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Energy Decay for a Degenerate Hyperbolic Equation
with a Dissipative Term

By

Fumihiko HIROSAWA *

§1. Introduction

We shall investigate the energy decay of the solutions to the following Cauchy
problem for a degenerate hyperbolic equation :

(1) w t t

(2) fi(0,jc)=ii0(x), Ut(0,Jc)=inCx) f

where u(t, x) is real valued, a(t)^Cl([0, °°)), fl(0>0, fe(f)eC°([0, «>)),
inf,{6(0} =£o>0, supf{6(0) =bi< °°, m is a positive constant and A is the
Laplace operator in R".

The purpose of this paper is to seek sufficient conditions on a, b, m and the
initial data (w0, MI) which guarantee the exponential order decay of the total energy

(3) E(ii(0)= {lk(OII2+fl(OIIFii(OII2+m2 | |n(OII2}

to the solution of (l)-(2) as t-*°°9 where ||«|| denotes the usual L2(R") norm.
Energy decay problem in the whole space for the wave equation with a

dissipative term has been considered by many authors (Matsumura [2] , Mochizuki
[3], Mochizuki-Nakazawa [4] , Rauch-Taylor [5] , etc.). But it seems to be very
few results for the case of general hyperbolic equations as (1).

If a (0 = 1 and b (0 ^0, the total energy E(u (0) is conserved, that is, E(u (0)
=/?(«(())) for any t, and it is possible that the energy decays when b>0. Indeed,
it is well-known that the energy decays in exponential order if infr {b (0) >0 and m
>0 (see [5] ), and decays like OO"1) as t^oo if there are positive constants bQ and
bl such that 60(1 +0"1<6(0<6i, 67(0^0 and m=0 (see [3]; [2] and [4] have
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gone into more particulars).
However, if a(fi^const.9 the energy does not always decay in spite of the

existence of the dissipation, because a (0 may play a part in the growth of the
energy when a'(0 >0. Indeed, according to Reissig-Yagdjian[6], there exists a (r)
EEC^CCO, oo)) such that the total energy cannot be bounded for any function of
0(e°9 with a< 1. Thus, it seems that the behavior of the energy for the general
hyperbolic equation is more complicate than that for the wave equation.
Furthermore, we shall consider the case that a(f) has zero points. When a(t}
vanishes at a point, in general, (1) is not If00 well-posed in any neighborhood of the
vanishing point. However, if the initial data is sufficiently regular, the Cauchy
problem (l)-(2) is well-posed in the Gevrey class of order 3/2 since a (0 ^C1 (see
[1]). Hence we can consider a classical solution of (l)-(2) and its energy for the
initial data in the Gevrey class.

§2. Preliminaries and Results

In this section we mention our main theorems.
In the first theorem is treated the case that (1) is strictly hyperbolic, that is,

a(0 is strictly positive. In the second one, we consider the case that (1) is weakly
hyperbolic, that is, a (0 has a zero point.

We define the positive constants a0=a0(b09 bi, m^) and j30=j30(bQ9 b\, m) by

b0

and

m (61—60)

o, b\9 m) =

Theorem 2.1. Assume that inf, {a (0} >0, sup,f0y-} < oo? and (u0 , Wi) ̂ Hl X
L2. If the following condition

(4) su

holds, then there exists a positive constant Cp such that the following decay estimate
to the solution of the Cauchy problem (l)-(2)
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holds for any t>Q and p<po, where

( 5 ) poCO =A>- [sup {-^jy} -

and p0=

Now, we shall introduce a class of functions, which is called the Gevrey class,
to state our second theorem. Let s >0 and // >0. We define the Gevrey class G^
and Gs by

G* -{/OO&fiT; sup f^- ||Pyil}< 00} and <7* = U GJ,1 i j • «>o

where
11/rVll 0 : even),

iw= ,_,
\\rj~f\\ (7: odd)

and J* = (3^ H ----- hS^)*. Then we have the following theorem :

Theorem 2.2. Define the set 2>C [0, °°) by

(6) 3

Assume that there exist monotonically increasing sequences of non-negative real
numbers {tj} and {tj} satisfying

f ^ i(7) 3c =30,
ICO, O U U C f y , rj) (r,=o),J

, . r S ft;(t<(} a(fk)~1 + S fe ( '<(} aOl)"1 i
(8) lim { - * - - - * - }=0

f-*°o L f J

9 ) S 0;-f,-)exp (MS f" [a'(s)] +
7 - X /=! J ri

r anj; M>0. I f u Q , u\^Gs for 0<5<3/2, f/zen f/iere ex/s?s a positive constant

P > U O ) U I swc/z ?/zat the following decay estimate to the solution of (1)— (2)
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holds for any p<A>([0, °°)\3o). Moreover, if

(10) £ f" [fl'CO] +
/;>! «/ f/

r/iere exist positive constants JJL and Cp such that the following decay estimate of
the infinity order energy holds

S -~

for any p<po([Q, °°)\3o).

Furthermore, we can prove the following theorem by a little modification of
the proof of Theorem 2.2.

Theorem 2.3. Under the same assumptions as in Theorem 2.2, there exists a
positive constant CI>P>UQ,UI such that the following decay estimate of the higher order
energy

holds for any p<po([0, °°)\3o) and for any positive integer I

Remark 2.1. If the assumption (9) holds, then the measure of 3o must be
finite.

The proofs of our theorems are based on a well-known method to obtain the
exponential order energy decay to the dissipative wave equation of Klein-Gordon
type, which is introduced in Zuazua [7] , for instance.

Let us consider the case that a (0 = 1 and that u (f , ;c) is real valued. Let a be
a positive constant satisfying m >a and define E(a)(w(0) by

(11) Efc)(tt(0)=£(n(0)+a(ii(0, ttr(0)

=y {lk(0+au(OII2+lirii(OII2+(m2-a2)| |ii(OII2},

where (% e) denotes the usual L2(R") inner product.
Differentiating E(a)(i/(0) with respect to t, using the equation (1) and

applying Schwarz' inequality (1), we have
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where a is a positive constant satisfying -f^y->a. Now, we choose a satisfying

6(0

Then, there exists a positive constant p such that

-^ EfcO (u (0 ) < -pEto (u (r) ) ,

hence we obtain

Recalling the definition of E^ (u (0) and applying Schwarz' inequality, there exists
a positive constant Ca such that we have from the above inequality

for any f£ [0, oo).
Thus, choosing a > 0 suitably, we obtain the energy decay of exponential order

to the Cauchy problem (l)-(2) with a (0 = 1.
Here we note the method above cannot be applied in case that a (0 is not

constant, but considering the choice of constant a, it is possible to prove the
exponential order decay to the solution of a general hyperbolic equation like (1).

§3. Proof of Theorem 2.1

Let a be a positive constant satisfying m >a and define J£(a)(w(0) by

(12) Efc)(n(0)=£

where (•, «) denotes the usual L2(R") inner product. Here we remark that the
energy norm £(a)(w(0) is equivalent to the usual energy norm E(w(0) since a<
m, that is, there exists a positive constant Ca independent of j such that the
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following inequality

holds for anyj>0.
Let 13 be a positive constant to be chosen later. Differentiating E^ (u (0) with

respect to t, we have

I
2

- (26(0 -a) lk(0 +au (0 Il2-a(m2-a2) ||« (0II2

+2a(6(0-a)(a(r),ii l(0+auO))
: - 2j8£(a) (« (0 ) + y {a( (0 - 2 (a —j8)a (0)11 Fu (0II :

- ( 2 6 ( 0 - a - f f ) 1 n,(0 +««(0 + ?£~b^a «(0 T

where

If 26(0— a— ̂ 8>0 and 0(6(0, a, yS)>0 then we have

fo(0 -2(a-/3)a(0) IIF«

where

Now, we shall show that there exist a<a0 and /?<&) such that 0(6(0, «, £)
>0 and p0(/) — p(a, ft /) <e for any £ >0.

We can easily see the following inequalities 26(0 ~~ OL— /?>(), 0(60, «o, y3o) >
0, 0(6i , a0,£o) =0 and 5^0(^1 , a,/3) = -2(6i-0) (m2-a2) <0 for any a<a0 and
fi</30. Here, noting that 0(6, a, £) is quadratic and convex with respect to 6,
hence we have 0(6(0, «, /?) >min{0(60, a, ^8), 0(6i, a, £)}. Therefore, by the
continuity of 0(6, a, yS) with respect to a and £, we can take a<b and /3<6 such
that
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£(a)< ~2p(a, ft

and

p0(/)-p(a,ft/)<e

for any given positive constant 6. Thus by GronwalPs inequality we have

for any f 6= [to, * o] =/ and e >0. Recalling (13), we obtain

and

for any a<ao and /3<fio. Here, noting that 0 (6, a, /3) is quadratic and convex with
respect to 6, that is, 0(6(0, a, £) > min {0 (60 , a, 0), 0(fci, a, £)}. Thus, on the
analogy of CASE 1, we see that there exist a<a0 and j3</30 such that -^E^<
- 2p(a, ft DEfo) (ii(0) andp0(/)-p(a,ft/)<£ for any£>0.

CASE 3 . When bQbi>m2 and b0<bi , repeating a similar proof as in CASE
2, we can also take a < aQ and & < f}0 such that -^- J£(tt) <—2p(a,@; /) E(a) (w (0 ) and
Po(/)— p(a, ft /)<£ for any £>0.

Therefore, by GronwalFs lemma, we obtain

for any f EE [f0, ?o] =/ and £ >0. Recalling (13), we obtain

for any positive constant Ce . Thus, by putting / = [0, °°) , the proof of Theorem 2. 1
is concluded.

Remark 3.1. On the analogy of the proof above, we have also the decay
estimate of higher order energy :

(14)
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for any t^I since Id [0, °o)\3-

§4. Proof of Theorem 2.2

When fl(0 degenerates at f=^o, the usual hyperbolic energy E(w(0) in
general cannot be bounded by l?(ii(0)) in any neighborhood of f=f 0 , so we shall
introduce the infinity order energy.

Let {TIC} and {r^} be sequences of non-negative real numbers satisfying ri-i<
Tk<tk<tk<Tk for any fc(if fi = 0, we put Ti=fi) .

Let d be a positive real number and Xs(fi £=Cl ([0, °o)) be a non-negative
function such that supp %s(f)^ U f c>i[r f c , r*], ̂ *(0 = 1 on 30 and that %5(0 is
monotonically increasing on [r/t, fj and monotonically decreasing on [ti, r^] for
each k. We define ej(u(0) =cy(tt (0; a, 5) 0 = 0, 1, •••) by

•=£(a)(ll(0) 0 = 0),

+r !^ co IIF« co ii2) o> D.
Let fi (0 ^C1 ( [0, oo )) be positive function to be chosen later. We define the

infinity order energy <£(ii(0) =^(n(0; #(0) =<£(n(0; #(0, «, 5) by

(15) <f(M(t);//(0, «, 5) = E -e/iiCO; a,
j=0 J !

Differentiating ^ (u (0 ) with respect to £, we have

d

Now we shall estimate the infinity order
Applying Schwarz' inequality, we have

'a (0 II2+/^(0 ll^« (0

ii(0, P'(«t(0 +au(0))

(0) +.T1 [*',(*)] +
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'+ WO +oii (0) II2+/20

+*.(0(iy1 ll^'u (0 II2+/IIP'« (0 II2)

7(7+0"
where we have assumed that a </J. Therefore, we obtain

where

a(0

and note the inequality

Now, taking // (0 as

we have

CASE 3 (f£ [ft, f fc]). Repeating a similar estimate as in CASE 2, we have

a'(0 Wu (0 Il2-sup -- a (0 IIF« 2

2 ^3o
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and

-^ ej(u (0) < -2pej(U (f)) + J ' [ f l + e , ( « (0)

(0) II2}

(11 (0)

(«(0) +20+ !)«,(« (0)

Therefore, we obtain

for any f £ [ ?fc , r £] . Here, taking // (0 as

E +4> (0 + 8*.«}e,a, (0)

we obtain

for
Thus, we have the following decay estimate for the infinity order energy on

i

; /i ( ft) ) exp - 2p (f - f

f
<J LTfe , ?fej U [f fr , T fc j
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S f. n n r , ,n1 = 1 J [TJ , tj] U [f i , *j]

where

f l - =

infse [r/ , f/] {a (5) } infse ^ , ̂  {a (s) }

and we note that

f r 1nr, , n [ x
J [r t , ( t]U[( t , r t]

ds

Now, taking {r/} and {T!} satisfying that (T{— f J) + (f/ — r/) < 1/2 for any /, we have

(16) *(«(0; 0(0)£*(«(0); /z(0)) (-2pf + 25 S of1)-
\ = y

Here we remark that the decay estimate (16) holds for any f£= [i*, Tk+\~\.
Now, we shall estimate S/^iaT1 by (8).
Iffl 'Cf/) < 0, we can take r/ such that a'(0 < 0 for any f £ [r/ , r/] , then we have

inffEE [T/ f7]fl (5) — a (t/) . When a (t / ) > 0, we can also take r/ such that inte [^ T'^a (i)
=a(t'i).

l f a ' ( t i ) >0, we can take r/ such that a(f) >0 for any t^ [r/ , r/] . Then, noting
that inffe &/ , T/] {a (0 } =a (r/) and a7 (0 < 2a0a (0 for any t e [r/ , f/] by (7) , applying
the mean value theorem, there exixts s/£ [r/, ?/] such that

[T, , f/] fc (0} a G/)

a(fi) •

By taking r/ like 2aQ( t\ — r/) <"^§~, we have

(17) —

When fl'(*/) <0, we can also take r/ satisfying
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(18)

If 0'(f/) =0 and fl'(0 ̂ 0 near t<ti, or a ' (f / ) =0 and a(t) ^0 near t>t\, we
can also take r/ and x\ satisfying (17) and (18) respectively.

Therefore, there exist sequences {r/} and {T\} of non-negative numbers such
that

and limt^d&tk<ta(tky
i + Ilt'k<ta(t'ky

i)/t = Q for any d>Q by (8).
Thus, there exists a positive constant C$ independent of t, we have the

following decay estimate of £ (w(0;

(19) *(ii(

for any f>0 andp<p0-
Next, we shall consider the positivity of //(O- Let f£ [rjt, r/t+i] and put

COe'|W<fe, #{(0=8 JJ' xMe^ds, MO=J{ [a>fe)
2
]; + 8g rfs and

8 I {, Xs(s)e ' ' ds. Recalling the definition of /z (0;

we have

where 0, = 0;(f,), <£', = <!>',&','), 0; = ̂ (f!) and W, = W(t',\ Therefore, we have
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From the representation of // (0, we can prove that // (0 >0 for any fc and f if
//(0)=//0 is sufficiently large. Here we remark that //(O is monotonically
increasing, hence //(r^+i) <//(0 for any fEE [i*, r fc+i].

Now, we choose {r/} and {r/} satisfying f/ — rj = rj— r/ = y/ and Vi<t\—ti.
Noting that 0/<8Sv/, 0;<8Sv/ and

we have

4meas{30} ^ / 1 ^n f ' h r , , x -° I] v, exp (— 2 [a (5) j +c
1=1 V2O * = i ^ fA

-L S f '* fc'W]
26 A = l J tfc

„ exp
Z = l

and

k +...+A k r1'
2_i SP/C =8 2j I
/=! / = ! J t.

by (9), where meas{30} is the measure of 30- Therefore, we obtain
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for any t^ [rk, r*+i](fc=l, 2, •••) since fjL0>Sd+Ss.
Here we remark that /z(f) is positive for any r>0, but //(O is not uniformly

positive, because S?=i 0/-^°o as fc-^o° in general. On the other hand, if (10) is
satisfied, then S /== i 0/< °°, hence, //(O is uniformly positive, that is, there exists a
positive constant //«> such that inf,#(0 =lim,-*oo#(0 — #«, .

Now, we shall conclude the proof of Theorem 2.2 from the decay estimate
(19).

We introduce the following lemma.

Lemma 4.1. Let 0 < s < 3/2 and JLL > 0.
(i) Ifuo,Ui£=Gs, then the infinity order energy <f (w(0); //o; #, 5) is finite for

any //0>0, a<m fl«J 5>0.
(ii) Tfcere exwte a positive constant Ca,s such that ^jlQj^

^o(tt(0; //, 0, 0)

Proof, (i) Noting the inequality (12), we have

7=0

/ 7=1 y

<C,Ca max {l, m2-a2, a(0), |} f] (4)0 '"3+2j
L ZJ ; = 0 X/Z X

<oos

where // is a positive constant and we used the inequality jr<eK for any positive
integer j and any positive real number /c.

(ii) is trivial from the inequality (12). D

Therefore, we obtain

(20) E
7 = 0 J !

In particular, if JJL (0 is uniformly positive, then we have the following decay
estimate for the infinity order energy :

(21)
7 = 0 J \

for any p<po. Thus, the proof of Theorem 2.2 is concluded.
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Theorem 2.3 does not follow from the decay estimate (20) without the
assumption (10). However, by considering the infinity order energy $(yku(t)\
#(0), we have a decay estimate of the higher order energy E(7ku(t^ by analogy
with the proof of Theorem 2.2.

§5. Examples

Finally, we shall introduce some examples which can be applied our theorems.

Example 1. Let p > 1 and q >0, and define a (0 by

a (0 = sin( qt} +p, b (f) = 1 and m = 1.

If sup, {-£%-} = SUR |2(L7;Co t) )=-2(/Mj-<A) = 1, then the total energy of the

solution satisfies the following decay estimate :

for any r>0 and p<p0=l—q/2(p — 1).

Example 2. Let p > 1 and define

a(t^)=tp, 6(0 = 1 andm = l.

Noting that supf >p/2 ft^y] = sup, >p/2 (irl < &> = 1 , we see that 3 = [0, p/2\ . Now we

let 3o= [0, pr/2], then 30 satisfies from (7) to (10) for any r>l. If i/0, MI^

Gs(5<3/2), then there exists a positive constant C p > M ( J f « 1 such that the total energy

of the solution satisfies the following decay estimate :

for any t>Q and p<pQ=l — r~l. Moreover, we can take r>l arbitrary and the
decay estimate above holds for any p < 1 .

Example 3. Let/? and q be positive constants satisfying a-\-q/p<p. Define
EO, oo)) by
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cos - ( ,. ,-, ,. ,,
Oe[;,;+e '] 0 = 1, 2, •••)),

(t£\.j,j+e-1 0=1,2,-)),

ft (0 = 2 and m = 3 . Put {«/} = {./'»} and { r;- } = { f + e ~J} . Then, the assumptions in
Theorem 2.2 (7)-(9) are fulfilled. Indeed, 3C U (f,-, f/)=3o,

meas o =
;=i

for any re \kq, (k+ 1)«), and

2 (?;-?,) exp(M t f" [a'O)] +&)=!; exp (-;+M S f" [<*'
/=i v /=i «^ tt ' j=i \ /=1 J rz

<oof=l)J
for any M>0. By noting that sup^o, «»)\30 i^y~<0, there exists a positive constant

Cp,u0,ul such that the total energy of the solution to (l)-(2) has the decay estimate

of exponential order E(u (0) <Q, UQ> Ule~2pt for any t>0 and p< 2 since UQ, u\^Gs

with s < 3/2.

References
[ 1 ] Colombini, F., Jannelli, E. and Spagnolo, S., Well-Posed in the Gevrey classes of the Cauchy

problem for a non-strictly hyperbolic equation with coefficients depending on time, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4), 10(1983), 291-312.

[ 2 ] Matsumura, A., Energy decay of solutions of dissipative wave equations, Proc. Japan Acad. Ser.
A Math. Sci., 53(1977), 232-236.

[ 3 ] Mochizuki, K., Scattering theory for wave equations (Japanese), Kinokuniya, 1984.
[ 4 ] Mochizuki, K. and Nakazawa, H., Energy decay and asymptotic behavior of solutions to the

wave equations with linear dissipation, Publ RIMS, 32(1996), 401-414.
[ 5 ] Rauch, J. and Taylor, M., Decreasing states of perturbed wave equations, J. Math. Anal. AppL,

54(1976), 279-285.
[ 6 ] Reissig, M. and Yagdjian, K., One application of Floquet's theory to Lp-Lq decay estimates,

Math. Methods AppL Sci., to appear.
[ 7 ] Zuazua, E., Stability and decay for a class of nonlinear hyperbolic problems, Asympto. Anal., 1

(1988), 161-185.


