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Energy Decay for a Degenerate Hyperbolic Equation
with a Dissipative Term

By

Fumihiko HiIirRosawa *

§1. Introduction

We shall investigate the energy decay of the solutions to the following Cauchy
problem for a degenerate hyperbolic equation :

(1) up—a () du+2b@®)u,+m?*u=0, t>0, x€R",
(2) u (0, x) =uo(x), w(0, x) =u,(x), xER",

where u(t, x) is real valued, a(t) EC'([0, =)), a(t) >0, b(#)EC’([0, =)),
inf, {6 (1)} =by >0, sup,{b(t)} =b;<co, m is a positive constant and 4 is the
Laplace operator in R".

The purpose of this paper is to seek sufficient conditions on @, b, m and the
initial data (4o, u;) which guarantee the exponential order decay of the total energy

(3) Eu(@®)= % {lu:OIP+a@1Fu@® > +m*|u @)}

to the solution of (1)—(2) as t—>oo, where ||*| denotes the usual L>(R") norm.

Energy decay problem in the whole space for the wave equation with a
dissipative term has been considered by many authors (Matsumura[2], Mochizuki
[3], Mochizuki-Nakazawa[4], Rauch-Taylor[5], etc.). But it seems to be very
few results for the case of general hyperbolic equations as (1).

Ifa(t)=1and b(¢) =0, the total energy E (u(¢)) is conserved, that is, E (u (¢))
=E(0)) for any ¢, and it is possible that the energy decays when b>0. Indeed,
it is well-known that the energy decays in exponential order if inf, {b(#)} >0 and m
>0 (see [5]), and decays like O (¢t !) as t—oo if there are positive constants by and
b, such that bo(1+¢) "'<b(t) <b,, b’(¥) <0 and m =0 (see [3]; [2] and [4] have

Communicated by T. Kawai, April 23, 1998. Revised January 18, 1999.
1991 Mathematics Subject Classification(s) : 35L15, 35180
* Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan.



392 FuMIHIKO HIROSAWA

gone into more particulars).

However, if a(t) Zconst., the energy does not always decay in spite of the
existence of the dissipation, because a(¢t) may play a part in the growth of the
energy when a’(¢) >0. Indeed, according to Reissig-Yagdjian[6], there exists a (¢)
&C'([0, =)) such that the total energy cannot be bounded for any function of
O(e™) with 0<1. Thus, it seems that the behavior of the energy for the general
hyperbolic equation is more complicate than that for the wave equation.
Furthermore, we shall consider the case that a(¢t) has zero points. When a(¢)
vanishes at a point, in general, (1) is not H* well-posed in any neighborhood of the
vanishing point. However, if the initial data is sufficiently regular, the Cauchy
problem (1)—(2) is well-posed in the Gevrey class of order 3/2 since a (t) =C' (see
[1]). Hence we can consider a classical solution of (1)—(2) and its energy for the
initial data in the Gevrey class.

§2. Preliminaries and Results

In this section we mention our main theorems.

In the first theorem is treated the case that (1) is strictly hyperbolic, that is,
a(¢) is strictly positive. In the second one, we consider the case that (1) is weakly
hyperbolic, that is, a (¢) has a zero point.

We define the positive constants ao=a,(bo, b1, m) and Bo=pBo(bo, b1, m) by

bO (b0b1<m2)’

ao(bo, by, m) = m?
b_ (boblzmz),
1

and

. m (b;—bo)

b, Jm—bi (bobi<m?),
b1*'\/b%_m2 (boblzmz).

Bo(bo, by, m) =

Theorem 2.1. Assume that inf, {a ()} >0, sup,{ ;’a((',)) 1< 0, and (uy, u;) EH' X
L?. If the following condition
a’ (1)
(4) sup {W} <ao(bo, by, m)
holds, then there exists a positive constant C, such that the following decay estimate
to the solution of the Cauchy problem (1)—(2)
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Ew(®)<C,Eu(0))e "

holds for any t >0 and p<po, where

(5) o) =Bo— [stgp {;;%?) } —a0+Bo),

and po=p0([0, =)).

Now, we shall introduce a class of functions, which is called the Gevrey class,
to state our second theorem. Lets>0 and ¢ >0. We define the Gevrey class G,
and G* by
i
Gi={ ) EH"; sup {£ IPFI} < oo} and = U 63,
J

] !S ©>0

where
47211 (j: even),
|7if 1l = -
lFa—=fl (j : odd)
and 4*= (62 +---+62)*. Then we have the following theorem :

Theorem 2.2. Define the set 3C [0, o) by

(6) 3={re 0, ); £8 >0q 0r a0 =0}

Assume that there exist monotonically increasing sequences of non-negative real
numbers {t;} and {t]} satisfying

U@ 1) (1 #0)
(7) 3C , ESO:
0 twuU, @) (=0,
3 1, <t —1+ 1 <t 0!
(8) lim {Z(k, <t a(te) 2 r<na(th) }2
P t
and
(9) % @—pexp (ML [, [0'9)]ds)<o0

Sfor any M>0. If uy, u1€G* for 0<s<3/2, then there exists a positive constant
Co, u,,u, Such that the following decay estimate to the solution of (1)—(2)
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Ew(@®)<Cphupue
holds for any p<po([0, ©)\To). Moreover, if
£
(10) > [ @®lds<,
1>1 7]

then there exist positive constants (L and C, such that the following decay estimate of
the infinity order energy holds

© J
}%—E(Vju(t)) <Cp gy

j=0

Sfor any p<po([0, ©)\Jo).

Furthermore, we can prove the following theorem by a little modification of
the proof of Theorem 2.2.

Theorem 2.3. Under the same assumptions as in Theorem 2.2, there exists a
positive constant Ci ,, 4, «, such that the following decay estimate of the higher order

energy

E(Vl u (t>) < CI, 0, ug, ule_zm
holds for any p<p,([0, ©)\To) and for any positive integer L

Remark 2.1. If the assumption (9) holds, then the measure of J, must be
finite.

The proofs of our theorems are based on a well-known method to obtain the
exponential order energy decay to the dissipative wave equation of Klein—-Gordon
type, which is introduced in Zuazua[7], for instance.

Let us consider the case that a (¢) =1 and that u (¢, x) is real valued. Let a be
a positive constant satisfying m >a and define E,)(u (t)) by

(11) Exp@®)=E@®)+a @), u.())
:% {lu. @) +au @1+ 1Fu@ >+ (m*—a?) lu @) 17},
where (¢, *) denotes the usual L?(R") inner product.

Differentiating E¢)(u(t)) with respect to ¢, using the equation (1) and
applying Schwarz’ inequality (1), we have

%E@ @@)=—0® —Dlu@®P—allu@® > —am?lu @I
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—ab® w@®), u.())
<O -a(1+ 2} e
~alPu®P—a(m— ) @I,

. .. . . 2m? . .
where a is a positive constant satisfying ;=5->a. Now, we choose « satisfying

. b(t)
lI}f[ 1+%(,5_)} >a>0.

Then, there exists a positive constant o such that

% Ew@(®) < —0Ew@®),

hence we obtain

Ew@®) <E@w@(0))e ™

Recalling the definition of E ) (u (¢)) and applying Schwarz’ inequality, there exists
a positive constant C, such that we have from the above inequality

E () <CEw(0))e™

for any t= [0, o).

Thus, choosing a >0 suitably, we obtain the energy decay of exponential order
to the Cauchy problem (1)—(2) with a(t) =1.

Here we note the method above cannot be applied in case that a(t) is not
constant, but considering the choice of constant «, it is possible to prove the
exponential order decay to the solution of a general hyperbolic equation like (1).

§3. Proof of Theorem 2.1

Let « be a positive constant satisfying m >a and define E¢,) (u (z)) by

(12) E@@®)=E@(@®)+a@), u.))
2% {lu: () +au @ *+a@OIFu@) >+ m*—a?) llu @ 7},
where (e, ¢) denotes the usual L2(R") inner product. Here we remark that the

energy norm E)(u(¢)) is equivalent to the usual energy norm E (u (t)) since a <
m, that is, there exists a positive constant C, independent of j such that the
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following inequality
(13) Ci'Ewy(Pu@®)) <E(Wu(t)) <CoEwy(Pu(t))

holds for any j>0.
Let B be a positive constant to be chosen later. Differentiating E ) (u (¢)) with
respect to ¢, we have

4 B @®) =1 @O —20a@)I7u O
~ O ) ) +au @ P —alm*—a) lu @ I
+2a (b @) —a) @), u) +au®))
— —28Ew@®) +5 @O —2@-Ra®}IFu®P

@O [u® +au® + s 2w |
B, a, B) 2
-m lu(@1?,

where
B @), o, B)=—0a’b(®)*+2{m*(@—pB) +a’Btb(t) —m*(a*—B*) —a*B.
If 26(t) —a—B>0 and ¢ (b(2), a, B) >0 then we have

4 Bw<-28Eww®) +5 @®—2@-Ra®HIu®?

<—2po(a, B; DE@wy(u(®)),

where

a' (@)
2a(t)

o(a, B; I)—B—[s'gy{ }—a+l3}+

Now, we shall show that there exist @ <a, and 8<S, such that ¢ (b(t), a, B)
>0 and 0o(I) —p(a, B; I) <e for any € >0.

We can easily see the following inequalities 2b(t) —a—8>0, ¢ (bo, o, Bo) >
0, (b1, o, Bo) =0and 0z (b, a, 8) = —2(b;—B) (m*—a?) <0 for any a < a, and
B<Bo. Here, noting that ¢ (b, @, B) is quadratic and convex with respect to b,
hence we have ¢ (b(t), a, 8) >min{¢ (b, a, B), ¢$(b1, a, B)}. Therefore, by the
continuity of ¢ (b, @, 8) with respect to @ and 8, we can take @ <b and 8<b such
that
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4 Ew<—20a, B DEw@®)
and
po(D—p(a, B; D <e
for any given positive constant e. Thus by Gronwall’s inequality we have
E@(®)) <E@ uto))exp(—2(po(I) —&) (to—1))
for any t< [to, to] =I and £ >0. Recalling (13), we obtain

E(®))<C.E))exp(—2(po(D) —e) (to—0)

and
0,g¢(b1 ,a, B)=—2(bi—B) (m*—a?) <0

for any a <a, and 8<f,. Here, noting that ¢ (b, a, B) is quadratic and convex with
respect to b, that is, ¢ (b(t), a, B) >min{p(be, a, B), (b1, a, B)}. Thus, on the
analogy of CASE 1, we see that there exist @ <a, and 8< S, such that % Ey <
—2p0(a, B; DE () and po(I) —p(a, B; I) <e for any £ >0.

CASE 3. When byb,>m? and by<b,, repeating a similar proof as in CASE
2, we can also take a < a, and 8< B, such that % Eyn<—20(a,B;DE@w W ()) and
0o(I) —p(a, B; I) <e for any & >0.

Therefore, by Gronwall’s lemma, we obtain

E@ () <E@ (o)) exp(—2(0o(I) —&) (to—1))
for any t& [t,, to] =I and € >0. Recalling (13), we obtain
E()) <C.Eu(to))exp(—2(po(I) —&) (to—1)

for any positive constant C.. Thus, by putting I = [0, o), the proof of Theorem 2.1
is concluded.

Remark 3.1. On the analogy of the proof above, we have also the decay
estimate of higher order energy :

(14) EWV w@®))<C.EPu(to))exp(—2(0o( 1) —e) (tg—1))
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for any t&1 since IC [0, )\J.

§4. Proof of Theorem 2.2

When a(z) degenerates at t=t,, the usual hyperbolic energy E(u(t)) in
general cannot be bounded by E (1 (0)) in any neighborhood of t=t,, so we shall
introduce the infinity order energy.

Let {7} and {r}} be sequences of non-negative real numbers éatisfying T <
T <t <t <t} for any k(if t;=0, we put 7,=t,).

Let 6 be a positive real number and y,(t) =C'([0, )) be a non-negative
function such that supp xs(t) C Urs1l7k, 7], Xxs) =1 on Jp and that xs(¢) is
monotonically increasing on [7, t,] and monotonically decreasing on [z}, 7¢] for
each k. We define e;(u(t)) =¢;(u(@); a, 5) (j=0, 1, ---) by

=E@ @) (j=0),
eu(®); a, )| =EWPul@)+j @O u@®|?
P E@ @@+ 2sOIFPu@OI>D  (G=D,

Let () =C'([0, =)) be positive function to be chosen later. We define the
infinity order energy § @ (®)) =8 @®); u()) =6 w@); £ (@), a, 5) by

(15) 6w(; 1(0), 0, 6)= 3 “@ 6w(®); a, ).
Differentiating & (u (¢)) with respect to t, we have
v@! d ‘(1) n(@)
FRCIORD IR TN e FTRCICION
@)+ 5 40 4 o)+ 5 DA @)

Now we shall estimate the infinity order & (u (¢)).
Applying Schwarz’ inequality, we have

%ej(u @) =—20Ewy(Fu®)) —20Ew 7 'u))
=20 s O NP u (@ 1> =205 x5 () | P u (2) |12

T eI u@ 1P+ O u @11

T2 2@ P u @), P @) +au))

+27 2@ Pu (), V' (ue(t) +au)))

—20e;(u (@) +i ' [Xe@ ]+ AP u @I +217 u (@) 12
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+i O AGHDIFP T u @O 1P+ G+HD PP (@) +au @) 117}
+72xs(®) {jIIV"u O+ H1P7 () +au @) 117}

Xa(t)

+j(j+1)

{1771 @ +au @) 12 +72 G+ DIF (@) +au @) 11}

O IP @ PPIPu O 1)

_<_—2<,0— [x’g(t)‘]zzt")i-ZX5(t)>ej(u ®) +j?);i£t1)) 6o (),

where we have assumed that ¢ <. Therefore, we obtain

4 6u®; 1)<~ 2(0-1D)E@®; £®)

.3 ! u-é_t) (ﬂ’(t) +8x5(t))ej(u (t>)’
where

and note the inequality

= u(t)! 1
= IEEN TGRS ))

Now, taking £ (¢) as

0 @) <2 518 L 06,

wt) =8 xs(dds €k, til),
u@=

() —8J%t xs(s)ds € lu, tl),
we have
Ewi);n) exp(—2{p@—rti) — [t ns(s)ds}) G E [ti, i),

Sw®;u®)< [
Ew(n); 1 (w)) exp(—2{p(t—7) — f ns(s)ds}) (€ [n, tl).

CASE 3 (t<[t/, t«]). Repeating a similar estimate as in CASE 2, we have

2 eo@®) <~ 26e0 (@) +[sup {2 3} —a+Bla @O IPu O

FEa OO —sup {282} a@IPu @




400 FuMIHIKO HIROSAWA

[a’ (t)] +

—2p0e,(u(®)) + ei(u())

and

4 o) < 200w +E D )
+j(";i‘>1) U771 (O +au @) 472G+ DI ® +au @) 1)
+xa<t>(¢ 17 u @ P+ 17 @)

206w +E D) )

4xs()
jG+1D

+ €j+l(u(t))+2(j+1)ej(u(t))

Therefore, we obtain

%g(u@; 1)< —206w@); 1))

Zﬂ(uts) ,U(t)< (>+( L (t)L +4)u(®) + 8%, e (w ()

J=1

for any t= [ 1, ti.]. Here, taking (¢) as

s [a" @]+
20

1@ =(u() -8 f ;Xa(s) exp( f . +4ds),

+4dr ds)exp(—-f: [alggL

we obtain
Ew®; 1) <Ew@); n@w))e ¥4
for any 1€ [1, ti].

Thus, we have the following decay estimate for the infinity order energy on
te [T;c ’ 7:k+1] .

Ew®; n(D)<E@(); ue))e
<6 GD; (1) exp (~20G—1D)+ [, ns6)ds)
<6 1(10) exp (~20G—1)+ [, 1s()ds)

<E@@; £@)) exp (—20G—1)+ [ 7a(s)ds)

[t UL, 7]
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<6@O); 1) exp (—200+3; [ no()ds)

[, 41U, 7]

<& (0); £(0)) exp <*20t+§ a;'o{1+2( tl_rl"l'rl’—tl’)}),

where

arl= 1 + 1
" infier,@®)  infew, e ()}

and we note that

f[rk,tklu [t 7] [XB(S>J + +2x‘5(s)ds£X5(tl) +26f

(g, Uy, 73]

<s{1+2(y—g+zi—t)}.
Now, taking {z;} and {z;} satisfying that (z;—¢;) + (t,— ) <1/2 for any /, we have
k
(16) &@®; n(0)<EW@O); 1) (~20t+26 Yai).

Here we remark that the decay estimate (16) holds for any t& [, Te+1].

Now, we shall estimate > %, a; " by (8).

If a’(¢) <0, we can take 7; such that a’(¢) <O for any t< [7, t,], then we have
infierr, a(s) =a(®). Whena'(¢]) >0, we can also take 7; such that infie(y,, ja (s)
=a(t]).

Ifa’(z;) >0, we can take 7; such that a’(¢) >0 for any t& [7;, t;]. Then, noting
that infier,, -3 {a (1)} =a (%) and a’ () <2a0a (1) for any tE [z, 1,] by (7), applying
the mean value theorem, there exixts s;& [7, #;] such that

1 __ 1 L@ ) —a(m)
infier;, . {a ®} a@) a(t)a(z)

1 a'(s) ti—w)
2@ | ata@

1 2a0( 11— 1)

<
a(t) a(t)
By taking 7; like 2a0(t;— 1) < ‘;((:’; , we have
(17) 1 < 2

infier, @@} ~a@

When a’(¢7) <0, we can also take 7; satisfying



402 FuMIHIKO HIROSAWA

1 2

(18) infy, o @@} —a)

If a’(t;)) =0 and a’(t) #0 near t<t;, or a’(¢;) =0 and a’(¢) #0 near t >t;, we
can also take 7; and 7; satisfying (17) and (18) respectively.

Therefore, there exist sequences {r;} and {r;} of non-negative numbers such
that

k k k
2ar'<X 2t +3 2@
=1 =1 =1

and lim, ..« 6 (X, <ra (t) ~'+ Xv, <:a(ti) 7))/t =0 for any 6>0 by (8).
Thus, there exists a positive constant C; independent of #, we have the
following decay estimate of & (u(¢); £(0)) :

19 Ew®; u(1) <Cs6 @ (0); 1(0))e

for any t>0 and 0 <py.
Next, we shall consider the positivity of £ (¢). Let t< [tk, Tx+1] and put ¢;(¢)

=8, 2:()e ™ ds, $1(®) =8 1, 15()e""ds, () = [, X5 ds and V(1) =
8J4 x(;(s)e¢’(s)ds. Recalling the definition of u(2);

©(z1) ez, aal),
p(t) =1 el ul),

#O= W -T®)  GEln, D),
1 (m) — (e t<n, ul),

we have

u (o) = (zr)
=u(t)) —o1
=e "{u(t) — W+¢ie™}
=e {u(m)— (Wi+oie"+4)}
where ¢,=¢,(t)), ¢1=¢1(c1), hi=¢:(¢t]) and ¥;=¥(¢;). Therefore, we have

© @) =p(tr)
=e *{u(w) — (Wt+oie*+90}
=e *[e {1 (t-1) — Wimr+h1* "+ i)} — Wt pre™ + 0]
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:e_wkwk 1){/1(Tk D= (Wkek '+ 1 tre e ¢k*l+¢§:—1e¢k_l
e i)
—e R 2>{/I(Tk 2) — (Wie Pt Ok 4+, 1€k '+, 2+¢/ i
+¢;c—1€¢k_1+¢k_2+¢;c—ze k-2+¢ke¢"" ¢“—2+¢k-1€ 't de-a)}
—e TR (0) — (e T e £ W W T
ot s g le e g B}
From the representation of 1 (¢), we can prove that 1 (¢) >0 for any k and ¢ if
1(0) =, is sufficiently large. Here we remark that x£(¢) is monotonically
increasing, hence u (7i+1) <y (t) for any tE [Tk, Tit1].

Now, we choose {r} and {7} satisfying t,—

=7]—t;=y, and y,<t;—
Noting that ¢, <86y, ¢:<86y, and

! 1 1 t'y , 1 ,
X oi<os 2 [, @ 6]uds+4 X G—n),
h=1 h=1 t, h=1
we have

i ¢/ ot +¢1+i ¢1e‘”1—1*"'+“’1
=1

<3 oo e (o5 3 [ @@ ds e X (how)
<160¢ ™= é}l V) eXp (% gl f :h la’(s)] +ds>

meas > 1 ! tlh 7’
< 166e4 B ;: vV €Xp <2_5 g f’h [(1 (S)] +ds>
=S<

and
k k t
T GG L G e
2 Y ‘=82ftxa(S)e‘dse" '
=1 = h

i( ——t,) Gty
<864meas{30) i (t;—tl) exp <i i f"h [a/(S>]+dS)
- = 20 i= I
=85< 0

by (9), where meas{Jo} is the measure of J,. Therefore, we obtain
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L@ =e " {po— (Ss+55)} >0

for any 1< [, w+1] (k=1, 2, ---) since o >Ss+S5.

Here we remark that ¢ (¢) is positive for any >0, but £ (¢) is not uniformly
positive, because X f-; ¢y—>0 as k—>co in general. On the other hand, if (10) is
satisfied, then .72, ¢;< oo, hence, 1 (¢) is uniformly positive, that is, there exists a
positive constant (. such that inf,u (t) =lim,»ett (t) =ftc .

Now, we shall conclude the proof of Theorem 2.2 from the decay estimate
(19).

We introduce the following lemma.

Lemma 4.1. Let 0<s<3/2 and 1 >0.

1) Ifuo, uy =G, then the infinity order energy & w(0); uo; @, 6) is finite for
any (>0, a<m and 6>0.

(ii) There exists a positive constant C, s such that 32, ;‘T],E Pu@)=
Eou(®); 1, 0,0)<C,,s8w®); 1), a, 6).

Proof. (i) Noting the inequality (12), we have

& w(0); ko, a, 0) <C, Z E(Vu(O))
1 - I‘L —1 j 2 22 ji—1 2
to ; —J 1770 CO) 12 4+72177 1 u (0) 1%)

0 < /loNi,
2__ 2 ~ ~U 3+2s
<C,C, max {1, m*—a?, a(0), 2} ;}] (,u2> j!
< o0,
where 4 is a positive constant and we used the inequality f—:Se" for any positive

integer j and any positive real number x.
(ii) is trivial from the inequality (12). O

Therefore, we obtain

= 1)’

(20) Ew@®)<2 —3
J=0 _]!

EWu(®))<C, s6w(0); u(0), a)e "

In particular, if ¢ (¢) is uniformly positive, then we have the following decay
estimate for the infinity order energy :

o 5 %Ewmonsc,,,aa(u(ox 2(0), a)e

for any p<po. Thus, the proof of Theorem 2.2 is concluded. O
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Theorem 2.3 does not follow from the decay estimate (20) without the
assumption (10). However, by considering the infinity order energy & (F*u(¢);

(1)), we have a decay estimate of the higher order energy E(F*u(t)) by analogy
with the proof of Theorem 2.2.

§5. Examples
Finally, we shall introduce some examples which can be applied our theorems.
Example 1. Let p>1 and ¢ >0, and define a () by

a(t)=sin(qt)+p, b()=1and m=1.

If sup, {%%’37}=sup,{2(fi:?2§)"fp)}= s <Bo=1, then the total energy of the

solution satisfies the following decay estimate :

Ew(®)<C,E(0))e

for any t>0 and p<p,=1—¢q/2(p—1).
Example 2. Let p>1 and define
a@)=t?, b(#)=1and m=1.

Noting that sup; >,/ {—%} =Ssupr>, (&} <Bo=1, we see that 3= [0, p/2]. Now we
let Jo= [0, pz/2], then J, satisfies from (7) to (10) for any 7>1. If up, u,E
G*(s<3/2), then there exists a positive constant C,, 4y, u, SUch that the total energy
of the solution satisfies the following decay estimate :

Ew(®)<Cp uy 4, E@(0))e

for any t>0 and p<p,=1—17"!. Moreover, we can take 7>1 arbitrary and the
decay estimate above holds for any p<1.

Example 3. Let p and g be positive constants satisfying a +q/p <p. Define
a(@®)C' ([0, )) by
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cos(Qe’(t—j)) +1 P,
= J = oo
[pIvits teljjt+e”] (G=1,2, ),

VI @ ite) (i=1,2, ),

a(t)=

b()=2and m=3. Put {1} = {j?% and {¢;} = {j#+e7}. Then, the assumptions in
Theorem 2.2 (7)—(9) are fulfilled. Indeed, JC U (;, /) =Jo,

meas {Jp} =D e 7= < oo,
ji=1

e—1

D<@t T+ T <aati) ! < 23 E,(F+2) 0 +k*TY
= —>|
t = k? k?

0

(k—>o0)
for any t< [k%, (k+1)7), and

,‘i’ (t;—t) exp (M ;Zl] f:l [a'(s):|+a's>=g1 exp (—j—i—M g} f:l [a’(s)]+ds>

e (% 7&1) <
S (o0}
TzijMei<o (% =1)
for any M >0. By noting that sup;c o, =)\3, %((%SO, there exists a positive constant
G,
of exponential order E (1 (1)) <C,, 4, 4,e > for any t>0 and o <2 since uo, u1EG*
with s <3/2.

such that the total energy of the solution to (1)—(2) has the decay estimate

uo, U
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