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On Defining Relations of Affine Lie Superalgebras and
Affine Quantized Universal Enveloping Superalgebras

By

Hiroyuki YAMANE

Introduction

0.1. In this paper, we give defining relations satisfied by the Chevalley generators
H^Jtif, Ei9 Ft (0</<n=rank^ — 1) of affme Lie Superalgebras ^, and defining
relations satisfied by the Chevalley generators of affine quantized universal
enveloping Superalgebras Uq(&) except for Uq(A(m, m)(2)) and Uq(A(m, m)(4)).
Moreover, for t/g((A(m, m)0^1^) and Uq(sl(m, n)0)) (m^n), we also get
defining relations for the Drinfeld realization (see 1.5 for the notation

m,m) (1))^).
In 0.3 and 0.5, we give outlines how we get the defining relations of ^ and

Part of the results of this paper has been announced in [Y2] . Similar results
for finite dimensional simple Lie Superalgebras of type A-G have been obtained
in [Yl].

0.2. Let (<f , 77, /?) be a triple of a finite dimensional complex linear space $ with
a non-degenerate symmetric bilinear form ( , ), a linearly independent subset 77=
{a0, • • - , otn] of $, and a function/?: 77->{0, 1}. We call such a triple (<f, 77, p) a
datum.

We say that a Lie superalgebra ^* = ^*(<^, 77, p) is admissible with respect to
((f, 77, p) if ^ satisfies the following conditions (see Definition 1.2.1).

(x) Jtf^S* is embedded into ^*,
(y) As a Lie superalgebra, ^ is generated by the generators [H, Et , Fj with

parities p(#)=0, p(.Ei)=p(Fi)=-p(ai). (We call {H, Ei9 Ff] the Chevalley
generators of ^#.)

(z) The Chevalley generators of ^* satisfy
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, [H,E,']=al(ff)El,

[Et,FJ']=dgHat

where Ha. is a unique element of ^f such that y(£fa/) = G>, a/) for any
Let 9* = &*(&, 77, />) and 9** = 9**(&, IT,/?) be admissible with respect to an

(<f , 77, /?). Then we write 9*>9** if there is an epimorphism W=W[9*, 9**] : ^
-+9** such that W(fD =H, W(Mi) =Ef and W(F^ =Ft . Then there exists a unique
minimal (resp. maximal) one 9 = 9(&, II, p) (resp. 9 = 9(&, II, /?)) with respect
to X The Lie superalgebra 9(£, 77, /?) is called the Kac-Moody Lie superalgebra.

Van de Leur [VdLl-2] classified Kac-Moody Lie superalgebras of finite
growth; they are:

( I ) the finite dimensional Kac-Moody Lie superalgebras,

or

(II) the affine Lie superalgebras (see [K2] and 1.5 for the notation below):

(1) (n>2, l<
( ii ) (A(^ , ^-P)^ (see 1.5) (n >3, n =odd),
(iii) 5/(2n-2m + l, 2m)(2)

( iv) s/(2m, 2n-2m)(2)

(v) A(n-l, «-l)(2) (n>4, n=even),
(v i ) s/(2m + l, 2«-2m + l)(4) (n>l, 0<m<n, 2m
( vii ) A (n, n) (4) (n>2,n= even) ,
(viii) 05p(2«
( ix) osp(2m, 2n-
( x ) osp(2m, 2n-2m + 2)(2)

(x i ) D(2, l;x)(1) (x^O, -1) (ii = 3),
(xii) F(4)<» (n=4)f

(xiii) G(3)(1) (n = 3).

In §4 and §5, we state and prove a Serre-type theorem for the affine Lie
superalgebra 9 = 9(£, IT, /?). In other words, we get defining relations of 9
satisfied by the Chevalley generators (Theorem 4.5.1, Theorem 5.1.1, Theorem
5.2.1 and Theorem 5.3.1).

0.3o We are going to give an outline how we get the defining relations of 9 =
<^(<f , 77, />). Let (<y, 77, />) be a datum such that 9 = 9(£, 77, p) is one of ( i )-(xii).
To prove our theorems, we associate with each 9 a (non-super) affine Lie algebra
& as in the table below (see 2.4, 5.1 and 5.2; in the text, instead of giving ^, we
give only the datum of ^f) .
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(0, (u) (iii), (viii) (iv), (v), (ix) (vi), (vii), (x) (xi) (xii)

Let Pf be the root lattice of ^f. Let JT be the Weyl group of P1. Then we define
an action of W on a set of data (<f', 77',//) such that ^(<f', 77', //) are isomorphic
to ^ (Definition 3.4.2). For y^W, let C<f, *77, yp)=y.(f, II, /?), and >0 =
^ C(f , '77, '/>) . For the unit element e of W, e. (<f , 77, p) = (<f , 77, p) and e^ = ^. In
general, there exists ay^Wsuch that (y$, yU, yp) is not isomorphic to (<?, 77, p) as
a datum. Let 'P be the root lattice of y(§. For each j;G= W, we fix an identification
of yP and Pf (see Definition 2.4.1). Then we show that, for w, y^W, there exists
an isomorphism yLw : y<g-^wy<g such that

(1) ^Lw(^r)=M;J;^(r) for T&P

where y&7 and WJ>^w(r) are weight spaces (see Theorem 2.5.1; in the text, we only give
yLs.=Li with a simple reflection s/). This construction has been inspired by [FSS] ,
[LSS] , etc. Let y& (C'P) be the set of roots of y9. Under the above identification,
the lowest positive imaginary root 5tGPt is identified with a root d&0. Then y$
is a union '<£ =y®re U

y&im ofy0im=Zd\ {0} and y$re =
y0\y&im . Using ^Lw's, we get

a uniform proof that dim y<&a=l for a&0re (see Proposition 3.1.1).
We also define admissible Lie superalgebras3^ 's with respect to (V, ^77, ^/O's

for y^W, by using concrete defining relations, so that the following condition
holds:

For each j, w^W, there exists an isomorphism yL^i ^->w^ satisfying the
same equalities as in (1)

(see Steps 1-2 of Proof of Theorem 4.1.1, Proofs of Theorem 5.1.1 and Theorem
5.2.1; in the text, yL^ is simply denoted by LJO- Using yL^'s, we can prove

(2) dim^i = l for

Likewise we can prove

(3) dim^=0 for r^PXC^U {0})

(see Step 3 of Proof of Theorem 4.1.1).
Denote e^ by &. Let ^^ =<$* (<$, 77, p) be a unique maximal Lie superalgebra

among admissible ones with respect to the datum (<?, 77, /?) satisfying the properties
(2) and (3) (Definition 3.1.2). By definition, the epimorphism W^ = W[<g\ ^b]
exists, and we have ker W^C. ®r^0<g}d. However, since none of the defining
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relations of & has weight rd (r =£0), W^ is an isomorphism (see Step 4 of Proof of
Theorem 4. 1 . 1) . Thus we get the defining relations of & (Theorem 4. 1 . 1) . Using
the defining relations of <&*, we get defining relations of ^ (Theorem 4.5.1,
Theorem 5.1.1 and Theorem 5.2.1). We note that #=£#< if and only if ^ is (ii),
(v) or (vii) (Theorem 3.5.1).

0.4e The argument in 0.3 is more complicated than the one used, e.g. in [GK] , in
giving the defining relations for (non-super) symmetrizable Kac-Moody Lie
algebras. A reason for this is that, although, in the case of the symmetrizable Kac-
Moody Lie algebras, we can always use a key result (Proposition 1.2.2), the same
is not true in our case. For example, when the affme Lie superalgebra ^ is (ii), (v)
or (vii) (related to A(m, m)), we cannot rely on the key result mentioned above,
and the number of defining relations turns out to be infinite (Theorem 4.5.1).

Oo5. We define the quantized universal enveloping superalgebra C7g(^) abstractly
in the same manner as in [Yl, Corollary 2.9.11]. (In the text, Uq(&) is denoted as
Uq or Uq(&, IT,/?).) A similar definition in the non-super case was introduced by
Lusztig [LI, 3. 1. 1] . Let Uf be the subalgebra of J79(#) generated by Et's. For our
purpose, the following result is crucial:

(4) If X(E Uf satisfies [X, Fj = 0 for any i , then X = 0

(Proposition 6.5.1). By using (4), we get ^-analogues of the defining relations of
the affme Lie superalgebras ^ = 0(<^, 77, p) except for types (v) and (vii)
(Proposition 6.7. 1 and Proposition 8.4.2) . Next we show that these ̂ -analogues are
indeed defining relations of Uq(ff) (Theorem 6.8.2 and Theorem 8.4.3). Unlike
Lusztig [LI, Corollary 33.1.5] where a similar result is obtained in the non-super
case (see also [Yl, Theorem 2. 10. 1] ), our proof does not rely on the representation
theory of ^ (see Proposition 6.8.1).

In §7, we give isomorphisms between the affme quantized universal enveloping
superalgebras; these can be considered as g-analogues of yLw's (see Proposition
7.4.1). In §8, by using these isomorphisms, and by using the same argument as in
Beck [B] , we consider super-versions of the Drinfeld generators (see [D3] ) for
Uq(sl(m, n)(1)) (m^n) and C/g((A(m, m)(1))'r), and get defining relations satis-
fied by these generators (see Theorem 8.5.1).

§1. Preliminary

1.1. In §1, we mainly refer to [Kl-2] and [VdLl-2].
We denote by C, Z, and Z+ the field of complex numbers, the commutative

ring of integers, and the semigroup of non-negative integers respectively. Put Cx =
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C\{0}. Let Z2 be the cyclic group {0, 1} of order 2. Let F=F(0)®F(T) be a
Z2-graded C-linear space. If XEi F(0 6" = 0, 1), then we say that X is a homogene-
ous element of degree i and write p(X) =/; pC-AT) is called the parity of X. A Lie
superalgebra g is a Z2-graded space g=gCO)©gCl) equipped with a bilinear
operation [ , ]: g X g-^g such that

[AT, 7] = - (-

[X, [rfZ]] = [[Jf, 7],Z] + (-l)'W)[7> [JIT, Z]]

for homogeneous elements Af, 7, Z. A bilinear form (|): gXg-^-C satisfying
Of 1 10 = (- l>^(r)(7|jD and ([*, 7] Z) = Of | [7, Z]) for homogeneous ele-
ments Jf, 7, Z is called an invariant form on g.

For ZGg, we define ad CAT): g^g by ad CAT) (7) = [X, 7] (7<Eg). Following
[VdLl-2], we define a Lie superalgebra g = g® cC[f, f"1] ®Cc©Cc? by

where g(0) = g(0) ®c C[ r, r !] ®Cc©CJ and g(l) =gCD ®c C[ f, r'1] .
Let r: g-^g be an automorphism of g of finite order r. Put

(1.1.1) g; = {X^g I r(y) =(exp

Then go is a subalgebra of g, and gl (1 </</•— 1) are go-modules. We define a
subalgebra L (g, T) of g by

, T) = © (© g;®t"'+«
n=Q mGZ

Obviously L (g, l)=g.

1.2. Here we give a definition of the (symmetrizable) Kac-Moody Lie
superalgebra in an abstract manner similar to the one of the Kac-Moody Lie
algebra given in [Kl, §1.3]. Let i be a finite dimensional C- vector space with a
nondegenerate symmetric bilinear form ( , ). Let 77= {a0, a\, ..., an} be a linearly
independent subset of &. PutP=Za0©-"©Zan , P+=Z+a0©-"®Z+an , andP-
= — P^ . We call an element a^II a simple root, and P the root lattice. Any
function/?: 77->Z2 can be uniquely extended to the group homomorphismp: P->Z2 .
Put tf = £ * . We identify an element v e <f with H^W satisfying # (&/) = (ti,v)
C //£<£). A datum (£*, 77, /?) is a triple of <f, 77 andp as above. For a datum
C^, 77, p), we define a Lie superalgebra <$ = <$(<$, 77, p) by generators:
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relations:

(1.2.1) [H, H'] =0 (H, fTe Jf),

(1.2.2) [J5T, £,] =at

(1.2.3)

and parities:

The superalgebra ^ has a triangular decomposition:

where ^^ (resp. ^T~) is the free superalgebra with generators Et (resp. F^. See
[K2] and [VdLl-2].

Definition 1.2.1. We say that an ideal r* of 9 is admissible ifr*nje= {0} .
We also say that the quotient 9* = 9P(<£, 77, p)=^/r# is admissible if r* is an
admissible ideal. For a fixed datum (#, 77, />), corresponding admissible Lie
superalgebras form a partially ordered set J(<f, 77, /?) with a partial order >; for
two elements ^ = ̂ /r$ and »** = ^/r** of /(<f, 77,/?), we write #*>#** if r*Cr**.
Clearly, ^ is the unique top element of /(<f , 77,p). We note that ^*>^# if and only
if there is an epimorphism W[9*, <&*} : 9*^>9**(H, Ei9F^Hy Ei9 F^. We denote
by 9 = 9(£, II,p) the unique botom element of /(#, 77, p).

For 9* = 9*(&, 77, p)^I(f, 77, p) and «e#, let 9%={X^9\[H, X\ =
a(H}X(M^^} and 0[V] = {a<=A{0} |dim ^|^0}. The linear space #g=jf
is called the Carfan subalgebra of ^*. Clearly, 0OT CP+ UP-\{0}. We put
0 Of, 77, p) - 0 [#] . We note that ^# > »** implies 0 [#*] D 0 [^] .

For a subset 5 of I(&, 77, /?), we define an admissible Lie superalgebra

Then we see that V ̂  9* > ̂ * for »**ej?, and that 0 [ V ̂  #*] = U ̂ #e5 0 [9*] .
We note that, for a fixed a£<f, if dim 9$ is independent of 9**^B, then

(1.2.4)
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for
For £, a £P+ , we write 0 < a if a —£}^P+\ {0} . By the same argument used

in the proof of [Kl, Proposition 9.11] (see also [GK]), we have

Proposition 1.2.2. For a datum ($, 77, /?), let pEHS1 be an element such that
(p, a,) = (a,, a,)/2 for any a,e77. Let <g*<=I(g, 77, /?). TTien, i/ a(EP+ zs an
element such that (a, a)^2(p, a) anc? suc/i f/ia* dim ^f = dim ^s/or anj;
with £<a, f/zew dim &*a = di

Lemma 1.2.3. Let^*&I(S,II,p). Let o:,e77. We have the following.

( i )

ifm=2, (ai9 a^^O andp(a^ = 1,

,0 z/m>3.

dim .,ma.

(ii) Ifp(cti) = 1 cmd (a,, a/) =0, f/zen dim ^L. = 0 i/and on/> // [E/, E,-] =0.
(iii) The statements of (i) and (ii) wftA — «/ instead of at also hold.
(iv) J/^eP\(P+UP-), tfzen dim ^| = 0.

Proo/. (i) Since #*a/ is spanned by the element [...[E,, Ej, ..., E ,] (Ef-
appears m-times) , it is clear that ^JL. = 0 if m > 3, or if m = 2 with p (a/) = 0. Since
[E, , F/] =£Tfl. ̂  0, dim »*. = 1 . Similarly dim ̂ i. = 1 if (a/ , a/) ̂  0 and /? (a,-) = 1 .

(ii), (iii) and (iv) are easy. Q. E. D.

Lemma 1.2.4. Let ^<E/Gf,77,p). Lefaz^Cx (!</<m= |77|). Then there
exists a unique automorphism /(fli, ..., am): ^*(<^, 77, ̂ )->^#(^, 77, /?) swc/z f/zaf

fr,E,,F, -^ H.a.E^ar^.

Moreover a homomorphism 0: ^*->^* satisfies <t>\*=\# if and only 1/0=7(01 , ...,
dm) for some a^Cx ( l<z<m).

Proo/. Let r*=ker IP1^, ^*] . Then the first statement follows from: r* R Jf
= {0} , [jf , r*] Cr* and ?^= eaep\{0} (rfl fl O. The second statement follows from:
dim 9*±a= 1 (see Lemma 1.2.3) and [0(E,), 0(Ff)] =Ha.^Q. Q. E. D.

Definition 1.2.5. Assume that <& = <&($, 77, p) and 0*' = #*Gy', 77^0 are
admissible. Let 0: <&*-+<§!*' and #?: ^*->^*x be homomorphisms. We write 0=<p if

, ..., flm) for some a/
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Then = is an equivalence relation. If <f> and <p are isomorphisms such that
= <p(jt?) = Jf, then (p=cp if and only if

<p=I(J)\, ..., 6m)°0 for some fr/^Cx.

1.3. Here we introduce the notion of the Dynkin diagram associated with a datum
(<f, 77, p). We need the three types of vertices:

o , ® , • .
(white) (gray) (black)

We call them white, gray and black vertices respectively. For the f-th simple root
af, the corresponding z'-th vertex is determined by the following rule:

white if (ai, a,-) ¥= 0 and p (af) = 0,
gray if (a,, a,-) = 0 and p (a,) = 1,
black if (a,-, a/) =£ 0 and p (a,-) = 1.

The vertex • can be any one of these three types of vertices. The vertex X can be
white or gray. The vertex ® can be white or black.

Concerning the edge between the r'-th and thej-th vertices, we write:

if (a/, ay) = =0,

if (a/, a,-) - (ay, a,-) = -2(a,, ay) =£0,

if (a/, a,-) = (a/, a/) = - (a,, ay) =£ 0,

r r ^ -f / , ; - ^^ i9(m lines) if m=- - r7 - r->2, — - ;—=-!,
(a/, a/Xty, a/) te, a/)

if (a/ , a/) = - (a/ , ay) = ± 1,

if (a,, ay) = - (a,, ay) = ±2,

X if jc=(a,-, a/)£Cx, and (a/, aj) = —2x if (a/, ay)^0.

x _
If x is a nonzero integer, the diagram 0 - X is also written as 0 . X (|jc |

lines). Moreover ® O is also written as (§)( Q. The diagram X:::::: X

can be O O or 0 0.
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An edge between the z'-th and they-th vertices is called an i-j edge.
Assume (a/ , a/) =0, (a/ , a/) €=Z\ {0} and (a/ , ak} £Z\ {0} . If we write a short

line crossing the i-j edge and a short line crossing thej'-fc edge, it means that both
(a/ , a,j) and (a/ , a^) are nonzero integers of the same sign. Otherwise the signs of

/ j k
(ai9aj) and (a/, «&) are different. For example, X — i — 0 I X implies that 2 (a/,

i y k i j k

ctj) = (a/ , a*) = ±2. On the other hand, any of X - 0 - X , X - (g) — T~ X
/ ; k

and X — h— ®= X implies that — 2 (a/ , a,-) = (a,- , afc) = ± 2.
Although we occasionally write short lines crossing the z"^/ and/or j-k edges

even in the case (a/, a/) =£0, these lines should be disregarded.
It is true that, for some datum, the corresponding Dynkin diagram is not

defined by the above rule alone. However, for any datum discussed in this paper,
its Dynkin diagram is defined by the above rule. If the Dynkin diagrams of two
data ($, Tl,p) and (<?', /I',//) are well defined by the above rule and the resulting
diagrams are the same and connected, then there is cEEC* and a parity preserving
bijective map fn\ 77->/T such that (///(a), /n(/3)) ̂ (a, 0) for a, £e77.
Moreover, if dim (f <dim &',fn is uniquely extended to a linear injective map/,*: S
->$' such that (/«?(//), f*(y)}=c(ii9 v) for //, v^S, and /^ induces a unique
monomorphism/^: ^(<f , 77, p)-*<S(<B', II', p'} such that /*(#„) =c~lHf^ .

Caution. Two Kac-Moody Lie superalgebras corresponding to distinct Dynkin
diagrams may be isomorphic.

1.4. Here we list several data (<f,77= {a0, ...,#„},/?) with their Dynkin diagrams.

>-El+£tf

(AA)

OV>3)

(BB)

(CB)
OV>2)

C«r=D



330 HIROYUKI YAMANE

d-Bi-B2

0
2 N-l N

>X ••• X :)(g)
c c £ p c£2 £3 £/v-i cjy £jv

1 X^

£i-£2

(DB)

r=2)

1 X

0 1 N-l N
(cc) Q )x - ••- - x< O
GV>3) 5-2£i £i-£2 £^-i-^ 2BN

X N-l
0 1 N-2 ^

(CD) Q )X - ••• - X<

x

5-£i-£2

0

2 JV-1 ^
(DC) > X ••• X< Q

0
l x

(DD)

X ^ /X N-l
2 N~2

£2— £3 BN-2
I X / ^X N

£2
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0 X 1 X 2

CAT = 3)

1 X 1 X 3

In the above list, we have given a name (XY) for each of the above Dynkin
diagrams where X, Y = A, B, C or D. We fix a datum (<?, 17= {«0, • • - , «»},/>)
whose Dynkin diagram is (XY) as follows. The positive integer n is defined by:

N-l if (XY) is (AA),

N otherwise.

The z-th vertex corresponds to the z-th root a/. Let $ex be an QV+ 2)-dimensional
C-linear space with a nondegenerate symmetric form ( , ) and a basis {B\9 ..., eN,
d, AQ} such that

The subspace $ of $ ex is defined by

{x £ <TX | (x, 0) = 0} if (XY) - (AA) and S£ i J,- ̂  0,
<*H

<f e* if (XY) ^ (AA) or if (XY) - (AA) and Sf= i Ji = 0

where 0=2]^=i<Jzez. Clearly ( , ) induces a nondegenerate symmetric form on $.
For a fixed JV, we denote by ABCD(AO the set of the above mentioned data
satisfying the conditions (a) dim S>ex=NJr2 and (b) there is a simple root whose
parity =T. For (g, 77,p)eABCD(JV), we call B\9 ..., BN, 8, A0 the fundamental
elements of (.$, H9p).

Definition 1.4.1. The Kac-Moody Lie superalgebra <&(&, U,p} for some (<f,
77, p) e ABCDGVO and some N is called of affme ABCD-type.

1.5. Keep the notation in 1.4. In the table below, if we write (XY)/, it means

(««•) (mod 2) if (XY) is (BB), (CB) or (DB),

2 p (a/) (mod 2) otherwise.

1=1
N

The notation (AA)g (resp. (AA)fe) means that (XY) is (AA) and
(resp. Sf=1 J,=0).
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For a finite dimensional Kac-Moody Lie superalgebra g and an automorphism
r of g of order k, g(fc) stands for L (g, r) (see 1.1). In the table below, we describe
g(/c) which is isomorphic to <S(g9 77, p) for some (f, 77, p) e ABCDQV). For the
definition of r in each case described in Table 1.5.1, see Table 4 of [VdL2]. In
Table 1.5.1, we use the notation of g given in [K2, 2.1.1-2],

Table 1. 5. 1

sr(*, n,/o
A(m-l,A"-m-l) (1) QV^2m)

M JV AT \0)V
T"1* 2 V ) (seebelow)

BCAT-m, m)(1)

A(2m-l, 2AT-2m)(2)

C(AO(1), D(m, #-m)(1)

A(2m-l, 2AT-2m-l)(2)

C(AT+1)(2), D(m, JV+l-m)C 2 )

A(2m, 2AT-2m)(4)

Dynkin diagram

(AA)g

(AA)*

(DB)0, (CB),

(DB)b (CB)o

(CC)o, (CD),, (DD)0, (DC)!

(CC)lf (CD)0, (DD),, (DC)o

(BB)0

(BB),

Since different notation for g is used in [K2, 2.1.1-2], we shall add some
comments for the notation. We first note that s/(m, r) = A(m — 1, r — 1) (m =£r),
s/(m, m)/C/2m=A(m —1, m —1), osjp(2m + l, 2r)=B(m, r), osp(2, 2r— 1) =
C(r), osp (2m, 2r) =D(m, r) where /2m denotes the 2m X 2m unit matrix. We note
that A(m — 1, m —1) and s7(m, m) are not Kac-Moody Lie superalgebras since
their simple roots are linearly dependent and that g/(m, m) is a Kac-Moody Lie
superalgebra. The algebra (A(m — 1, m — O^)*" appearing in Table 1.5.1 is given
as follows. Let (s/(m, m)(1))^ be a subalgebra s/(m, m)(1)©CEn of g/(m, m)(1)

wherein denotes the matrix having 1 in the (1,1) position and 0 elsewhere. Then
(A(m-l, m-l)(1))^ is defined as a quotient (s/(m, m)(1))Jf/(©^0C/2m(8)f/c).
We note that A(m —1, m —1) (1) is not a Kac-Moody Lie superalgebra since its
simple roots are linearly dependent.

Io6o Let D(l, 2; x), F(4) and G(3) be the notation used in [K2], where these
denote finite dimensional simple Lie superalgebras. Then infinite dimensional Lie
superalgebrasD(l,2;^)(1)=L(D(l,2;x)(1), 1), F(4)(1)-L(F(4), 1) andG(3)(1)

=L(G(3), 1) are isomorphic to some symmetrizable Kac-Moody Lie superal-
gebras. We shall give the data and the Dynkin diagrams of D(l, 2; ;c)(1) (resp.
F(4)(1), resp. G(3)(1)) in 5.1 (resp. 5.2, resp. 5.3).

Definition L6.1L We say that a Lie superalgebra ^ is an afftne Lie
superalgebra if it is one of the following types: affme ABCD type, D(l, 2; x)(1),
F(4)(1)andG(3)(1).
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The reason is due to the following theorem proved by Van de Laur [VdLl-2].

Theorem 1.6.2 ( [VdL 1 -2] ) . Infinite dimensional symetrizable Kac-Moody Lie
superalgebras of finite growth are exactly the affine Lie superalgebras, in the above
sense.

§2. Isomorphisms Associated with Affine Weyl Groups

2.1. In §2, we introduce a family {Lt} of isomorphisms between ^(<f, 77, p)'s of
affine ABCD type (see Theorem 2.5.1). The isomorphisms Lz: ^(<f, 77,/?)-^^(V,
5'77, s'jp) are defined for the following parity preserving isometrics st: (f-^V:

( a ) reflections sf for non-null simple roots at ,
( b ) super-reflections st for null simple roots a/ ,
( c ) diagram automorphisms st

(see Propositions 2.2.6-8 and Definition 2.2.4). If Ll is defined for a super-
reflection si9 then Of, 77, p) and (V» SiIJ, *'/?) are not the same.

Remark 2.1.1. The super-reflections are known (see [FSS], [LS], [LSS],
[S] ) . Let g be a simple Lie superalgebra of type A-G. V. V. Serganova proved that,
if (£, 77, p) and Of', T7',//) are two data such that ^(<f, 77, p) and #(<?', 77', /)
are isomorphic to g, then there exist finite data ((ffc, 77*, /?&) (l<k<r) such
that (^!, 77i, />i) = (*, ff, p), (*r, 77r, pr} = (f'9 77', /?0 and (^, 77fc, ^fc) =
C/(fc-°(^-i), S/(fc"1)(77fc_1), s/(fc-1)(Jpfc-i)) where s^-i) is a reflection or a super-
reflection (see [LSS, Appendix]).

2.2. The formulas in the following lemma are useful.

Lemma 2.2.1. Let (<^, 11= (a\, ..., an] , /?) be a datum. The following
equalities hold for $ '' = $(£, 77, p).

G)

(2.2.1) [[£,-, £,], F,] = -(<*„ ^Od-

(2.2.2) [Ei, [FJ9 FJ] - (-5,+ (- 1/(

(2.2.3)

(2.2.4)

(ii) Let a^n satisfy (ai9 a,) ̂ 0. Lef a^^f- and d=^fL . Put
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k • d if p (a/) = 1 and k is even,

(—fl0—fc+1) • d ifp(a^ = 1 and fc ft

TTzen we

(2.2.5) [EI9 ad(F,)*CF,)] = (-

(iii)

[X9 [X, 7]]=0 !/

[[JT, F], [X, 7]]=0 ifp(& = l and [Y, JT] = [ [JT, F], 7] =0.

Proo/. These can be checked directly. For example, the third equality of (iii)
holds since 2 [[[AT, F], fF], 7] = [[[AT, F], F], JF] - [X, [F, [F, PF]]]. (We note
that the equalities in (iii) hold in an arbitrary superalgebra.) Q. E. D.

Lemma 2.2.2. Let ̂ + = W[99 #] (>" +) and Jf~ = W[
Jf + (resp. Y^Jf-} be such that [X, Fk~\ =0 (resp. \_Ek , F] =0) for any k. Then X
= 0 (resp. 7=0) in 9.

Proof. We may assume that X is in some root space. Let r+ (X) be the ideal
of Jf^ generated by X. Then r+GD is an ideal of ^ such that r+(X> H Jf = 0.
Hence JST=0. Q. E. D.

As an immediate consequence of Lemma 2.2.1 and Lemma 2.2.2, we have

Lemma 2.2.3. Keep the above nototion. The following equalities hold for &(&,

(i) Let oii^II satisfy (ai9 ad=£Q. Assume that —a^TL+ ifp(flL^ = \ and
-%eZ+. Then

(2.2.6) adfe.)1^^-) =ad(F/)
1~^CFy) -0.

(ii) If (a,-, a/)=0,

(2.2.7)
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Definition 2.2.4. (i) Let Of, 77, p} and (<f ', U',p^ be data. For a bijective
linear map/: $->$', we say that /is a parity preserving isometry if /satisfies the
following conditions:

( a ) (/(r), /(//)) = (r, fi) (r,
( b ) | n | = 1 77' I , and, /(77) CP' where P' is the root lattice of (g ', 77', //),
( c ) /? (a/) =/>'(/(a,)) for any

(ii) We say that a bijective Z-linear map/': P^P' is a parity preserving lattice
isometry iff' satisfies the above condition (a), (b), (c) with/' in place of/

Lemma 2.2.5. Let (g, II={a0, ..., an},p\ (*', lT={ao, ..., ai},p') 6e
affine. Suppose that they are not of a name (AA)6. Denote the root lattice of (£', IT,
//) by P'. Assume that there is a parity preserving lattice isometry f': P->P'. Then
there exists a unique parity preserving isometry f: $-^$f extending f'.

Proof. We note that {a0, ..., an , AQ} is a basis of & . On the other hand, it is
easily verified that there exists a unique element AQ such that Glo,/'(a/)) =£q/ and
(A'0,A'o) =0. It is easily verified that {/'(a0), ..^/'fe), A'Q} form a basis of <fx.
Letting/(a;) =/7(a/) and/(y!0) =ylo,/is the desired map. Q. E. D.

The following proposition is known (see [FSS], [LS], [LSS]).

Proposition 2.2.6. Let (£,11= {aQ, . . . , aj,/0 a«c? (£",!!'= {a'Q, . . . , ai},/?0
, \v/zere (at , a/) = (a/, a/0 =Qandp (a/) =//(a/0 = I/or a fixed i. Suppose that

there is a parity preserving isometry f: $->$' such that

(2.2.8) /(«;) =

-a/ iy «•=./,
<Xj+a'i if i ¥=j and (a/, ay) =£ 0,

a,' otherwise.

Put<$ = e$ (•§, II,p~) and <#' = <$ (<?', 77', p'). T/zen there exists a unique isomorphism
0: £-»#' swcA

(2.2.9)

(2.2.10) 0(E,) = (~1} [Ej, £,-] if i ¥=j and (a,-, a;) ^ 0,

otherwise.
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(2.2.11)

-Ei 1/1=7,

- [Fj, F,] i/i =£7 and (a,, a,)

FJ otherwise.

In particular,

Proof. ~Lety = g (ff, 77, />) . Let Jf ' be the Cartan subalgebra of <§' . Denote
the right hand sides of (2.2.10-11) by Ej and tf. By using formulas of Lemma
2.2.1, we can show that there is an epimorphism y: &^>&' such that y(H^) —Hf^ ,
y(Ej)=Ej andy(Fj)=Fj. Since y\# is injective, kerjfljf = {0} and ^/kerj; is an
admissible Lie superalgebra such that ^/kerj>^ (see Definition 1.2.1). Let
y: y/ksry-^y' be an isomorphism induced from y. By composing of y~l and
W[^/kcTy9 <§\ we have an epimorphism (fr^W^/kery, #] oj;-1: ^'->^ such
that 0i(ff;)=ffr, $l(E{)=Ej and ^l(F^=Fj. Since 0n^'= (j;^)'1 is injective,
ker 0i H Jf /= {0} , which implies ker 0i = {0} . Hence <t>\ is an isomorphism, and <f>
=4>\l is the desired map. Q. E. D.

We call the parity preserving isometry/: &->£ ' in Proposition 2.2.6 the super-
reflection (see [LSS]) corresponding to the simple root a/ with (a/, a/) =0.

Proposition 2,2,7, Let (<?, TI^ {a0 , . . . , a«} , p) be a datum. Let at ̂ 77 be such
that (at , a^ ^ 0 and atj =

 2^''^ ^ - Z+ for j ^ L Assume that —ag^2Z+ i/p(a,-) =

1. Lef /: ^-^^ be a parity preserving isometry defined by f(y)=v— ^'^ af.

Suppose that &* = &*(&, 77, /?) is an admissible Lie superalgebra such that the
following equalities hold.

(2.2.12) adCEO1''^) =ad(F/)
1~fl*(F}) =0 for anyj^i.

Put
exp (ad EI) exp ̂  -- - - — ad F^ exp (ad £/) z//? (a/) = 0,

, _ \QLi , CLi)

exp(ad[£,, £j)exp( -1 adCF,. f,])exp(ad[£/, £,]) 1/^(0,) = 1.
Z ^flJ/ , QJiv

r/ien 0 is well-defined as an automorphism of&*9 and satisfies:

(2.2.13)

In particular,
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(2.2.14) 0(^1) =^(» for 0e0[^(<r,77,/>)].

Proof. The proposition follows from the same argument used in [Kl, §3.8].
Q. E. D.

We call the parity preserving isometry /: $->$ in Proposition 2.2.7 the
reflection corresponding to a simple root a/ with (a, , a/) =£ 0.

Along the same line as Proposition 2.2.6, we have

Proposition 2.2.8. Let (<f, U= {a0, ..., «„},/?) be datum. Assume that there
is a parity preserving isometry f: ff-^>& satisfying /(77) =U. Put ^ = ^(<f , 77, p).
Then there exists a unique isomorphism 0: ^->^ such that <f>(H7)=Hf(r-). In
particular, 0(3«) =»/&,) (£EE0(<f, 77,p)).

We call the parity preserving isometry/: <f— ><f in Proposition 2.2.8 the diagram
automorphism.

2.3. Keep the notation in 1.4-5. Let (<f, U= {a0, • • • , ««},/?) be a datum of affine
ABCD type. As discussed in 1.4-5, the C-linear space $ is a subspace of $ex of
codimension one if (<f, 77, p) is (AA)g. Otherwise & = &**. The C-linear space $ex

has a basis (E\ , ...,eN,6,A0} which consists of the fundamental elements. We note
that (ez , £;) = dy d{ ( d, = ± 1 ) . We also note that n = N - 1 if Of, 77, p ) is ( AA) , and
n = JV otherwise. Moreover the name of the Dynkin diagram of (<f , 77, /?) has been
given; it is (AA), (BB), (CB), (DB), (CC), (CD), (DC) or (DD). For a fixed
positive integer N, ABCD (TV) has been defined as the set of data {(<f, 77, /?)} of
affme ABCD-type such that n =N— 1 if ((f , 77, /?) is (AA), and n =N otherwise.

Definition 2.3.1. Let (^, 77, /?)£ABCD(^). For a fixed i, 0</<«, we
define (V, ''77, »eABCD(JV) by (a)-(d) below:

( a ) Let {e i , ..., £jv, £,^lo} be the fundamental elements of (V, *'77, Slp), and

( b ) If 1 <i <JV- 1 and (a/ , a/) =0, then let (V, ^, » be such that d- =
i, di+i=di, dj=dj (j=£i, /+!) and the name (XY) of the Dynkin diagram of
, ''77, » is

(DY) ifi = l a n d X = C,
(CY) ifi = l a n d X = D,
(XD) if i=N-l and Y = C,
(XC) if i =N- 1 and Y = D,
(XY) otherwise.
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(Here X, Y denotes A, B, C or D.)

( c ) If (g, 77, p) has the name (AA), and if i=0 and (a0, «o) =0, then let
C1"*, SiH,'jO be such that d\ =dN,d'N=di, d-=dj(j^ 1, AT) and (V, ''#,» also has
the name (AA).

( d ) If (^, 77,/?) and 0</<« does not satisfy the hypotheses of (b) nor (c),
then let (V, s/77, » - (<f, 77, />)•

2.4.

Definition 2.4.1. For (g, 77,/0 (EABCDQV), define ($\ 771) by (a) and (b)
below.

( a ) Let $ex be as in 1.4. Let ̂  be an (N+2) -dimensional C-linear space
with a basis {E\ , ..., eN, S^9 Al} and a symmetric form ( , ) such that fei, ..., £N,

is a orthonormal basis of ̂  with respect to (, ).
Define the C-linear isomorphism i\ g^^g^** by i(£/)=£/, K5)=5T, c(Ao) = Al.
Define a subspace g^ of $^e* by <f t=jG^)-

(b) Define 77^(4,^1, ..., al} by

5f-2£i if i=0 and (#, 77,/?) is (DB), (DC), or (DD),

2eN ifi=N and (g, 77,p) is (CD), or (DD),

i (az) otherwise.

We call ((ff, 77f) the auxiliary datum of ((f, 77,/?). We also give a name (XY) to
a Dynkin diagram of (^, 77f) as follows:

(AA) if (<f,77,p) is (AA),
(BB) if (*,77,/0 is (BB),
(CB) if Of, 77, p) is (CB) or (DB),
(CC) if (g, 77,p) is (Ct), (CD), (DC) or (DD).

»t pt == pt aj^H pft — p^

Lemma 2.4.2. (i) ^ (P+) CPt , ^ (P) =P\
(ii) (x, x) >0for any jcEEP1". Moreover x£Pf satisfies (x, jc) =0 i/anc? on/y

Prao/. Clear. Q. E. D.

Proposition 2.4.3. Lef ((f , 77, /;) e ABCD QV) ancf 0 < i < w. T/zen t/zere exists
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a parity preserving isometry sc. <£— > l$ such that

( ( \\ f \ 2Q(v)»a?) t«0si(v))=«(v) -- -r-i — i^—ai
(a! , aT)

for vEiP. Moreover, if ($, 77, p) is not (A A)6, such s, is unique.

Proof. The existence of st can be verified easily. The latter half of the
statement is clear from Lemma 2.2.5. Q. E. D.

2.5. Since sf defined in Proposition 2.4.3 is a super-reflection, a reflection or a
diagram automorphism, by Propositions 2.2.6-8, we have:

Theorem 2.5.1. Let (<f , 77, /?) (EABCDGV), and let i be 0<i<n.
(i) There is an isomorphism Lt: #(<£, 77,p)->^(V, ''77, *lp) such that-.

(2.5.1) L,Cffr)=frI/(r)

7n particular, Lt satisfies:

(2.5.2) Lt(9a)

(ii) Le? Lz one? L/ 6e fwo isomorphisms satisfying (2.5.1). TTzen Lf=Lt (see
Definition 1.2.5).

Remark 2.5.2. Lets/ be as in Proposition 2.4.3. If s/ is a super-reflection, then
it always changes Dynkin diagram. For example:

i + l
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N-l N-l

N-2
SN-2

SN <

N-2

N N

(The two SN of the undermost Dynkin diagrams are not super-reflections but
diagram automorphisms.)

2.6o Let Of, 77, /O^ABCDGV). Let ht^i Pt+->Z+ be a function defined by
S"=ofca7) = S"=ofc.
For a composition w=s/(i)SK2) '" s/o-os/o) of s/o/s, define (w<^, W77, wp) by

We note that w is a parity preserving isometry from $ to wef . Let WP, WP+ , WP-
denote the root lattice, the positive and negative parts of the root lattice of (w(f , W77,
wp) respectively. We note that the identity mape=id<*: $->$ is also a composition
of s/'s.

Proposition 2o6.L Lef (<f, Zr,/?)eABCD(^). ^Teep the above notation.
(i) Ler a^0(S>

9 77, p)\Z5. T/zen f/iere exw& a w suc/z
(w<r, W77, >) /or some

(ii) Le? a£ (P+ UP-)\(0(<f, 77, p) UZ5). T/ien one of the following cases
occurs:

Case 1. There exists a w such that w(a) ewP\(wP+ UWP-).
Case 2. ITzere exw?5 a w such that w (a) £Z^3\0 (w^, W77, >) /or some

In particular w(a^0(w£, W77, wp).

Proo/ We prove (i) and (ii) simultaneously. We may assume
We may also assume that a^Zo;7 for any o/E:77. These assumptions imply that a
^Zr!(a/) for any o/e77. Since a^Zd, by Lemma 2.4.2 (ii), we have 0(«),
K«)) >0. By Lemma 2.4.2 (i), there exists an al^lfi such that 0(«), «D >0.
Since OCs,(a)), «(s,-(a))) = 0(a), K«))>0, s/(a)es'P\Z5 (see Lemma 2.4.2

(ii)). Since a^Zr'Ca/), we see thats/(a) = a - - r 1 ( a D ^ _ UZ5, and

that, if sf(a) £S/P+\Z5, /z^Gfefe)) </zr tO(«))- Thus we can get a finite sequence
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{w0=id, Wj=Si(fl -"Sid) SKI) (7 = U - • - , fc)} such that

and that, letting w=wk, we have either

( a ) w(a) eZ£ for some £<EW77,

or

(b) w(a)^wP+UwP-.

Put %-^(V, ^77, ». By Theorem 2.5.1, dim %w.(a) = dim L '̂' %•_!(«))
=dim ^'"^w.^Ca) . By Lemma 1.2.3, dim ^a = dim w^w(a)^0 (i.e. = 1) if and only
if the condition (a) and the condition w(a) e0(w<f , "77, wp) hold. Q. E. D.

2.6.2. For (XY) = (AA), (BB), (CB) or (CC), let ABCD(^)(XY)
be the set of (<f, 77, p)eABCD(7V) such that (jg\ 771) is (XY). Let «f (XY) =
®^((^, 77,;?) ^ABCD(A^)(xY)). Then a set of suitably chosen s/'s gives an action
of the affme Weyl group of (^f, 77t) on <f (XY), i.e. s? = id: ^-^eT, and (st

id: ^->^ where /zO', 7) =2, 3, 4, 6 if w^ar> <&.<#> =Q> lj 2> 3 respectively.

§3. A Maximal Affine-Admissible Algebra

3.1. By Lemma 1.2.3, Theorem 2.5.1 and Proposition 2.6.1, we have

Proposition 3.1.1. Let (<?, 77, p) eABCDGV), and <g = 9(f, 77,p). T^en, for
, 77,/?)\Z5, di

Definition 3.1.2. (i) Let (<f, 77,p)eABCD(Ar). Let <§** = <§**($, 77, p) be
an admissible Lie superalgebra with respect to (<f , 77, /?). Namely ^"#(<f , 77, /?) >
^ = <3 (£, 77, /?) . We say that y^ = y^ (<f , 77, p) is affme -admissible if the following
conditions hold.

(3.1.1) (ia)

(3.1.2) (ib) dim^=l for any

(ii) Let ((f, 77,p)fEABCDGV), and \&AI=AI(<S, 77, p) be the set of affine
-admissible Lie superalgebras with respect to (#, 77, p). Let ^" =^11 (^, 77,p) be an
admissible Lie superalgebra defined by
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(see 1.2). Then #* is a unique maximal af fine-admissible Lie superalgebra in
II,p). Namely 9*&U, and 9*>9** for any 9**^AI. By (1.2.4) and (3.1.1-2),
and by Proposition 3.1.1, we have

(3.1.3) dim»i = dimSF« if ae((P+ UP-)\Z<5) U {0}.

Proposition 3.1.3. Let (<f, 77, p)(EABCDG\0. // (5, p)^0, S^fo 77, /?)
coincides with <S(S9II9p).

Proof. Since (5, 5) =0, (5, p) ^0 implies that 2(fc<5, p) =£ (M, fed) for
Since 5eP+ , by Proposition 1.2.2 and (3.1.3), we have dim &ld=dim <gkd for k >
0. By symmetry, we also have dim |̂(5 = dim ^kd for /c<0. Hence &*(£, 77, p)
coincides with <&(f, 77, p). Q. E. D.

Example 3.1.4. Here we give two examples when (5, p) =0, and explain what
happens in each case. The first example is ̂ \ such that its Dynkin diagram is (A A)
with N = 4 and its parity is given by p (a i) =p (a3) = 0 and p (a0) =p (#2) = 1 . Then
»i=(A(l, l)a))^ and ̂ J = (s/(2, 2)(1))-?f. In particular, 9^9\. We also note
that dim (^i)fc<5=2 and dim(*})w = 3 hold for fc^O. The second example is ^2

such that its Dynkin diagram is (CD) with N = 3 and its parity is given by p (a0)
 =

p (a2) =/? («3)
 = 0 and /? (aO = 1 . Then ^1 coincides with ^2 , and ^2 = D (2, 1) (1).

In Theorem 3.5.1, we shall show when 0* (<f, 77, p) does not coincide with ^(<f, 77,
p) for (<f, 77,/?)eABCDOvO.

Proposition 3.1.5. Let (f, 77, p)eABCD(JV). Put 9 = 9(6, 77, /?), <^ =
<$* (f, 77, p), Si9 = 9(?£, s/77, » awe/ V =»" (V, ''77, ». T/ze« f/zere exwte an
isomorphism L}: 9*^>19* such that the following diagram commutes.

Ll

Q

Proof. If t(af) =al and (a/, a/) =£0, use Proposition 2.2.7.
Assume i(ai) =0} and (a,, a/) =0. By 2a/£$(<£, 77,p), [E/, E/] = [F/, Fj =

0. Hence, by formulas in Lemma 2.2.1, there is an epimorphism y *: 9(&, 77, p)^
%* such that W^9\ Si($~] oy* coincides with y in the proof of Proposition 3.2.7. It
is clear that 9(&, 77, p)/ker j;* is af fine-admissible with respect to (<f, 77, p). By the
maximality of'W, we see that 9(&, II,p)/teiy*=9*.

Similarly we can prove the proposition in the case that i(ad ^ofi. Q- E. D.
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3.2. For 7V>3, let CDQV) be the set of data (<f, 77, /O^ABCDGV) whose
Dynkin diagrams are (CC), (CD), (DC) or (DD). For (g, 77,jp)GCD(JV) and
a fixed l<i<N, let ^w= (x£^| (x, £/)=0}. Put 0,=^- if l<j</-l, and Oj-i =
BJ if i + 1 <; <#. Then {0j , . . . , 0N- i , 5, AQ] is a basis of <f M . Let 077M = {#,- - 0y+ 1

077wU {5-20i, 20*-i}, a f fw=otfwU {5-20i, 0*-2-
{5-01-02, 20^-i}, 4/7w=o/7wU {5-01-02, 0jv-2-ftv-i}.

Put

if i

if i/7D] &; <p (*, 77, p) and 277M C 0 (^, 77, p) ,

if i77w«S(P(tf, 77,p) and 3/7wC(P(*, 77, p),

if i77M , 277M , 3/7w (s; $ (*, 77, p) and 4/7M C 0 (*, 77,

Then 77[/j is always well defined, and 77[/] consists of N linearly independent
elements. Then a triple (<?&•] , 77[/] ,/?[/]) is a datum where /?[/] =/

Definition 3.2.1. Let # > 3 and (f, 77, /?) e CD (JV) .
(i) We say that Of , 77, /?) is i-good if one of the following conditions holds.

(ia) Any element /S^77[/] satisfies p ( f y = Q , and the Dynkin diagram
corresponding to (<f, 77, /?) is well defined (see 1.3) and connected.

(ib) The datum (<f, 77, p) satisfies N>4, and there is a parity preserving
isometry/: g^-^gf for some (<^, 77', />') £CD(A^- 1) such that/(0y) =e/,/(5) =

(ic) The datum ((^, II, p) satisfies JV=3, and there is an isomorphism/:
, 77M , pvd-*9(g'9 If, /?0 for some (<T, 7T, ̂ 0 of (AA)g with N=3 such

)-F; (y = 0, 1, 2).

(ii) We say that (g, 77, p) is good if (p, 5) ^0 or if (<?, 77, p) is /-good for
some / with 1</<A^.

Proposition 3.2.2. Any (g, 77, p) eCD(AT) w good

Proo/. This can be checked directly. Q. E. D.

In case N>4, (£*, 77, p) eCDQV) is /-good for any i with 1 <i<N.

Example 3.2.3. Let (g, 77, p)eCD(3) be such that the corresponding
Dynkin diagram is
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Moreover

= {x+s69 -x+ (s+l)d(s>0) \x=el~B2, £2-£3,

Then (<f, 77, p) is not 1-good since the Dynkin diagram of n\\\ = {6—9\ — 929 6\
62, Oi + O^} is not connected. On the other hand II\f\= {S—20i, Q\-029 Oi + 92

and the diagram of (<f[2] , J7[2] , /?[2j) is:

Hence ((f , 77, p) is 2-good. Similary we see that it is also 3-good.

3.3. Keep the notation as above. Assume (<?, II, /?)^CD(7Vr) to be an /-good
datum. Let *(<£, 77, p)M = &(£', II, p)n^ [ l ] . Let x0s ..., x^-i be

ifi=N

respectively. Then the following diagram commutes:

U Q U
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where 3;, is defined in the same manner as s/ in Proposition 2.4.3 with Or in place of
er (1 <r<N— 1) . By the same argument as in the proof of Proposition 2.6. 1, we see
that, if 7^0 (^, 77, /?)[/] \Z£, then there exists a composition w=x/(fc) ••• Xi(2)X,-(i)
such that w^^Z^^ncK^f, W77, *£)[<]• It is easily verified that w(r)(E
*(("# ) w , (w#) w , (w/>) w)- Applying ̂ (1)^(2) — JF/oo , we see re<P(<£w , 77^ ,pw)
\Z<5. Thus we conclude:

Proposition 3.3.1. Let &*(£, II, p) be as in Definition 3.1.2. Assume (£, 77,
/OeCDGV) to be i-good. Then

*(*M , 77W , />W)\Z<5=*(*, 77,p)m\Z5.

Moreover f/iere exists a homomorphism J^Y. &* (<?[/] , 77[/] , p [{])-*& (jS, 77, p)
thatjm(ffJ=Hv. In particular, jw&*(*w, n^9pm^=9^f9 H9p^Jb
0(^[/j , 77^ ,^M)\Z5 (see a/so Proposition 3.1.1) (// (rfM , 77M ,/?M) & a/type (ia)
or (ic) of Definition 3.2.1, we de/i/ie »" (*M , 7JM ,pvd=<S(f\f\ , 77M ,

3.4. Keep the notation in 1.5. The notation (XY)f means (XY), with S/Li J,=
0. For ((T, 77, /?) GCDCAT), define ^ " (^, 77, p) e^/(^, 77, p) as follows:

(a) If (<T,77, p) is (CC)? , (CD)S, (DD)? or (DC) S, then we let ^M(<f, 77,
be the af fine-admissible Lie superalgebra isomorphic to sl(N,

( b ) Otherwise we put ^ " " (f, 77, /?) = ^ (^, 77, /?) .

Proposition 3.4.1. // (<f, 77, p) eCD(AO, rtcn ^^ U, 77, />) =^M ((T, 77, p).

Proo/. It suffices to show

(3.4. 1) dim ̂  = dim 9^ for any s.

If (59 p) ^0, this is an immediate consequence of Proposition 3.1.3. So we assume
(<5,p)=0.

We shall prove the theorem for ^" =^" (^, 77, _p) such that the corresponding
Dynkin diagram is (CD). (Other cases can be treated similarly.) We use induction
on N, and start with N =3. The unique datum of (CD) with N =3 and (6, p) =0
is given in Example 3.2.3. So we first assume (<f, 77, p) to be this one. Hence ^""
= D(2, 1)(1) and dim ̂  = 3 for s^O. By Proposition 3.3.1, there is the homo-
morphismy'[2]: ^" (^[2] , 77[2] ,/?[2])^^^. Let ^f2] be the Lie sub-superalgebra of ^
generated by the elements

(3.4.2)
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Since &\2\==j &\(&* (£ \i\ , 17 &] , £[2])), by Proposition 3.3.1, <S\2-\ is also af fine-
admissible with respect to Gf[2j, 77[2],p) and the generators (3.4.2). However,
since (£\$\ , 77[2j ,pm) satisfies (5, p) 7^0, by Proposition 3.1.3, we have

(3.4.3) ^2]=^(<r[2],77[2],p[2])=A(l, 0)(1).

Lets>0. LetJTe^-oa+^Xft)}, Y^k-c^MO], ZeSFi-^-^Xft)}. By Prop-
osition 3.3.1, X, Y,Z£E^2]. By (3.4.3), \E*9X\, [[Ei.Ej, 7] and [ [E, , E3] , Z]
span the 2-dimensional space (^^j)^. On the other hand, ^ is spanned by
[E0,JT], [£,, [E2, 7]], [£2> [£lf 7]] and [E3, [£i,Z]]. Since [£2, [Elf Y]] =
[£i,C£2,y]]-[[£i,£2],y], [£3, [£i,Z]] = [£1,[£3fZ]]-[[£1>£3] fZ]and
[£3, Z] =a[B2, Y] for some a^C, ^4 is spanned by (^\2\)sS and \_El9 [E2, F]].
Hence dim ̂  = 3. Similarly we can show dim ̂ !_S(5=3. This completes the proof
for (CD) with N= 3.

Similar argument applies to (CD) with AT>4. In this case, we can prove
(3.4.1) using the subalgebra ^[2] of & generated by the elements

Q. E. D.

3.5. By the same argument as in the proof of Proposition 3.4.1, we have

Theorem 3.5.1. Let (<?, 77, /?) eABCD QV), # = #(<?, 77, /?)
77, p). TTien we

, 77, p) & (cc)!, (CD)*0, (DD)? or (Dc)6
0,

i f ( f , I I , p ) i s (BB)?,

otherwise.

In particular,

f, 77, p) is (AA)6 and r£Z\{0},

f,77,p) u (CC)?, (CD)g, (DD)?or

dim(ke

zy ((f, 77, p) w (BB)f,

otherwise.

See also Example 3.1.4.
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§4. Relations for Algebras of Affine ABCD-Types

4.1.

Theorem 4.1.1. Let («?, 77, p} be of affine ABCD type. Then the Lie
superalgebra & " (£, 77, p ) can also be defined by generators J? e Jf , £, , F/ (0 < / < n ) ,
parities p (#) = 0, p (£,) =p (E,-) =p (a,-) and relations:

(51) [H, ff']=0, (ff,

(52) [#, E,] =aiCff)E! ,

(53) [Et,FJ']=8gHai,

(54) (1) [E, , Ej] =0 i/ (a, , a,) =0 (i *j),

(S4)(2) [£,.,£,.] =0 i/ (g),

(S4) (3) [E,., [£,-, .... [E,, £,-]-..]] =0 (E,

if (a,i, a,-) ¥= 0 and ( — 1

(S4)(4) [[[E,,Ey],£t],Ej=0

)® o^

(S4) (5) [ [ [Ef , £,] , [ [Ef , £,.] , EJ ] , £,•] =0 if

(S4) (6) [ [ [ [ [ [E, , E7] , £ t] , E,1 , Ek~\ , £,•] , Et] = 0

if X - O - <SK - O or ®< - Q - (g)( - Q,

(S4) (7) ( - 1)' °-W («,. ,at) [ [£,. ,£.] ,£,] = ( _ i/ ^V (a,. ,«.) [ [£/ ,£,] ,£.]

if (a,, a.j)=£0, (a,-, afc) ̂ 0, (a*, a,) ^=0,

(a, , a,-) + (a;- , afc) + (at , a/) = 0

and p (a,-)p (a,-) +p (a,-)^ (at) +p (a^p (a,-) =1,

(S4) (8) [ [ [Ej , E,] , [Ey , Et] ] , [£,• , E,] ] = [ [ [E, , E,] , [Ey ,£,]], [£,• , Et] ]

O
•• ; x

(S4) (9) [ [ [E* , [E, , [Et , £,•] ]],[£*, [E, , [E* , [£,• , E,] ] ] ] ] , £,•]
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= 2 [[£,,£,.], [[£,, [£*,£,-]], [Ek, [£,, [£t, [Ej ,£,]]]]]]

i j k I

if O=)O - <8>£=O,
(S4) (10) [Ej , [Ek , [Ej , [Ek ,£,-]]]] = \Ek , [Ej , [Ek , \E, , £,•] ] ] ]

/

.0.
*/

if

(S4)(ll)

= (l-(-l/to*)2)[[[&f^]f [Ek, [Ek,
« _ j _ *

(S5) (a) (1 <a < 1 1) The same relations with F/s in place of Er*s in (S4) (a).

Proof. Let ^b = ^(<f, 77, />) be the Lie superalgebra defined with the
generators If* (AEE<gO, Em, Fm (0<m<n= |/T| — 1) and the defining relations
(SI), (S2), (S3), (S4)(a), (S5)(a) (a = l, ..., 11). Letx(a) (resp.j;(o)) denote
the left hand side minus the right hand side of the equality in (S4) (a) (resp. (S5)
(a)) . If a finite sequence au , av , . . ., aw of simple roots satisfies the assumption in
(S4)(fl) (resp. (S5)(a)) with u, v, ..., w in place of i,j, ..., fc, then let x(a)iv/.fc

w

(resp. ^ (fi)w;':.few) denote the element of ^ (<f , 77, /?) obtained by substituting EU,EV9

...,EW (resp. Fu , Fv , . . ., Fw) for Et,Ej, ..., Ek (resp. F i 9 F J 9 ...9 Ffc) in the definition
ofx(fl) (resp.j;(a)). Let X(^, 77, p) (resp. 7(#, 77, /?)) denote the set of all the
*GOfcv*w (resp. 3? (a)fc:*w). See 4.4 (example). Let rb be the ideal of 9 = 9(£9 77,
/?) generated by the elements of X(& , 77, p) U F(^, 77, /?). From now on, we
identify ^ with

1. ^b (<f , 77, p) /5 admissible. Keep the notation in 1.2. Let rt (resp. rL)
be the ideal of .yK"4^ (resp. ^T~) generated by the elements of X(&, 77, /?) (resp.

, 77, /?)). By direct calculation, whose example will be given in 4.3, we get

(4.1.1) IH,FM]Crt for any 0<m<7i= |/7|-1.

Let ?=?(*, 77, p): ^(<T, II9p)-*<3(f9 77, p) be an isomorphism defined by
-^,f(^)=Fz-,f(F,) = (-l)Xa/)^. Applyingfto (4.1.1), we have [^,£m]CrL
for any m. Hence r^ =r^+ ©rL , and r^ is an admissible ideal (see Definition 1.2.1),
which implies that &($, 77, p) is admissible.

Step 2. Each Lt lift where L, is of Theorem 2.5.1. By the result of Step 1,



RELATIONS OF AFFINE SUPERALGEBRAS 349

there is the epimorphism ^Gf, n,p)=W[^(<$, 77,p), <§(f, /I,/?)]: #b(<£, II, p)
-^y (<f , 77, p) . Then the assertion of Step 2 means that, for any (g , 77, p) of affine
ABCD-type, there is an homomorphism L\=L\(f, 77, />): &(£, 77, />)-*#b(V,
*77, *'/?) such that the following diagram commutes:

, n, p) - - - > & <V, s>n, »
I

Q |
i

, 77, />) - - ST (V, ''77, ».
L/

We note that L\ is an isomorphism since L\ (V, ''77, s|p) o L\ (&, 77, p) =id^{g n p}

and L^ (£, 77, p) o Lz^ C^, ''77, ''/?) =id9\,fif ^^ in the sense of Definition 1.2.5. ''
If Si is a reflection, then Lf lift to L\ by Proposition 2.2.7. If sf is a diagram

automorphism, it is clear that Li exists. In case s, is a super-reflection, the existence
of L\ is shown as follows. We also denote L, and L\ by Lt(f9 77, /?) and L^ (£, 77,
p) to clarify their domains of definition. Using formulas of Lemma 2.2.1, it is easily
verified that there exists an homomorphism L^ (g, 77,p): &(g, 77,p)^^b(V, *77,
V) such thatLf K^, 77,/?) satisfies the same equalities as (2.2.10-11) withLf b(<f,
77, p) in place of 0. To show that L\ (<£, 77, /?) exists is exactly to show that

(4.1.2) Lp(f, 7I,p)Cx(a)&^)=0 for any jc(fl)fci&Y(*, 77, p)

and

(4.1.3) LfK*, 7I,/i)(j?(fl)fc-:.*,)=0 for anyj;(fl)fe-.*,ey(^ 77, p).

Since f(rb)=i-b, ? induces an isomorphism Fb=fb(^, 77, p): ^b(^, 77, /?)->
, 77, p). Since Lfb(<f, 77, p) of(^, n,P)=??f, *'77, » oLfb(V, s/77, 5'p)

(see Definition 1.2.5) and fXjK0)«v'.".fcH>) = i^(fl)ttV.'*w> we only need to show
(4.1.2). The statement (4.1.2) is verified by direct calculation whose example will
be given in 4.4.

Step 3. ^b(^, 77, p) is affine -admissible. Keep the notation in 2.6. Let a
£ (P+ UP-)\Z(5, and let w be the element given in the statement of Proposition
2.6.1. If w is written as w =s,-(o s/(2) • ' • sf^ , put Li =LJh) ° L b(2) o • • • o L^ • Then

, 77, p)^^b (w^, *77, wp) is an isomorphism such that Lb (^b (<f, 77, /?)r) =
>, "II, wp)w(ri . (Isomorphisms denoted by L£ are equivalent each other in the

sense of Definition 1.2.5.) By Proposition 2.6.1 and Lemma 1.2.3, we have
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dim #i = dimLi(#£)=dim ^(w<r, "77, wp)w(a)

1 ifa(E0(<T, 77,p)\Z<5,

0

as desired.

Step 4. ^Gf, 77, p) coincides with ^*(<f, 77, /?). Keep the notation in 3.1.
Here we abbreviate <&(e, 77,p), ^b(<f, 77,/?), ̂ < Of, 77,/?) to ^, ^b, ^ respectively.
By the result of Step 3, there is the epimorphism W*b = W[_&*, ^b]. For x (fl)^..fcw^
X ( f , 77, p), let auv w=a u+a vH haw^P+ . Then jc(fl)fc"*w^^(^, 77, p)a•*• •*• UV...H'

injective. Since ^i^i ((x(a)Evv.few)")=05 (x(a)g'v.'*w)*=0 and
auv...w

F[^, ^"]. Similarly we havej;(fl)i;vV.fc
w^ker ?f [^, ^"] forj;(fl)2v.'*H

Hence there is the epimorphism ^P'1'11 =?r[^1', ^"]. It is clear that W^

and F"b o W^" = l^j,, as desired.

4.2.

In 4.3-5.2, LHS—RHS means LHS=a • ##£ for some

We note that the statement (S4) (7) does not depend on the order of {/, y, k}9

namely,

x (7)g(OgO)g(fc)^^ (7)|fc for any bijective map g: {i, ;, fc} -> {/, 7, fc}.

4.3. Here we shall show how to get (4. 1. 1) in the case that (<f , 77, p) is (XC) with
N>4. To do this, we show, by direct calculation, that

(4.3.1) [x(fl)L-i,Fm]&t

for any Q<m<N and any x (a ) 2V:.kw ̂ ^ G^, 77, p ) . Here, as an example of the direct
calculation, we are going to show [x (6)^-3,^-2,^-1, N, Fm\ &t . By abuse of
notation, we also denote N—3,N—2,N—l,Nby i,j, k, /. If m ̂ ij, k, /, it is clear
that Dc(6)|!,Fm]=0. We have:

£J , £/] , [£* , Ei\ ] , £k] +rt (by using x (1)| and x (3)f)
0+rb+ (by Lemma 2.2.1 (iii)),
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DC (6)$,^.]+^

~ [[[[[[£• ,#,] ,£*] ,£;] ,£*] ,£;] ,£*] + [[[[[ [E, ,£,-] ,£*] ,£,] ,£*] ,#,] ,£*] +rk+
t (by using x(l)!i and x(2)i),

«, Ej] ,
0-0 + 0+rt

(by (a,-+ay+afc+a/+ajfc+a/, a^)=0 for the 1st term,
by using x (3)jji , x (3)f and Lemma 2.2. 1 (iii) for the 2nd term,
and by using x(l)| for the 3rd term)

and

[[[[[[£„ ^], £*],#,], E
(by using x (2)1).

So we got (4.3.1) in the case a = 6. Other cases can be treated similarly. Once
(4.3.1) is established, the statement (4.1.1) follows immediately.

4.4. Here we shall show how to get (4.1.2) in the case (f9 77, p) such that
II, p)=A(3, 1)(2). The Dynkin diagrams of (jS, 77, p)'s change under super-
reflections as follows:
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where d, = J2 =-<73 =#=-£=#= -rfi'=^'=dl' (here «?,= (£„ £,-), %=(&, £,0
and<Jf(£f, £,')). We note

f,, x(2)2, x(3)£,,
x(3)f,2,X (3)3*32, xWffik)

, *277, 12p) = {x(l)&, x(l)L x(2)',, Jc(2)'2> x(2)3,
x(5)f?o,x(5)&,x(7)8,}

Jf C'V, I1I277, '^)= {x(l)^f jc(2)'0> jc(2)',,

We abbreviate L^(rf, /7./0, LfbC2<f, '2/7, », LfbC2/, '2/7, '^),
s'l2Zr, <il2/>) to Lf b, 'I,f ^ 'Lf "-, "if1- respectively. The elements ?F[f (<?, 77, /?),
^(*, 77, />)] Cx(fl)fc^.), [̂̂ (̂  77, /»), &(*, 77, p)] (^(fl)fc^w)e^(*, 77, p)
will also be denoted by jc(fl)2v;*w andj(a)^'.".fcw. Then we have

£,] , [ [£2 , £,
], [[£2,£i]

£l],£0]]]]

= 0 (by (S4) (5) and Lemma 2.2.1 (iii)),

[[E2, [E3, [E2, £,]]], [B2, [£3, [£2, CBi,£o]]]]],£i]

1],[[£3, [£2,£i]], [£2, [£3, [£2, [£i,£o] ]]]]])

, £3] , [£2 , [£2 , £1] ] ] ], [F2 , [ [£2 , £3] , [F2 , [ [£2, £J , £ol ] ] ]],

[£2,£i]]-2[[F2, [£2)£,]], [[[£2,£3], [F2, [£2) £,]]], [F2, [[£2, £3],

[£2, C[£2,£,],£o]]]]]]

[[[£3,£,],[£3, [£,,£0]]], CE2,£i]]H-[Bi,[[[£2,£3],£i], [£3, [£.,£o]]]]]

[[[£3 ,£,],[ [£3 ,£,], £0j], [£2 ,£,]]+[£,,[[ [£2 , £3] ,£,],[ [£3 ,£,], £ol ]]]

(by using x(l)&=0)

2[[[[£3,£1],£2],[[£3,£1],£0]l)£1]+[£1,[[[£2,£3],£1], [[jBs.^il.fio]]]]

(by x (5) 3io = 0, and since, by Lemma 2.2.1 (iii),
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[[[£3)£,],£2], [£3,£i]]~[[[£i,£2],£3], [£3,£i]]

= 0 (byx(7)?i2 = 0 (see also Lemma 2.2.1 (iii))),

[ [E, , [£, , £0] ] , [£2 , £,J ] ~ [£i , [£, , [ [£2 , £,] , £„] ] ] ~ [£2 , x (3)??10] =0

(by x (3)'!'12 = 0),

2, £3], [£2, £,]],£«]], [£2,£,]]

[£2 , £3] , [£2 , £,] ], [ [£2 , £3] , [ C£2 , £,] , £ol ]], £,]

-2[[E2, £,],[[£,, [£2,£i]], [[£2,£3], [[£2, £1], £0]]]])]

= [£2, xWiftLl (by Lemma 2.2.1 (iii) and x(l)fe = 0)

= 0,

'if b Cx (7)fa) ~Xfb Cx (7)&) (by Lemma 2.2. 1 (iii))

-[£,[£2, £3]] - [£3[£2, £,]] =0 Cx(l)f3=0),

(x (5)^0) ~ [ [£2 , [£2 , [£i , £ol ] ] , £,] ~ [£2 , [£2 , £o] ] = 0 (by Lemma 2.2. 1
(iii)) and

[ [ [£2 , £1] , [ [£2 , £1] , £ol ] , £1] (by Lemma 2.2.1 (iii) )

Thus we get (4.1.2) in the present case. In other cases, the corresponding
calculation can be carried out similarly and, usually, much more easily.

Q. E. D.

4.5. As an immediate consequence of Theorem 3.5.1 and Theorem 4.1.1, we have

Theorem 4.5.1. Let (S, 77, p) be of afflne ABCD type. Then the Lie
superalgebra &(.$, 77, p) can also be defined by generators If G: jf7, Et, Ff (Q<i<n\
parities p (JET) =Q,p (Et) =p (Ei) =p (a,-) and relations:
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(SI), (S2), (S3), (S4)(a) ( l<a<ll) , (S5)(a)

and

(56) x(k; S)=0 ifk>Qand dim(ker

(57) y(k; 5)=0 ifk>0and dim(ker

where x(k; 5) (resp. y(k; 5)) is an element of N^ n^kd (resp. Jf~ n^-kd) such
that W[&, £'](*(*; <5)) (resp. W\$, ̂ "](^(fc; 5))) spans rte one dimensional

(resp. ker

§5. Relations for D(2, 1; x)(1), F(4)(1) and G(3)(1)

5.1. In §5, we shall prove the counterpart of Theorem 4.5.1 for ^(<f, 77, p) of type
D(2, 1; x)(1), F(4)(1) and G(3)(1) (see also 1.6).

We first deal with <S(f, /7,/?)5s isomorphic to D(2; 1, x)(1), (x^O, - 1). The
argument needed in obtaining their defining relations is almost the same as in the
case of affine ABCD-type. We first introduce tools which are the counterparts of
the ones used to prove Theorem 4.5.1.

( a ) We first define an auxiliary datum (<f f, IP = {a J , a\ , a! , a\] ) . Let <f f

be a C-linear space with a basis (al , a\ , a\ , a\ , A 1} and a symmetric form ( , ) such
that the corresponding Dynkin diagram is

Diagram 5.1.1

and that (Al, a/) =6OJ, (Al, Al) =0.

( b ) Let Data (D (2, 1; x)(1)) be a set of six data whose Dynkin diagrams are
given in Figure 5.1.1 (see below). For (g, II,p}^Data(D(29 1; x)(1)), we always
assume dim $ = 5. For each datum (g, U= {a0, ai} a2, a^}, p)^Data(lL)(29 1;
x)(1)), the numbering of elements of 77 is given by letting the j'-th simple root af

correspond to the vertex labeled as i+j or i in the corresponding Dynkin diagram.
The C-linear space <f is spanned by a basis 77U Mo} where A0 is an element such
that (a,-, Ao)=6oj and (/10, ̂ lo)=0. We also define a linear map i: $->^ as
follows. If a/ corresponds to the vertex labeled i+j (resp. /), then we put
a!+a] (resp. ^(a,-) =aT). We also put i(Ao) =Al,
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( c ) Let (<£, 77, p^Data(D(2, 1; x)Cl)) and i=0, 1, 2, 3. If there is an
arrow labeled ass, between (g, 77,/?) and a datum (<f', T7',/), let (V, *'77, *'/0 be
(<f, 7J7, pO- Otherwise, let ("V, 'U » = V, ̂ , p).

( d ) Let S'P be the root lattice of (V, *77, *'/?). Define a parity preserving
lattice isometry/: P^1P by

N 20(a), a?) t) ^z—^—a
(a/, aj)

(see Definition 2.2.4). Then/ is uniquely extended to a parity preserving isometry
s/: <f-»V (see Lemma 2.2.5).

Figure 5.1.1

.02
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Theorem 5.1.1. Let (<f, II, p)<=Data(D(2, 1; x)(1)). Then <9(£9 77, p) can
also be defined by generators H^J^, Ei9 Ff (0</<3), parities p(H} = 0, p(E^) =
/?(F/) =p(a^ and relations:

(SI), (S2), (S3), (S4)(a), (S5)(a) (fl = l, 2, 3, 7),

(S4)(8x)

/ x+l

O

(S5) (8x) I7i£? same relation with F/s in place ofE/s of (S4) (8x).

Proo/. This theorem follows by exactly the same argument used in the proof
of Theorem 4.5.1. We note that, by exactly the same argument as in the proof of
Proposition 3.4.1, it is verified that ^(<f, //,/?) is the maximal affme admissible Lie
superalgebra. Here we only give examples of direct calculation needed in the proof.

Keep the notation in Step 2 of the proof of Theorem 4.1.1. Let (^, II, p) ^
Data (D(2, 1; x)(1)) be the datum whose Dynkin diagram is the first one on the left
of Figure 5.1.1. Then the Dynkin diagram of 0<f, Sl77, Slp) is the second one on
the left of Figure 5.1.1. We abbreviate Lf b (£, 77, />) and Lf b (V, Sl77, Sl/>) to Iff b

and 'Lf b respectively.
We have:

- [ [EQ , £2] , £3] -x [ [EA , £3] , £J =* (7)f23 = 0.

We also have:

Thus we get (4.1.2) in the case of Data(D(2, 1; x)(1)). Q. E. D.

5.2. Here we deal with F(4)(1)=L(F(4), 1). We use the same argument as in 5.1
with Diagram 5.2.1 and Figure 5.2.1 in place of Diagram 5.1.1 and Figure 5.1.1.
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Diagram 5.2.1

0

o o o ) o o
al a\ a\ a\ a\

Let Data(F(4)(1)) be the set of twelve data such that their Dynkin diagrams are
given in Figure 5.2.1 (below). For ((f, 77,p)GData(F(4)(1)), we always assume
that dim ̂  = 6 and (a, a) =4 for the simple root a corresponding to the leftmost
vertex in the diagram. The numbering of simple roots is given as in (b) of 5.1. For
example, the first one on the rightmost side satisfies K^o) =aj-hal+al, ^(o/) =ot.J
0=1, 3, 4),*(a2)=al+aJ.

0 1 2 3 4

Theorem 5.2.1. Let (g, II, p) ^Data (F(4)(1)). Then <§(f, 77, />) can also be
defined by generators H^tf, E(, F, (0</<4), panties p (ff) =0, p (£,) =p (Ff) =

(&i) and relations:
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(SI), (S2), (S3), (S4)(a), (S5)(a) (a = l, 2, 3, 4, 5, 7),

(S4)(12) [[[[[[[[[[£,-, £,•], Ek~\, Ei\, £*], £;],£*], £,], Bt], £,], Bj =0

(S4) (13) [[[[[£,,£*],£,•],£,•], £*], £,•] =2[[[[[E,, £*],£,•],£,.],£,•], £*]
i j k I

if

(S5) (fc) (6 = 12, 13) The same relation with Fr's in place of Er's of (S4) (6).

Proof. This theorem follows by exactly the same argument used in the proof
of Theorem 4.5.1 and Theorem 5.1.1. We note that, since (p, <5)^0, #(«?, II, p}
itself is the maximal affine-admissible algebra. Here we only give examples of
direct calculation needed in the proof.

Let (jg, II,p) EData (F (4) (1)) be the datum whose Dynkin diagram is the first
one on the leftmost of Figure 5.2.1. Then, letting Wi=53S25iS352S3S4, the Dynkin
diagram of ( '(?, IZ7, *p) is the fourth one on the rightmost side of Figure 5.2.1.

Suppose Lf7 =Lfi' ((?, II,p). We note that s4(ao) =a0+a4 , s4(ai) =«i ,
=0.1 , s4(a3) =a3 +a4 and 54(0:4) = — a4 . Then we have

o, £4], £3], £2], £4], £3] -2[[[[[£0, £4], £3], £2], £3], £4])
,,E^,E2],F,], C£3,£4]]-2[[[[£0, [£3 , £4] ] , £2] ,

[£3,£4]],F4]
(since [ [£0 , £4] , F4] ~£0)

~ - [[[£0, £3], £2], [£3, £4]] -2[[[£0, [£3, £4]], £2], £3]
~ C[[£o, £3], £2], [£3, £4]] + [[[£4, [£3, £o]], £2], £3] (by x(7)&=0)
= [£3, [[[£o, £3], £2], £4]] + [[[£4, [£3, £0]], £2], £3] (by x(4)&=0)
= 0.

Put 'L^=L^(^, S*II, ». Then we have

2 , £3] , £ol , £3] )

~ [[[[[Bo, £4], £3], £4], £2], [£3, £4]]
= [[[[[[Bo, £4], £3], £4], £2], £3], £4]
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where we note that, in $, a0 =t "~'(aj+ al+a|+ a|).

Suppose L^ =L^ ("V, W1H, "V . Then we have

e (12)&4) =LP ([[[[[[[[[[£,, £2] , £3] , £4] , £3] , £2] , ̂ 3] , £J , £3] , £2] , £3] )
[[[[[[[[[[£,, fe, £3]], £3], [£3, £4]], £3], [£2, £3]], ^3], [£3, £4]],

£3], [£2,£3J],£3]

= C [ [ [£i , £2] , £4] , [£2 , £4] ] , £2] ~* (5)421 =0.

Put 'Lf=L?b C3"V, '3"'i7t
 <3"!p). Then we have

, £2], £4], [£2, £4]], £J)
i, [£2, £3]], [£4, £3]], [[£2, £3], [£4, £3]]], [£2, £3]]

[[[[[[£1, [£2, £3]], [£4, £3]], [£2,£3]], [£4, £3]], [£2, £3]]
[[[[[[[[[[Ei, £2], £3], £4], £3], £2], £3], £4], £3], £2], £3]

= x

Thus we get (4.1.2) in the case of Dafa(F(4)co). Q. E. D.

5.3. Here we treat the case of type G(3)(0. Let Z)afa(G(3)(0) be a set of five
data whose Dynkin diagrams are given below:

O

-o o o=

For (<g, 77,/?)eG(3)(0, we always assume dim <? = 5.

Theorem 5.3.1. Let (<?, 77,;?) <=Data (G(3)0)). Then <3(«, H,p) can be also
defined by generators H<=3f, £,-, F( (0<i <3), parities p(H} =0, p(E,') =p(fi) =
p (a/) and relations:

(SI), (S2), (S3), (S4)(a), (S5)(a) (a = l, 2, 3, 4, 7)

and

(S4) (14) [ [ [E,, Ej], [ [E,, Ej], [ [E,, £,] ,£*]]], £,•] = 0
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(S4) (is) [EJ, \Ek, [Ek, [EJ,£,]]]] = [Ek, [EJ, [Ek, [EJ, E,] ] ] ]

if 6=38t=$0 ,

(S4) (16) 2 [[[[[£,, Ek], Ej], £,.], Ek] ,Ej-]= 3 [ [ [ [ [E,, Ek], Ejl, £,], £,•], £j

/ k j i

if O<=O ,

(S4)(17)

(S5) (6) (14<6 < 17) ITie same relation with Fr's in place ofE/s of (S4) (6).

Proof. Let (<f i , 77i , pi) = ($\ , ZZ"i = {«0 , «i , «2 , ^3} , PI) be the datum whose
Dynkin diagram is the first one of the first row of Figure 5.3.1. We assume (a0 , a0)
= —8, (ai,ai)=0, (a2,a2)=2a.nd (a3,aj3)=6. Let 5=ao+2ai + 4^2 + 2a3. Let

1 , J7i ,/?i) HP+ be the set of positive roots of <S = <S(g\ , ZTi ,/?,). Let (rf0,
be the datum such that Z7o= {«i, #2, «s}, dim ^0

=3 andpo=pi. Then
o? n0,po) is the finite dimensional simple Lie superalgebra of type G(3) (see

[K2] ) . Let 00, + be the set of positive roots of ^ (<f 0 , H0 , p0) • Then we have 0Q, +
= {flai+*a2+ca3|(fl, 6, c) = (l, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1), (1, 3, 1),
(1, 3, 2), (1, 4, 2), (2, 4, 2), (0, 0, 1), (0, 1, 1), (0, 3, 2), (0, 2, 1), (0, 3, 1),
(0,1,0)}. Then we have 0+ = 00, + U {xd±0\x>Q, 6^0Q, +} U {yd\y>0}. For/
= 0, 2, 3, we define s,i fi-+fi by s,(r) =7-^7^ a/ - Put

It is clear from Proposition 1.2.2 that, if ^*e/(<fi, HI, pi) satisfies dim $1 =
dim^a for any a<E0*+, then ^-^. Since |2(p, 5)|=12, sufficiently large
elements of 0t do not belong to 0i . By direct calculation, we have

Let rt be the ideal of <yP+ generated by the relations (S4) (6) (fc = 1, 2, 3, 16). Let
rL be the ideal of <yT~ generated by the relations (S5)(fc) (fr = l, 2, 3, 16). By
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using Lemma 2.2.2, we can see rt Cker &[&*, tf] fl J f ± . It is easily verified that
rWt©rt is an ideal of ^. Let ^ = ̂ /r^. Then V^Ifa, HI, pi). By
Proposition 2.2.7, we may define the automorphisms L\\ ^b-^b (i = Q, 2, 3) by

(5.3.1) LHexp(adE/)exp(ad( — 2 F/)) exp (ad £,-).
V^i » ^fy

We also have LJ7 (#£) = ̂ .(a) where Si(a}=a— 2^' ^ at . By the same formula as
in (5.3.1), we also have the automorphism Lt: <&-*& (i = Q, 2, 3) such thatL/O^J
= %«). Note dim 9*= dim %a for a^Uf=QZ+at. Let /3<E<H be a minimal
element with respect to the order < (see 1.2) among {/3'&0*+ |dim ^'>dim &#} .
Then ^8 satidfies:

(5.3.2) ^8e*t and (A a0) >0, (A a2) <0, (A a3) <0

since 5/(^) >^8 (i=0, 2, 3). The unique element of 0*+ satisfying (5.3.2) is a0+
2ai-i-2a2+a3. However, using the relation (S4)(16), we have dim ^aQ+2al+2a2+a3

<1. Hence dim ^a0+2a1+2a2+a3 = dim ^a0+2a1+2a2+a3(:=l). Hence such^S doesn't
exist. Hence & is isomorphic to ^.

For the other datum of Figure 5.3.1 than (jS\, n\, pi), we can prove the
statement by iterating the isomorphisms corresponding to the super-reflections (see
Proposition 2.2.6). Q. E. D.

§6. ^-Analogues of the Defining Relations

6.1. Let C(g) be the rational function field in a variable q over C. The letter o
denotes the generator of Z2 . Assume V to be a Z2-graded C(g) (resp. C) -algebra.
We also view V as a Lie C(#) (resp. C)-superalgebra by putting

[X, Y] =XY- (-

where X and Y are homogeneous elements of V (see 1.1). Since Z2 acts on V by
cr(X) = (— iy^X for a homogeneous element X, we can consider a C(<?) (resp. C)-
algebra Va— V^oV such that 0X0^ (— \}p{x^X for any homogeneous element X^
V (see [Yl]). We call V° the extension of F with a. For a Z2-graded C(g) (resp.
C) -algebra homomorphism q>: V-+W, define <pa: V°->W° by ̂ (X) =X (X^ V) and
<p0(d) =o. Then <p is an algebra homomorphism. We call <p° the extension of 0? with
o.

Definition 6.1.1. Let (^, /7,p) be a datum. We say that a quadruple (<?, /I,
p, /") is a lattice datum if the following conditions are satisfied:
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( a ) F is a lattice in $, i.e., F is a Z-span of a basis of $.
(b) (r,/)eZforanyr,
( c )

For a lattice datum (<^, 77= {a0, ..., aj,p, T), we define an associative Z2-graded
C(g)-algebra Uq = Gq(£, 77, p, T) (with 1) by generators:

, Et9F, (0</<w),

parities:

and relations:

(QS1) K0=l,KrKr'=Kr+r- for all r,

(QS2)

(QS3) [E, , Fy] =6g _ _

Then the extension U^=U°(S, 77, /?, T) of &g with a has a Hopf algebra
structure (Uq, A, 5, e) with comultiplication J, antipodes, and counit £ such that

A CE/) =E,

,)=0, e(F,)=0.

Let L79
+ (resp. £/g~) be a subalgebra (with 1) of t/g generated by £0, ..., En

(resp. F0, ..., Fn). It is easily verified that Uq (resp. t7^") is a free algebra with
generators E0, ..., En (resp. F0, ..., Fn). Let T be a subalgebra (with 1) of I7g

generated by Kr (r^-T). It can be verified that JTr (r^r) form a basis of r.
Moreover we have a CO?) -linear isomorphism:

(6.1.1) t£- 0C

(see [Yl]). Denote the subalgebra T®oT (resp. Cf ®(r0
resp.^). Let Tv= {Ae^| (A, 7)eZ (r^r)}. AssumeMto

be a left T-module. For r^rv , let M7 = {m eM Kj m =q(7' ̂  m for any // er} .
We note Cf = ©flep+(6f?)±a where T acts on #+ by ̂ r(^) =KrXK-7
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6.2.

Proposition 6.2.1. (i) There is a unique symmetric form ( , > :
C(q) such that

(ia) Cr,Z,, X2Z2y = <Xlt *2><Z1( Z2> forXl,X2(EU+ and Z,,
(ib) <KB<7ri, ̂ a2)^0"'^-!)'1'2 (a, /3er, r,, r2ez),
(ic) <£; , £;> =<5,, and <*, , X2> =0 i/X, 6E (C/?

+)a , X2e (*£)/, and
(id)

(ii) Let <j>: Uq-*0q be the isomorphism defined by 0(Ff) =£,-. Lef <9: C7,+

£?,+ fee f/ze anti-isomorphism defined by #(£,) =£,. For ^=a,-1

/C8) =k, r, (;8) =g
S"<*(V "'^ and r,(£) = (- l)z«<*'<<1<.)'&1'»). Put J(2) = (J ® 1) o

A. Let X^ (C^ and re (t7~) _r(a, reP+).

(r =71+72+73, r,e(0,-)-T().

we /zave

(6.2.D 7^

In [Yl], an essentially the same result as Proposition 6.2.1 is proved via the
well-known argument due to Drinfeld [Dl]. See also [LI] and [T].

6.3. Let

I+ = {Xe t/+ | Or, *!> =0 for any

It is clear that J+ ' = ©^ep+\(77u{o})// where 1$ =I+ Pi (6^)0. It is easily verified
that ker< , > =/+ TCT.

For JTe (^7+)^ with/3eP+ with

I-e(^+)^.), we have
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(6.3.1)

and

(6.3.2)
fr+02=P

By Proposition 6.2.1 and (6.3.1), we have:

Lemma 6.3.1. 0(/+) =/+.

Put

where J~ ^ 0 ~ * (J+ ) . Then we have:

Lemma 6.3.2. J+ and J~ are Hopf ideals of Uq.

Proof. By using (6.2.1) and Lemma 6.3.1, and by (6.3.2), we see that U~I+

C.r Ta U~ and I~ U+ C U+TaI~. Hence /+ and J~ are ideals. It is easily verified
that J(/^)CJ±(8)^+^(8)/±,5'(J±)=/±and£(J±) = {0}. Q. E. D.

6.4. Define a Hopf C(g)-algebra V0
q=U°($, 77, p, r) = (C/,a, A, S, e) as the

quotient Hopf algebra:

(6.4.1) U°q=Ua
q(g9II,p9n = U°q/(J

++J-\

Let n\ Uq-^Uq be the canonical map. By abuse of notation, the elements 7r(a),
7r(^r), 7r(E/), ̂ (F,) (resp. the subalgebras ;r( 71) and ̂ ( Ta)) will be denoted by a,
J£r, £/, /^ (resp. T and TCT). The subalgebras 7r(C7+) and ̂ (C^) will be denoted by
17+ and U~. We note that

(6.4.2) ker 7T|ra= {0}, ker ^|^+=/+, ker7T|^-=/~?

and that there is a C(#) -linear isomorphism:

(6.4.3) AT+ ®CW r

6.5. For ̂ eP+ , let Xu ^ (resp. 7(A ^)) (1 <i><dim(^)yS) be a basis of (C/^
(resp. (G^-p). We assume JT(0, D and F(0, o to be 1. By (6.1.1), for X^Uq and
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, YX can be written uniquely as a sum

S 2(0, if, (a), (r,7r) (X

where Q(A ̂ , (a), (r, v (*, Y)eC(f). For (*, Y)e (&+)/, X (0,-)-, with£ELP+,
, 7) =2(0,0, o», ecu) Car,

Proposition 6.5.L Lef (<f, 77= {a0, . . . , ctn},p, 7") 6e a lattice datum.
Uq satisfies

(6.5.1) \_X, Fj =0 /or any 0<i<n,

then X=Q.

Proof. We may assume X^ (17+)^ for some 0 <EP+ . It is clear that [AT, FZl F/2

•" T7^] =0 for all elements ail , a/2, ..., a/rEEP+ . Hence

(6.5.2) [Z, (0,-) _,]=().

On the other hand, for (Z1? FO^^+^X (0^)-^, 2^^, rO =fl - (Z^ 0(70)
for some non-zero element a of C(g) (see (6.2.1)). Let Xi£=.(Uq}$ be such that
7r(X2) =*. By (6.1.1), (6.4.3) and (6.5.2), we see that Qp(X2, 72) =0 for any Y2

eCO^)-^. Hence OT2,^3>=0 for any JSr3^(t7+)^. Hence JST2e/^. Hence ^=0.
Q. E. D.

6.6. Specialization at q=l. Let A = C[^, g"1] be the C-subalgebra of C(q)
generated by q and q~l. Let (^, 77= {«0 , ...,«„}, p, 7") be a lattice datum. Let U\
be the A-subalgebra of U% generated by

a, Kr, [Kr] = Kr~K^ (reEr)j Ei9

~

Let n (resp. {/A , resp. U* ) be the subalgebra of T° (resp. t/+, resp. C/~) generated
by a, A:r, [K7~] (resp. E/, resp. F/). We note that, if (r(r) (l<r<dim(f)} is a Z

basis of r, then {afl(0) W ̂  [^r(r)]
Kr) a 00 =0, 1, 6 (r) eZ+} is an A-basis of Ta.

Moreover there is an A-module isomorphism:

(6.6.1) Ctf®An®AtfA-*tfX

Let Ci be a left A-module such that dimc Ci = 1 and q acts as 1. Define the C-
algebras Ug,Tg, U£ and Uc by (7X0ACi , TX®ACi , Ut ^ACi and (7A ®ACi . Then
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we have a C-linear isomorphism:

(6.6.2)

. Define 'Ua
c by the quotient UW where r is the two-sided

ideal of Ug generated by all tfr®Al-l®Al (r^D. Define ̂  : U^Ua
c by n,(X)

=X®A 1 + 1T. Denote the elements 7Ui(p), ;ri([£r]), ^i(E/), and ^i(F,) by a, 77r,
Ei and 7^- . It is clear that there is a unique Lie C-superalgebra homomorphism %'•
<$(£, II, p)^'t/c such that Jc(ff7) =Hr (r^n, £(£/) =&t and £(F,) =F, . Let <$r

= ^r(<f , 77,;?) e/Gf, 77, /O be the admissible Lie superalgebra defined as <&(g, 77,
/?)/ker %. Then we have the Lie superalgebra monomorphism %: <gr->'Uac induced
from x - Let U($r} be the universal enveloping superalgebra of ^r. We denote by
S the epimorphism £?: U(&r)-*'Uac such that 5l^r=Z- It is well-known that the
extension £/(^r)a of £/Or) with a has a Hopf C-algebra structure (see [Yl,
Proposition 1.9.1]). It is clear that the extension Sa of S with a is a Hopf C-algebra
epimorphism.

Lemma 6.6.1. Sa is an isomorphism.

Proof. Let {X0}e^e be a C-basis of ^r where 0 is a totally ordered set. It is
well-known that the PBW elements {1} U {X&1 ~- XGk\Oi<~-<dk} form a basis of
£/(^r). We note that 1, a, oHa(X0), Ba(X0) (<9e<9) are linearly independent. Ob-
serving the coefficients of the terms afl(1) (8>afl(2), afl(3) 5aCATe)® aBC4), afl(5) H'Q^)®
afl(6)^(Z,2-X%) (^<^<-<^) (a 00=0,1) of £*®^(/f(F))=J(
of F£ £/(^r)CT, we see that ker S°= {0} . Q. E. D.

Put jrr± = W[9, ^r] (J/'^1). By Lemma 6.6.1, we have

(6.6.3) dimc(g)(C/g
±)±a = dime t/(,yrr±)±a> dime £/(^±)±a

where C/(^±)±a= {WE^U(^) \ [H, W]=±a(H^W (ffejf)} and

, put
, we put:

Let M =f^ .
We say that (<f , 77, p) is of affine ABCDFG type if (<£, 77, p) £ABCD(AT) for

someiV>l, or (^,77,p)e7)flffl(F(4)(1)) U7)ato(G(3)(1)). For ((T,77,p) of affine
ABCDFG type, we fix a lattice datum (&, 77, p, T) as follows:
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.o if (XY) = (AA) and SJL {d f = 0,

P © ZA0 if (XY) ¥= (AA), or if (XY) = (AA) and Sf= l df =£ 0.

We also say that (£, 77, p, D is of affme ABCDFG type.

By using Proposition 6.5.1, we have:

Proposition 6.7.1. Let (£, 77, p, D be a lattice datum of affme ABCDFG
type. Then, in U%(£9 77, p, T), the following equalities (QS4)(a) (l<a<17)
satisfied by Er's hold:

(QS4) (1) [Et, Ej] =0 if (a,, a,) =0 (/ ^/),

(QS4)(2) [£„£,] =0 i/ (g),

(QS4)(3) IE,, IE,, ..., ^t9Ej]..M=o(Et appears I -^^ times}
\CLi , Cti)

if (a, , a,) ̂ 0 and (-

(QS4)(4) HlEi,Ejl,EklEj']=0

i _ j k i j k i

if X-^Hg)-^ — X (x^O), X - (g)=)(S) or

(QS4) (5) [[[£,., £}], [IB,, Ejl, EkE, £}] =0

(QS4) (6) [ [[MB, , £J , Ekl , El , Ek\ , E$ , £t] = 0

i j k I i

if X -

(QS4) (7) (- 1/"'0'̂  [(ai , ak

= (- l ) p a p [(a,-, a,

(a,- , «;) + (a,- , at) + (a* , a,-) = 0

and p (a,> (a,-) +p (a,)p (afc) +p (afc)p (a,-) =T,

(QS4) (8) ffl£y , E,I , IE; , EJ|] , |[Ey , £,II =
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(QS4) (9) [mk, IE,, lEk,Ejm, lEk, IE,, \Ek, lEj, EMM, Ej]

= [2]mk,EJl HE,, $Ek,Ejll IB*, IE,, lEk, VEj.E

(QS4) (10) IE,, lEt, IE,, IE*, EAlll = lEk, IE,, [Et, IE,, EMI

if

(QS4)(11) IlEt.EjUlEt,.

A
*/ \ i

(QS4) (12)

jl, lEk, lEk, lEj.EME.

£j, Ekl, EL £j, £}], Ej =0

j = [2] [[[[[£,, £j, £,-], £j, £,!,

fc /

(QS4) (13) [[[[[£,,

(QS4) (15) lEj , lEk , {Ek , lEj , EMI = fe , lEj , lEk , lEj ,

(QS4) (16) [2] [[[[HE,, Ekl, Ejl E,l, Ek\, E,l

,, EklEjl,El EjlE

if — 6^6,
(QS4) (17) [[ffl[fflffl[[£;-, £,•], Ek\, EH, Ekl Ej, Ek\, E,l, Ekl Ejl, Ek\, E&,

Ek\, Ejl, Ek~\ =0
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/ k j i

if O^=®==O - O.

Proof. Let 3C(a) denote the left hand side minus the right hand side of the
equality in (QS4) (a). To prove the proposition, it suffices to show

(6.7.1) Dr(a),Fr]=0 for any r=i, j, k, I .

(see Proposition 6.5.1). By direct calculation, whose examples will be given in
6.9-6.11, we get (6.7.1). Q. E. D.

By using 0, we have:

Lemma 6.7.2. Let (<f , 77, p, D be a lattice datum of afflne ABCDFG type.
Then, in U%(£9 II, p, D, the following equalities (QS5) (a) (1 <a < 17) satidfied by
Fr's hold:

(QS5) (a) The same equations with Fr's in place of Er's in (QS4) (a).

6.8.

Proposition 6.8.1. Let (&, 77= {a0, ..., an},p, 7") be a lattice datum ofaffine
ABCDFG type. Assume that #(<£, 77, p) = #* (<f , 77, p). Then we have:

(1)
(2) Uf can also be defined by the generators Er (0<r <n) and the relations in

(QS4).

Proof. (1) This follows immediately by Theorem 4.1.1, Theorem 5.2.1,
Theorem 5.3.1, Proposition 6.7.1 and Lemma 6.7.2, and by comparing relations in
(SI -5) and (QS1-5).

(2) We first note that Jf^ can also be defined by generators Er (0<r <n) and
the relations in (S4) (a) (1 <a < 17) (see Step 1 of the proof of Theorem 4.1.1).
Let ^ Uq be the C(#) -algebra defined by generators Et (0</<«) and the relations
obtained by the equations (QS4) (a) (l<a<17). Then we have:

By (6.6.3), we have dimC(9) ( ^ (7g
F)a = dimC(g) (U^a , which implies the statement of

(2). Q.E.D.

We say that (<£, 77, p, T) of affme ABCDFG type is natural if ^ (<f , 77, />) =
, 77,/?). In Theorem 3.5.1, we classified the data of natural affme ABCD type.
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We note that any (f, IT,p)QDflta(F(4)(1)) UData(G(3)(1)) is natural. Let Uq =
Uq(&9 II, = fao, —, an},p, n be a C(?)-subalgebra of US(f, II,p9 D generated by
Kr (r^r), Ef, Ft (0 </<«). Then Uf is the extension of Uq with o. As an
immediate consequence of Proposition 6.8.1, we have:

Theorem 6.8.2, Let ($, Tl— {aQ, ..., an},p, T) be a lattice datum of natural
affme ABCDFG type. Then C(#) -algebra Uq(£, 77, p, D can also be defined by
generators Kr (7 €=/*)» Eif Ff (0</<«) and relations:

(QS1), (QS2), (QS3), (QS4)(a) (l<fl<17), (QS5)(fl)(l<a<17).

Remark 6.8.3. We note that, for a non-super (<?, 77, p, jT), Uq coincides with
the Drinfeld[Dl] and Jimbo[J] quantized universal enveloping algebra (see [Yl,
Corollary 2.10.1] and [LI, Corollary 33.1.5]).

6.9. Useful formulas. For aEiC(g), we put:

[X, Y]a=XY- (- iy<*>f™aYX (X, Y^Uq\

Then we have

(6.9.1) [[*, Y-]a,z]b= \x, [y, zLLfc-i+C-D^wz),,^ z] te_ I f ^.^

and

(6.9.2) ix, [y,z].]4=[[AT, y]«,z]Bta-«+(-i)'Wc[r, Df,z]fc-«]«-i.

Hence, for X,e ([/,)„, ^Be (t/,)^ and JT,e ([/,),, we have

(6.9.3) [fc, JfJ, ATJ = fc, fc, ATJ1] + (- l)^^Wg-(,,») [fc, Zj, jfj.c/,.,-rf,

and

(6.9.4) fc, fc,ATj] = I|[Yv,Ay,JirJ + (-l)'c^w
?-

For (/, 77= {a0, ..., a.}, p, D, put ̂ , =^a.. We note

(6.9.5) [£,., FjKri =6, ^
•f ^

Then, by (6.9.3-5), we have

(6.9.6) [[£,., X
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and

(6.9.7) fcjFj, $X»,EM = l$KjFj, X& E^+d^-lY^"^"^^, a,)]*,.

6.10. Here we show how to check the relation (QS4) (9) . We replace the letters
1,7, k, / with 0, 1, 2, 3. We assume (ai, ai) = -2. Put E...dcba=l..lEd, |EC, lEb,
£*]]]..]. Then the element X = £($) is rewritten as:

(6.10.1) -[[£2321, £23210!, ̂ R^?'1) [£21 [£321, £2321

We note that, to show \JK, Fj = 0 (i =0, 1, 2, 3), it suffices to show [3T, F/tfr1! =
0 or fc£/, #1 =0. First we show [ST, FsAT1] =0. In following equalities,
RHS means LHS=a • ̂ ^TS' for some a^C(#)\ {0} . By (6.9.6), we have

= 0 (byEi-0 (see (QS4)(2))).

Similarly we have [£23210, F^K^l\ =0. Hence we have

ffl£232i , ^23210], E,l F3Kill -0.

Moreover we have

[[£21, IE321, £23210!, F,K^
-IE21, fei, £23210! (by (6.9.3))
-0 (by^ = 0).

Hence we have IX, F3K^11 =0.
Next we show 1%, F2K2

ll =0. Using (6.9.3-7), we have

|£232i , F2 K2
 !] =£321 , [£23210 , £2-^2 !I —£3210 ,

[[E232i , £23210!, £2^2" !I = [£2321 , £3210! +q~l [£321 , £23210]^-°)
= -q~2 [£23210, £32i]/2+1)+e-1[E32i, £232io]90-o) (since £k=0)

-^ [£321, £23210],

IlEsn, £232,0!, /WI =0 and [£21, F2K^l =£,.

Using these, we have
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q-2[El, [£32i, £23210]
= 0.

23210 = 32, 23210 = y 2 - 3 2 = , we ave
also have lKiF{ , [£321 , £23210]] =0. Hence we have

= - (q+q~l) l£232i , £23210] + (^+^"0 fe, [£32i , £23210]]
=0.

Finally we show that fc£0, #1=0. Using (6.9.3-7), we have lK0F0, £232io
)£232i. We note

[£2321, Ed=q[E2i, £321] =g(l-g2)£2i£32i

since [£321 , £21] —0. Then we have

I^o£o, X\
-- fe2[£2321, £232l],-2, £l] + (?+g- V^l, [£321,

i £321 £2321
-0

where we note that [£232i , £321] =0 (by £i2i=0) and [£232i , £21] =0.
From the above calculation, we obtain [#", Fz] =0 for all / = 0, 1, 2, 3, as

desired.

6.11. Here we show how to check the relation (QS4) (17). We replace the letters
1,7, k, / with 0, 1, 2, 3. We assume (ai, ai)=6. Put E .̂.. = [..I[|[Efl, £ft], £c],
£j...]. Then the element ^ = #"(17) is rewritten as:

(6.11.1) £01232 1232 1232 12

As in 6.7, we show that [ 9, FtKrll =0 or ^Fi9 <S/\ =0 for z =0, 1, 2, 3. It is clear
from (6.9.7) and E2

2= [£0, £2] =0 that lKlFl , &l = fcF3, <8/l =0. We note that

[£0
vi2,£il=0 (by (QS4)(3)),

£m3 — 0,
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l,^2l,^2V3L (by (f£)2 = ti).

Similarly we have

^012321231—^012321213 — ILlllll?0123 > ̂ 2lJ » ̂ 2Jl > E\§9 E^

= ffl£ovn3 , £2vil, EZl, E3l = 10, £3] =0

by |£ovi2, £il=0, iBJi, £il=0 and (£2
V!)2=0. Similarly we have

•^01232123213 —^01232123231 — 111111̂ 012321 , ^23]] > ^23j] » ^ll ~ UP, J^J = 0

where we note that feW £3! = i£ov, , Egl, £2
V

3I =0 (by (£2
V

3)
2=0). By (6.9.7),

and by the above equations, letting fi=a.o+4a 1 + 60:2 + 303, we have

IK2F2, 91=

Finally we show that l<&, F0Ko}l =0. We have

fj)/ _ |7V
^ — -C.012321232123212

WDceE^=(Ea)2=(Eu)i=0. By (6.9.3) and (6.9.6),

19, Fo^o-l-lEJi, ([£^2, £3
V2l)3I =0.

From the above calculation, we obtain [_<&, F/] =0 for all / = 0, 1, 2, 3, as
desired.

6.12.

Proposition 6.12.1. Let (g, II '= {a0, . . . , an},p, O be a lattice datum. Let *Uq

=^Uq(£
>, II, p, F) be the ^-graded C(q) -algebra (with 1) satisfying the following

conditions:

( a ) The extension *U% of*Uq with a has a Hopf algebra structure.
( b ) There is a Z2-graded C (q) -algebra epimorphism M*Wq = Wq[Uq, *Ug] : Uq

-^Uq such that (M*Wq) \T is injective.
( c ) The extension mWa

q\ 0?->*Uf is a Hopf algebra epimorhism.

Then there is a C(q) -algebra epimorphism *mWq = Wq[*Uq, (7j: *Uq^Uq such that
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Vq l*Uq, Ug] o Wq \Uq,
 $Uql is the canonical map and the extension *mWq° of*mWq with

o is a Hopf algebra epimorphism.

Proof. We denote M*Wq( T), M*Wq(U^ and M*Wq(Uq) by T, *DJ" and *U~.
We note that mWq (£,) ̂  0 and M*¥; (F,-) ^ 0 since [£<•, Fj £ T\ {0}. By exactly the
same argument as in the proof of [R, Proposition 2], we have a C(#) -linear
isomorphism:

Then, letting */±= ker (**?;) we have

ker mWq =*I+ TU~

Moreover, for £eP+ , we have [%+, Fj C*#_a. T and [E, , */i0] C T*/^-/, . Hence,
by using the same argument as in the proof of Proposition 6.5.1, <*//, (C^~)0>
- {0} and <0(*/=j8), (0^)^= {0}. Hence ^C/^ Hence we have ker
a ker M*WqdJ+ +J~, as desired. Q. E. D.

§7. ^-Analogues of the Isomorphisms

7.1. Let (rf, U,p, n be a lattice datum. Let 3tf = £* (see 1.2). Let U^U^g,
77, p, D and Ul = Ul(g, 77, p, T) be as in §6. Let C[[A]] be the C-algebra of
formal power series in h. Let SA(^f) be the symmetric A-algebra of ffl . Since C/A
— ©aep(t^A)a is the P-graded algebra, we can consider an A-algebra Wl=Wl($,
77, p, n = U£®ASA(je) such that

where XGt/X, F^CC/X)^, v(i), v(j)^£. For JIT (EC/I (resp. H^tf), we also
denote the element JT® 1 (resp. 1 ®#) of Wl by X (resp. H). Moreover Wl has a
Hopf A-algebra structure such that Ul is a Hopf subalgebra of W& and that
J (H) =H (8) 1 + 1 <g>#, 5(H) = -H and £ (H) =0 for He^. We view A as an A-
subalgebra of C [ [A] ] by putting q = exp (A) . Let F^X ® C [ [A] ] be the extension of
the base algebra from A to C [ [A] ] . Let Wg= WS(<$, 77, /?, T) be the completion of
FKA®C[[A]] under the A-adic topology. Then W% has a topological Hopf algebra
structure induced from the Hopf algebra structure of WA (see [Yl, 1.2] for
terminology). Let J be an ideal of Wg generated by the elements ^r~exp(Alfr),
[K7~] - [exp(A#r)] (re/0 where [exp(AHr)] is ^W-~*<i-*Hr) Let j be the

closure of/. Then / is a Hopf ideal of FPjf . We define a topological Hopf C [ [A] ] -
algebra U%=Ug(£', 77, /?, T) as the quotient Hopf algebra
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ug= vs(£, n, P, r) = wg/J.

For C [ [A] ] -modules V and W which are completions of FA ®A C [ [A] ] and WA 0A

C[[A]]f let F0JF denote the completion of (FA®AJFA)®AC[[A]]. Let US' (resp.
t/T, resp. Sfc(jf)) be the completion of (7A ®C[[A]] (resp. UA ®C[[A]], resp.
SA C#0 ® C [ [A ] ] ) . Then we have a C [ [h ] ] -module isomorphism

(7.1.1) Ctf®S*(jr)0 ®DT-> Iff

Gr®Z® y-*JTZy). In particular, the Hopf A-algebra £/I can be embedded into
the topological Hopf C [ [A] ] -algebra Ug where the elements K7 , [Kr] , Et , F{ of t/£
are identified with the elements exp(AH7), [exp(A/fr)L £,, F, of C/f.

Remark 7.1.1. In [Yl], we introduced a topological Hopf C[ [A]] -algebra
UH(£, II, /?) for any datum (#, 77, /?) . If there is a lattice F of £ such that (<T, 77,

/?, T) is a lattice datum, Ug(&, 77,/?) coincides with the above Ug(£, 77, p, T). Let
t/A

+ be the topological C[[A]]-subalgebra of Uh($, 77, p) genearated by the
elements Et (0<z< |77| -1). We note that, if (<f, 77,Jp)eJDfl?a(D(2, l;x)(1)), t/*+

can also be defined topologically by the generators Et (0<z<3) and the relations
(QS4)(fl) (fl = l ,2, 3) and

(QS4) (7) (- 1)̂ ^ [(tt|f

if (az- , a/) ^ 0, (a,- , afc) ̂  0, (afc , a,) ^ 0,
(a,- , a/) + (a/ , afc) + (afc , af) = 0

and p (a^p (a,) +p (a,)/? (ak) +p (a*)p (a/) = 1

and

(QS4) (8x)

where [j;] ==

Let F = C((A)) be the quotient field of C[[A]]. For F-algebras FF and W¥

such that FF= K®C[W]F and ^FF= ^®C[[«]F, let FF0 »FF be (F® FF)®F if V® W
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can be defined. Let (g, 77, p, T) be a lattice datum. It is clear that U$= US (g, 77,
p, n = Ug(g, II, p, r)®c[M]F is a topological Hopf F-algebra. We have an

F-linear isomorphism

(X®Z®Y-»XZY) where Z/f = 0?®F and SF(jf)a=SA(jf)0(8)F. Moreover the
Hopf C(q) -algebra U%= U%(g, II, p, F) can be embedded into the topological Hopf
F-algebra U§ where the elements q,Kr9Ei9 Fz of U£ are identified with the elements
exp(/0, exp(/zHr), Et, F, of US.

7B2. Let ^ be a topological Hopf F-algebra with comultiplication A. Let A ' —
W o A where cr (AT® 7) = 7®^. Let JT be a topological Hopf subalgebra of ̂  such
that there is an invertible element R = S a,-®&/ of JT0 JT satisfying:

(7.2.1) R4(x}R-l = A'&) for any

(7.2.2) (J®/) 00=* 13*23, C/®^)C*)=*13*I2

where* i2=* 01, R2^I^R and*i3=S
An ^-triple (^, ^T, *) is a triple of ^, Jf and * with the above properties.

The following lemma is easily verified:

Lemma 7.2.1. // (*, Jf, *) fc an ^-triple, then (&, X 9 G f ( R - 1 } } is also an
^.-triple.

The following proposition is well-known (see Drinfeld [D2] ) :

Proposition 7,2.2. Let (*, 5T, *) 6e an It-triple.

(i) * satisfies:

(7.2.3) *12*13*23~*23*13*13 j

(7.2.4)
(7.2.5)

(ii) For /? = 2 a, 0ft/, the following equalities hold in ,2f:

(7.2.6)

(7.2.7)
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Let M4, V4E= Jf be the elements of (7.2.6), (7.2.7) respectively. Then u*V4=l =

.

The following proposition is also well-known:

Proposition 7.2.3. Let (*, X, R} be an R-triple. Then W has a topological
Hopf IP-algebra structure ^(JO = (^f, 4(R\ S(R\ e) with comultiplication
antipode S^, and counit e such that

This can be checked directly.

7.3. Keep the notation as above. We note that US can naturally be embedded into
U$. Put t0= S Hs.^Hs.^J^^c Jf where {<5/} is a C-basis of tf such that (<5/, <57-)
=<50. Put

Then (Ug, SF(^)a, *) is an R-triple (see [Yl, Lemma 2.9.1]).
For fGEC[[A]] and m, n >0, we put M^-Tzy-, {«}, != {n}t{n — l}t'

mm { l } t

and

r i fr ^ I , if «>m>0,

0 otherwise.

Let u^hU?. Put e(u, 0 = So-^j. For x^C[[/z]] and JT, Yet/?, define
adx(X) (F) = [X, Y] -,X^U$ by°XY-xYX. It is easily verified that e(-ti, t"1) =
e(w, f)"1 and

(7.3.1) e(u, t}Xe(u, 0"1 = S

- Let (<?, 77= {a0, - . - , an},p, O be a lattice datum. For a fixed i, 0<
i<n, let % be a topological subalgebra of (/!?(#, 77, p, T) generated by E/, F/ and

CT. Put

Then ({/g, ̂ i9R(f)} is an R-triple (see [Yl, Lemma 2.9.1]). Let (U$)® = (U
4®, 5(/), e) &? r/ze topological Hopf F-algebra defined by ((t/g)(/?(0))(^"1}. Put
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A (0 =e(- (q-q-l)o'toKrlEt®FtKl, (-

Then we have R (i) =%~1R (i) . Hence

Proposition 7.3.1. £><?/? r/ie notation as above. Put a=ai9 £=0!y&77
and put Ea =Et , E$ =Ej , Fa =Ft , F$ =Fj. Put E$+sa = [... [fe , E J , Ej . . .
appears s-times) , F/+sa = [... [|F^ , Fa] , Fj . . .Fal (Fa appears s-times).

(ii) Assume (a, a)^0. For )8e/7, assume r=rajfi=— 2
(^'ff eZ-^ and

/? (a) • r zs even. TTzen

(iii) Assume (a, a)=Q and (a, /3)¥=Q. Then

(iv) J0) (ff) =ff ® 1 + 1 ®ff /or f?£ Jf , eznd J(0 (a) =

Proo/. For,u, v&P, let ftf=(-l)x")9("'"), ^^(-iX^^^"1^ and

We first note the following formulas

(7.3.2) IE,, F&te] = -ri^-*-I)fea) ft; ft

(7.3.3) [£/+te> FJ = (- 1)(*-«PW ft; flaK

By direct calculation, we have
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-4 (£/+«) =£/+«®l

+2 \r] «.7 ft ci-tf )£rj**+*=o [S \ta k=i

PutX=-op^KrlEi®FiKi. Then, by (7.3.1), we have

if

0 if

Hence

^^^^

if r>5,

0 if

Hence, by (7.3.1),

R (tri(K,+ra o>U+«» ®E$+ra)R (i)

On the other hand, we can easily show R (i)~l(E^+ra (8) 1)£ (/) =£/+„ (8) 1. Then we
get:

R (0 ' l (E/+ra ® 1 +K0+m o^+ra^ ®E$+ra)R 00 =

Thus we have proved the first statement in (ii) . In other cases, the corresponding
calculation can be carried out similarly and, usually, much more easily.

Q. E. D.

7.4. Keep the notation as above. For v, JJL GP, put
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^ ffc _ i \—

where {fc; //} J = {A:;//}, {fc-1; #}„ — {I;//},. Put a=a/, 0=o,-&7 (1^7). By
using (7.3.2-3), and by induction, we have:

and

(7.4.1) [E$+ka, Fff+ka] =z (a, ft, fc)

Let (&, II~ {aQ, ..., an},p, 70 be a lattice datum. Fix z, 0<z <«. We say that {x;,
j;;-eC(<?)\{0} |0<7<n} is a tuning of (<?, 77,p, 7") with respect to the simple root
a/if

1
*/»

( l\(at,aj)
\ " ^ (a/, a,-)

z(aif a,-, 1)

Put E£+ka = IB0 , . . . |Ea , [£a , £J]| ... I
Hfa , HFa , Fj] ... ] (Fa appears /c-times) .

if7=z,

-j if (a/, a/) ^0 ai

if (a/, a/)=0 a

(Ea appears /c-times)

id 7 =

and = |Fa , . . .

Proposition 7.4.1 (see also [KT]). Let (f, 11= {a0, ..., an},p, T) and (£',
H'= {a'0, ..., a'n} , px, /^O 6e lattice data. Fix z, 0</<n. Assume that there is a
reflection (resp. super-reflection} /: $->$' with respect to the simple root at if (a, , a/)
^0 (resp. (az, ̂ )=0). Assume f(D = F . Let {x-, y-SEC(q)\{Q} \0<j<n} be a
tuning of ($', IT, p ', TO with respect to the simple root a,'. I7ien f/iere w a

homomorphism JSff
A: 17̂ , 77, p,

f) =x'iKrlFi, 3>

Proo/. Let {x;, j7eC(g)\{0} |0<j<n} be a tuning of (<£, 77,/?, D with re-
spect to the simple root az . Letg=/~1. By Proposition 7. 3.1, (7.3.2-3), (7.4.1) and
Proposition 6.12.1, we see that there is a homomorphism XJS?A: t/£(<f, 77, p, T)^
C^C*7, /T.p7, D such that 7JSf,A (a) =a, 7jSf,A (^g(r0) =J^/ (/^D, 'jStf (
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=Ft,'&rbjEfafi=Ej O^i), /^^xiKiF^)=Ei and /<e
By using (7.3.2-3), we see that 'j&f* with a suitable {x/, 37,-} is the desired map.

Q. E. D.

By Lemma 6.3.1, we see that there is an anti-automorphism T: U?-^U$ such
that T(o)=o, T(H} = -H (ffejf), T (£,)=£, and

Proposition 7.4.2. .Keep *7ze hypothesis of Proposition 7.4. 1. Lef {x; ,
{0} |0<j<n} 6e a tuning of (<f, 77, p, 7") wz'fA respect to the simple root af. Then
there is a C(q) -algebra homomorphism &?: U°^' ', lT,p', r)->C/g

a(^, II, p, T) such
that J?,v(a)=a, JS?,vC«:/)=^y-i(/), -S?,v(£,)=x,F,*,, ^v(^)=x^/-i(a.) 0*0,
&t'(Fd=ytKr1Eiand&}'(Fj)=yjF?-l<*j) 0*0- Moreover, /or some {*,,#}, J2V
w ^/ie inverse map of & /\

Proo/. Define ^v as f o ̂ A o f. Q. E. D.

§8. On Defining Relations of Uq((A(m, m)0^) and the Drinfeld Generators

In §8, we follow Beck's argument [B] .

8.1. For N>3, let AA(AO be the set of data (<f, 77, p, D such that the Dynkin
diagram of (<f, J7, /?) is (AA) and |77| =JV (see 1.7). Note that (<f, 77, /?, T)
depends only on (<?, 77, /?) (see 6.7).

For a fixed (<f, 77, p, D GAAQV) and a fixed /, 0<i<N- 1, we define C1'*,
'z"77, f'p, r'DeAAOV) by (a)-(b) below:

( a ) Let {ei , . . ., BN , d, A0} be the fundamental elements of (<f , 77, p, D , and
/= fe, £/) = ± 1. Let (B\ , ..., £^r, 5, yl0} be the fundamental elements of (V, ''77,

( b ) Let (V, ''77, ''p, 'T) e AA(AT) be such that d,-+f-= J,- .

Let 77= {ay (Q<j<N- 1)} (resp. ''77- {a/ (0<j<N~ 1)}) be the set of the simple
roots of (<?, 77,;?) (resp. ('<f, f77, 'p)) where the numbering of the simple roots is
the same as in 1.4. LetP (resp. r/P) be the root lattices of (<y, 77,;?) and (resp. (V,
'77, '/?)). For a fixed z, 0<z <N— 1, define a parity preserving lattice isometry tt:
P-+ttPbyti(aj)=a}+i. _

For each (<f , 77, p, 71) ̂ AA(JV) and each 0<z <JV— 1, we fix a reflection or a
super-reflection s/: g^g given in Proposition 2.4.3. Let (V, *Z77, ''/?, V) e AA(JV)
be defined for (V, 5/77, » (see 6.7). Let V be the root lattice of (V, s/77, ». By
abuse of notation, we denote the parity preserving lattice isometry sf\p: P-^S'P by sf .
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We denote by e: P-*P the identity map idP. Then we have

(8.1.1) (s^=e9

(8.1.2) sisjSi=SjSiSj, (y—i = ±l(modAO), stSj=sjSi9 (j-i^O, ±l(m<

and

For a composition w=c/(D ••• c,(r) of <:,•(*)( =s,-(fc) or £/(&)), define (w(f, WIT9
 wp, T)

EiAAOV) by

(w(f, "77, >, ^D-^H...^"1^^^, 77,p, T)))...)

where c'(*, 77, p, D denotes (V, C'J7,Cjp, CT). We note that (w<f, "77, "p, V) does
not depend on the expression of w as a product of c/s. Let WP be the root lattice of
(w(f, WIJ9

 Wp9
 wjT). Then w: P->WP is a parity preserving lattice isometry. For !</

<7V— 1, we define the parity preserving lattice isometry &>/: P-^P, by

/o 1 /A x^ *.. 0")^, (0 ^ (0VO.I.TV tt)/ — f / W i t/2 '"UN—I

wherewr
('}=SAr-r-/+i ••• ^Ar-r-i^Ar-r. Then we have&)/(a,-) ^o/—£y6" (l<i9j<N— 1)

and w/ (5) — 5.
Let ^ be the group defined with the generators si9 f/ (0<z <JV— 1) and the

relations same as in (8.1.1-3) with the unit element e of if, Si and f/ in place of e9

Si and tt. The group if is well-known (see [IM], [L2]) and it is called the
extended affme Weyl group. For a composition w =CI(D • • • c/<» of c/oo ( =5^^), ^(fc)),
we denote by w£=l^" the composition W=CI(D ••• c,-(r) of c/(fc)(=5/ofe), f/a))- We note
that VP does not depend on the expression of w as a product of c/s. When wEi^ is
written as F^s/co ••• %fl) (a minimal), we call the expression reduced, and we also call
the corresponding expression f^s/d) •• •$,•(„) reduced. Note that the expression in
(8.1.4) is reduced.

Let J be the subgroup of if generated by the elements o>i, ..., a)jv-i - Then J
is a free abelian group (see [IM]) with the generators 6)\, ..., 6)N-\. Let l^o be the
subgroup of if generated by the elements s\, ..., SN-\. Then if is a semidirect
product if$9,. Let 71= col0)2 \ 7/=o)|:l1i6)?6)I

:+1i (2<i<N~ 1) and 7jv-i —
-1. Then, for 1 < /, y' <JV — 1, we have s/ cD; s/=d); 7,- ij.

8o28 Let (^,77= fa0,-.,«»},^/OeAAOV). Let @Ug = @Uq(£,II,p, T) be the
C(^)-subalgebra of C/F generated by the elements JTa = exp(/LffJ (a£P), £/, ^

^^). Note
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(8.2.1) (0mezC(^)^)C/^(©rerC(^Xr)^C79

as C(g)-subspaces of C/f. By Propositions 7.4.1-2 and (8.2.1), we have

Proposition 8.2.1. Let (<f, 77= {a0, • - . , aN-i},p, r)eAA(JV). Fix i, \<i<
N. Let £1 , ...,£Nbe the fundamental elements of (<f, 77, p, D, and let d{= fe, £/).

e'i , ..., EN be the fundamental elements of (V, ''77, 5ip, Y1), and to <7/= (e/, e,0
p=lp. Let SiU= (a'0, ..., a'N-i] be the simple roots of C'^, s/77, Sip, *T).

n isomorphisms Tr. @Uq(£, II, p, r)->^t/g(
s'^, Sf77, Sip, *T) swc/i

Moreover the inverse Tr1: Wg(V, s/77, s'/?, sT)->^(79(<f, 77, p, T) satisfies:

S.J, I? ,̂-!) - - !Flf Ff-Jf

,^1CF^i) = -(-i)^^^^

Define Z,: ̂ C/g(^, 77, p, D^^C/,( , /77, , 'O by Z,(^J -^(a) ,

Lemma 8.2.2. TTze isomorphisms T's and Z/s satisfy the same equalities as in
(8.1.2-3) with Tt's and Z/s in place of s's and t/s.

This can be checked directly.

For a parity preserving lattice isometry w: P->WP with a reduced expression w
=M,(I) -s/w, put rw=zjkr,(i) - r/W: w9(<r, 77,/?, r)->^t/g(

w^, W77, wp, wr).
By Lemma 8.2.2, Tw is well-defined.

Lemma 8.2.3. Let w: P->WP be as above. Let a/e77. Assume w(a/) =a'j^wll
where aj denotes the j-th element ofwIJ. Then Tw(Ei) —Ej and Tw(Fi) =Fj.

This can be checked directly (see also [B] ) .
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By Lemma 6.3.1, there is a C-algebra anti-automorphism Q: ^Uq-^^Uq such
that

Then we have QTW = TWQ.

8.3. Let o)f as in (8.1.4). We note:

Lemma 8.3.1. The elements Ka (a&P), K*±, T^(Et\ T^CF,) (1 <i<N~ 1)
generate the C(q)-algebra

For l<i<n, fc>0 ands^Z, let

(8.3.1) W-K^q-

Note $k+m}=T™($k}. Since KrlFi~TrlEt, by [LI, Lemma 40.1.2], we have
k l fc(a,.a,>_ -fc(a.-a,)

K^ ffik ^Uq when s<0 and /c4-s>0. Put Qij,k=~—^~=i and &# =

q a*'Uj KS^. By the same argument as in [B], we have

Lemma 8.3.2. (i) Assume p(ai)=Q. Let r>0 and m^Z. Then 0J>
)=0,> )

(5, 5X^Z), and we have:

(8.3.2) [0^rz.(F,)] = -*7e^1 J k = l !

and

(8.3.3)

(ii) Assume \<i=£j<n. Let r>0 and m^Z. Then we have:

(8.3.4) [0£>, r(f).)] =JT/ g,,., {((?-?-') 2 C-Aj)1-*^*
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(8.3.5)

Lemma 8.3.3. Let \<i<n and r£Z. ITien:

Proof. If (a/, a/) =£0, the result can be proved as in [B, Lemma 3.13].
Suppose (a/, az) =0. Then it suffices to prove

(8.3.6) [TT

and

(8.3.7) [rs;

Letj be such that (a/, a/) ^0. Assume r >0. We show (8.3.6) by induction on r.
Assume r=l. By (8.3.4) and rw.(ir/)2 = 0,

Assume r>2. Then we have:

Similarly we have (8.3.7). Q. E. D.

Lemma 8.3.4, Let i be such that 1 <i<N— 1 and (a/, a/) =0. Then, for any
s, mEEZ, we /zave

(8.3.8) [$£ r (E f ) ] =0 a«d [$£ rCf i ) ] =0

(8.3.9)
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Proof. By using (8.3.6), we can easily show

(8.3.10) [${?£,] =0 and [${?*•,] =0.

Let 7' be such that l<j<N— 1 and (a,-, a/) ^0. By (8.3.5), we have

Hence we have (8.3.9). By (8.3.9) and (8.3.10), we have (8.3.8). Q. E. D.

Lemma 8.3.5. Let i be such that \<i<N—\, and r>0. Then we have

(8.3.11) [$?, $«] =0 (l<k<N-V,

(8.3.12) 0F = ^0)

(8.3.13) [$?>, T^CE,)] =0 fl«d [0P, T^CFi)] =0 ((a l fai)=0).

Prao/. If (a,-, a,) =^0, the statements follow from [B, Proposition 2].
We assume (a,, a,) =0. Let j, l<j<N—I,be such that (a,, %) =£0. We use

induction on r. For r = 1, the statements immediately follow from Lemma 8.3.4.
We assume that the statements with r — 1 in place of r hold. By Lemma 8.3.2,

Lemma 8.3.4, we have

Hence the statement (8.3.12) holds. By £?=-Fl=0 (see Proposition 6.7.1), we
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have [<&,0), £,•] =0 and [<$,0), I^Cfi)] =0. By (8.3.12), we have

(8.3.14) [$,0), T-SJCE,)] =0 and [$,0), T^CF,)] =0

where l<a<r and m£=Z (see also Lemma 2.2.1 (iii)). By Lemma 8.3.2 and
(8.3.14), for any k and any u, we have

r» CiO] =o and [[$?>, $»], j- CF.)] =o.

By Proposition 6.5.1 and Lemma 8.3.1, we have [0ff, $r
0)] =0. Q. E. D.

We put $* = $?. By Lemma 8.3.5, we have rw.(0z>) =0/r.

Lemma 8.3.6. For l<i,j<N—l and r, 1>0

Proo/. We may assume k<r. We use induction on /. For / = 1, the statement
follows directly from Lemma 8.3.5. For general /, by Lemma 8.3.2 and Lemma
8.3.5, we have

[ [0« , 41 , TSU GEJ ] = o and [ [0W , 41 , r^ CFJ ] = o

for any M, 1 <u <N— 1, and any m^Z. By Proposition 6.5.1 and Lemma 8.3.1, we
have [0w,0fr]=0. Q. E. D.

8.4. Define hik^®Uq (k >0) by the following generating function in z.

(8.4.1)

By Lemma 8.3.2, Lemma 8.3.5 and Lemma 8.3.6, we have:

Lemma 8.4.1. Let ij be such that 1 <iJ<N— 1, r, /£Z, and k >0. Then we
have
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_
Proposition 8.4.28 If S d/ = 0, then we have the following equalities:

(QS6)

This follows directly from Lemma 8.4.1 and Proposition 6.5.1.

Put hit-k=Q(hik) (fc>0). By the equalities (QS6), we have the equalities

(QS7)

Theorem 8.4.3. Let (g, II, p, D<EAAG\0 (N>4) with S£i<7/=0.
£, 77,p, 7") can also be defined by generators Ka (a&P), Ei9 Ff (l<i<N— 1)
relations:

(QS1), (QS2), (QS3),

(QS4)(a) (a = l, 2, 3, 4), (QS5)(a) (a = l, 2, 3, 4),

and

(QS6), (QS7).

Using Proposition 8.4.1, the statement is obtained by exactly the same
argument as in the proof of Theorem 6.8.2.

8,5. For 1 <i<N-1 and r>0, put

K, (r = 0).

and p/,. = G(0jr). For 1</<JV-1 and ^£Z, put Xft = (— l)*r<J.(^f) and jci =
(-1)*7^*(&). Letf=r+iZ5(see6.7). We denote the algebra of (8.2.1) by
C/g((f, 77, /?, 7"1). Using the same argument as in [B], we have

Theorem 8,5,1, Let (<f, 77, p, /O^AAQV) wirt ^>3. T/zen #,(<£, 77,/?, T)
afeo be defined by generators {Ka (a&T), JT?1", x^, /z/fc} and relations:
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, . I _ s> n
lik, rlji] —Ok, -l^rUij.k

[hik, xf~\ = ±-- Qgtk

if EM=0,

xjjc+h

±(a-, o,) + -i- x -xpCa.-Xa-) ±(a-, a.-) + + + +
' J X/TXf t+ i=( - - l ) M 7 ***j^i-*/r+i*fc,

fc-/ 7-fc

r + --|_jf ^(? 2 </>ik + l—Kd
 2 (Pik+l

[Xik , ^;/ J — Oy — [ ,
^— g

[^,x/]-0 if (ai9aj)=Q,

(In the following equations, Sym^, k2, ..., ks denotes symmetrization with respect to {ki ,
k2,...,ks}.^

Symfcl> k2 tc^ , M2 , */]] =0 if (a, , a,) ̂  0 an J (a, , a,) ̂  0,

«' 7 «

i/ X - (g) - X,

0/jk and <pik are defined by the following equations.
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