.1).

0.4. The argument in 0.3 is more complicated than the one used, e.g. in [GK], in
giving the defining relations for (non-super) symmetrizable Kac-Moody Lie
algebras. A reason for this is that, although, in the case of the symmetrizable Kac-
Moody Lie algebras, we can always use a key result (Proposition 1.2.2), the same
is not true in our case. For example, when the affine Lie superalgebra ¢ is (ii), (v)
or (vii) (related to A(m, m)), we cannot rely on the key result mentioned above,
and the number of defining relations turns out to be infinite (Theorem 4.5.1).

0.5. We define the quantized universal enveloping superalgebra U,(%) abstractly
in the same manner as in [Y1, Corollary 2.9.11]. (In the text, U,(%) is denoted as
U, or U,(&, I, p).) A similar definition in the non-super case was introduced by
Lusztig [L1, 3.1.1]. Let U, be the subalgebra of U,(%) generated by E;’s. For our
purpose, the following result is crucial:

4) If XS U, satisfies [X, F;]=0 for any i, then X=0

(Proposition 6.5.1). By using (4), we get g-analogues of the defining relations of
the affine Lie superalgebras ¥=%(&, II, p) except for types (v) and (vii)
(Proposition 6.7.1 and Proposition 8.4.2). Next we show that these g-analogues are
indeed defining relations of U,(%) (Theorem 6.8.2 and Theorem 8.4.3). Unlike
Lusztig [L1, Corollary 33.1.5] where a similar result is obtained in the non-super
case (see also [Y1, Theorem 2.10.1]), our proof does not rely on the representation
theory of 4 (see Proposition 6.8.1).

In §7, we give isomorphisms between the affine quantized universal enveloping
superalgebras; these can be considered as g-analogues of ’L,’s (see Proposition
7.4.1). In §8, by using these isomorphisms, and by using the same argument as in
Beck [B], we consider super-versions of the Drinfeld generators (see [D3]) for
U,GI(m, n)®) (m+#n) and U,((A(m, m)®)*), and get defining relations satis-
fied by these generators (see Theorem 8.5.1).

§1. Preliminary
1.1. 1In §1, we mainly refer to [K1-2] and [VdL1-2].

We denote by C, Z, and Z. the field of complex numbers, the commutative
ring of integers, and the semigroup of non-negative integers respectively. Put C* =
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C\{0}. Let Z, be the cyclic group {0, 1} of order 2. Let ¥=V(0)®V (1) be a
Z,-graded C-linear space. If XV (i) (i=0, 1), then we say that X is a homogene-
ous element of degree i and write p(X) =i; p(X) is called the parity of X. A Lie
superalgebra g is a Z,-graded space g=g(0)®g(1) equipped with a bilinear
operation [, ]: gXg—>g such that

X, Y]=—(— 1)@y, xTeg(pX) +p(Y)),
x, [v, z]]=[Ix, Y], Z] + (—1)r®»WM[y, [X, Z]]

for homogeneous elements X, Y, Z. A bilinear form (]): gXg—C satisfying
X|Y)=(—1)®r®M(y|X) and ([X, Y]|Z)=(X|[Y, Z]) for homogeneous ele-
ments X, Y, Z is called an invariant form on g.

For X&g, we define ad(X): g—=g by ad(X) (Y) =X, Y](Y<g). Following
[VdL1-2], we define a Lie superalgebra g=g®cC[ ¢, t '] ®Cc®Cd by

[(X®t™+a;c+bid, Y®t"+a,c+b,d]

=[X, Y] ®t" " +mOpin, o X |Y)c+binY®t"—b,mX 1™,

where 8(0) =g(0) ®@c C[ ¢, t '] ®Cc®Cd and §(1) =g(1) ®cC[ 1, t71].
Let 7: g—>g be an automorphism of g of finite order r. Put

(1.1.1) gﬁ={XEgir(X)=(expEn—:/—:_i>X} o<n<r).

Then g§ is a subalgebra of g, and g7 (1<i<r—1) are gj-modules. We define a
subalgebra L (g, 7) of g by

r—1
Lg D= (B gi®t™")®Cc®Cd.
n=0 mEZ

Obviously L (g, 1) =8.

1.2. Here we give a definition of the (symmetrizable) Kac-Moody Lie
superalgebra in an abstract manner similar to the one of the Kac-Moody Lie
algebra given in [K1, §1.3]. Let & be a finite dimensional C-vector space with a
nondegenerate symmetric bilinear form (, ). Let IT= {ao, a;, ..., @,} be a linearly
independent subset of &. Put P=Za,@--OZa,, P+ =Z.ay®---CZ. a,, and P_
=—P,. We call an element a;&II a simple root, and P the root lattice. Any
function p: II—=Z, can be uniquely extended to the group homomorphism p: P—Z,.
Put # =&*. We identify an element vE & with H,& # satisfying u (H,) = (u, v)
(nEeé&). Adatum (&, I, p) is a triple of &, IT and p as above. For a datum
(&, I1, p), we define a Lie superalgebra 4 =% (&, II, p) by generators:
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HEe#,E,F, (0<i<n),

relations:

(1.2.1) [H,H]=0 (H,HeE®),
(1.2.2) H, El=a;(H)E;, [H, F]=—a;(H)F,
(1.2.3) (Ei, F;] =06;H,,,

and parities:
pE)=pF)=p(a), p(H)=0HENX).
The superalgebra ¢ has a triangular decomposition:
G=N"OHDON "

where & ™ (resp. A7) is the free superalgebra with generators E; (resp. F;). See
[K2] and [VdL1-2].

Definition 1.2.1. We say that an ideal #* of ¢ is admissible if r# N # = {0}.
We also say that the quotient ¥*=%*(&, II, p) =%/r* is admissible if r* is an
admissible ideal. For a fixed datum (&, II, p), corresponding admissible Lie
superalgebras form a partially ordered set I(&, II, p) with a partial order >; for
two elements 4*=%/r* and 9¥=G/r* of 1(&, II, p), we write 9% >%* if rF#C ¥
Clearly, 4 is the unique top element of I(&, I, p). We note that 4* > %* if and only
if there is an epimorphism ¥ [¥*, 9] ¥*>4*(H, E,, F—H, E;, F;). We denote
by 4=%(¢&, II, p) the unique botom element of I(&, II, p).

For 4*=%*%(¢, II, p)€I(&, II, p) and aEE, let ¥i={X<=¥%|[H, X]=
a(HDXHEH)} and O[%*] = {a =&\ {0} |dim %+#0}. The linear space ¥§=H#
is called the Cartan subalgebra of 4*. Clearly, ®[9*]CP,UP_\{0}. We put
®(&,II, p) =D[¥]. We note that ¥*>%* implies @ [¥9*] DD [F#].

For a subset B of I(&, II, p), we define an admissible Lie superalgebra
Vi, 9€I1(8, 11, p) by
g*=4/(N

\V, ker U4, 4]).

gbcp ghcp

Then we see that \/ s __ ¥*>%* for ¥*EB, and that B[V 5_, 9*]1=U 4,
We note that, for a fixed a =&, if dim %% is independent of ¥*<B, then

o[%*].

(1.2.4) dim(Vv &%), =dim ¥¥

g¥cp
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for ¥*<B.

For B, a EP., we write <a if a—BEP.\{0}. By the same argument used
in the proof of [K1, Proposition 9.11] (see also [GK]), we have

Proposition 1.2.2. For a datum (&, II, p), let 0 =& be an element such that
(o, a) =(a;, a)/2 for any a,€II. Let 9*<I1(&, II, p). Then, if =P, is an
element such that (a, a) #2(p, @) and such that dim ¥§=dim %, for any BEP-
with B<a, then dim 4¢=dim %, .

Lemma 1.2.3. Let 9*<I(&, II, p). Let a;=I1. We have the following.

(i)

1 ifm=1,

1 ifm=2, (a;, &) #0and p(a;) =1,
0 if m=2 and p(a;) =0,

0 if m=>3.

dim %}, =

(i) Ifp(a) =1and (a;, a;) =0, then dim gi,,iZO if and only if [E;, E;]=0.
(iii) The statements of (i) and (ii) with —a; instead of a; also hold.
Giv) If BEP\(P+ UP_), then dim ¥%=0.

Proof. (i) Since gf’mi is spanned by the element [...[E;, E], ..., E](E;
appears m-times), it is clear that {éfmi =0if m >3, or if m =2 with p (@) =0. Since
(E:, F]=H,#0, dim %} =1. Similarly dim %%, =1 if (&, ) #0 and p (&) =1.

(ii), (iii) and (iv) are easy. Q.E.D.

Lemma 1.2.4. Let 9*cI(&,11,p). Let a;=C* (1<i<m=|II|). Then there
exists a unique automorphism I(a,, ..., an): 9*(&, I1, p) >%* (&, II, p) such that

H: Ei, E g H, aiEi, a,-—lF,-.

Moreover a homomorphism ¢: 9*—%* satisfies ¢|»= 1, if and only if $=1I(a,,
a,) for some a,=C* (1<i<m).

Proof. Let r*=ker ¥[4, 4*]. Then the first statement follows from: r* N #
= {0}, [+, ] Cr* and =B ,ep (g **NF,). The second statement follows from:
dim %%, =1 (see Lemma 1.2.3) and [¢(E), ¢ (F)]=H, #0. Q.E.D.

Definition 1.2.5. Assume that ¥*=%*(¢&, I, p) and ¥¥ =%*(&’, IT, p’) are
admissible. Let ¢: 9*—>%* and ¢: ¥*—>%* be homomorphisms. We write ¢ =¢ if

po=¢ol(ay, ...,a,) for some a;=C*.
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Then = is an equivalence relation. If ¢ and ¢ are isomorphisms such that ¢ (#)
=@ (#) =2, then p=¢ if and only if

¢o=I(b,, ..., by) 0@ for some b;=C*.

1.3. Here we introduce the notion of the Dynkin diagram associated with a datum
(&, II, p). We need the three types of vertices:

o, ®, e .
(white) (gray) (black)

We call them white, gray and black vertices respectively. For the i-th simple root
a;, the corresponding i-th vertex is determined by the following rule:

white if (@, a;) #0 and p (a;) =0,
gray if (a;, @) =0 and p(a) =1,
black if (&, &) #0 and p(a;) =1.

The vertex « can be any one of these three types of vertices. The vertex X can be
white or gray. The vertex (® can be white or black.
Concerning the edge between the i-th and the j-th vertices, we write:

° ° lf (ai’ aj) = :O!

(‘)_‘—é if (o, @)= (aj, aj) =—2(a, “j) #0,
é:é if (o, a) = (0, @) = — (a;, ) #0,
éj:) (m lines) ifm= 4, 0" >2, 2@, 0) 1,
(i, a) (aj, aj) (i, a)
(‘8:)69 if (i, )=~ (o, ) ==%1,
F—@® if (@i, )=~ (@, @) =2,

R—=—x if x=(a;, @) EC*, and (¢;, ;) = —2x if (o, ;) #O0.

i Jj i Jj
If x is a nonzero integer, the diagram ®—— X is also written as @——X (|x]
i j i i
lines). Moreover @——Q is also written as Q(——(). The diagram X121 X
can be O O or /.
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An edge between the i-th and the j-th vertices is called an i-j edge.

Assume (¢, ;) =0, (&, @) EZ\ {0} and (o, ax) EZ\ {0}. If we write a short
line crossing the i-j edge and a short line crossing the j-k edge, it means that both
(i, @) and (a;, ax) are nonzero integers of the same sxgn Otherw1se the signs of

(@i, @) and (a;, i) are different. For example, >< —*—(X):l: >< 1mphes that 2(a;,
k k
a) = (o, ak) +2. On the other hand, any of >< —®_>< X————®IX

i

and ><—0—®_>< implies that —2(a;, ;) = (a;, ) = 2.

Although we occasionally write short lines crossing the i-j and/or j-k edges
even in the case (q;, ;) #0, these lines should be disregarded.

It is true that, for some datum, the corresponding Dynkin diagram is not
defined by the above rule alone. However, for any datum discussed in this paper,
its Dynkin diagram is defined by the above rule. If the Dynkin diagrams of two
data (&, II, p) and (&', IT', p’) are well defined by the above rule and the resulting
diagrams are the same and connected, then there is c=C* and a parity preserving
bijective map fi: IT—=II' such that (fr(a), fz(B))=c(a, B) for a, BEII.
Moreover, if dim & <dim &, f; is uniquely extended to a linear injective map fs: &
—¢&" such that (fs(u), fe(w))=c(u, v) for u, vE&, and fr induces a unique
monomorphism fy: 4(&, I1, p)—>% (&', IT', p’) such that fy(H,) =c™'Hy,q,).

Caution. Two Kac-Moody Lie superalgebras corresponding to distinct Dynkin
diagrams may be isomorphic.

1.4. Here we list several data (&, II= {ao, ..., @}, p) with their Dynkin diagrams.

0
X 0—E& +Ey
(AA)
1 2 N—1
(N>3) X X X
E]"éz 52 53 EN—I_EN
0 N—1 N
(BB) @——x —X——®
WwN=>2) 0—&; E—&, En—1—E&N Ex
0 1
WN=1 ® ®
0 1 N—1 N
(CB) O——X—— = —X )®
(N=2) 0—28, & —& Env_1—EN En
0 1
=1 O=———=0
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(DB)
(N=3)

N=2)

(co)
W=3)

(CD)
(N=>3)

(DC)
W=3)

(DD)
(N=>4)

HiroYUKI YAMANE

0—E& —&
0 X
¥ 2
H X
€2 &3
1 X
E1—&;

O
e
0 1
O——=x
0—2E, E1—&
0 1
(@ —¢
0—2&; E1—&
0—E& —§&
0 X
¥ 2
o
&2 &3
1 X
E1—&
0—E&1—&
0 X
y 2
X
H &~ &
1 X
E1—&

N—1 N
——X=———®
En-1—"En En

N—1 N
—X{ O

EN—l’_EN 2EN

En—1—EN
X N-—1

N—2
—X
En—2—En—1 o

X N
En—1TEn

N—1 N
—X¢ O
En—1—En 2En

En-1—En
X N-—1

N—2
—X
En—2—EN-1

X N
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0 X—F—X%X 2
(N=3)
) s

In the above list, we have given a name (XY) for each of the above Dynkin
diagrams where X, Y=A, B, C or D. We fix a datum (&, II= {ao, ..., &}, p)
whose Dynkin diagram is (XY) as follows. The positive integer n is defined by:

N—1 if (XY) is (AA),
n f—
N otherwise.

The i-th vertex corresponds to the i-th root ;. Let &* be an (N +2)-dimensional

C-linear space with a nondegenerate symmetric form (, ) and a basis {&, ..., &,
0, Ao} such that

(éi; éj) :6ijd—i(d-i: * 1), (5_.', 5) = (5, 5) = (/10, Ao) =0, (5, Ao) =1L
The subspace & of & is defined by

xee=| (x, 6) =0} if (XY)=(AA) and T ,d,;#0,

& if (XY)+#(AA) or if (XY)=(AA) and =X ,d;=0

where 0=3>Y ,d;&;. Clearly (,) induces a nondegenerate symmetric form on &.
For a fixed N, we denote by ABCD(N) the set of the above mentioned data
satisfying the conditions (a) dim &*=N+2 and (b) there is a simple root whose
parity=1. For (&, II, p) EABCD), we call &, ..., &y, 0, Ao the fundamental
elements of (&, I1, p).

Definition 1.4.1. The Kac-Moody Lie superalgebra 4(&, I, p) for some (&,
I, p) EABCD(N) and some N is called of affine ABCD-type.

1.5. Keep the notation in 1.4. In the table below, if we write (XY);, it means

2 pla) (mod 2) if (XY) is (BB), (CB) or (DB),

> p(a;)(mod2) otherwise.
1=1

The notation (AA)® (resp. (AA)®) means that (XY) is (AA) and 22X ,d;#0
(resp. 2X.,d;=0).
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For a finite dimensional Kac-Moody Lie superalgebra g and an automorphism
7 of g of order k, g* stands for L (g, 7) (see 1.1). In the table below, we describe
g% which is isomorphic to 4(&, II, p) for some (&, II, p) EABCD (). For the
definition of 7 in each case described in Table 1.5.1, see Table 4 of [VdL2]. In
Table 1.5.1, we use the notation of g given in [K2, 2.1.1-2].

Table 1.5. 1
%(¢6, 11, p) ! Dynkin diagram
Am—1, N—m—1® (N+#2m) (AA)E
(A(%— 1, %— 1)(1))# (see below) (AA)
B(N—m, m)® (DB),, (CB);
AQm—1,2N—2m)®@ (DB),, (CB),
CN®, D(m, N—m)® (CC)so, (CD),, (DD),, (DC):
AQm—1,2N—2m—1)@ (CC)y, (CD)y, (DD)1, (DC)o
CIN+1)?, D(m, N+1-m)® (BB),
AQm, 2N—2m)® (BB),

Since different notation for g is used in [K2, 2.1.1-2], we shall add some
comments for the notation. We first note that si(m, r) =A(m—1, r—1) (m#r),
siim, m)/CL,=A(m—1, m—1), osp(2m+1, 2r)=B(m, r), osp(2, 2r—1)=
C(r), osp 2m, 2r) =D(m, r) where I,,, denotes the 2m X 2m unit matrix. We note
that AGm—1, m—1) and sI(m, m) are not Kac-Moody Lie superalgebras since
their simple roots are linearly dependent and that gl(m, m) is a Kac-Moody Lie
superalgebra. The algebra (A(m —1, m —1))¥ appearing in Table 1.5.1 is given
as follows. Let (sI(m, m)™®)* be a subalgebra sl(m, m) P ®CE;, of gl(m, m)V
where E;; denotes the matrix having 1 in the (1, 1) position and 0 elsewhere. Then
(A(m—1, m—1)PD)* is defined as a quotient (s/(m, m)P)*/ (D20 CL,Qt*).
We note that A(m—1, m— 1) is not a Kac-Moody Lie superalgebra since its
simple roots are linearly dependent.

1.6. Let D(1, 2; x), F(4) and G(3) be the notation used in [K2], where these
denote finite dimensional simple Lie superalgebras. Then infinite dimensional Lie
superalgebras D(1, 2; x) Y=L (D(1, 2;x)®, 1), F@P=L(F(4), 1) and G(3)®
=L(G(3), 1) are isomorphic to some symmetrizable Kac-Moody Lie superal-
gebras. We shall give the data and the Dynkin diagrams of D (1, 2; x)” (resp.
F4)®, resp. G(3)") in 5.1 (resp. 5.2, resp. 5.3).

Definition 1.6.1. We say that a Lie superalgebra % is an affine Lie
superalgebra if it is one of the following types: affine ABCD type, D(1, 2; x)®,
F(4)® and G(3)®.
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The reason is due to the following theorem proved by Van de Laur [VdL1-2].

Theorem 1.6.2([VdL1-2]). Infinite dimensional symetrizable Kac-Moody Lie

superalgebras of finite growth are exactly the affine Lie superalgebras, in the above
sense.

§2. Isomorphisms Associated with Affine Weyl Groups

2.1. In §2, we introduce a family {L;} of isomorphisms between %4 (&, II, p)’s of
affine ABCD type (see Theorem 2.5.1). The isomorphisms L;: 4(&, IT, p)—>% (&,
“I1,"p) are defined for the following parity preserving isometries s;: £—"&:

(a) reflections s; for non-null simple roots a;,
(b) super-reflections s; for null simple roots a;,
(c¢) diagram automorphisms s;

(see Propositions 2.2.6-8 and Definition 2.2.4). If L, is defined for a super-
reflection s;, then (&, 11, p) and ("€, “IT, p) are not the same.

Remark 2.1.1. The super-reflections are known (see [FSS], [LS], [LSS],
[S]). Let g be a simple Lie superalgebra of type A-G. V. V. Serganova proved that,
if (&, I, p) and (&', IT, p’) are two data such that 4(&, I1, p) and 4(&’, IT, p’)
are isomorphic to g, then there exist finite data (&, Iy, pr) (1<k<r) such
that (&, II,, p)=(8, 11, p), (&, II,, p,)=(&', IT, p’) and (&, I, pu) =
CieD (1), T O (IT—y), "D (pe_1)) where si1 is a reflection or a super-
reflection (see [LSS, Appendix]).

2.2. The formulas in the following lemma are useful.

Lemma 2.2.1. Let (& II={a;, ..., &}, p) be a datum. The following
equalities hold for =% (&, 11, p).

@
@21 [[E, E], F1=— (&, &) 1—6;p(@)E;,
@22) (B, [F, F11=(=6,+(—~1’“") (a;, a)F,
@23 [, El, [F, F11=(— D" (@, 2) 1—6;p (@) Hayvay»
(2.2.4) L[[E:, E;], Ex], F;1=0 if [E;, E,]=0.

(i) Let a;<I1 satisfy (a;, ) #0. Let a;= 2,0 nd d =222 pyt
y 2

(e, @)
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k(—ay—k+1) -d ifp(a)=0,
<k; —ayy= k-d if p(a;) =1 and k is even,
(—ay—k+1) -d ifp(a)=1andk is odd.

Then we have

(2.2.5) [E:, ad ED*ED] = (— D "%k, —a,dad (F)1(F),
[F,, ad(E)*(E)] = (— D? @ k; —a,pad(E)*'(E)).

(iii) Let W, X, YEZ.

X, X, Y]]=0 if p(X)=1 and [X, X]=0.
[[X, Y], X, Y]1]=0 if p(X)=1 and [X, X]=[[X, Y], Y]=0.
[[[x,Y], W], Y]=0 if p(Y)=0 and [[X, Y], Y]=[[W, Y], Y]=[X, W]=0.
Proof. These can be checked directly. For example, the third equality of (jii)

holds since 2[[[X, Y], W1, Y1=[[[X, Y], Y], W]l —[X, [Y, [Y, W]1]. (We note
that the equalities in (iii) hold in an arbitrary superalgebra.) Q.E.D.

Lemma2.2.2. Let /*=V[4, 91 (N ) and ¥~ =¥[4, 41 (N ™). Let XE
N (resp. YEN ) be such that [X, Fi] =0 (resp. [Ex, Y]=0) forany k. Then X
=0 (resp. Y=0) in 4.

Proof. We may assume that X is in some root space. Let 7. (X) be the ideal
of &t generated by X. Then r.(X) is an ideal of ¢ such that r, (X) N s# =0.
Hence X=0. Q.E.D.
As an immediate consequence of Lemma 2.2.1 and Lemma 2.2.2, we have

Lemma 2.2.3. Keep the above nototion. The following equalities hold for 4 (&,
11, p).

(1) Let aiE€11 satisfy (o, a;) #0. Assume that —a,;E2Z. if p(a,) =1 and
—a;=Z,. Then
(2.2.6) ad(E)' V(&) =ad(F)' I(F) =o0.

Gi) If (&, a;) =0, then

(2.2.7) [Ei, E)]=[F, F]=O0.
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Definition 2.2.4. (i) Let (&, I1, p) and (&, IT, p’) be data. For a bijective
linear map f: £—>¢&’, we say that f is a parity preserving isometry if f satisfies the
following conditions:

(a) (M, f)=0,w O, ues),
(b) |I|=|IT'|, and, fII) CP’ where P’ is the root lattice of (&', IT, p’),
(¢) pla)=p'(f(a)) for any a;E11.

(ii) We say that a bijective Z-linear map f": P—P’ is a parity preserving lattice
isometry if f' satisfies the above condition (a), (b), (c) with f’ in place of f.

Lemma 2.2.5. Let (&, II={ao, ..., a.}, p), (&, IT'={aq, ..., ar}, p") be
affine. Suppose that they are not of a name (AA)®. Denote the root lattice of (&', IT,
p’) by P. Assume that there is a parity preserving lattice isometry f': P—>P'. Then
there exists a unique parity preserving isometry f: 6—&' extending f".

Proof. We note that {ao, ..., @, Ao} is a basis of &. On the other hand, it is
easily verified that there exists a unique element /1, such that (Ag, f'(@;)) =d,; and
(Ao, Ap) =0. It is easily verified that {f’(ao), ..., f’'(@.), Ag} form a basis of &'.
Letting f(a;) =f(@;) and f(Ao) =Ao, f is the desired map. Q.E.D.

The following proposition is known (see [FSS], [LS], [LSS]).

Proposition 2.2.6. Let (&, II= {ao, ..., @}, p) and (&', IT'= {aq, ..., an},p")
be data, where (a;, a;) = (a, a}) =0and p (a;) =p’ (@) =1 for a fixed i. Suppose that
there is a parity preserving isometry f: £—&' such that

_al{ lfl:.],
(2.2.8) fla) =1 a/+ai if i#j and (o, ;) #0,

@  otherwise.

Put $=%(&,11,p) and 4’ =% (&', IT', p’). Then there exists a unique isomorphism
¢: 9—>9' such that

(2.2.9) ¢ (H,) =Hj).

—(=D'F,  ifi=j,
(_ 1>p'(a’,~)p'(tx'j)

(2.2.10) E)={ —————

. aj,) I:Ej, E,] l:fl;ﬁ_] and (a[, aj) 5&0,

E;  otherwise.
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_Ei l:fiz_],
(2.2.11) ¢(E/) =1 [E, E] l,fi#j and (aiy aj) 7&0’

F; otherwise.
In particular,
¢(%.) =Y for a€ED(&, 11, p).

Proof. Let 4=%(&,II,p). Let #’ be the Cartan subalgebra of 4’. Denote
the right hand sides of (2.2.10-11) by E; and F;. By using formulas of Lemma
2.2.1, we can show that there is an epimorphism y: 4—%’ such that y (H,) =Hj,),
y(E;) =E] and y(F;) =F]. Since yx is injective, ker y N # = {0} and %/kery is an
admissible Lie superalgebra such that @/kery>% (see Definition 1.2.1). Let
y: %/kery—% be an isomorphism induced from y. By composing of 5! and
W[%G/kery, 4], we have an epimorphism ¢, =¥ [%/kery, 4] 0j~': ¥—% such
that ¢,(H;) =H,, $:(E) =E; and ¢,(F)) =F;. Since ¢1j»= (y|») " is injective,
ker ¢; N #’ = {0}, which implies ker ¢; = {0}. Hence ¢, is an isomorphism, and ¢
=¢; ! is the desired map. Q.E.D.

We call the parity preserving isometry f; £—¢&’ in Proposition 2.2.6 the super-
reflection (see [LSS]) corresponding to the simple root a; with (a;, ;) =0.

Proposition 2.2.7. Let (8, I1= {ao, ..., an},p) be a datum. Let o, =11 be such
that (a;, a;) #0 and a,-,:%e —Z.. for j#i. Assume that —a;E2Z., if p(a;) =
2@, a) .
(e, @) F°

1. Let f: £&—& be a parity preserving isometry defined by f(v) =v—

Suppose that 9*=%*%(&, II, p) is an admissible Lie superalgebra such that the
Jfollowing equalities hold.

(2.2.12) ad(E)'1(E) =ad(F)' “I(F)=0 for any j#i.
Put
5 exp(ad E) exp(— ﬁ ad F,-) exp(ad E;) if p(a) =0,
exp(ad [E:, Ei])exp (ﬁ ad[F,, F])exp(ad[E;, E])  ifp(a)=1.

Then ¢ is well-defined as an automorphism of 9%, and satisfies:
(2.2.13) ¢(H,) =Hp).

In particular,
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(2.2.14) ¢ (Gh) =%k for BEDG[F (6,11, p)].

Proof. The proposition follows from the same argument used in [K1, §3.8].
Q.E.D.

We call the parity preserving isometry f: £—>& in Proposition 2.2.7 the
reflection corresponding to a simple root @; with (a;, ) #0.

Along the same line as Proposition 2.2.6, we have

Proposition 2.2.8. Let (&, II={ao, ..., @}, p) be datum. Assume that there
is a parity preserving isometry f: £—& satisfying f(UI) =IL. Put $=%(&, II, p).
Then there exists a unique isomorphism ¢: 9—% such that ¢(H,) =Hs,. In
particular, $(9,) =%,y (BED(8, I1, p)).

We call the parity preserving isometry f: §—¢& in Proposition 2.2.8 the diagram
automorphism.

2.3. Keep the notation in 1.4-5. Let (&, II= {ao, ..., @}, p) be a datum of affine
ABCD type. As discussed in 1.4-5, the C-linear space & is a subspace of & of
codimension one if (&, II, p) is (AA). Otherwise & =&*. The C-linear space &~
has a basis {&,, ..., Ex, 0, /1o} which consists of the fundamental elements. We note
that (&, §) =6;d; (di==11). We also note thatn=N—1if (&, I1, p) is (AA), and
n=N otherwise. Moreover the name of the Dynkin diagram of (&, II, p) has been
given; it is (AA), (BB), (CB), (DB), (CC), (CD), (DC) or (DD). For a fixed
positive integer N, ABCD(N) has been defined as the set of data {(&, IT, p)} of
affine ABCD-type such that n=N—1if (&, I, p) is (AA), and n=N otherwise.

Definition 2.3.1. Let (&, II, p)©ABCD(V). For a fixed i, 0<i<n, we
define (¢, "I, "p) EABCD (V) by (a)-(d) below:

(a) Let{&1,...,&x, 0, A} be the fundamental elements of (*&, “IT, *p), and
di=(,e)==*1.

(b) If1<i<N—1and (a;, @) =0, then let ("¢, *II, p) be such that d;=
dis1, dis1=d;, dj=d; (j#i,i+1) and the name (XY) of the Dynkin diagram of
(e, "1, "p) is

(DY) ifi=1 and X=C,
(CY) ifi=1 and X=D,
(XD) ifi=N—1 and Y=C,
Xo) ifi=N—1 and Y=D,
XY) otherwise.
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(Here X, Y denotes A, B, C or D.)

(¢) If (&, 11, p) has the name (AA), and if i=0 and (ao, @) =0, then let
(¢, I, "ip) be such that di=dy, dy=d,,dj=d;(j#1, N) and (&, "II, "p) also has
the name (AA).

(d) If (&, 11, p) and 0<i<n does not satisfy the hypotheses of (b) nor (c),
then let (sié’, SiH, S'P) = (év, H’ P)-
24.

Definition 2.4.1. For (&, IT, p) EABCD (W), define (&', IT") by (a) and (b)
below.

(a) Let & beasin 1.4. Let &' be an (W+2)-dimensional C-linear space
with a basis {1, ..., &v, 6T, A}} and a symmetric form (, ) such that {e,, ..., &y,
—5 (6" +AD), ‘/; (6t—AD)} is a orthonormal basis of &t with respect to ().
Define the C-linear isomorphism ¢: &5—&"" by (&) =&:, 1(8) =6", ((Ao) =AS.
Define a subspace &' of &' by &'=1(&).

(b) Define II'={a}, ai, ..., al} by
ot—2, ifi=0and (&, I, p) is (DB), (DC), or (DD),
al=1 2ey if i=N and (&, II, p) is (CD), or (DD),

t(ay) otherwise.

We call (&', IT") the auxiliary datum of (&, IT, p). We also give a name (XY) to
a Dynkin diagram of (&%, II") as follows:

(AA)  if (&, 1T, p) is (AA),

(BB) if (&, II, p) is (BB),

(CB) if (&, I1, p) is (CB) or (DB),

(cc)  if (& 1T, p) is (CC), (CD), (DC) or (DD).

Put P, =Z.a}® - ®Z,al, P =—P' and P'=P" +pP!.

Lemma 2.4.2. (i) ((P,)CP%, ((P)=P"

(i) (x, x) >0 for any xEP'. Moreover xP' satisfies (x, x) =0 if and only
if xEZO'.

Gi) (GO, CIDH= (e, 1.

Proof. Clear. Q.E.D.

Proposition 2.4.3. Let (&,1I1,p) EABCD(N) and 0<i<n. Then there exists
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a parity preserving isometry s;: &—"& such that

2¢(), a)

a.
Ga,ah) ™

for v&EP. Moreover, if (&, I1, p) is not (AA)®, such s, is unique.

() =) —

Proof. The existence of s; can be verified easily. The latter half of the
statement is clear from Lemma 2.2.5. Q.E.D.

2.5. Since s; defined in Proposition 2.4.3 is a super-reflection, a reflection or a
diagram automorphism, by Propositions 2.2.6-8, we have:

Theorem 2.5.1. Let (&, II, p) EABCD (W), and let i be 0<i<n.
(i) There is an isomorphism L;: 4(&, IT, p)—%(i&, “II, “p) such that:

2.5.1) Li(H‘/> :Hs,-(‘/) es).
In particular, L; satisfies:
(252) Li (ga) =9 (Siépy Siﬂ, Sip)si(a) (a e d))

(i) Let L; and L be two isomorphisms satisfying (2.5.1). Then L;=L] (see
Definition 1.2.5).

Remark 2.5.2. Lets; be as in Proposition 2.4.3. If's; is a super-reflection, then
it always changes Dynkin diagram. For example:

i—1 i i+1 i—1 i i+1
O & O O X X

Isi Is,
i—1 i i+1 i—1 i i+1
X X K , & K O (2<i<N-2),
N—-2 N-—1 N Sy N—-2 N-1 N
X K—0 O—R®—e,

N-2 N-1 N
O ®———0O

SN—1



340 HIROYUKI YAMANE

N
v
X ‘ Y

\®<J O<_J
N

N

1 N—1

=
\

(The two sy of the undermost Dynkin diagrams are not super-reflections but
diagram automorphisms.)

2.6. Let (& II, p) €ABCD(N). Let ht': PL—Z. be a function defined by
htT(ZLokiaD =2lok:.
For a composition w=s;1)8i2) *** Si¢—1 i) Of Siwy’s, define (*&, *I1, *p) by

wg ="i() (- Sir—1) (‘i(r)év) ),
wIT="1D (oo SO0 (IO T L)
"D =M (... ‘i(r—l)(‘i(r)p)...).

We note that w is a parity preserving isometry from & to *&. Let P, *P,, "P_
denote the root lattice, the positive and negative parts of the root lattice of (*&, 11,
*p) respectively. We note that the identity map e =ids: £—¢& is also a composition
of s/’s.

Proposition 2.6.1. Let (&, I, p) SABCD(N). Keep the above notation.
(i) Let ac=®(&, II, p)\ZS. Then there exists a w such that w(a) EZBN
o &, "1, *p) for some BE"II.

(i) Let a= @ UP)I\(D(&, II, p) UZS). Then one of the following cases
occurs:

Case 1. There exists a w such that w(a) €*P\(*P. U"P_).
Case 2. There exists a w such that w(a) EZB\D (*&, *II, *p) for some BE"II.

In particular w(@) €0 (*&, 11, *p).

Proof. We prove (i) and (ii) simultaneously. We may assume ¢ EP.\Z3.

We may also assume that a ZZa; for any o;EI1. These assumptions imply that

ZZ. ' (af) for any ;1. Since aZ€Z6, by Lemma 2.4.2 (ii), we have (t(a),

t(@))>0. By Lemma 2.4.2 (i), there exists an af EII" such that (t(a), af) >0.

Since (t(s;(@)), t(s:(@)))=((a), t(a)) >0, s;(a) E"P\ZS (see Lemma 2.4.2
2(al, t(@))

(ii)). Since aZZ:'(ay), we see that s;(a) =a——¢; 5t ' (@D Z"P_UZ6, and
that, if s;(a) €"P\Z3J, ht' (¢t (s;(a)) <ht'(t(@)). Thus we can get a finite sequence
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wo=id, w;=s:(jy *** si»siy (j=1, ..., k)} such that
wi(@) € (IPAZS), ht'(cw;(@))) <ht' (w1 (2))),

and that, letting w=w;, we have either
(a) w(a)eZB for some SE"II,
or

(b) w(a)&"P.U"P_.

Put "¢ =%("¢,"II,"p). By Theorem 2.5.1, dim gw @=dim L; ("~ ‘{4 @)
=dim "~ lgw _,@- By Lemma 1.2.3, dim 4, =dim gw@#o Gie. =1) if and only
if the condltlon (a) and the condition w(a) E®(*&, "1, *p) hold. Q.E.D.

Remark 2.6.2. For (XY)=(AA), (BB), (CB) or (CC), let ABCD) xv)
be the set of (&, 11, p) EABCD(N) such that (&', IT) is (XY). Let §(XY)=
®&((&, I, p) EABCD(N) xy)). Then a set of suitably chosen s;’s gives an action
of the affine Weyl group of (&', IT") on £(XY), i.e. s?=id: £&—¢&, and (s5;5)"¢ =

id: &—~¢& where h(i,j) =2, 3, 4, 6 if %—0 1, 2, 3 respectively.

§3. A Maximal Affine-Admissible Algebra
3.1. By Lemma 1.2.3, Theorem 2.5.1 and Proposition 2.6.1, we have

Proposition 3.1.1. Let (&,11,p) EABCD(N), and $=%(&,I1,p). Then, for
aED(8, II, p)\Z6, dim %,=1.

Definition 3.1.2. (i) Let (&, I, p) ©EABCD(N). Let ¥*¥=%"(&, II, p) be
an admissible Lie superalgebra with respect to (&, IT, p). Namely 4**(&, II, p) >

4=9(&,11,p). We say that 4*=%"*(&, II, p) is affine-admissible if the following
conditions hold.

(3.1.1) (ia) @[9*(8, II,p)]1=9(6, I, p),
(3.1.2) (ib) dim g¥=1 for any a=® (&, I1, p)\Z?.
(ii) Let (&, I, p) EABCD(N), and let AT=AI(&, II, p) be the set of affine

-admissible Lie superalgebras with respect to (&, I1, p). Let 4 =%"(&, I1, p) be an
admissible Lie superalgebra defined by

G =V e, G

Vgt
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(see 1.2). Then %' is a unique maximal affine-admissible Lie superalgebra in A1(¢&,
II, p). Namely ¥4I, and ' > %" for any ¥"*€A4I. By (1.2.4) and (3.1.1-2),
and by Proposition 3.1.1, we have

(3.1.3) dim 9;=dim 4%, if a€((P.UP_)\ZS) U {0}.

Proposition 3.1.3. Let (&, II, p) EABCDWV). If (6, p) #0, %' (¢, 11, p)
coincides with 9(&, I, p).

Proof. Since (6, ) =0, (6, p) #0 implies that 2(k6, o) # (k6, ko) for k+#0.
Since 6P, by Proposition 1.2.2 and (3.1.3), we have dim %};=dim %,; for k >
0. By symmetry, we also have dim %};=dim %s for k<0. Hence 4'(&, II, p)
coincides with 4(&, I, p). Q.E.D.

Example 3.1.4. Here we give two examples when (6, 0) =0, and explain what
happens in each case. The first example is 4, such that its Dynkin diagram is (AA)
with N =4 and its parity is given by p(a;) =p (a3) =0 and p (a,) =p(a@,) =1. Then
g,=(A, DD)* and 9{=(sI(2, 2)’)*. In particular, 4,#%!. We also note
that dim (%1)=2 and dim(%});=3 hold for k#0. The second example is ¥,
such that its Dynkin diagram is (CD) with N =3 and its parity is given by p (@) =
p(a) =p(as)=0 and p(a;) =1. Then %} coincides with %,, and 4,=D(2, ).
In Theorem 3.5.1, we shall show when %" (&, II, p) does not coincide with % (&, I1,
p) for (&, II, p) EABCD(W).

Proposition 3.1.5. Let (&, II, p) EABCD(WN). Put $=%(&, 11, p), 4'=
%' (¢, II, p), "9=%(C¢, "I, p) and "4'=%"(C'&, "II, "p). Then there exists an
isomorphism L}: 9*—""9" such that the following diagram commutes.

g! Lih sigﬂ
I
Vg, 4] j ) l vy, ]
g z Yig

Proof. 1If «(a;)) =af and (a;, @) #0, use Proposition 2.2.7.

Assume ¢(a;) =af and (a;, ;) =0. By 20,0 (&, I1, p), [E:, El=[F:, F]=
0. Hence, by formulas in Lemma 2.2.1, there is an epimorphism y*: 4(&, II, p) —
“ig* such that ¥'["%", %] o y* coincides with y in the proof of Proposition 3.2.7. It
is clear that 4 (&, I, p) /ker y" is affine-admissible with respect to (&, IT, p). By the
maximality of “%*, we see that (&, IT, p)/ker y* =%".

Similarly we can prove the proposition in the case that ¢(a;) #af. Q. E. D.



RELATIONS OF AFFINE SUPERALGEBRAS 343

3.2. For N>3, let CD(WN) be the set of data (&, II, p) SABCD(N) whose
Dynkin diagrams are (CC), (CD), (DC) or (DD). For (&, I, p) ECD(N) and
a fixed 1<i<N, let &= xE8&| (x, &) =0}. Put §,=¢; if 1<j<i—1, and ;=
& ifi+1<j<N. Then {6, ..., Oy—1, 8, Ao} is a basis of &;. Let oJIn= {6;—6+1
(ISJ'SN—Z)}, lH[i]ZOH[i]U {5_291, 29N—1}, ZH[i]:OH[ﬂU {5‘261, On-—2—
On—1}, s =oIInU {6—601—0,, 20x—1}, eIly=0ll3 U{6—6:—0,, Oy—2—On—1}.
Put

I if | [I;zC (8,11, p),

AT if | [I;18D(8, I1, p) and ,IT;; C (&, I1, p),

I if | [I; &8, I1, p) and ;111 C D (&, I1, p),

Wi if Iy, oM, s I & D(8, IT, p) and J1-,CD(&, I, p).

Then IIy; is always well defined, and II;) consists of N linearly independent
elements. Then a triple (&, [Ty, pyy) is a datum where py =p) g -

Definition 3.2.1. Let N>3 and (&, II, p) ECD().
(i) We say that (&, IT, p) is i-good if one of the following conditions holds.

(ia) Any element BEII; satisfies p(8) =0, and the Dynkin diagram
corresponding to (&, I, p) is well defined (see 1.3) and connected.

(ib) The datum (&, II, p) satisfies N>4, and there is a parity preserving
isometry f: &1—>&" for some (&', IT', p’) ECD(N —1) such that f(6) =¢;, f(6) =
& and f(/o) =/o.

(ic) The datum (&, II, p) satisfies N=3, and there is an isomorphism f:
4w, Iy, pu)—=%(&, IT, p") for some (&', IT, p*) of (AA)¢ with N=3 such
that f(E;) =5 E; and f(F,) =F; (j=0, 1, 2).

(ii) We say that (&, I, p) is good if (p, 6) #0 or if (&, IT, p) is i-good for
some i with 1 <i<N.

Proposition 3.2.2. Any (&, II, p) ECD(N) is good.
Proof. This can be checked directly. Q.E.D.
In case N>4, (&, II, p) ECD(N) is i-good for any i with 1<i<N.

Example 3.2.3. Let (&, II, p)CD(3) be such that the corresponding
Dynkin diagram is
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Er—E3
O2
0 1
O—
6_251 El_éz
O3
E)t+Es
Moreover
@&, 11, p) NP,

= {x+s5, —x+ (S+1)6(S20) |x=é1—-£‘2, 52—é3, Ez"‘é;;,
E1—&;3, E1+E;, E1 &, 28}

Then (&, II, p) is not 1-good since the Dynkin diagram of IT;;;={6—0,—6,, 6, —
6,, 6,+6,} is not connected. On the other hand IT;;; = {6—26,, 6,—6,, 6,+6.},
and the diagram of (&1, Iy, p[z]) is:

®|—l

/ 0, — 05

00

5—29\ |
T R0, +6s.
2
Hence (&, II, p) is 2-good. Similary we see that it is also 3-good.

3.3. Keep the notation as above. Assume (&, I1, p) ECD(N) to be an i-good
datum. Let (&, I1, p) n=9(&, I, p) N €. Let xo, ..., Xy—1 be

[So, eery 8i—2,5 8iSi—18iy Si+1y +vey SN if ISISN— 1,

805 «ees SN—2, SN—1SNSN—1 ifi=N

respectively. Then the following diagram commutes:
3 i€
Uy 9 U

40 &)y
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where y; is defined in the same manner as s; in Proposition 2.4.3 with 6, in place of
£,(1<r<N—1). By the same argument as in the proof of Proposition 2.6.1, we see
that, if yE®(&, II, p) ;1\ Z5, then there exists a composition w=>x;q) *** Xi2) Xi(1)
such that w(P) €EZCID NP8, *II, *p)y. It is easily verified that w(y) &
(&), C"IDw, ("p)u). Applying yiyyi) = Yico , we see YEP (&, iy, pra)
\Z¢&. Thus we conclude:

Proposition 3.3.1. Let 4*(&, I, p) be as in Definition 3.1.2. Assume (&, II,
p)ECD(N) to be i-good. Then

O(&yy, iy, pi) \Z6=D (&, 11, p) |\Z6.

Moreover there exists a homomorphism ji: 9 (1w, i, pin)—%" (€, II, p) such
that jin(H,) =H,. In particular, ji)(%* (w1, Hw, pu)e) =% (&, I, p)s for BE
(1, Iy, pr)\ZS (see also Proposition 3.1.1) (If (&1, iy, pu) is of type (ia)
or (ic) of Definition 3.2.1, we define A (éo[,-] , i, p[,-]) Zg(ﬁ[i] , Iy, p[,-]).)

3.4. Keep the notation in 1.5. The notation (XY)? means (XY); with >Xd;=
0. For (&, I1, p) ECD(N), define 4** (&, II, p) EAI(&, I, p) as follows:

(a) If (&, 11,p) is (CC)4, (CD)§, (DD) or (DC)4, then we let ¥** (&, I1,
p) be the affine-admissible Lie superalgebra isomorphic to sl (N, N)®.
(b) Otherwise we put 4**(&, I1, p) =% (&, 11, p).

Proposition 3.4.1. If (&, II, p) ECD(N), then %' (&, I1, p) =%"* (&, II, p).
Proof. It suffices to show
(3.4.1) dim %} =dim %} for any s.

If (8, o) #0, this is an immediate consequence of Proposition 3.1.3. So we assume
(8, p)=0.

We shall prove the theorem for 4* =%" (&, II, p) such that the corresponding
Dynkin diagram is (CD). (Other cases can be treated similarly.) We use induction
on N, and start with N=3. The unique datum of (CD) with N=3 and (6, p) =0
is given in Example 3.2.3. So we first assume (&, II, p) to be this one. Hence %"
=D(2, DO and dim 9% =3 for s#0. By Proposition 3.3.1, there is the homo-
morphism ji1: 4* (&0, 1, pray) —%". Let 9}y be the Lie sub-superalgebra of %*
generated by the elements

(3.4.2) HEH ), Eo, [Ei, E;l, [Ei, Esl, Fo, —d,[Fi, F,], —d,[Fy, F;].
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Since %% =) (%" (&n, m, pry)), by Proposition 3.3.1, 4l is also affine-
admissible with respect to (&3, I, p) and the generators (3.4.2). However,
since (&1, I, pray) satisfies (5, p) #0, by Proposition 3.1.3, we have

(3.4.3) Gn=9wm, Im, pr) =A1, 0)©.

Let s>0. Let XEGk 15125\ {0}, YEGS ¢ -\ {0}, ZEF) .\ {0}. By Prop-
osition 3.3.1, X, Y, ZE%L;. By (3.4.3), [Eo, X1, [[E1, E], Y] and [[E,, Es], Z]
span the 2-dimensional space (%%1),;. On the other hand, % is spanned by
[EO,X], [EI: [Ez, Y]], [Ez, [El’ Y]] and [E;, [EI,Z:]]- Since [Ez, [EI, Y]]=
(E\, [E, Y]] —[[E1, E.], Y], [Es, [E\, Z1]=[E\, [Es, Z]]—[[E\, E;], Z] and
(Es, Z]=a[E,, Y] for some a=C, ¥ is spanned by (¥}y). and [E,, [E,, Y]].
Hence dim %%=3. Similarly we can show dim %% ;=3. This completes the proof
for (CD) with N=3.

Similar argument applies to (CD) with N>4. In this case, we can prove
(3.4.1) using the subalgebra %}, of 4" generated by the elements

HE”D],E(), [EI;EZ:I:EJ <3SjSN), FO: _JZI:FlyFZ]sF} (3SjSN)-
Q.E.D.

3.5. By the same argument as in the proof of Proposition 3.4.1, we have

Theorem 3.5.1. Let (&, IT, p) EABCDWN), ¥=%(&, I1, p) and 49*=%"(&,
I1, p). Then we have:

=(sI(§, )O)* if (&, 1T, p) is (AA),

4 =sI(N, N)® if (6,11, p) is (CC)}, (CD)3, (DD)} or (DC)S,
=sI(N+1, N+D®  if (& 1II, p) is (BB)},
=9 otherwise.

In particular,

1 if (&, I1, p) is (AA)® and rEZ\ {0},

1 if (6,11, p) is (CC)i, (CD)3, (DD); or
dim(ker ¥[9*, 91 N%}) = (DC)%, and re2Z.+1,

1 if (&, 11, p) is (BB)! and r&4Z.+2,

0 otherwise.

See also Example 3.1.4.
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§4. Relations for Algebras of Affine ABCD-Types

4.1.

Theorem 4.1.1. Let (&, II, p) be of affine ABCD type.

superalgebra 9* (&, I1, p) can also be defined by generators HE # , E;

parities p(H) =0, p(E) =p (E;) =p () and relations:

347

Then the Lie

, F; (0<i<n),

(sv [H, H']=0, (H,Hex)
(s2) H, E]=a (H)E;, (H, F]=—a;(H)F,,
(83) (B, F1=06;H.,,

84)(1) [E;, E]=0 if (i, ) =0 G#j),
9  [E, E]=0 i ®,
84 (3) [E, [E, ..., [Ei, E;]...]11=0 (E; appears 1—% times)

2(ay, ad) )
(@, a) = —

if (a;, &) #0 and (— 1)‘”“0 _1,

(S (@ [lIE:, El, Ed, E]1=0

if >< _xfé) - >k<(x¢0), X———(JX>:>69 or @(Zé@:)é
SO [[[E, B, [[E, E], EJ], E]=0 if & @0,

(84)(6) [[[[[E:, E, E, E, E, E, E]=0
f X—O—®—0 o ®—=O—&=—0,
ST (=1 (a0 [[E,E]LE] = (— 1Y (a;,0,) [ [E:, Ei] E;]
lf (a,-, a]') 7&0, (C(]', ak) #0, (ak, a,-)iO,
(i, ) + (&, ) + (a, @) =0

and p(a)p () +p (@)p () +p(a)p (@) =1,
S4)(®) [LLE;, E], [E;, E]], [E;, E]1]=[[[E, E, [E;, Ell], [E;, E]]

i Jj O k
if o:>®< ,
Ot

SO [LEk, B, [Ex, E]]], [Ex, [Ei, [Ek, [E;, E]]]]], E)]
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=2[[Ex, E], [[Ei, [Ex, E]]], [Ex, [Ei, [Ex, [E;, E]]]]]]

i O==0—8=0,
(S8)(10) (B, (B, (), (B, 1) =[E., (5, [E., (5, E]]]]

O
aRY
if @ —,

(84)(11)  [[E., E], [[Ex, E], [[Ex, E}, E]]]
= (1= (=1’ “®2) [[[E, E], [E, [Ex, [E, E]11], E]]

1 j k
if O—/mR—,
(85)(a) (1<a<11) The same relations with F,’s in place of E,’s in (84) (a).

Proof. Let 4'=%"(&, II, p) be the Lie superalgebra defined with the
generators H; (A1€¢&), E,,, F, (0<m<n=|II|—1) and the defining relations
(S1), (82), (83), (84)(a), (85)(a@) (@=1, ..., 11). Letx(a) (resp. y(a)) denote
the left hand side minus the right hand side of the equality in (S4) (@) (resp. (S5)
(a)). If a finite sequence a,, a,, ..., @, of simple roots satisfies the assumption in
(84) (@) (resp. (S5)(a)) with u, v, ..., w in place of i, j, ..., k, then let x (a)¥;*,
(resp. y (@)i;*,) denote the element of 4 (&, 11, p) obtained by substituting E, , E,,
..., E, (resp.F,, F,, ..., F,) forE,, E;, ..., E, (resp. F;, F, ..., F,) in the definition
of x(a) (resp. y(a)). Let X(&, II, p) (resp. Y(&, I1, p)) denote the set of all the
x(@)i;*, (resp. y(@)i;*,). See 4.4 (example). Let r® be the ideal of $=%(&, II,
p) generated by the elements of X(&, II, p) UY (&, II, p). From now on, we
identify %° with 9/r.

Step 1. 9"(&, 11, p) is admissible. Keep the notation in 1.2. Let 7 (resp.r>)
be the ideal of A+ (resp. # ) generated by the elements of X (&, IT, p) (resp.
Y(&, II, p)). By direct calculation, whose example will be given in 4.3, we get

(4.1.1) [r’, F,]Cr’ for any 0<m<n=|IT|—1.

Let £=2(&,I1,p): 9(&, I1, p)—>%(&, II, p) be an isomorphism defined by E(H) =
—H,E(E)=F, EF)=(— l)P(a‘)E,-. Applying £ to (4.1.1), we have [’ , E,,] Cr>
for any m. Hence r’=r% @©r" , and 7’ is an admissible ideal (see Definition 1.2.1),

which implies that 4 (&, I, p) is admissible.

Step 2. Each L; lift where L; is of Theorem 2.5.1. By the result of Step 1,
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there is the epimorphism ¥ (&, I, p) =¥ (%" (&, II,p), 4(&, I1,p)]: ¥* (&, II, p)
—% (&, I1, p). Then the assertion of Step 2 means that, for any (&, 11, p) of affine
ABCD-type, there is an homomorphism L! =L} (&, II, p): %' (&, II, p)—%' (&,
“1, “p) such that the following diagram commutes:

L! o s s
%" (&, IT, p) g* Cig, "I, "ip)
|
v (8, 11, p) ®) | v (6,11, "p)
%(&, I, p) . (¢, 11, *p).

We note that L/ is an isomorphism since L} ("¢, "II, 'p) o L} (&, IT, p) =id i
and L! (&, IT, p) o L! (&, 1T, "ip) =id,,} &, % %, in the sense of Definition 1.2.5.

If 5; is a reflection, then L; lift to L by Proposition 2.2.7. If s; is a diagram
automorphism, it is clear that Ly} exists. In cases; is a super-reflection, the existence
of L} is shown as follows. We also denote L; and L} by L;(&, II, p) and L} (&, II,
p) to clarify their domains of definition. Using formulas of Lemma 2.2.1, it is easily
verified that there exists an homomorphism L*" (&, IT, p): (&, IT, p)—%" (&, *1I,
“ip) such that L¥* (&, IT, p) satisfies the same equalities as (2.2.10-11) with L¥* (&,
II, p) in place of ¢. To show that L (&, II, p) exists is exactly to show that

(4.1.2) L* (&, 11, p) (x(@)i%,) =0  for any x(a)4:*,€X(8, I, p)
and
(4.1.3) LY (&, 11, p) (y (@)i;*%) =0 for any y(@)i*,€Y (8, IT, p).

Since £(r*) =r’, E induces an isomorphism £’ =£"(&, II, p): 4 (&, II, p)—
%' (&, I, p). Since L (&, I, p) 0 (&, I1, p) =& ('€, 11, p) o LM (¢, “II, “ip)
(see Definition 1.2.5) and £(y(a)i*,)=*x()i*,, we only need to show
(4.1.2). The statement (4.1.2) is verified by direct calculation whose example will
be given in 4.4.

Step 3. 9'(&, I, p) is affine-admissible. Keep the notation in 2.6. Let a
e (P, UP_)\ZJ, and let w be the element given in the statement of Proposition
2.6.1. If wis written as w=s;(1)Si2) *** Six) , put L =L,-l’(1) OL,-b(z) O .- OL,l’(,) . Then
Li: %" (&, 11, p)—%" (*&, *II, *p) is an isomorphism such that L} (%" (&, IT, p),) =
4" (&, "II, *p) e . (Isomorphisms denoted by L) are equivalent each other in the
sense of Definition 1.2.5.) By Proposition 2.6.1 and Lemma 1.2.3, we have
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dim ¢,=dim L5(%) =dim 9" (&, "II, *p) v
1 ifae® (&, I1, p)\Zo,
0 if aEP\® (&, II, p),

as desired.

Step 4. %°(&, II, p) coincides with %°(&, II, p). Keep the notation in 3.1.
Here we abbreviate (&, IT, p), 4° (&, I1,p), 9" (&, I, p) to 9, %", 4* respectively.
By the result of Step 3, there is the epimorphism ¥** =¥ [%*, ¥*]. For x(a)};*, &
X(¢, I, p), let au,_p=a,+a,++a,EP,. Then x(@)i*%E9(8, I, p)a,, .

Let (x@54) ' =¥[F, 9') @A) €9 (6, 1T, p). Since @, o ZZ6, ¥ls s
injective.  Since llfr;; (x@i*)H =0, x@i*)"=0 and x()i*, Eker
V[, %*]. Similarly wuev"i:avey(a)g;'.l'.‘weker V[4, 9*] for y(@)i*,€Y(&, I, p).
Hence there is the epimorphism ¥*'=¥[%" #']. It is clear that ¥*' o Pt =1 ot
and P o Pri=1_,, as desired.

4.2,
In 4.3-5.2, LHS~RHS means LHS =a + RHS for some a=C*.

We note that the statement (S4) (7) does not depend on the order of {i, j, k},
namely,

x (1) %oeeao~x (i for any bijective map g: i, j, k} — {i, j, k}.

4.3. Here we shall show how to get (4.1.1) in the case that (&, IT, p) is (XC) with
N=>4. To do this, we show, by direct calculation, that

(4.3.1) x@iL*,, F.ler:

for any 0<m <N and any x (a)¥;*,&X (&, I, p). Here, as an example of the direct
calculation, we are going to show [x(6)¥ sy 2n-1n, Fu] Er’. By abuse of
notation, we also denote N—3, N—2, N—1, Nbyi,j, k,I. If m#i,j, k, I, it is clear
that [x(6)%, F,,] =0. We have:

[x(6)%, F1+r"
~ [[[[[[H;, E], E4], E/], E4], E]], E] +r%
~ [[L[E;, Ed, E], [Ex, E]], E]+r% (by using x(1)§ and x (3)}%
~ 0+7r% (by Lemma 2.2.1 (iii)),
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(x(6)%, Fi]l+r%
~ [[([[LE:,H,E],E],E E]E]+ [[[[[[E:,E],E]E]Ec) ,Hil,E] +7r"%
~ 0+r% (by using x(1)% and x(2)}),

[x(&)%, Fl +r"
~ [[[L[[E:, E], Edl, E], Ed], E]]1, H] — [[[[[[E:, E;], Ex], E\], Hi], E;], Ex]
+ [[[[L[E:, E], Hil, Ei], Ed], E]], E] +r%
~ 0—0+0+r%
(by (ai+aj+art+a;+ax+a;, ax) =0 for the 1st term,
by using x (3)i4, x(3)'” and Lemma 2.2.1 (iii) for the 2nd term,
and by using x (1)} for the 3rd term)

and

[x(6)ha, Fi] +r%
~ [[[LLLE:, E}, E), H], Edl, E}], Ex] +r"
~ 0+r% (by using x(2)i).

So we got (4.3.1) in the case a=6. Other cases can be treated similarly. Once
(4.3.1) is established, the statement (4.1.1) follows immediately.

4.4. Here we shall show how to get (4.1.2) in the case (&, II, p) such that 4(&,
II, p)=A(3, 1)@, The Dynkin diagrams of (&, II, p)’s change under super-
reflections as follows:

(6,1, p)
0 1 2 3
O—=0 RE———0O
6’_251 51"52 52—53 253
1
| 5
l (31525 SISZH SISZIJ)
S'+é'
(“Zg 11, *%p) X3 o—&1—&; -”+é;’
/ | .
Q:)® >
62 El-8 A |
X2 1 ®—|——O 2
& — &3 E—& &—&
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where d,=d,= —d;=d\=—dy=ds= —d|=dy=d; (here d,;=(&;, &), d;= (&, &)
and d; (&/, &)). We note

X(éﬂ, 1I, P) {x(l)oz, x(l)oa, x(l)ls, x(2)2, x(3)001, X(3)iﬁjlo,
x(3)112, x(3)§32, x(9)g’1€éa

xX(%6, "1, "p) = x(Dh, x(DE, x(D}, x(2)h, x4, x(3ih,
x(5)210, x(5)310, x(7) 123

X (126,701, p) = (e (D, x (D, x (D, xBn, x(Bihr, x (Do,
X (3)13”31 s X (7)%1 y X (7)%1

We abbreviate LY (&, IT, p), L¥* (*¢, 1T, *p), L¥* (&, "1, p), L¥* (¢,
P, Pp) to LY, LAY, ‘LY, "LY respectively. The elements ¥[4 (8, II, p),
9°(6, I1, p)1 x @45, Y468, 1T, p), 9° (&, II, p)]1 (y(@i*) €%’ (6, 1T, p)
will also be denoted by x(a)¥;*, and y(a)¥*,. Then we have

LIzm’ (x(l)iljs ~ [[Ez, E\l, [Ez, E;]]
(E2, ([[E\, E.], Es] — [[E, Es], E;])]
[E, x(Df] =0,

!

{

le‘lb(x(3)i{ijlo -~ [[Ez, El], [[Ez, El], [[EZ;EI],EOJ]

= [E,, [E\, [[E,, E1], [[E., Ei], Eo]]1]]— [Ei, [Ea,
L[E,, E\], [[E,, E\], Eo]1]]
0 (by (S4)(5) and Lemma 2.2.1 (iii)),

L3 (x (98
= LY ([[E,, [Es, [E:, E]]], [E:, [Es, [Ez, [Ei, EoJ11]}, Ei]
~2[[E;, E\},[[Es, [Es, E\]], [E,, [Es, [Ea, [Ei, Eo]111]D
~ (R, [[E;, Es], [Fy, [Es, E11), [F, [[E;, Es}, [Fy, [[E, Eil, Eo]11]],
(E, E\]]1—2[[F,, [Es, Ei1], [[[Es, Esl, [Fy, [Ey, EJ]], [F,, [[E,, E],
[Fy, [[E,, E1], Eo]111]]
~ [[Es,E\}, [Es, [Ei, Eol]], [E2, Ei]] +[Ey, [[[Ea, Es], E], [Es, [E1, Eo]]1]]
= [l[Es, E\], [[Es, Ei], Eo)l, [Es, E\]] +[E,, [[[E,, Es], E\], [[Es, E\], Eo]]]]
(by using x (1)%;=0)
= 2[[[[Es,Eil, E;),[[Es, Ei], B, E] +[Ey, [[[E2, Es), E], [[Es, Er], Eo] 1]
(by x(5)%,=0, and since, by Lemma 2.2.1 (iii),
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[([Es, E\], E2], [Es, E\]J1~[[[E, E.], Es], [Es, E:]]
~[[L[E:, Eo), Esl, Eil, Es)~[[[[E,, Es], Ei], EiJ, Es] =0)
= 0 (by x(7)¥%=0 (see also Lemma 2.2.1 (jii))),
‘LY (x (5o
~ [[Ei, [E1, Eo]], [Ex, EJ]~[Ey, [Ey, [[E2, E1], Eo) 1]~ [E2, x(3)1{10] =0
(by x(3)%1,=0),
L (< (o
~ [[[[E:, E3], [E2, E\]], [[[E,, Es], [E,, E\]], Eol], [E, E\]]
= [E:, ([[[E2, Es, [E, Ed}, [[Ea, Esl, [[Es, Eil, Eol]], Ei]
—2[[Es, E1l, [[Es, [Es, EN]], [[Es, Es), [[E, Ei], Eo)1]D]

= [E,, x(9)¥, (by Lemma 2.2.1 (jii) and x(1)$=0)

LA (e (D) ~'LY (x (D (by Lemma 2.2.1 (iii))
~[E1[E2,E3]]_[E3[Ez, El]]:() (x(l);’i3:0)’
'Lllm’ (x (S)g,fo ""[[Ez, [Ez, [El, Eo]]], Fl] ""[Ez, [Ez, Eo]] =0 (by Lemma 2.2.1
(iii)) and
"L (x(3)%0
~ [[Ez, El], [[Ez, El], [Eo, El]]]

~ [[[E,, E\l, [[E:, E1], Eol], Ei] (by Lemma 2.2.1 (iii))
= x(5)%o=0.

Thus we get (4.1.2) in the present case. In other cases, the corresponding
calculation can be carried out similarly and, usually, much more easily.

Q.E.D.

4.5. As an immediate consequence of Theorem 3.5.1 and Theorem 4.1.1, we have

Theorem 4.5.1. Let (&, II, p) be of affine ABCD type. Then the Lie
superalgebra %(&, I1, p) can also be defined by generators HE#, E;, F; (0<i<n),
parities p(H) =0, p (E;) =p (E;) =p(a;) and relations:
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(81), (82), (83), (84)(a) (1<a<l11), (85)(a) (1La<1l)

and

6)  x(k; 6)=0 if k>0 and dim(ker U[%", 9] N%L) %0,
) yk; 6)=0 if k>0 and dim(ker ¥[%*, 4] N%" ;) #0

where x (k; &) (resp. y(k; 0)) is an element of /' " N%s (resp. /'~ NG _ys) such
that U[%, '] (x(k; 6)) (resp. ¥[¥4, 9*]1(y(k; 6))) spans the one dimensional
ker U[%"', 91 NG5 (resp. ker U[%*, 91NGL.s).

§5. Relations for D(2, 1; x)®, F(4)V and G(3)"

5.1. In §5, we shall prove the counterpart of Theorem 4.5.1 for 4(&, I1, p) of type
D2, 1;x)®, F(4)® and G3)® (see also 1.6).

We first deal with (&, II, p)’s isomorphic to D(2; 1, x)V, (x#0, —1). The
argument needed in obtaining their defining relations is almost the same as in the
case of affine ABCD-type. We first introduce tools which are the counterparts of
the ones used to prove Theorem 4.5.1.

(a) We first define an auxiliary datum (&, II'={a{, af, o, al}). Let &'
be a C-linear space with a basis {af, al, af, al, Al} and a symmetric form (, ) such

that the corresponding Dynkin diagram is

Diagram 5.1.1

0 1 2 3
O——0O OO
ab al o o

and that (A{, af) =68, (A}, AY) =0.

(b) LetData(D(2, 1;x)™) be a set of six data whose Dynkin diagrams are
given in Figure 5.1.1 (see below). For (&, II, p) EData(D(2, 1; x)), we always
assume dim £=35. For each datum (&, IT= {ao, a1, 2, a3}, p) EData(D(2, 1;
x)®), the numbering of elements of IT is given by letting the i-th simple root a;
correspond to the vertex labeled as i+j or i in the corresponding Dynkin diagram.
The C-linear space & is spanned by a basis ITU {/1,} where A, is an element such
that (a;, Ao) =0y and (Ao, Ao)=0. We also define a linear map ¢: £—~>6" as
follows. If a; corresponds to the vertex labeled i+j (resp. i), then we put ¢ () =
af +af (resp. t(a;) =al). We also put ¢(Ay) =Af,
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(¢) Let (& I, p)EData(D(2, 1; x)) and i=0, 1, 2, 3. If there is an
arrow labeled as s; between (&, IT, p) and a datum (&', IT, p’), let ('€, *II, p) be
(¢, IT, p). Otherwise, let (&, II, “p) = (&, II, p).

(d) Let "P be the root lattice of ("¢, “II, p). Define a parity preserving
lattice isometry f;: P—"P by

fl@=c"(el@—

2(c(@), ah) ) ep)

a.
(@, ah) ™

(see Definition 2.2.4). Then £ is uniquely extended to a parity preserving isometry
si: €& (see Lemma 2.2.5).

Figure 5.1.1

S3 x+1

PR
—(x+1) —(x+1) —(x+1)
So
«—— >
K b2
2+3 1
0+1 O 0+1 O
x+1 3 So i 2 x+1 3
O — X O
-1
10 10O

Then we have:
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Theorem 5.1.1. Let (&, I1, p) EData(D(2, 1; x)). Then %(&, I, p) can
also be defined by generators HE #, E;, F; (0<i<3), parities p(H) =0, p(E) =
p(F) =p(a,) and relations:

(S1), (82), (S3), (84 (a), (85 (@) (@=1,2,3,7),

SO (&) [[[E, E], [E;, Ed], [E;, E]1=x[[[E}, E], [E;, E]], [E;, Ed]]

. . Ok
f O0—@ (e —1,0)
\61

and
(S5)(8x) The same relation with F,’s in place of E,’s of (84) (8x).

Proof. This theorem follows by exactly the same argument used in the proof
of Theorem 4.5.1. We note that, by exactly the same argument as in the proof of
Proposition 3.4.1, it is verified that (&, II, p) is the maximal affine admissible Lie
superalgebra. Here we only give examples of direct calculation needed in the proof.

Keep the notation in Step 2 of the proof of Theorem 4.1.1. Let (&, I, p) €
Data(D(2, 1; x)") be the datum whose Dynkin diagram is the first one on the left
of Figure 5.1.1. Then the Dynkin diagram of ('&, ‘', *ip) is the second one on
the left of Figure 5.1.1. We abbreviate LY¥* (&, IT, p) and LY¥* (¢, *'II, "'p) to L}¥"
and 'L}’ respectively.

We have:

LMY (x (8x) s
~ [[Eo, E,], E;] —x[[Es, Es], E;] =x(1)¥=0.

We also have:
LM" (x (7)023) ~Xx (8x)g’f123 =
Thus we get (4.1.2) in the case of Data(D(2, 1; x)). Q.E.D.

5.2. Here we deal with F(4)®’ =L (F(4), 1). We use the same argument as in 5.1
with Diagram 5.2.1 and Figure 5.2.1 in place of Diagram 5.1.1 and Figure 5.1.1.
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Diagram 5.2.1

0 1 2 3 4
O O O——=0—0
ab al al ol al

Let Data(F(4)V) be the set of twelve data such that their Dynkin diagrams are
given in Figure 5.2.1 (below). For (&, I1, p) EData (F(4)"), we always assume
that dim& =6 and (a, @) =4 for the simple root & corresponding to the leftmost
vertex in the diagram. The numbering of simple roots is given as in (b) of 5.1. For
example, the first one on the rightmost side satisfies ¢ (o) =al+al+al, (o) =af
(j=1,3,4), ((a)) =a}+al.

Figure 5.2.1
o+1+2+3 0+1+2+3
5—(2):28—(;/ > O___O_®% \4 53 O:ég/ \\3 0+1+2
ISO So i So l Sa
1+2+3 1+2+3
s o °1O_®4_\é nrn e
s T r
$ 2+3 ¢ 2+3 '
g_—jgizzé——ﬁ%%%? S4 Cy_igi_Jgf%i;§§$;*?9 /%/ \X{+2+3o
isz 1sz
L S N

Theorem 5.2.1. Let (&, I1, p) EData (F(4)). Then %(&, II, p) can also be
defined by generators HEH, E;, F; (0<i<4), parities p(H) =0, p(E,) =p (F,) =
p(a,) and relations:
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(S1), (82), (83), (S4)(@), (S85)(a) @=1,2,3,4,5,7),
92 [[IIIIE, B, B, B, B, B, B, B, EJ, E), E]=0
y O—O—8=0,
U3 [[[[E, B, B, E], B, B =2[[[[[E, EJ, E], EJ, ], E]
¥ O0=0—®=0,
and
(85)(b) (b=12, 13) The same relation with F,’s in place of E,’s of (S4) (8).

Proof. This theorem follows by exactly the same argument used in the proof
of Theorem 4.5.1 and Theorem 5.1.1. We note that, since (p, 6) #0, 4(&, II, p)
itself is the maximal affine-admissible algebra. Here we only give examples of
direct calculation needed in the proof.

Let (&, I1, p) EData (F(4)™) be the datum whose Dynkin diagram is the first
one on the leftmost of Figure 5.2.1. Then, letting w;=s35,5,535,5354, the Dynkin
diagram of ("'&, "I, "'p) is the fourth one on the rightmost side of Figure 5.2.1.

Suppose LY’ =L¥*(&, IT, p). We note that s,(o) =ato+aa, ss(@1) =a;, ss(az)
=a,, s4+(a3) =a;+as and s,(as) = —a,. Then we have

LY (x (13)%5%0

=LY ([[[[[Eo, E4l, Es], E;], E4], E;] —2[[[[[Eo, E4], E;], E,], E;], E4])

~ [[[[Eo, [Es, Ed], E;], Ful, [Es, EJ]]—2[[[[Eo, [Es, Ed], E,],
[Eh E4]:|, F4]

(since [[Ey, E4], Fs] ~E,)

—[[[Eo, Esl, E,l, [Es, EJ]J]—2[[[Eo, [E;, E.]], E;], E5]
~ [[[Eo, Es, E;], [Es, EJJ1+[[[Es, [Es, Eol], E;], Es]  (by x(1)%=0)
= [Es, [[[Eo, Es], E], EJ]1+ [[[Es, [Es, Eol], E»), Ei]  (by x(4)¥%,=0)
0.

!

Put 'LY¥* =LY (&, “II, “p). Then we have

‘LY (e (4)%50) ='LY* ([[[E,, E5], Eol, Es])

= [[[Ez, [Es,E4]], [Eo, E4]], [Ea, Ed]
[[[[[Eo, E.], Es], E.], E,], [E3, E]]
[L[LL[Eo, E4], Es], E.], E;], Es], E.]
= [([[[[[Eo,Es),Es],Es], Ex), Es] —2[[[[[Eo, Eal, Es], Es], Es], Ed]), Ed]
[x(13)l'2’§io, E4] =0

l
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where we note that, in &, ao=t"'(a}+al+al+al).
Suppose LY’ =L ("'¢, "'IT, "'p). Then we have
L3 (x(12)0530) =L¥* ([[[[[[[[[[E:,E.], Es], Es], Es], E], Es), Ed], Es], B, ), Es])
~ [[LLLLLLLLLE:, [E., Es]], Fs], [Es, E4J], Fs], [E,, Esl], Fsl, [Es, Ed],
Fi], [E,, E5]], F;]
~ [[[[[EI, Ez], E4], Ez], E4], Ez] )
= [[[[E:, E2], E4], [E, EJ]], E]~x(5)%:=0.
Put ‘LY =LY% ("¢, "I, "*'p). Then we have
‘LY (x (550 ="L¥* ([[[[E:, E.], E4], [E;, EJ]], E2])
~ [[[[E\, [Ea, Esl], [Es, E;]], [[E,, E;], (Es, E3]1], [Ea, E3]]
~ [[LLLIE\, [Ea, E5]], [Es4, Es]], [E,, Es]], [Es, Esl], [E,, E;]]
= [[LLLCLCLLE:, E2l, Esl, E4l, Esl, E,], Es], E4], E;], E,], E3]
= x(12)%.=o0.
Thus we get (4.1.2) in the case of Data (F(4)). Q.E.D.

5.3. Here we treat the case of type G(3)®. Let Data(G(3)™®) be a set of five
data whose Dynkin diagrams are given below:

; %EEO //ea\%o
=—Q o m—

O===R=—=0 O O O—R—@®

O=R—O=====0

For (&, I, p) G (3)®, we always assume dim &=35.
Theorem 5.3.1. Let (&, II, p) EData (G(3)V). Then 4(&, II, p) can be also

defined by generators HE#, E;, F; (0<i<3), parities p(H) =0, p(E;)) =p(F)) =
p(a) and relations:

(S1), (82), (S3), (S4) (@), (85) (@) (@=1,2,3,4,7)

and

(8614 LLE, El, [[E, El, [[E;, E], E]]], E]=0
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¥ ®—@=0,
SHUS) B, B, [, (B, BN =B, (B, (B, [, EJ]]
if OE®:>>kQ
U6 2[[[[[E, B, B, E, B, E1=3[[[[[E, B, B, E], B, E]
¥ O=®—O=0,

s4HAan
CCCCCCCLLLLLLIE: ,E;), El, El, Ex), E}), Ei]  E/), Ei]  E;], Ex ], El] , E ], E;j],E ] =0

i k j i
(S5) () (14<b<17) The same relation with F,’s in place of E,’s of (84) (b).

Proof. Let (&1, IT, p1) = (&1, IT, = {a, ai, @2, s}, p1) be the datum whose
Dynkin diagram is the first one of the first row of Figure 5.3.1. We assume (ao, %)
=—38, (a1, 1) =0, (a3, ay) =2 and (a3, as) =6. Let 5=ao+2a;+40,+2a;. Let
&, =@(&1, IT;, p1) NP be the set of positive roots of =% (&1, I, p1). Let (&,
II,, po) be the datum such that IT,= {a;, @,, @3}, dim &=3 and po=p;. Then
4(&,, Iy, po) is the finite dimensional simple Lie superalgebra of type G(3) (see
[K2]). Let @, + be the set of positive roots of ¥(&o, Ily, po). Then we have @,
= {aay +bas+eas| (a, b, ¢)=(1, 0, 0), (1, 1,0), (1, 1, 1), (1, 2, 1), (1, 3, 1),
(1, 3,2), (1, 4,2), (2,4,2), (0,0, 1), (0, 1, 1), (0, 3, 2), (0,2, 1), (0, 3, 1),
(0,1,0)}. Then we have @, =®,, + U {x6+6|x>0, 6P, .} U {yd|y>0}. Fori

2@, @)

=0, 2, 3, we define s;: £,—>6, by s:(y) =r—- .5 . Put

D=0, U ULo(Ds +a.),
% ={red’ | (v, =20, N}.
It is clear from Proposition 1.2.2 that, if ¥*<I(&,, II,, p,) satisfies dim @t =

dim¥, for any a=®%, then 9*=9%. Since |2(p, 6)| =12, sufficiently large
elements of @’ do not belong to @* . By direct calculation, we have

(Dﬁ.: {al, 2a1, o, U3, Ay, ao+3a1+4az+a3, a1+2a2, ao+a1+a2+a3, 200+ 3,
+5a2+2a3, ao+2a1+4a2+4a3, a2+2a3, ao—|-2a1—l—2a2+a3, 4a2+a3}.

Let % be the ideal of A& * generated by the relations (S4) (b) (b=1, 2, 3, 16). Let
r’ be the ideal of ./ ~ generated by the relations (S5) () (b=1, 2, 3, 16). By
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using Lemma 2.2.2, we can see r’> Cker ¥[%9¥, 4] N A%, It is easily verified that
r’=r" @®r% is an ideal of 4. Let ¥*=%/r". Then %¥°<I(&,, II,, p). By
Proposition 2.2.7, we may define the automorphisms L/: ¥*—%" (i=0, 2, 3) by

(5.3.1) L} =exp(ad E)exp (ad(— ((1-2—0:-) F,)> exp(ad E)).

We also have L! (42) =9« where s;(a) =a—%‘—"‘,’—§% a;. By the same formula as
in (5.3.1), we also have the automorphism L;: 4—% (=0, 2, 3) such that L;(%,)
=% . Note dim %,=dim¥%, for a€ U oZ ;. Let BEP* be a minimal
element with respect to the order < (see 1.2) among {8'E®*% |dim ¥} >dim %4} .

Then S satidfies:
(5-3-2) IBEQ)E- and (B) aO) ZO; (B: aZ) SO, (B; aS) SO

since 5;(8) > (i=0, 2, 3). The unique element of ®*% satisfying (5.3.2) is ap+
2a,+2a,+a;. However, using the relation (S4)(16), we have dim g30+u1+m2+a3
<1. Hence dim %4+, +2u,+a,=dHM Gay 120 +20,+a,(=1). Hence such 8 doesn’t
exist. Hence %' is isomorphic to ¥.

For the other datum of Figure 5.3.1 than (&, IT,, p;), we can prove the
statement by iterating the isomorphisms corresponding to the super-reflections (see
Proposition 2.2.6). Q.E.D.

§6. g-Analogues of the Defining Relations

6.1. Let C(g) be the rational function field in a variable g over C. The letter o
denotes the generator of Z,. Assume V to be a Z,-graded C(g) (resp. C)-algebra.
We also view V as a Lie C(g) (resp. C)-superalgebra by putting

[X, Y] =XY — (— 1)P%5D yx

where X and Y are homogeneous elements of ¥ (see 1.1). Since Z, acts on ¥ by
o(X) = (—1)*® X for a homogeneous element X, we can consider a C(g) (resp. C)-
algebra V=V @oV such that cXo= (—1)*® X for any homogeneous element X &
V (see [Y1]). We call V° the extension of V with 0. For a Z,-graded C(g) (resp.
C)-algebra homomorphism ¢: V—W, define ¢°: V=W’ by ¢°(X) =X (XEV) and
¢°(0) =0. Then ¢ is an algebra homomorphism. We call ¢° the extension of ¢ with
o.

Definition 6.1.1. Let (&, II, p) be a datum. We say that a quadruple (&, 17,
p, I') is a lattice datum if the following conditions are satisfied:
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(a) [I'is alattice in &, i.e., [ is a Z-span of a basis of &.
(b) (r,7)EZfor any 7, Y ET.
(¢) IICT.

For a lattice datum (&, IT= {ao, ..., a.}, p, I'), we define an associative Z,-graded
C(g)-algebra U,=U,(8&, I, p, I') (with 1) by generators:

K, (€I, E:, F, (0<i<n),
parities:
P& =0, pE)=pla), pF)=p(a,
and relations:

@sD Ko=1, K,Ky=K,+y forally, 7€l
QS2)  K,EK;'=q¢""E,KFK;'=q "*F

—1
a;

Kai ]
(Qs3) [E:, F;]=6; ﬁ .

Then the extension U¢=0¢(&, I, p, I') of U, with o has a Hopf algebra
structure (U7, 4, S, €) with comultiplication 4, antipode S, and counit £ such that

4(0)=0®0, 4(K,)=K,®K,,
A(E) =E:®1+K, 0" ®F,, 4(F)=F.®K;'+o" *®F,
S =0, SK)=K;', SE)=—Ks'o"VE, SF)=—0"FK,,
e(o)=1, eK,) =1, e(E)=0, e(F)=0.
Let U; (resp. U;) be a subalgebra (with 1) of U, generated by E,, ..., E,
(resp. Fy, ..., F,). It is easily verified that U, (resp. U, ) is a free algebra with
generators Eo, ..., E, (resp. F, ..., F,). Let T be a subalgebra (with 1) of U,

generated by K, (y&I'). It can be verified that K, (y&I') form a basis of T.
Moreover we have a C(g)-linear isomorphism:

6.1.1) U; ®cy( TOOT)®cq Uy —U?

(X®ZQ®Y—>XZY) (see [Y1]). Denote the subalgebra T®oT (resp. U, (TP
oT)) of U7 by T° (resp. BY). Let I'V={1€&| (A, 1) EZ (yEI')}. Assume M to
be a left T-module. For yEI'Y, let M,= {mEM|K, m=q"* m for any nEI}.
We note Uy = ®qer, (U;) + where T acts on U; by K,(X) =K, XK _, XEUT;).
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6.2.

Proposition 6.2.1. (i) There is a unique symmetric form {,): BS X B9—
C(q) such that

Ga) X\Zy, X2Z={X1, X ){Z,, Z,) for X\, X,€U; and Z,, Z,=T°,

(ib) (K.0',KzaD=g“P(—1)" (a, BET, 11, nEL),

(ic) <E:, Ep=6y, and X1, X»)=0if X,E (U)o, X,E (U, )s and a+#p,

(id) <A(W1), W2®W3>:<W1, W, W3>, <S<W1), W2>=<W1, S(W2)>,
1, Wy =e(W,) for W\, W, WsEBC.

(ii) Let ¢: U; —U, be the isomorphism defined by ¢ (F;) =E;. Let 6: U —
U be the anti-isomorphism defined by 6(E;) =E;. For B=a, +---+a; EP., put
18) =k, i (8) =g™*<*“d "’ and r,(8) = (— D) ™*<¥" W, Pyt AP =(4®1) 0
4. Let X (U )gand Y= (U;)_,(a, YEP.). Write

AP (X)) =X, Ks 50" 77 X, K5, 0" 01X,
(B=B1+B+8Bs, X,.E€ (ﬁ;)ﬁi),

49 =271, o Y QK -, 7Y, ® Y3K_¢rp
G=n+rtr, Y.€ (Uq_)—y,.)-

Then we have

1y NGty 18p 12(B1)  —(8y, 8,489
6.2.1) YX=Z<%>I RS L A

SRR CDICIVASRECTC ORI O
r(r) X3, ¢(¥3) >X2Kﬁ3—71 Y,.

In [Y1], an essentially the same result as Proposition 6.2.1 is proved via the
well-known argument due to Drinfeld [D1]. See also [L1] and [T].

6.3. Let
I'={xeU; X, X,)=0 for any X,=U,}.

It is clear that I = ®gep \wrup s where Ig =1 (O;))s. It is easily verified
that ker{, )=I"T°

For X< (U;); with BEP, with 4(X) = Zﬁl+ﬁ2=ﬁX1Kﬁza”‘ﬁz> ®X, (B=B,+
B, X,E (U, )s), we have
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(6.3.1) S =(=D"Pri(Br:(BK-50* P90,
and
(6.3.2) ZICRIC LD S e SET I OL %

By Proposition 6.2.1 and (6.3.1), we have:

Lemma 6.3.1. (") =I".

Put

Jt=I"T°0; and J-=0U;T°I

where I " =¢~'(J"). Then we have:

Lemma 6.3.2. J* and J~ are Hopf ideals of U;.

Proof. By using (6.2.1) and Lemma 6.3.1, and by (6.3.2), we see that U, I'*
CI"T°U; andI" U; CU;T°I". HenceJ* and J~ are ideals. It is easily verified

that 4(J=) CIJ* U+ T ®J*, S(J*)=J* and £(J*) = {0}. Q.E.D.

6.4. Define a Hopf C(g)-algebra US=U{(&, II, p, )= (U¢, 4, S, €) as the
quotient Hopf algebra:

(6.4.1) Us=Ug(&, I, p, D) =0/ (J++J ).

Let 7 U,;’—>U,§’ be the canonical map. By abuse of notation, the elements (o),
n(K,), n(E:;), =(F.) (resp. the subalgebras #( T) and z( T°)) will be denoted by g,
K,,E;, F; (resp. T and T°). The subalgebras 7(U;) and z(U,) will be denoted by
U/ and U;. We note that

(6.4.2) ker 7 ro= {0}, ker g} =JI*, ker mg =1,

and that there is a C(q)-linear isomorphism:

(6.4.3) X{ ®cp) T° QeyUy = U7

XR®ZRIY—>XZY).

6.5. For BEP., let X4y (resp. Y(s,ip) (1<ig<dim(U;)p) be a basis of~(l.7;),3
(resp. (U;)-45). We assume X (o, 1) and Y (g 1) to be 1. By (6.1.1), for XU, and
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YEU,, YX can be written uniquely as a sum
2 Qi @, iy Xy VX (o ipKe Y,y EU]

where Q(s, i, @, G.ip X, YYEC(Q). For (X, Y)E (U, )sx (U;) -4 with BEP,
put Qs(X, Y) =Q, v, . 0, n X, Y)EC(g).

Proposition 6.5.1. Let (&, II={ao, ..., &}, p, ') be a lattice datum. If XE
U, satisfies

(6.5.1) (X, F]=0 forany 0<i<n,
then X=0.

Proof. We may assume X € (U, )z for some SEP, . It is clear that [X, F, F,
F,-r] =0 for all elements «;,, @, ..., @, EP+. Hence

(6.5.2) X, (U;)_s]=0.

On the other hand, for (X;, Y1) &€ (U, )X (U, )5, QsX:1, Y1) =a- X1, ¢(¥1)D
for some non-zero element a of C(g) (see (6.2.1)). Let X,& (U, )z be such that
z(X,)=X. By (6.1.1), (6.4.3) and (6.5.2), we see that Qs(X,, ¥,) =0 for any Y,
e (U, )_5. Hence X, X3) =0 for any X;= (U, );. Hence X,I;. Hence X=0.
Q.E.D.

6.6. Specialization at g=1. Let A=Cl[q, ¢~ '] be the C-subalgebra of C(g)
generated by g and ¢~ '. Let (&, IT= {ao, ..., @}, p, I') be a lattice datum. Let U3
be the A-subalgebra of U; generated by

K,—K;!

g, K,, [K,]= - (y&lI), E., F, (0<i<n).

Let Tg (resp. Ui, resp. Ux) be the subalgebra of T° (resp. U, resp. U, ) generated
by o, K,, [K,] (resp. E;, resp. F;). We note that, if {y(r) (1<r<dimé&)} isa Z

basis of I, then {0*©@ df:[: K‘;((g [K,»]*?|a(r)=0,1,b(r) EZ.} is an A-basis of T°.

Moreover there is an A-module isomorphism:
(6.6.1) Ui ®@uT{®AUx—Ug

XRZJAY—=XZY).
Let C, be a left A-module such that dim¢ C;=1 and q acts as 1. Define the C-
algebras Ug, T¢, U¢ and Ug by UZ®aC;, T{®,C,, Ui ®,C, and U ®,C;. Then
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we have a C-linear isomorphism:
(6.6.2) Ué ®cTERcUc—>Ug

(X®ZR®Y—XZY). Define ‘U by the quotient UZ/¥” where ¥ is the two-sided
ideal of U¢ generated by all K,®,1—1®41 (yEI'). Define z;: U{—='U% by 7 (X)
=X®41+7¥. Denote the elements 7, (0), 7 ([K,]), m;(E), and =;(F,) by o, H,,
E; and F;. It is clear that there is a unique Lie C-superalgebra homomorphism f:
(&, IT, p)—'U% such that (H,) =H, (y&I'), f(E) =E; and (F,) =F;. Let 4’
=47(&,II,p) EI(&, II, p) be the admissible Lie superalgebra defined as (&, 11,
p)/ker §. Then we have the Lie superalgebra monomorphism x: 4’ —'U% induced
from §. Let U(%") be the universal enveloping superalgebra of 4”. We denote by
£ the epimorphism 5: U(%")—'U% such that 5 g7 =X It is well-known that the
extension U(%')° of U(%") with o has a Hopf C-algebra structure (see [Y1,
Proposition 1.9.1]). It is clear that the extension 5° of 5 with ¢ is a Hopf C-algebra
epimorphism.

Lemma 6.6.1. Z°is an isomorphism.

Proof. Let {X,}sco be a C-basis of 4 where O is a totally ordered set. It is
well-known that the PBW elements {1} U {Xj, --- Xo, |6,<---<6} form a basis of
U(%"). We note that 1, g, 05°(Xy), 5°(Xp) (€ O) are linearly independent. Ob-
serving the coefficients of the terms 0’ ® 0@, 0°® 57(X,)® 0°®, ¢*® 5°(X5)®
0*© 5°(Xy, -+ Xg,) (61<6,<--<6,) (@(j)=0,1) of 57®5°(4(Y)) =4 (5°(Y))
of YEU(%")®, we see that ker 5°= {0}. Q.E.D.

Put /T*=U[4, 4] (N*). By Lemma 6.6.1, we have
(6.6.3) dimeqy (U 2a=dime UNT®) 1a>dime UN ) 1y (@EP.)

where UN ) o= {WEUW)|[H, Wl =F2a(H)W HEH#)} and UNTF) 4,
={WeU(WNTE) | [H, Wl=*a(H)W HEX)}.

6.7. For a€P, put (U)),.= {XEU?|K,XK; '=q“PX (y&I')}. For X,& (UY.,
XﬁE(U;>13, we put:

[[Xa , Xﬁﬂ :XaXﬁ_ (_ 1)p(a)p(ﬁ)q—(a, B)XgXa.

Let [n]= f:::." .
We say that (&, I1, p) is of affine ABCDFG type if (&, I1, p) EABCD () for
some N>1, or (&, II, p) EData (F(4)®) UData (G(3)™). For (&, I, p) of affine

ABCDFG type, we fix a lattice datum (&, I, p, I") as follows:
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ZE D - DZLEYDZODBZAN, if (XY)=(AA) and TX,d;=0,
r'=
P®ZA, if (XY)+#(AA), orif (XY)=(AA) and XX,d;#0.

We also say that (&, II, p, I') is of affine ABCDFG type.
By using Proposition 6.5.1, we have:
Proposition 6.7.1. Let (&, II, p, I') be a lattice datum of affine ABCDFG

type. Then, in US(8, II, p, I'), the following equalities (QS4) (a) (1<a<17)
satisfied by E,’s hold:

(Qs4)(1) [E:, E]=0 if (a:, &) =0 G#)),

QSO [E, E]=0 F ®,

Qs4)(3) [E, [E, ..., [E, E]..]1=0 (Ei appears 1—%’:—’5) times)
if (@, @) #0and (—D)F@E3 =1,

Qs4)(@) [[lE:, E], Ed, E]=0
if X-E@E X (x£0), X—B® or ®E=R=®,
@Qs#) () [lIE, E], [IE, E], El, E]=0 if &R0,
(QS4)(6) [IIIIIE:, E], Ed, El, Ed, EJ, Ex] =0
if >‘<———é—(§)<:Z(I) or @¢:é—_<gk)<_—_(1),
QD) (— 1) [(, a)[E:, E], Ed
= (=1 [, @) [IE:, Ed, E]
if (ai,a)#0, (o, ax) #0, (ar, @) #0,
(i, ap) + (&, ax) + (@, @) =0
and p(a)p () +p(@)p (@) +p(a)p(a) =1,
Q& (®) [IIE;, E, [E;, EJl, [E, EN=IIIE, El, [E, Ell, [E, EJ]

O«
i J X
if O—® ,
XOI
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@QSH ()  [lEx, [E, [Ek, EIN, [Ex, [E:, [Ex, [E;, E]IINI, E;]
= [21[[Ex, E), [[E:, [Ex, E]N, [Ex, [E:, [E, [E;, E]IIIN]

¥ O—=0—®=0,
Qs4)(10)  [E, [E, [E, [E, ENI=IE,, [E, [E, [E, EIII]
/é\
T —
@S (1D)  [[Ex, E], [[E., E], [IE., E], ElI]
=(1— (= 1"® 2D [Ex, E, [Ex, [Ex, [E, EINI, E)
F O—o8—®,
(Qs4)(12)  [[IIIIIE, E), Ed, El, Ed, E], Ed, El, Ed, E], E]=0
F O—O—®=0,
(Qs4)(13)  [[IIE:, Ed, E], E, Ed, E]1=[21[[lIIE:, Ed, E, E], E], Ed
if Ojé—ézé
Qs4)(14)  [[[E, E), [IE,, E], [[E,, E], Edl], E]=0
¥ &—@=0,
Qs4)(15)  [E;, [Ex, [Ex, [E, ENN=[E., [E, [E., [E, EII
if OEQJZJ:»‘
Qs4)(16) [2[IIE:, Ed, E], E], E, E]
= [3][IIIIE, Ed, E], E, E], EJ
F O=®—0e=0,
(Qs4)(17)  [[IIIIIIIIE:, E), Ed, El, Ed, EL, Ed, El, Ed, E], Ed, El,
Ed, E], Ex] =0
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1 k j i
Proof. Let % (a) denote the left hand side minus the right hand side of the
equality in (QS4) (a). To prove the proposition, it suffices to show

(6.7.1) (% (@), F,]=0 for anyr=i,j, k, 1.

(see Proposition 6.5.1). By direct calculation, whose examples will be given in
6.9-6.11, we get (6.7.1). Q.E.D.

By using ¢, we have:

Lemma 6.7.2. Let (&, I, p, I') be a lattice datum of affine ABCDFG type.
Then, in UZ(&, I1, p, I), the following equalities (QS5) (a) (1<a<17) satidfied by
F.’s hold:

(QS5)(a) The same equations with F,’s in place of E,.’s in (QS4) (a).
6.8.

Proposition 6.8.1. Let (&, II= {ao, ..., @}, p, I') be a lattice datum of affine
ABCDFG type. Assume that 9(&, II, p) =%"(&, I, p). Then we have:

(1) 9, 11,p)=%(6,11,p).
(2) U can also be defined by the generators E, (0<r<n) and the relations in
(QS4).

Proof. (1) This follows immediately by Theorem 4.1.1, Theorem 5.2.1,
Theorem 5.3.1, Proposition 6.7.1 and Lemma 6.7.2, and by comparing relations in
(S1-5) and (QS1-5).

(2) We first note that 4" can also be defined by generators E, (0<r<n) and
the relations in (S4) (a) (1<a<17) (see Step 1 of the proof of Theorem 4.1.1).
Let * U, be the C(g)-algebra defined by generators E; (0<i<n) and the relations
obtained by the equations (QS4) (a) (1<a<17). Then we have:

dimc U(AN' 1), >dimeey (" U} ) >dimey (Uy ). (@EPL).

By (6.6.3), we have dimc) (" U; ), =dimcq) (U; )., which implies the statement of
2. Q.E.D.

We say that (&, I1, p, I') of affine ABCDFG type is natural if 4* (&, II, p) =
%(&,11,p). In Theorem 3.5.1, we classified the data of natural affine ABCD type.
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We note that any (&, II, p) EData (F(4)V) UData (G (3)") is natural. Let U,=
U, (8, II,= {ao, ..., a,},p, I') be a C(g)-subalgebra of U?(&, II, p, I') generated by
K, (y€I), E;, F; (0<i<n). Then U{ is the extension of U, with 6. As an
immediate consequence of Proposition 6.8.1, we have:

Theorem 6.8.2. Let (&, IT={ao, ..., @}, p, I") be a lattice datum of natural

affine ABCDFG type. Then C(g)-algebra U,(&, II, p, I') can also be defined by
generators K, (y&I'), E;, F; (0<i<n) and relations:

(QS1), (Qs2), (QS3), (Qs4) (@) (1<a<17), (QS5) (@) (1<a<17).

Remark 6.8.3. We note that, for a non-super (&, I1, p, I'), U, coincides with
the Drinfeld [D1] and Jimbo [J] quantized universal enveloping algebra (see [Y1,
Corollary 2.10.1] and [L1, Corollary 33.1.5]).
6.9. Useful formulas. For a=C(g), we put:

(X, Y],=XY— (—1)r®rOgyx (X, YEU,).

Then we have
69.1) [[x, Y., Z],=[X, [Y, Z]Jue—1 + (= 1)PP@e[[X, Z]pe—1, Yo,
and
6.9.2) [x, [v,Z].),=[[X, Y], Z]ape—1+ (= 1)PFPP[Y, [X, Z]pe~1]01.
Hence, for X, = (U,),, X, (U,), and X,= (U,),, we have
(6.9.3) [IX., X0, X,) =X, ., X]]+ (— 1)pr@g= X, X,], X109,
and
6.9.4) Ix,, X, X,J]=[IX,, X,], X;] + (= D)?»Og =[x, 1, X7 (v
For (&, II={ao, ..., ax}, p, '), put K;=K, . We note
(6.9.5)  [E, K '1=0 ;%ch_—: [K;F;, E=—06,(— 1" %.
Then, by (6.9.3-5), we have

6.9.6)  [IE:, X1, K 1=[E:, [X,, KK T+6;(— 1'% [ (g, a)]X,
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and
69.7) [KF, [X,, EIl=IIK;F;, X,], E] +8;(—1)’“* @D (4, a)]X,.

6.10. Here we show how to check the relation (QS4)(9). We replace the letters
i,j, k, | with 0, 1, 2, 3. We assume (a1 . a;) =—2. Put E...dcba: II[[Ed, [[Ec, [[Eb,
EJI1.]. Then the element =% (9) is rewritten as:

(6.10.1) —[E2215 Ezsnol, Edl + (g +q D [ExnlEs:, Exadl

We note that, to show [Z, F;] =0 (i=0, 1, 2, 3), it suffices to show [Z, F.K; ] =
0 or [K;F;, Z] =0. First we show [Z, F;K3;'1=0. In following equalities, LHS ~
RHS means LHS =a * RHS for some a=C(g)\{0}. By (6.9.6), we have

[Exai, F3K5']
~[E;, [Es, F3K5 ']
""[Ez, Ezd]
=0 (by E3=0 (see (QS4)(2))).

(6.10.2)

Similarly we have [Exs10, F3K3']=0. Hence we have
M[[Enu ’ Ezazloﬂ, El]], F3K3_11] =0.
Moreover we have

[E s [Es, EmmM, F;K31
"’HEzn [IE21, Ezszm]”] (by (6-9~3))
=0 (by E%,=0).

Hence we have [Z, FsK;5']=0.
Next we show [Z, F,K;']=0. Using (6.9.3-7), we have

[Ex2is FaK3 ' 1=Ex, [Exio, F2K7 '1=Eso,

[[Eza1, Ezsail, F2K3 '1=[Ex21, Eszi0l +q ' [Es1, Ezsi0] g0
=—q ?[Exo, Ex21],@+D+q ' [Es, Ezsiol -0 (since E3=0)
=(g+q DI[Esi, Exnud,

[[Esi, Exol, F2K;'1=0 and [E,i, F,K;'1=E,.

Using these, we have
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7, K5 ']

=—q[(g+q DIEsni, Euud, Eil,(-1-2—(g+q g *[E:, [Esi, Essnol 1,2+
=0.

Next we show that [K,F;, ] =0. Using (6.9.3-7), it follows that [K,F;, Ex]
=E,, [KiFi, Exz] =E3, [KiFi, Ex210] =0 and [KFy, Ezni] =q (E,, Ex]. Since
[[Ez, Exnd = [[Esz, E10] =0 (by E22=E322=0>, we have [K|F s [E22 ’ Exnd]=0.
We also have [KF;, [Exi, Ex210] =0. Hence we have

IIKIFIJ 3‘]]
=—(g+q DIExnu, Exnd +(q+g D I[Ez, [Es, Exnoll
=0.

Finally we show that [K,F,, #]=0. Using (6.9.3-7), we have [K,Fy, E3210]
= (q +q_1)E2321 . We note

[[Ezazl s Elﬂ =q [EZI B E321] =q (1 —qz)EuEazl
since [Esy1, E»]=0. Then we have

[KoFo, Z]
~—1[g*(Ez21, Exs21lg—2, Ell + (q+q )g*[Eax, [Es, Exilg—3]1
=—¢*(1—q¢ ) (@(1—¢*) (ExuExnEs+EnEsn Ey)
+(@+g Dg*([Ez, 1—¢ 3 DEs Epul,~1)
=@*—q¢ ) (—¢*(1—q¢») +¢’(1—¢*))Esn Esn Exsn
=0

where we note that [Ess:, Es] =0 (by E%L;=0) and [Ejsi, E,i =0.
From the above calculation, we obtain [Z, F;] =0 for all i=0, 1, 2, 3, as
desired.

6.11. Here we show how to check the relation (QS4) (17). We replace the letters

i,j, k, 1 with 0, 1, 2, 3. We assume (&, @) =6. Put Ey.. =[.[l[E., El, E.l,
E;]..]. Then the element # =% (17) is rewritten as:

(6.11.1) Ejizs1231312

Asin 6.7, we show that [ ¥, F;K; ']=0or [K;F;, %#] =0 fori=0, 1, 2, 3. Itis clear
from (6.9.7) and E}= [E,, E,] =0 that [K,F,, ¥ =[KsF;, %#]=0. We note that

[Esi2, E\]=0 (by (QS‘D (3)),
Eg13=0,
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Edin= [H[E(;/lz ’ E1]], Es]] =0,
Esi2313=Eta331 = [[[Eo}, Ezvs]], Exl, E= [[0, E|]=0 (by (E%)?*=0).

Similarly we have

Edin1s =Edimunn= [[[[Edxs, EX], Ed, Ei, Ei]
= [[[Esizs, Exil, Ex, Esl=[0, E]=0

by [Edi2, E\] =0, [E>, E{]=0 and (E;})*=0. Similarly we have
Egia3123213 = Egl232123231 = H[[[[E(;/IZBZI ’ Ezva]], Ezva}], El]] = [[0, El] =0

where we note that [Eois,, Es] = [[Esi, EXl, Ex] =0 (by (E»%)*=0). By (6.9.7),
and by the above equations, letting ¢ =a0+4a;+ 6a,+3a;, we have

IIKze s %= [( u, @) 1Eiania3212321 =0.

Finally we show that [#, FoK;']=0. We have

¥ =Eds1232123212
= H:HH[[E(}O/]Z’ E;/Z]], |IE1\/2, EC;/Z]H]’ |IE1V21 EZ;/Z]]]], EIVZ]]-

since E?=(E»%)?=(E}3)*=0. By (6.9.3) and (6.9.6),
[#, FoKq 'I~[Ev, ([EY, Ex)*]1=0.

From the above calculation, we obtain [#, F;] =0 for all i=0, 1, 2, 3, as
desired.

6.12.

Proposition 6.12.1. Let (&, I1= {ay, ..., @.},p, I') be a lattice datum. Let *U,

=*U,(&, I1, p, I") be the Z,-graded C(q)-algebra (with 1) satisfying the following
conditions:

(a) The extension *U{ of *U, with o has a Hopf algebra structure.
(b) There is a Z,graded C(q)-algebra epimorphism "*¥,=¥,[T,, *U,]: U,
—*U, such that (M¥W,) 1 is injective.

(c) The extension W?: UI—*U? is a Hopf algebra epimorhism.

Then there is a C(q)-algebra epimorphism *"¥,=V,[*U,, U,]: *U,~U, such that
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v,[*U,, U,] o ¥,[0,, *U,] is the canonical map and the extension *" ¥ of *"W, with
o is a Hopf algebra epimorphism.

Proof. We denote ", (T), ™y, (0;) and *W,(0;) by T, *U; and *U;, .
We note that **¥, (E;) #0 and **¥, (F,) #0 since [E;, F;]ET\{0}. By exactly the
same argument as in the proof of [R, Proposition 2], we have a C(g)-linear
isomorphism:

U ®T° U, ~*Uy
(XQY®Z—XYZ). Then, letting *I* =ker (**¥,) 0, we have
ker M, =* 1" TO; +0; T

Moreover, for BEP.., we have [*If, F,] C*I_, T and [E;, *I=;] CT*I, 5. Hence,
by using the same argument as in the proof of Proposition 6.5.1, ¢I7, (T, )z
= {0} and <p(*I=,), (T, )z>={0}. Hence *I*CI*. Hence we have ker ", +
o ker MW, CJ* +J ", as desired. Q.E.D.

§7. g-Analogues of the Isomorphisms

7.1. Let (&, I1, p, I') be a lattice datum. Let #=&* (see 1.2). Let U{=U? (&,
I, p, I') and U{=UZ(&, II, p, I') be as in §6. Let C[[A]] be the C-algebra of
formal power series in h. Let Sy (#) be the symmetric A-algebra of #. Since Ug
= ®,ep(UY), is the P-graded algebra, we can consider an A-algebra W{=W3(&,
II, p, I') =U{®4SA(S#) such that

(X®H H)(¥Y® T H »)=XY®(II Ho+ (B, v)))) (H Hu)

where XeUg, YE(UQ;g, v(i), u(j)EE. For XEUY (resp. HEH), we also
denote the element X®@1 (resp. 1QH) of Wi by X (resp. H). Moreover W§ has a
Hopf A-algebra structure such that Uf is a Hopf subalgebra of W, and that
AH)=HQR1+1QH,S(H)=—H and e(H) =0 for HE #. We view A as an A-
subalgebra of C[[A]] by putting g=exp(h). Let W{®C[[h]] be the extension of
the base algebra from A to CL[h]]. Let WZ=W¢ (&, II, p, I") be the completion of
WE®C[[h]] under the h-adic topology. Then Wy has a topological Hopf algebra
structure induced from the Hopf algebra structure of W3 (see [Y1, 1.2] for
terminology). Let J be an ideal of WY generated by the elements K,—exp(hH,),
(K,] — [exp(hH,)] (YET) where [exp(hH,)] is 2L [ et [ be the
closure of J. Then J is a Hopf ideal of W¢. We define a topological Hopf C[ [#]]-
algebra Uf=U{(&, II, p, I') as the quotient Hopf algebra
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Uh =U’?(é¢3, H,P, F):Wltx,/-i-

For C[[#]]-modules ¥ and W which are completions of ¥, ®, C[[A]] and W, Q4
C[[A]], let V& W denote the completion of (Vs@ Wa)®+CL[[h]]. Let Ui (resp.
Ui, resp. Sp(o#)) be the completion of Ui ®C[[h]] (resp. Ux @C[[h]], resp.
SA(#)®C[[h]]). Then we have a C[[h]]-module isomorphism

(7.1.1) Ui ®S,(#)°®U; —U?

(X®Z®Y—XZY). In particular, the Hopf A-algebra U{ can be embedded into
the topological Hopf C[[h]]-algebra Uf where the elements K,, [K,], E;, F; of U§
are identified with the elements exp(hH,), [exp(hH,)], E;, F; of Uf.

Remark 7.1.1. In [Y1], we introduced a topological Hopf C[[h]]-algebra
U? (&, I1, p) for any datum (&, II, p). If there is a lattice I" of & such that (&, II,
p, I') is a lattice datum, U¢ (&, IT, p) coincides with the above U7¢(&, I, p, I'). Let
U, be the topological C[[h]]-subalgebra of Uf{(&, II, p) genearated by the
elements E; (0<i< |IT| —1). We note that, if (&, IT, p) EData (D(2, 1; x)), U/
can also be defined topologically by the generators E; (0<i{<3) and the relations
(Qs4) (@) (@=1,2,3) and

@S (— 1 (a;, a)][IE;, E], El
=(— 1" [(, Q)] [IE;, Ed, E]
if (a,- , a,-) #0, (a,- , ak) #0, (ak . ai) #0,
(@i, @) + (o, @) + (ax, @) =0
and p(a)p (@) +p(a)p(ar) +p(ap (@) =1

and

(Qs4) (&) [lIE;, El, [E;, EdI, [E;, ENl= [x][IE;, EI, [E;, Ell, [E;, EdI

O«
i ox+l j/l
if O 02 x#—1,0)

_61

r 7 — exp(yh) —exp(—yh)
where | y] = T exp(h) —expC—h) for yeC.

Let F=C((h)) be the quotient field of C[[#]]. For F-algebras Vy and Wg
such that V="V ®cu1F and Wy=W ®c(u F, let Vi@ Wy be (WVOW)RF if VW
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can be defined. Let (&, I1, p, I') be a lattice datum. It is clear that Ug=UZ(&, 11,
p, I =U¢(&, I, p, I')®c F is a topological Hopf F-algebra. We have an
F-linear isomorphism

Ui ®Sp(#)°QUs —UF
(X®RZQY—>XZY) where Uz =U;i QF and S¢(#)°=S,(s#)°QF. Moreover the
Hopf C(g)-algebra U =U?(&, I1, p, I') can be embedded into the topological Hopf
F-algebra U where the elements g, K, , E;, F; of U] are identified with the elements
exp(h), exp(hH,), E;, F; of U%.
7.2. Let % be a topological Hopf F-algebra with comultiplication 4. Let 4'=

@0 4 where @(X®Y) =Y®X. Let Z be a topological Hopf subalgebra of % such
that there is an invertible element R =2 a;®b; of & ® Z satisfying:

(7.2.1) RAX)R'=4'(x) forany xEZ,
(7-2-2) (4®1) (R) =Ru3R;3, (I®A)(R):R13RIZ
where R12 =R ®I, R23 =IQ®R and R13= Z a,~®I®b,- .
An R-triple (%, %, R) is a triple of %, & and R with the above properties.

The following lemma is easily verified:

Lemma 7.2.1. If (%, Z, R) is an R-triple, then (%, &, @(R™")) is also an
R-triple.

The following proposition is well-known (see Drinfeld [D2]):
Proposition 7.2.2. Let (%, %, R) be an R-triple.

(1) R satisfies:

(7.2.3) RyRi3R»:3=RyiRisR,
(7.2.4) S®DR)=R'=IRSH(R),
(7.2.5) ERDR)=1=URe) (R).

(ii) For R=X a;®b;, the following equalities hold in %:

(7.2.6) 2. a8 (b)) =20 S@)S™'(b) =2 S* (@b,
(7-2-7) Z aiS(bi) = Z S~! (ai)bi-
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Let us, vi& % be the elements of (7.2.6), (1.2.7) respectively. Then usvs=1=

Vals.
The following proposition is also well-known:

Proposition 7.2.3. Let (%, Z, R) be an R-triple. Then % has a topological
Hopf F-algebra structure U® = (U, 4®, S®, &) with comultiplication A®,
antipode S®, and counit € such that

A®x)=R4 )R, S® (x) =ui'S(x)u, for x<u .
This can be checked directly.

7.3. Keep the notation as above. We note that Uy can naturally be embedded into
Uf. Putto=2 Hs;®H,EH Qc # where {5} is a C-basis of # such that (&;, 5)

3 (=1%o ®0%) - exp(—hto) EUFRUS.

c,d=0,1

%=%(

Then (Ug, Sp(3#)°, €) is an R-triple (see [Y1, Lemma 2.9.1]).
For t€C[[h]] and m, n>0, we put {n},="—, {n},!={n}.{n—1},--{1},
and

{n}.!
{n} |yt —my

m

if n>m>0,
0 otherwise.

Let uchUZ. Put e(u, t) 220—{:}% . For x&=C[[h]] and X, YEU¢, define
ad,(X) (¥)=[X, Y]- .EUg by XY—xYX. It is easily verified that e(—u, t™") =
e(u,t)" ' and

(7.3.1) eCu, t)Xe(u, t) '= ZO: ﬁ adtn—1(u)adtn—z(u)"'ad1 W) X)

n= t!

for X€UgZ. Let (&, IT= {ao, ..., &}, p, I') be a lattice datum. For a fixed i, 0<
i<n, let %; be a topological subalgebra of UZ(¢&, II, p, I') generated by E;, F; and
Sr(#)°. Put

R() =e(—(q—q DEQF"®, (—1Y% %) . gcu,0u.

TMnGH,%“RGDEanRﬂmkﬁm[YLmemZSJD.La(UQ®=Qﬁ,
49, 8D &) be the topological Hopf F-algebra defined by ((UR)®RD)@ D pyt
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R@=e(—(g—q DPDK'E®FK,, (—1%¢“*®).
Then we have R(() =% 'R (i). Hence
A°X)=ROIX)RG' XeUP.

Proposition 7.3.1. Keep the notation as above. Put a=ca;, B=o, I (i#j),
and put Ea:Ei, EﬁzEj, FQZE, Fﬁ'__E Put E§/+sa= II[[{[EB: Ea]]’ Ea]]---EaH (Ea
appears s-times), Fyso = .[[Fs, F.l, FJl...F.] (F, appears s-times).

(1) (e

A9EK ) =EK '®K,+d" " QEK;",

49K, F)=K.F,®1+" K '®K.F,

(ii) Assume (a, a)+#0. For BEII, assume r=ra,,9=—2(g’f’f)) €7, and
p(@) - ris even. Then

AD(EYrra) =EY+ra®1+Kp1rq 0" F 0 QEY, g,
AO) (Fé/+ra) :F,§/+ra ®K}3_~L1ra +O-p(ﬁ+ra) ®F§/+m.

(iii) Assume (a, @) =0and (a, 8) #0. Then

A(i) (E,;{Hr) =E/.‘\?/+a ® 1 +Kﬁ+a O.p(ﬁ+a) ®E§/+a ’
A9 FYra) =Fj o ®Kzla+0? 0 QF 4.

G(v) 49H)=H®1+1QH for HEH, and 49 (0) =0®o0.
Proof. For p, vEP, let t,=(—1)rWglem) ¢, = (—1)rtr® glus) and

g 20—, (A= 1)

b = ey =

We first note the following formulas

(732) [an F/§/+ka:| = —ta_,lﬁq_(k_l)(a' o {k, IS}aF/P\»/+(k—1)aKa
(733) [Eé/%-ka, Fa] = <_ 1)(k—l)p(a) {k, IB}aKz;lE,f}/+(k—l)a-

By direct calculation, we have
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A (E/g/ﬁ—ra) :Egl+ra ® 1

r r _ r—s _
v {7} T - bE Ko 9B
Put X=—0*@K;'E;®F,K;. Then, by (7.3.1), we have
[_X, E;K,B-i—(r—s)a gp(ﬁ+(r—s)a) ®E/3y+ (r—s)a] -~

tag G- -1
—1 a

44 ta—1
if r>s,

Eé+ 1KB+ (r—s—Da GP(B+ (r=s=Da) ®E§/+ (r—s—Da

0 if r<s.
Hence

ad,-¢-n(X)ad,; -2 (X)-+adi (X) (Kg+re0? " ® K1)

t ¥ s(s—1) _
< : —1> fe 2 (ta_l)s {;} la E;KB*(r—s)aUP(E+(r D) ®Eﬁ}/+(r—s)a

q—q
- if r>s,
0 if r<s.

Hence, by (7.3.1),

RG) ' (Kgsra 0P ¥ QEY.0)R (i)

!

rye !
{r _s!; ) E;Kﬁ+(r—s)a 0.p(ﬁ+(r—s)a) ®E/§/+ (r—s)a-
.

a

=3 (1 -1y

On the other hand, we can easily show R (i) 7' (EY:. ® DR (i) =E}+,,®1. Then we
get:

R (i) -1 (Elé/Jrra ® 1 +Kﬁ+ra GP(B-HD() ®Eﬁ/+ra)R (l) = A (Eél+ra)-
Thus we have proved the first statement in (ii). In other cases, the corresponding
calculation can be carried out similarly and, usually, much more easily.

Q.E.D.

7.4. Keep the notation as above. For v, y EP, put
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k(K

201, K) = (~ D15~ i ),

where {k; u}, 1= {k; ut,k—1; u}, - {1; },. Put a=a;, B=aEI (i#j). By
using (7.3.2-3), and by induction, we have:

[Epy+ka, Fé/+(k—1)a]
e—1) (k—2) _
= (_ l)k(l-i-p(a)p(ﬂ))q— > (a, a)q( k+1) (2, B) {k; ,B}a !EaKﬁ+(k—l)a;

[E5/+(k—l)a s F[}/-v—ka]
_ k-1 _ _
=(—1) (k—l)(1+p(a)+p(a)p(/5))q 7 (@ a)q k(a, B {k; B} e ' K5t —1ya Fa

and
Kpgiro—Kitia
g—q '
Let (&, II= {ao, ..., @}, p, I') be a lattice datum. Fix i, 0<i<n. We say that {x;,

$,EC@\{0} |0<j<n} is a tuning of (&, II, p, I') with respect to the simple root
a; if

(741) [Elg/-e—ka ) F/S\!/+ka:| =z (a, IBy k)

(-1 if j=i,
1 _ z<a,.,a,., _M> if (a;, @) #0 and j#i,
X;y; (a:, o)
z(ai, @, 1) if (a;, @) =0 and j#i.

Put Efio=[E,, ...[E., [E., Eg]..] (E, appears k-times) and Ffs ., =[F,, ...
[F,, [F., Fgll..] (F, appears k-times).

Proposition 7.4.1 (see also [KT]). Let (&, II={ao, ..., &}, p, ') and (&,
II'={ag, ..., art, p’, I'") be lattice data. Fix i, 0<i<n. Assume that there is a
reflection (resp. super-reflection) f: &—&' with respect to the simple root a; if (a:, &)
#0 (resp. (a;, @) =0). Assume f(I')=I". Let {x{, y;EC(g)\{0} |0<j<n} be a
tuning of (&', IT', p’, I'") with respect to the simple root a;. Then there is a C(q)-
algebra homomorphism £/*: U¢(&, II, p, [)—UZ (&', IT, p’, I'") such that %! (o)
=0, gi/\ (Kr) =Kf(r) s &Lh (Ez) :xi,Ki_ lFi, zi/\ (EJ) :xj’Ef/Eaj) (] 751'), L2 (Fz) :yi’EiKi
and £ (F) =yjFf@y (j#i).

Proof. Let {x;, y;=C(g)\ {0} |0<j<n} be a tuning of (&, II, p, I') with re-
spect to the simple root ;. Letg=f""!. By Proposition 7.3.1, (7.3.2-3), (7.4.1) and
Proposition 6.12.1, we see that there is a homomorphism "#/: U¢(8, I1, p, I')—
U(&, IT,p’, I'") such that "%/ (o) =0, %" K,o)) =K,y YET), Z"(y:EK )
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=F,%! (ijgv(a’j)) =E; (j#i), ‘& (x:K.F,)=E; and & (_VngV(a’j)) =F; (j#i).
By using (7.3.2-3), we see that '#/* with a suitable {x;, y;} is the desired map.
Q.E.D.

By Lemma 6.3.1, we see that there is an anti-automorphism I': Ug—U¥ such
that T (0) =0, T (H) = —H (HE#), I (E)=E, and T (F)=(—1)"*’F,.

Proposition 7.4.2. Keep the hypothesis of Proposition 7.4.1. Let {x,,y;C(g)\
{0} |0<j<n} be a tuning of (&, II, p, I") with respect to the simple root o;. Then
there is a C(q)-algebra homomorphism £ : U (&', IT,p’, ") —=U{ (&, I, p, I') such
that £ (0) =0, &’ (Ky)=K ~1¢) %Y (E)=x;FK;, & (E]) :ijfy_l(aj) (jil'),
LY (F)=y.K;'E;and &} (F}-§ =ijfV—1(aj) (j#i). Moreover, for some {x;, y;}, £
is the inverse map of ¥/

Proof. Define Y asTo % oT. Q.E.D.

§8. On Defining Relations of U,((A (m, m)®)*) and the Drinfeld Generators
In §8, we follow Beck’s argument [B].

8.1. For N>3, let AA(N) be the set of data (&, I, p, I') such that the Dynkin
diagram of (&, II, p) is (AA) and |II|=N (see 1.7). Note that (&, I, p, I")
depends only on (&, II, p) (see 6.7).

For a fixed (&, I1, p, I') EAA(N) and a fixed i, 0<i<N—1, we define (&,
“I1, "ip, "IN € AAN) by (a)-(b) below:

(a) Let{&,..., &y, 0, Ao} be the fundamental elements of (&, IT, p, '), and
d;= (&, &)==1. Let {&, ..., &y, 6, Ao} be the fundamental elements of (&, “IT,
“p), and d/= (&, &) = * 1.

(b) Let ("¢, "I, "p, "Iy EAA(N) be such that d/.;=d,.
] ]

Let 7= {a; (0<j<N—1)} (resp. “IT={a] (0<j<N—1)}) be the set of the simple
roots of (&, II, p) (resp. (e, I, t"p)) where the numbering of the simple roots is
the same as in 1.4. Let P (resp. "P) be the root lattices of (&, IT, p) and (resp. (¢,
7, t"p)). For a fixed i, 0<i<N—1, define a parity preserving lattice isometry ¢;:
P—'p by (@) =)+

For each (&, 11, p, I EAA(N) and each 0<i <N — 1, we fix a reflection or a
super-reflection s;: §—"& given in Proposition 2.4.3. Let ('&, "IT, *p, 'I") cAAN)
be defined for ("¢, *II, “p) (see 6.7). Let "P be the root lattice of (*&, IT, *p). By
abuse of notation, we denote the parity preserving lattice isometry s; : P—>"P by s;.
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We denote by e: P—P the identity map idp. Then we have

(8.1.1) (s)*=e,
(8.1.2) sisisi=s;sis;, (j—i==+1(mod N)), sis;=s;s5:, (j—i#0, £1(mod N))

and
(8.1.3) @)V =e, Liti=tiyj, tisj(ti)_1=Si+j-

For a composition w=c;(;) *** ¢y of ¢y (=S¢ OF tiry), define (*&, *I1, "p, *I")
EAA(N) by

(wg), st WP; w[‘) :Ci(l)(‘“ci(r—l)(ﬂ'(r)(év’ H, D, F))))

where 9(&, IT, p, I") denotes (7&, 91T, p, “I"). We note that (*&, *II, *p, *I") does
not depend on the expression of w as a product of ¢;’s. Let P be the root lattice of
(*&,"I1,*p,*I"). Then w: P—"P is a parity preserving lattice isometry. For 1<i
<N —1, we define the parity preserving lattice isometry w;: P—~>P, by

(8.1.4) 0=t uPu® e 4@

where u® =sy_,_;+1 *** Sy—r—15x—,. Then we have w;(a;) =a;—6;6 (1<i,j<N—1)
and w;(0) =0.

Let # be the group defined with the generators 5;, & (0<i<N—1) and the
relations same as in (8.1.1-3) with the unit element é of #, §; and f; in place of e,
s; and ;. The group # is well-known (see [IM], [L2]) and it is called the
extended affine Weyl group. For a composition w=c;q1 *** ci¢) of iy (=810 » i)
we denote by wE# the composition w=¢1y *** Gty of Gy (=Siwy, Fiwy). We note
that w does not depend on the expression of w as a product of ¢’'s. When wE=#" is
written as .5 *** §i¢) (@ minimal), we call the expression reduced, and we also call
the corresponding expression #isi1) *** Sia) reduced. Note that the expression in
(8.1.4) is reduced.

Let 2 be the subgroup of # generated by the elements @, ..., ®y—;. Then 2
is a free abelian group (see [IM]) with the generators @1, ..., @y—1. Let # 7 be the
subgroup of W generated by the elements 5, ..., Sy—;. Then W is a semidirect
product # 2. Let 7=olw;!, =0 @0, Q<i<N—1) and 7y_=
Wyt,@%-1. Then, for 1<i,j<N—1, we have §,~a‘)j§,-=a')j7,~_6"f.

8.2. Let (& II={ay, ..., a},p, D EAAW). Let 2U,=2U,(&, I, p, I") be the
C(q)-subalgebra of Uf generated by the elements K,=exp(hH.,) (a€EP), E;, F;
(0<i<N—1) and K§ = =exp(£5 hH,). Note
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(8-2-1) (EBmezC(q)Kz;"T)Uq: (®7ETC(q)K7)9Uq
as C(g)-subspaces of Ug. By Propositions 7.4.1-2 and (8.2.1), we have

Proposition 8.2.1. Let (&, IT= {ao, ..., ax_1},p, [VEAAW). Fixi, 1<i<
N. Leté&,, ..., Ey be the fundamental elements of (&, I1, p, I'), and let d;= (&;, £)).
Let &}, ..., &k be the fundamental elements of ('&, “II, p, "), and let d;= (&, &
and p'="p. Let "II=(aj, ..., ay—1} be the simple roots of (&, "I, *p, “T"). Then
there exists an isomorphisms Ty: 9U,(&, IT, p, 1)—>2U,(&, "T1, “p, "T") such that

1

T.(K.) =Ky (@€P), TK5™) =Ki+,
T,(E) = —d;.\ F.K;, T;(F) = —d;K 'E,,

Ti(E-) =g “d[Ei_, E], T;(F-)=—(—1" “"“’[F_,, F],
Ti(EiH) =q_dli+1(_ 1)p((a,i)Pl(ali+l)d-:+1[[Eiﬂ s Eiﬂ, Ti(Fi+1> = [[Fi+1 s Fi]],
T.(E,)=E,, T:(F,)=F, (r+#i,i*1 (modN)).

Moreover the inverse T ': 2U,('¢, 11, *p, "IN —2U,(&, I, p, I') satisfies:

T Ke) =K, @EP), T (K5 +) =K5 ™,

T '"(E)=—d:.Ki'F;, T '(F) = —d,EK;,

T ' (E-)=q (=0 PV [E, B, T7'F-) =—[F, Fl,
T '(Eis1) :q—di+1d-i+l[[Ei: Einl, T (Fi)=—(— I)P(ai)P(aHl)[IE , Fisill,
T7'(E,)=E,, TT'(F,)=F, (@+#i,i*=1 (modN)).

Define Z;: @Uq<g, H’p, [’)—>9Uq(zf(g’, ’.'H, ’ip, ‘if) by Zi(Ka) =Kz,(a) s Zi(Ej) =
Ei+j and Z; (F_']) :EH :

Lemma 8.2.2. The isomorphisms T;’s and Z;’s satisfy the same equalities as in
(8.1.2-3) with T;’s and Z;’s in place of s;’s and t;’s.

This can be checked directly.

For a parity preserving lattice isometry w: P—"P with a reduced expression w
=tks,'(1) *tSi) put Tw:Zk T,'(1) T,'(a): QUq (éa, H, D, F)‘*@Uq (wéa, WH, wp, WF)
By Lemma 8.2.2, T, is well-defined.

Lemma 8.2.3. Let w: P—>"P be as above. Let a,EII. Assume w () =a/E"I1
where o denotes the j-th element of *II. Then T,(E;) =E; and T, (F;) =F,.

This can be checked directly (see also [B]).
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By Lemma 6.3.1, there is a C-algebra anti-automorphism £2: 2U,—~2U, such
that

Q(Ez) :d-i+1Fi, Q(Fx) =d_i-r1Eia Q(Ka) =Ka_l, Q(Kai ‘ ) &T”;_ Q(q) =q L
Then we have QT,, =T, £2.
8.3. Let w; as in (8.1.4). We note:

Lemma 8.3.1. The elements K, (¢EP), K& =, T(E), T5(F) (1<i<N—1)
generate the C(q)-algebra 9U,.

For 1<i<n, k>0 and sEZ, let
(8.3.1) $P=Ks+q [T (B, T4 K F)].

Note ¢S+ ™ =T "‘(qb,”) Since K; 'F,~T; 'E;, by [L1, Lemma 40.1.2], we have

k(a,, a ) —k(a,. LA >

K7 §QEU; when s<0 and k+s>0. Put Qji="——2—— and b=

q
(o, @) ,—L .
q %G K;7?. By the same argument as in [B], we have

Lemma 8.3.2. (i) Assume p(a;) =0. Let r>0and mEZ. Then ¢© =¢§
(s, s’EZ), and we have:

(8.3.2) (6, ToED]=—K; Qi {( (q—q*)g by To*(F)$%-i)
Y T (F))

and

(8.3.3) (69, Tn(E)]=K57 Q,, 1{<<q—q“>:§: b T (EDGO-1)
+bi T (EDY.

(ii) Assume 1<i#j<n. Let r>0and mEZ. Then we have:
834) [0, TEE) =K} 0 ((q—a D E (—b)' T * (B
+ (=b)' T T (F))

and
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_ o r-1 _
(83.5) [, ToE]=—Ks™ Quu{((g—g D X (—bp) ' T5 *(EDE™D)
+(—by)y ' TE B,
Lemma 8.3.3. Let 1<i<n and r&Z. Then:

rs &), ToFE)] =157 &F), T5 ' FD],
r5(ED, T5 " (EDl=— 15~ (ED, T3 (ED].

Proof. If (@i, a;) #0, the result can be proved as in [B, Lemma 3.13].
Suppose (a;, ;) =0. Then it suffices to prove

(8.3.6) (15 D, T&(F)]=0
and
(8.3.7) [Tz (ED, To(E)]=0.

Let j be such that (a;, @) #0. Assume r >0. We show (8.3.6) by induction on .
Assume r=1. By (8.3.4) and T, (F)>=0,

[T (), T (F)] = — Qjm Ko+ (69, To(FD], T @] =0.
Assume r>2. Then we have:
(e (F), Ta,(F)]
= Q;,I K [[G9, Tor ' (B)], ToE)] = [To+ F), To ' (F)] =o0.
Similarly we have (8.3.7). Q.E.D.

Lemma 8.3.4. Let i be such that 1<i<N—1and (a;, a;) =0. Then, for any
s, m&Z, we have

(8.3.8) (63 T2(ED1=0 and [ T2(F)I1=0
and

(8.3.9) =90 (EZ).



386 HIROYUKI YAMANE
Proof. By using (8.3.6), we can easily show
(8.3.10) (6PE]=0 and [$QF]=o0.
Let j be such that 1<;<N—1 and (a;, a;) #0. By (8.3.5), we have
TJ.I((Z.'(P)) 2(551_1)

=K; [T (E), Ki'F]
=K;7 Qit K5 [[¢, EJ, K 'F)]
=QitKi "'+ Qi [KaT T., (F), EJ]
=K;7 [T, (K 'F), E]

_ (@
— Vi1 -
Hence we have (8.3.9). By (8.3.9) and (8.3.10), we have (8.3.8). Q. E.D.

Lemma 8.3.5. Let i be such that 1<i<N—1, and r>0. Then we have

(8.3.11) (62, ¢01=0 (1<k<N—1),

(8.3.12) PO =gO (s&Z).

and

(8.3.13) (0P, TR(ED]1=0 and [¢P, TEFII=0 ((a;, @) =0).

Proof. If (a;, a;) #0, the statements follow from [B, Proposition 2].

We assume (a;, ;) =0. Letj, 1<j<N—1, be such that (a;, ;) #0. We use
induction on r. For r=1, the statements immediately follow from Lemma 8.3.4.

We assume that the statements with »—1 in place of » hold. By Lemma 8.3.2,
Lemma 8.3.4, we have

T3 (6 =g
=K,;%[T-‘(E-) T (K'FD]
Q,,I‘K ([ E] To (K 'FD))]
=0iiK; 7 {0 K, 7 6011 +QuKs™ T, (K 'F), E}
4.

Hence the statement (8.3.12) holds. By E?=F%=0 (see Proposition 6.7.1), we
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have [¢{, E;]=0 and [${”, T4 (F)]=0. By (8.3.12), we have
(8.3.14) (6P, To(ED]1=0 and [¢P, TZ(F)]=0

where 1<a<r and m&Z (see also Lemma 2.2.1 (jii)). By Lemma 8.3.2 and
(8.3.14), for any k and any u, we have

(62, 61, Tz (E)]1=0 and [[, 61, T (F)]=0.
By Proposition 6.5.1 and Lemma 8.3.1, we have [¢, ¢®]=0. Q.E.D.
We put ¢,=¢”. By Lemma 8.3.5, we have T, ($,) =¢,.
Lemma 8.3.6. For 1<i,j<N—1andr,1>0
[bu, ] =O0.

Proof. We may assume k<r. We use induction on /. For /=1, the statement

follows directly from Lemma 8.3.5. For general /, by Lemma 8.3.2 and Lemma
8.3.5, we have

[[($u, §u], T5 (EDI=0 and [[du, &u], To (FD]=0

forany u, l<u<N—1, and any m&Z. By Proposition 6.5.1 and Lemma 8.3.1, we
have [¢u, ¢i] =0. Q.E.D.

8.4. Define hy, E2U, (k>0) by the following generating function in z.
(8.4.1) exp((q—q“) ,; h,-kz">= 1+ (q—q“)k; (= D* Puz-
By Lemma 8.3.2, Lemma 8.3.5 and Lemma 8.3.6, we have:

Lemma 8.4.1. Let i,j be such that 1<i,j<N—1,r,IEZ,and k>0. Then we
have

[hir ’ th] =0,

1 L . L
I:hik, TLZ(E)] = _? Qij,kK52 (_I)Jk T(Z; k(ﬁ})y

- 1 _E . _
(i, TZ}(EJ)J % QK57 (—1)%* TZ} k(E).



388 HIROYUKI YAMANE
k
Note K= hx €U,

Proposition 8.4.2. If é d; =0, then we have the following equalities:

(QS6) >

1=1 1=

kd| K7 hu=0 (k>0).
1
This follows directly from Lemma 8.4.1 and Proposition 6.5.1.

Put s, ,=(hy) (k>0). By the equalities (QS6), we have the equalities

(Qs7) >[5 kd]Ks® hi=0 (>0,

Theorem 8.4.3. Let (&, I, p, 1) EAAN) (N>4) with TL,d;=0. Then
U,(&, II, p, I') can also be defined by generators K, (@€P), E;, F; (1<i<N—1)
and relations:

(Qs1), (Qs2), (QS3),
(Qs4) (@) (@=1,2,3,4), (Q85) () (@=1,2,3,4),

and
(QS6), (QST).

Using Proposition 8.4.1, the statement is obtained by exactly the same
argument as in the proof of Theorem 6.8.2.

8.5. For 1<i<N—1 and r>0, put

| @=gOK(=D"¢, >0,
ir Ki (r:O).
and ¢, =02(¢;,). For 1<i<N—1 and kEZ, put x,-;z(—])"kTgi(Fi) and x;i=

(=D*T;*(E). Let '=I'+5 Z5 (see 6.7). We denote the algebra of (8.2.1) by
U,(&, I1, p, I'). Using the same argument as in [B], we have

Theorem 8.5.1. Let (&, I1, p, I) EAA(N) with N>3. Then U,(&, IT, p, I")
can also be defined by generators {K, (@), K57, xi, ha} and relations:

K0=1, KaKﬁ:Ka+B’

(i—aj+k6, a) 4+

+ -1 +
Kaxjk K, =q Xjk »
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1 Ki—K5*
[hik:hﬂ]:ak,—I_EQij,k a—q '’

(S kd)K by k=0 (k#0) if TI1di=0,

L3

. 1 -
(i, xi7 ] = i‘? Qi K& Xt

-+ (@pla) *(apap + (edp(a) *(a;a)
xi%ﬂle—_ (_‘ l)p WP q % leifoH: (_ l)p WP q % xiijliﬂ—letﬂxi%,
k—1 1—k
_ Ks? Guri—Ks* Quri
[xiJl:, Xjl ] :6ij : —1 ‘ ’
q9—q
[x&, xi1=0 if (ai, ) =0,
(In the following equations, Symy «,, ., k, denotes symmetrization with respect to {ki,
k2’ seey ks}-)
Symy, kzﬂxif‘ , i%—,_, xi11=0 if (i, @) #0 and (a;, ) #0,
i Jj u
+ _+ + + .
Sym, k, [[Bxi, xjx,], Ximl, xi,] =0 if X—Q—X,

Here ¢y and @y are defined by the following equations.

Sizoduz=K; exp((g—q D Z,>1h:2),
Trzo@uz*=K; 'exp((g ' —q) X,s1hi—r2).
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