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Representations of the Quantum Toroidal Algebra
on Highest Weight Modules of the Quantum Affine
Algebra of Type gly

By

Kouichi TAKEMURA* and Denis UGLOV**

Abstract

A representation of the quantum toroidal algebra of type sly is defined on every integrable
irreducible highest weight module of the quantum affine algebra of type gly. The g-version of the
level-rank duality giving the reciprocal decomposition of the g-Fock space with respect to mutually
commutative actions of U‘,’(E;TN) of level L and U, (Sl of level N is described.

§1. Introduction

In this article we continue our study [STU] of representations of the quantum
toroidal algebra of type sly on irreducible integrable highest weight modules of the
quantum affine algebra of type gly. The quantum toroidal algebra U was
introduced in [GKV] and [VV1]. The definition of U is given in Section 5. 2. This
algebra is a two-parameter deformation of the enveloping algebra of the universal
central extension of the double-loop Lie algebra sly[x*!, y*!]. To our knowledge,
no general results on the representation theory of U are available at the present. It
therefore appears to be desirable, as a preliminary step towards a development of a
general theory, to obtain concrete examples of representations of U.

The main reason why representations of central extensions of the double-loop
Lie algebra, and of their deformations such as U, are deemed to be a worthwhile
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topic to study, is that one expects applications to higher-dimensional exactly
solvable field theories. Our motivation to study such representations comes,
however, from a different source. We were led to this topic while trying to
understand the meaning of the level 0 action of the quantum affine algebra U, (5ly)
which was defined in [TU], based on the earlier work [JKKMP], on each level 1
irreducible integrable highest weight module of the algebra U, (gly). These level 0
actions appear as the g-analogues of the Yangian actions on level 1 irreducible
integrable modules of sy discovered in [HHTBP, Sch].

Let us recall here, following [STU] and [VV2], the connection between the
level O actions and the quantum toroidal algebra U. It is known [GKV] (see also
Section 5.2) that U contains two subalgebras U,, and U, such that there are
algebra homomorphisms U,(sly)—>U,, and U/(5ly)—>U,. As a consequence,
every module of U admits two actions of U;(sly): the horizontal action obtained
through the first of the above homomorphisms, and the vertical action obtained
through the second one. It was shown in [STU] and [VV2], that on each level 1
irreducible integrable highest weight module of U,(gly) there is an action of U,
such that the horizontal action coincides with the standard level 1 action of U, (sly)
cy, (?;TN), while the vertical action coincides with the level O action defined in
[TU]. The aim of the present article is to extend this result to higher level
irreducible integrable highest weight modules of U, (gly).

The algebra U,,(@TN) is, by definition, the tensor product of algebras H®
U, (sly), where H is the Heisenberg algebra (see Section 4. 3). Let A be a level L
dominant integral weight of U,(5ly), and let ¥ (A) be the irreducible integrable
U, (ETN) -module of the highest weight /. As the main result of this article we
define an action of U on the irreducible U, (?}TN) -module

(1.0 V) =K[H-]®V(),

where K[H_] is the Fock representation (see Section 4.4) of H. The
corresponding horizontal action of U, (ly) is just the standard, level L, action on
the second tensor factor in (1.1). The vertical action of U, (ly) has level zero, this
action is a g-analogue of the Yangian action constructed recently on each
irreducible integrable highest weight module of gly in [U].

Let us now describe the main elements of our construction of the U-action on
7(A). To define the U-action we introduce a suitable realization of ¥ (/) using
the g-analogue of the classical level-rank duality, due to Frenkel [F1, F2], between
the affine Lie algebras sly and sI,. The quantized version of the level-rank duality
takes place on the g-Fock space (we call it, simply, the Fock space hereafter). The
Fock space is an integrable, level L, module of the algebra U, (sly). The action of
this algebra on the Fock space is centralized by a level N action of U, (5I.), and the
resulting action of U, (sly) ®U, (51.) is centralized by an action of the Heisenberg
algebra H.
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We give in the present paper a construction of the Fock space in the spirit of
semiinfinite wedges of [St, KMS]. The Fock space defined in [KMS] appears as
the special case of our construction when the level L equals 1. In Theorem 4. 10 we
describe the irreducible decomposition of the Fock space with respect to the action
of HQU,(5ly) ®U,(5I.). This theorem is the g-analogue of Theorem 1. 6 in [F1].
The decomposition shows that for every level L dominant integral weight /1 the
corresponding irreducible U, (gly)-module 7(A) is realized as a direct summand of
the Fock space, such that the multiplicity space of ¥(A) is a certain level N
irreducible integrable highest weight module of U, (sI.).

To define the action of the quantum toroidal algebra on ¥ (/) we proceed very
much along the lines of [STU]. The starting point is a representation, due to
Cherednik [C2], of the toroidal Hecke algebra of type gl, on the linear space K [z,
v 2 ] Q@ (KE)®". Here K=Q(g™). Applying the Varagnolo-Vasserot duality
[VV1] between modules of the toroidal Hecke algebra and modules of U, we obtain
a representation of U on the g-wedge product A"V, where Vyr=K[z*'] @ K¥Y®
K~. This g-wedge product (we call it, simply, the wedge product hereafter) is
similar to the wedge product of [KMS], and reduces to the latter when L =1.

The Fock space is defined as an inductive limit (n—0) of the wedge product
A"V.. We show that the Fock space inherits the U-action from A"V.. As the
final step we demonstrate, that the U-action on the Fock space can be restricted on
V(A) provided certain parameters in the U-action are fixed in an appropriate way.

Let us now comment on two issues which we do not deal with in the present
paper. The first one is the question of irreducibility of ¥(A) as the U-module.
Based on analysis of the Yangian limit (see [U]) we expect that ¥(A) is
irreducible. However we lack a complete proof of this at the present.

The second issue is the decomposition of V() with respect to the level 0
vertical action of U;(sly). In the Yangian limit this decomposition was performed
in [U] for the vacuum highest weight A =LA,. It is natural to expect, that
combinatorially this decomposition will remain unchanged in the g-deformed
situation.  In particular, the irreducible components are expected to be
parameterized by semi-infinite skew Young diagrams, and the U,(sly)-characters

of these components are expected to be given by the corresponding skew Schur
functions.

The paper is organized as follows. In Sections 2 through 4 we deal with the
g-analogue of the level-rank duality, and the associated realization of the integrable
irreducible modules of U, (8ly). Section 2 contains background information on the
quantum affine algebras and affine Hecke algebra. In Section 3 we introduce the
wedge product, and describe the technically important normal ordering rules for the
g-wedge vectors. In Section 4 we define the Fock space, and, on this space, the
action of H®U,(sly) ®U,(5.). The decomposition of the Fock space as H®
U, (sly) ® U, (51,)-module is given in Theorem 4. 10.
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In Sections 5 and 6 we deal with the quantum toroidal algebra U and its
actions. Section 5 contains basic information on the toroidal Hecke algebra and U.
In Section 6 we define actions of U on the Fock space, and on irreducible integrable
highest weight modules of U, (8lw).

§2. Preliminaries

2.1. Preliminaries on the quantum affine algebra. For k, m&7Z we define the
following g-integers, factorials, and binomials

g—q* | [m} [m],!
==, 1=[kl,lk—1],--- [1],, and =,
(k1 p— [k]qt=[k]qlk—1]g - [1],, and | " Tm—kd, K1
The quantum affine algebra U, (ly) is the unital associative algebra over K=
Q(g) generated by the elements E;, F;, K;, K;!, D (0<i<M) subject to the
relations:

Q.1 K.K;=K;K:, DK,=K;D, K.K;'=K;'K;=1,
(2.2) K.E;=q"EK;,
(2.3) K.F)=q “IFK,
K—K;!
(2.5) (E;, F]=6;——=,
q9—q
Y 1785 pica kg ok A
2.6) 2. (=D E!"% *E;Ef=0 (@#j),
= Lk
1—a, —_—..
2.7 > (—1)"[l k“”} F!"% *F,Ff=0 ((i#j).
k=0 q

Here a;=20(i=j) —6(i=j+1) —6(i=j—1), and the indices are extended to all
integers modulo M. For P a statement, we write 6(P) =1 if P is true, S(P) =0 if
otherwise.

U, (1) is a Hopf algebra, in this paper we will use two different coproducts
A" and 4~ given by
(2.8) 47 (K) =K®K;, 4~ (K) =K®K;,
(2.9) A+(E,) =E,®K,+1®E,, A_(E,) =E,®1+K;®E,,
(2.10) 4% (F)=F®1+K 'QF, 4~ (F)=F,®K;'+1QF,
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(2.11) 4T(D)=D®1+1R®D, 4-(D)=D®1+1&D.

Denote by U, (1)) the subalgebra of U,(sl,) generated by E;, F;, K;, K;!, 0<i
<M.

In our notations concerning weights of U, (sl4) we will follow [K]. Thus we
denote by Ao, A, ..., Ay—1 the fundamental weights, by 6 the null root, and let a;
=2/A;—Ai+1—Ai-1+6;, 06 (0<i<M) denote the simple roots. The indices are
assumed to be cyclically extended to all integers modulo M. Let Py=7Z6P
(@i ZA,) be the set of integral weights.

Let K" be the N-dimensional vector space with basis v;, 15, ..., oy, and let K be
the L-dimensional vector space with basis e;, e;, ..., ez. We set Vir=K[zT'] @ K-
®KY. Vux has basis {z"e,v.} where mEZ and 1<a<L; 1<e<N. Both algebras
U,(sly) and U,(sI.) act on V. U,(5ly) acts in the following way:

(2.12) K:(z"e,v,) =q55"'_55”'+‘z"' e, 0,
(2.13) Ei@"e,0) =0, 112" 0,0, 1,
(2.14) F,(z"e,v.) =0, 2" 0% vy,
(2.15) D(z" e, v.) =mz" e, v

where 0<i<N, and all indices but a should be read modulo N.
The action of U, (&[,) is given by

(2.16) K,(z"eyv,) =q§”'L“‘+’_6”'L““z”‘ e, g,
(2.17) E,(z"e¢y0,) =5,,,L_,,zm+5“'°eb+1ng,
(2.18) Fo(z"ey0) =841 012" %0,
(2.19) D(z™e,v,) =mz™e, v, .

where 0<a <N, and all indices but & are to be read modulo L. Above and in what
follows we put a dot over the generators of U, (1L in order to distinguish them
from the generators of U, (5Iy). When both U,(sly) and U, (sI.) act on the same
linear space and share a vector v as their weight vector, we will understand that
wt(v) is a sum of weights of U,(sly) and U,(s[,). Thus

wt(z"' €, DE) :/15“/15_1 +AL~,,-'-1_/1L_,, +m (6‘{'6')

Here, and from on, we put dots over the fundamental weights, etc. of U, (sl.).
Iterating the coproduct 4% (cf. (2.8-2.11)) n— 1 times we get an action of U, (5l y)
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on the tensor product ¥ &. Likewise for U,(5I.), but in this case we use the other
coproduct 4.

2.2, Preliminaries on the affine Hecke algebra. The affine Hecke algebra of type
gl,, H,, is a unital associative algebra over K generated by elements T/"!, X;*!, 1
<i<n, 1<j<n. These elements satisfy the following relations:

(2.20) T.T'=T;'T;=1, (Ti+1) (Ti—¢» =0,
(2.21) T T Ti=Ti\ T, Ti1a, T,T,=T,;T: if|i—j| >1,
(2.22) XX '=X'X,=1, X.X=XX,

(2.23) TX.Ti=¢*X:v,, TX=XT: ifj#i i+1.

The subalgebra H,,Cﬁ,, generated by the elements T7' alone is known to be
isomorphic to the finite Hecke algebra of type gl,.

Following [GRV], [KMS] we introduce a representation of H, on the linear space
(K[z"'] @ KE)®". We will identify this space with K [z{, ..., z;'] ® (KF)®" by
the correspondence

1 e,,1®zm2 e, ® ®z™ e H—> 20z, 20 ® (e,,1®e,,2® ®e,,n).
Let E, ,=End (K*) be the matrix units with respect to the basis {e,}, and define the

trigonometric R-matrix as the following operator on (K[z*!']®KL)®*=K[z{',
*1 LY ®2,
Z; ] ® (]K ) :

R(zy,2,)=(g%21—22) 2. E,.QF, . +q(z1—z,) Z E, .®E,

1<a<L I<a#b<L

+21(q2_1) Z Ea,b®Eb,a+zl<q2—1) Z Ea,b®Eb,a-

1<a<bsL 1sb<asL

Let s be the exchange operator of factors in the tensor square (K[z¥'] @ KX)®?,
and let

2,
: - R
(2.24) T =202 (1= . - (zl,z2)> L
2172, q21

The operator T, 4,2 is known as the matrix Demazure-Lusztig operator (cf. [C2]),
note that it is an element of End ((K [z*!'] ® KX)®%) despite the presence of the
denominators

(2.25) T:=190"DQRT 1y ®12¢" "D EEnd ((K [z5] @ KE) ®").
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Proposition 2.1 ([C2], [GRV], [KMS]). The map
(2.26) Xz, Ti+—T,

where z; stands for the multiplication by z;, extends to a right representation of H, on
(K [zil:l ® KL) ®n.

Following [J] we define a left action of the finite Hecke algebra H, on (K*)®" by

Q.27 T——>T=12¢"DQTR19@~~D  where TEEnd ((K¥)®?),
qzmﬁl®n52 if e,=¢,,
(2.28) and T(n51®n52) =19 v;,®0 if £, <e,,

g v, ®v, + (g — Do, Vv, if &, >¢,.
§3. The Wedge Product

3.1. Definition of the wedge product. Identify the tensor product V& with
(K[z"'] @ K ®*® (K¥)®" by the natural isomorphism

m m m m
z 1e“1°€1® @z ey v, (z ’e,,l® o ®z "e,,n)@(nel@ ®°E,.)'

Then the operators T and T are extended on Vaff as fi" ®1 and 1®i‘ respectlvely
In what follows we will keep the same symbol T to mean T ®1, and likewise for T
We define the n-fold g-wedge product (or, simply, the wedge product) A"V as the
following quotient space:

(3-1) N aff/z Im(T -T)
Note that under the specialization g =1 the operator T (2.24) tends to minus the
permutation operator of the tensor square (Q [z*'] ® Q) ®?, while the operator T

(2.28) tends to plus the permutation operator of the tensor square (Q)®? so that
(3.1) is a g-analogue of the standard exterior product.

Remark. The wedge product is the dual, in the sense of Chari-Pressley [CP]
(see also [Cl]) of the H,-module (K[z¥!']®KL)®": there is an evident
isomorphism of linear spaces

AVar= (K27 @K " ®n (KY)®".

For m&Z, define B EEnd(VE) as
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(3.2) BW=z7+z5++z7.

In Section 2.1 mutually commutative actions of the quantum affine algebras
U, (5ly) and U, (51,) were defined on ¥ &. The operators B & obviously commute
with these actions.

The following proposition is easily deduced from the results of [CP], [GRV],
[KMS].

Proposition 3.1. For each i=1, ..., n—1 the subspace Im(f’,-—]x"i)c V& is
invariant with respect to U, (51y), U,(51.) and B (mEZ.,). Therefore actions of
U,(8ly), U,(5IL) and BY are defined on the wedge product N"Ve.

It is clear that the actions of U/, (sly) CU,(sly), U,(s1.) CU,(5l.) and B® (m
&7Z+0) on the wedge product are mutually commutative.

3.2. Wedges and normally ordered wedges. In the following discussion it will be
convenient to relabel elements of the basis {z™ ¢, v.} of ¥ by single integer. We put
k=e—N(a+Lm) and denote u,=z"e,v,. Then the set {ux | kEZ} is a basis of
Vaff . Let

(3.3) i A A -+ Ay,

be the image of the tensor u;, Qu,,® -+ @u; under the quotient map from V& to
A"Var. We will call a vector of the form (3.3) a wedge and will say that a wedge
is normally ordered if k,>k,> -+ >k,. When g is specialized to 1, a wedge is
antisymmetric with respect to a permutation of any pair of indices k;, k;, and the
normally ordered wedges form a basis of A"V,. In the general situation — when
g is a parameter — the normally ordered wedges still form a basis of A"V.
However the antisymmetry is replaced by a more complicated normal ordering rule
which allows to express any wedge as a linear combination of normally ordered
wedges.

Let us start with the case of the two-fold wedge product A*V,s. The explicit
expressions for the operators 7'; and T’ lead for all k<! to the normal ordering rule
of the form

(3.4) wAm=cu@uNu+ (@ =1 3 e (@u-i N,

were ¢y (q), ¢ P (q) are Laurent polynomials in q. In particular ¢ (g) = —1, and
thus ux Au,=0. To describe all the coefficients in (3.4), we will employ a vector
notation. For all @, a1, a,=1, ..., L; €, &, &,=1, ..., N; m;, my;&EZ define the
following column vectors:
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3.6)
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sl,ez U, ~NGa+Lm,) \Ue,~N(a+Lm.)
(ml ’ mZ) < ! ! 2 2 ’
usz—N(a+Lml) /\usl——N(cH-Lmz)

Ue—NGay+Lmy) NUe—N(a,+Lm.)
Yz,lfaz(ml ) mZ) :< ¢ “ ™1 ¢ 27 ’
Ue—N(ay+Lm,) Nu, —N(a;+Lmy)

uel —N(ay +Lml) AN uez—N(a2+Lm2)

51, &y Us, —Nao+Lmy) /\Ue,—N(a;+Lm,)
al,az(mly mz)— ! 2 ! 2 1 2

Uey—N(ay+Lm)) /\uel —N(ay+Lmy)

usz—N(a2+Lm1) /\usl —N(ay+Lm,)

Moreover let

(3.8)
3.9
(3.10)

And

3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

X5 0my, m) =X.52(my, my)" =X, (my, my)  if miEm,,
a,a 1, 2 a,a 1, 2 a',a 1, My i m m;,
o, (my, my) =Yz, (my, my)" =Yz %, (m ) fm,#

Eqs B B .

all, ;zz(ml, my)’ Zaell, :zz(ml, my)" "—'Z:ll, :;(ml , M) if mi#ms,.

X5 2m, m)' = < 0

usz—N(a +Lm) A uél —N(a +Lm)> )

Ue—N(a,+Lm) /\Ue—N(a,+Lm)
Yz o, (m, m)’ < e )

el—N(a1+Lm) /\uez——N(a2+Lm)
s € 0
1 Z(m m) "

Z, ,a
%2 e,—N(a +Lm)/\u51——N(a2+Lm)
0
51,52( <u N(a+Lm)/\u52 N(a+Lm)>
’
Yz o, (m, m) >
ro2 ue N(a2+Lm)/\u£ N(a1+Lm)
0
51, 52( u51~N(a2+Lm) /\uez——N(a1+Lm)
"17“2 .

Ue,—N(ay+Lm) A Ue,—N(a;+Lm)
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For t&7Z introduce also the matrices:

0 _ 2t—2 21
(3.17) MX-——<__q qz_‘11>, My =@—1) <_qq2,_1 :1]2‘ ,
—2___1 P | —2t 2t
(3'18) MY:<q_q_1 g >’ MY<t):(q—2_l)<__z_2t+1 qq—2t+2 >9
0 0 —(@—¢g" -1
0 0 —1 0
3.19 Mz= _ - - |
(3.19) - —1 G-a G-g
-1 0 (@—q"H 0
(3.20) M= L1
+1
qzt___q—Zt q2t—l_|__q—2t+1 _(q2t+1+q—2t—l) _(th_q—Zt)
q2t—l+q—2t+1 q2t—2___q—2t+2 _<q2t_q—21) _(q21—1+q—21+1)
__(q21+1+q—2t—1) _(q2t__q—2t) q21+2_q—2t—2 q2t+1+q—21—1
__(qzz__q—zr) _(th—l+q—2t+1) q2t+l+q—2;—l th_q—Zt

Note that all entries of the matrix M,(¢) are Laurent polynomials in g, i.e. the
numerators are divisible by g>+1.

Computing Im(7T—T) we get the following lemma:

Lemma 3.2 (Normal ordering rules). In AV, there are the following
relations:

(3.2D) Ue—NGa+Lm)) \Ue—NG +Lmy) = — Ue—N(a+Lm,y) Au, ~N(a+Lm)) (mi=m,),

(3.22) X, 5%(my, my) =My » X, (my, my)”

m,;mz] .
+ 2 Mx(®) ¢ XL (ma+t,mi—1)”
=1

(mi=my; £, >6,),

(3.23) Yfz’,,saz(mu my)' =My Yi’lfaz(mz, my)”

my—m;

5]
+ 2 My(®) - YE?

o, (matt, mi—1)”

t=1

(mi1=my; a1>a,),
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e

(3.24) zr.

z.z(ml, my)' =Mz - Z:II,':;(mzy my)”

my—ma

T3 M) - ZE o (my oty my—t)”

ﬂl, llz
t=1

(m1 Zmz; &1 >82; a; >a2).

The relations (3.21-3.24) indeed have the form (3.4), in particular, all wedges u;
Au; in the left-hand-sides satisfy K</ and all wedges in the right-hand-sides are
normally ordered. Note moreover, that every wedge u, /\u; such that k<[ appears
in the left-hand-side of one of the relations. When L =1 the normal ordering rules
are given by (3.21) and (3.22), these relations coincide with the normal ordering
rules of [KMS, eq. (43), (45)].

Proposition 3. 3.
(i) Any wedge from A"V is a linear combination of normally ordered wedges
with coefficients determined by the normal ordering rules (3.21-3.24) applied in each
pair of adjacent factors of N\"Vag.
(ii) Normally ordered wedges form a basis of N\"V.

Proof. (i) follows directly from the definition of A"V .
(ii) Inview of (i) it is enough to prove that normally ordered wedges are linearly
independent. This is proved by specialization g=1. Let wy, ..., w,, be a set of
distinct normally ordered wedges in A"V, and let ¢, ..., t.EVE be the
corresponding pure tensors. Assume that

(3.25) 2 ¢i(@w;=0,

where ¢,(q), ..., cn(q) are non-zero Laurent polynomials in g. Then
n—1 c s
Specializing g to be 1 this gives
n—1 _
(3.27) Z Cj(l)tjez Im(P.+1)C®"Q Vaff,
=1

where Vir=Q[z z7'] ® ¢ Q*®4Q", and P, is the permutation operator for the ith
and i+ 1th factors in ® § V. Since each 4 is a tensor of the form u,, ®ui,® -+ ®
ux where k1, ka, ..., ky is a decreasing sequence, it follows from (3.27) that ¢;(1)
=0 for allj. Therefore each c;(g) has the form (g—1)c;(g)"” where ¢;(g)" is a
Laurent polynomial in q. Equation (3.25) gives now



418 KouicHt TAKEMURA AND DENIs UGLov

(3.28) > ¢i(@) Pw;=0.

Repeating the arguments above we conclude that all cj(g) are divisible by
arbitrarily large powers of (g—1). Therefore all ¢;(g) vanish. O

Lemma 3.4. Let ISm. Then the wedges um Ntim—1 N\ == Ntjry Ny, and
U AU N1\ =+ N == Aupe Nuy are equal to zero.

Proof. As particular cases of relations (3.21-3.24) we have for all kK and N
=2

“qa(kiomodN) Uk+1 /\uk if N>2,

Aue=0, e Nugs1= .
Uk /U Uk /N Uk+1 {_q-luk+1/\uk ifN=1.

The lemma follows by induction from (3.21-3.24). O

§4. The Fock Space

4.1. Definition of the Fock space. For each integer M we define the Fock space
Fy as the inductive limit (n—>o0) of A"V, where maps A"Vue—> A"V, are
given by vi—>v Auy_,. For vE A"V we denote by v Aupy—n ANtipr—n—1/\ -+ the
image of v with respect to the canonical map from A"V to % . Note that for v,
E A"Vatr, Vo) € N Vs, the equality

v(n)/\uM—n/\uM—n—l/\ 0T =V(r)/\uM—r/\uM—r—l/\ ot
holds if and only if there is s =n, 7 such that
V) Nus—n Ntpg—n—1/\ 22 Npy—s 1=V Nty—r Ntdpr—r—1 N\ oo N1

In particular, vy Atp—n Attpr—n—1/\ -+ vanishes if and only if there is s =n such
that v Atpr—n ANtpr—n—1/\ =+ NUpy—s+1 is zero.

For a decreasing sequence of integers (k;>k,> ---) such that k,=M —i+1 for i>
1, we will call the vector ukl/\ukz/\ -+ €%y a (semi-infinite) normally ordered
wedge.

Proposition 4. 1. The normally ordered wedges form a basis of F u.
Proof. For each we& ), there are n, v& A"Vuy such that w=v Auy_, N

Uy—n—1/\ *--. By Proposition 3. 3 the finite normally ordered wedges form a basis
of A"V, therefore w is a linear combination of vectors
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4.1) Ui, ANtig N+ Atbe, Aty—n Nbyg—n—1 A\ =+, where ki >k, > -+ >k,

If k,<M—n, then there is r>n such that ukn/\uM_,,/\uM_,,_l/\ o AUp—r+1
vanishes by Lemma 3. 4. It follows that (4.1) is zero if k,<M —n. Thus the
normally ordered wedges span & .

Suppose Zco,l, kg, ,..>uk1/\uk2/\ -+» =0, where wedges under the sum are normally
ordered and Cley by, . DE K. Then by definition of the inductive limit there exists n
such that X2 Clky, ks ,,,)ukl/\ukz/\ /\uk"=0. Thus linear independence of semi-
infinite normally ordered wedges follows from the linear independence of finite
normally ordered wedges. (]

4.2. The actions of U, (5y) and U,(5.) on the Fock spaces. Define the vacuum
vector of Fy as

| M>:uM/\uM—l/\

Then for each vector w from & there is a sufficiently large integer m such that w
can be represented as

4.2) w=vA | —NLm), where v&E AMTNLm 7 o

For each MEZ we define on % operators E;, F;, Ki*!, D(0<i<N) and E,, F,,
K ', D(0<a<L) and then show, in Theorem 4. 2, that these operators satisfy the
defining relations of U,(sly) and U,(5l.) respectively.
As the first step we define actions of these operators on vectors of the form
| —NLm). Let V=u_ypm/A\U-Nzm—1/\ *** NU—_nLin+D+1. We set

(4.3) D —NLm>=NL@ | —NLm),
(4.4) K, | —NLm)=¢"%9 | —NLm),
4.5) E; | —NLm)=0,

0 if i #0,
(4.6) F; | —NLm>={

FoG)A | =NL(m+1))  ifi=0.
And
(4.7) D | —NLm>=NL-m—(12_—m) | —NLm),

(4.8) K, | —NLm)=¢"°@=9 | —NLm),
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(4.9) E, | —NLm)=0,

. 0 if a #0,
(4.10) Fa [ _NLm>= .
g YF,G)A | —NL(m+1)) if a=0.

Then the actions on an arbitrary vector wE %, are defined by using the
presentation (4.2) and the coproducts (2.8-2.11). Thus forveE A¥™VMm | and w
=yA | —NLm)E % 4 we define

(4.11) DW)=D®)A | —NLm)+vAD | —NLm),
(4.12) K. w)=K;(0)AK; | —NLm),

(4.13) E.(w)=E,(v) AK; | —NLm),

(4.14) Fw)=F®A | —NLm)+K;'(v) AF; | —NLm).
And

(4.15) Dw)=DG)A | —NLm)+vAD | —NLm),
(4.16) K,w)=K,(») AK, | —NLm),

4.17) E,wW)=E,(W) A | —NLm),

(4.18) F,w)=F,0)AK;'| —NLm)+vAF, | —NLm).

It follows from Lemma 3. 4 that the operators E;, F;, K, D and E,, F,, K}', D
are well-defined, that is do not depend on a particular choice of the presentation
(4.2), and for v&E A"V, uE Fy—, satisfy the following relations, analogous to the
coproduct formulas (2.8-2.11):

(4.19) DG Auw)=DW)Nu+vAD@),
(4.20) K. Auw)=K,»)AK:(u),

(4.21) E(wAu)=E; ) AK;(u) +vAE;(),
(4.22) F o Au)=F.0) ANu+K;7'0) AF;(u).
And

(4.23) DG AW =DW) Au+vAD®),
(4.24) K, (v Au)=K,») AK,(u),

(4.25) E.0Aw)=E,(0) Au+K, ) AE, (),
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(4.26) E,6Aw)=E,0) AK 7' (w) +v AF,(u).

Relations ((4.3,4.4), (4.11, 4.12)) and ((4.7, 4.8), (4.15, 4.16)) define the weight
decomposition of the Fock space % ). We have

4.27) wt( | —NLm)) =LAo+NAo+NL ﬂ—(l—z_—’—"l 6+9),

and for y&E AMTNLmY,

(4.28) wtiwA | —=NLm))=wt(v) +wt( | —NLm)).

Theorem 4. 2.
(i) The operators E;, F;, K;, D (0<i<N) define on Fu a structure of an
integrable Uq(aN)-module. And the operators E,, F,, K,, D define on Fy a
structure of an integrable U, (Sl.)-module.
(i) The actions of the subalgebras U,(sly) CU,(5ly) and U, (5l.) CU, (1) on
F u are mutually commutative.

Proof. (i) 1t is straightforward to verify that the relations (2.1-2.4) are
satisfied. In particular, the weights of E;, F; and E, s F, are a;, —a; and &,, —a,
respectively. To prove the relations

Ki_Ki_l . . Ka_K;l
(4.29) (Ei, F1=06;———=, and [E,, F,]=06p——
q9—9 q9—9
it is enough, by (4.12-4.14) and (4.16-4.18), to show that these relations hold
when applied to a vacuum vector of the form | —NLm). If i#j, a#b we have

(E;, F] | —NLm)=0, [E,, F,] | —NLm)=0

because a;—a;+wt( | —NLm)»)(#j) and d&,—d,+wt( | —NLm))(a#b) are
not weights of &% _y1.,. The relations

—K !

(4.30) [E,, F] | —NLm>=% | —NLm)
L K.—K;!

(4.31) (E,, F.] | —NLm>=F | —NLm)

evidently hold by (4.4-4.6), (4.8-4.10) when i#0, a#0. Let a=0. We have
. N .
Fo| —NLm)=q™" ;: qUN-NQ+Lm) NUN—1-NQ+Lm) N "

o AU-N@+Lm—) N 0 AUL-Na+Im) N | N—NQ2+Lm)).
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Then by Lemma 3. 4

.. N . ¢ —q "
E.Fy | —NLmy=q'™" 3, qz('_l) | _NLm>=ﬁT | —NLm).
i=1 —

This shows the relation (4.31) for a=0. The relation (4.30) for i=0 is shown in
a similar way.

Thus E;, F;, K;, D and E,, F,, K,, D satisfy the defining relations (2.1-2.5).
Observe that fori=0, ..., N—1;a=0, ...,L—1and u&EPy+Pr, u+ra;, L +na, are
weights of & for only a finite number of r and n. Therefore & is an integrable
module of U,(sl,),=<E;, F;, K*') and U,(sl,),=<E,, F,, K;'). By Proposition
B. 1 of [KMPY] this implies that the Serre relations (2.6, 2.7) are satisfied.

Eigenspaces of the operator D and eigenspaces of the operator D are finite-

dimensional. Therefore the integrability with respect to each U, (sl,); and U, (sl,),
implies the integrability of % as both U,(sly)-module and U, (sl.)-module.

(i) The Cartan part of U,(&ly) evidently commutes with U,(sl.), and
vice-versa. By (4.12-4.14) and (4.16—4.18) it is enough to prove that commutators
between the other generators vanish when applied to a vector of the form
| —NLm). The relation

[E:, E] | —NLm)=0
is trivially satisfied by (4.5, 4.9). The relations

[F;, E,] | —NLm)=0, [E;, F,] | —NLm)=0

hold because d&,—a;+wt(| —NLm)) and a;—a,+wt(| —NLm)) are not
weights of # _yr.. The relations

[F:, F.] | —NLm)=0

are trivial by (4.6, 4.10) when i#0, a#0; and are verified by using the normal
ordering rules (3.21-3.24) and Lemma 3. 4 in the rest of the cases. I

4.3. The actions of Bosons. We will now define actions of operators B, (nE
Z.+o) (called bosons) on % . Let e, Ng, /\ -+ (ki=M—i+1 fori>>1) be a vector
of #y. By Lemma 3. 4, for n #0 the sum
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(432) (Z" ukl) /\ukz/\uk3/\ R
ukl A (Z" ukz) /\uk3/\ e+
ukl/\ukz/\ (z"uk3) VANREEEE o
+ vee R
contains only a finite number of non-zero terms, and is, therefore, a vector of % .

By Proposition 3. 1 the assignment u, Aug, A\ -+ —> (4.32) defines an operator
on # . We denote this operator B,. By definition we have for vEVyr, uEF 41

(4.33) B,ovAu)=(0E"v) Au+vAB,(u).

Proposition 4. 3. For all n EZ+, the operator B, commutes with the actions of

U, (sly) and U,(SIL).

Proof. 1t follows immediately from the definition, that the weight of B, is
n(5+6). Thus B, commutes with K;, K, (0<i<N, 0<a<L).

Let X be any of the operators E;, F;, E,, F, (0<i<N, 0<a<L). The relations
(4.21, 4.22), (4.25, 4.26) and (4.33) imply now that [B,, X] =0 will follow from
[B., X] | —NLm) =0 for an arbitrary integer m.

If n>0, we have [B.,, X]| —NLm)=0 because n(5+06) *ta,+
wt( | —NLm)) and n(5+6) +d,+wt( | —NLm)) are not weights of F _y..

Let n<0. Consider the expansion

[B., X1 | =NLm) =2 c,ugs Nug /N -

where the wedges in the right-hand-side are normally ordered. Comparing the
weights of the both sides, we obtain for all v the inequality k5> —NLm. Forr=
0 (4.21, 4.22), (4.25, 4.26) and (4.33) give

(4.34) [B.,X] | —NLm)
=U-Nem NU-NLm—1/\ /\u—NL(m+r)—r1/\[Bn,X] | —-NL(m+r)>

where
[B,. s X] | —NL (m +T)> = Z Cuuk'f—NLr/\uk;—NLr/\
Now let r be sufficiently large, so that

ki—NLr< —NLm
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holds for all v. By Lemma 3. 4, the last inequality and k¥—NLr>—NL (m+r)
imply that (4.34) vanishes. U

Proposition 4. 4. There are non-zero 1,(q) EQlq, g '] (independent on M)
such that

(435) [Bn 5 Bn'] :6n+n', 07n (q)

Proof. Each vector of # y(M'EZ) is of the form v A\ | M) where vE A%V,
and k=M’'—M is sufficiently large. By (4.33) we have

(B., B.]J(0A | M))=vA[B,, By] | M).

The vector [B,, B,] | M) vanishes if n+n’>0 because in this case wt( | M)) +
(n+n’) (6+6) is not a weight of Fy.

Let n+n'<0. Write [B,, B,] | M) as the linear combination of normally
ordered wedges:

[Bn’ Bn'] l M>=Z Cuukll’/\uklzi/\

Since [B,, B.] | M) is of the weight wt( | M))+ (n+n") (6+6) with n+n’'<0,
we necessarily have k¥ >M. For any s >0 eq. (4.33) gives

(4-36) [Bn s Bn'] 1 M> =upmNupy—1/\ = Nuyg—nrs+1/\ [Bn s Bn':l | M—NLS>,
where
(B., Bl | M—NLs) =2 cyuig—nzs Nttigg—nrs /N =+

Taking s sufficiently large so that M —k i+ NLs =0 holds for all v above, we have
for all v the inequalities

k%¥—NLs— (M—NLs) >0, and M— (ki{—NLs) >0.

Lemma 3. 4 now shows that (4.36) is zero.

Let now n+n'=0. The vector [B,, B,] | M) has weight wt( | M)). The
weight subspace of this weight is one-dimensional, so we have [B,, B_,] | M) =
Tnu(g) | M) for 7, v(g) EK. Since [B,, B_,] | M)=uy/\[B,, B_,] | M—1),
7, u(g) is independent on M.

The coefficients i (q), ¢ &P (g) in the normal ordering rules (3.4) are Laurent
polynomials in g, hence so are 7,(q). Specializing to g=1 we have 7,(1) =nNL.
Thus all 7,(q) (n EZ+,) are non-zero. O
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Proposition 4.5. IfN=1o0r L=10r n=1, 2, we have for 7,(q) the following
formula:

2Nn1

1—¢
(4.37) (@) =n 1

_ q —2Ln
1 - q—2n .

Proof. The L=1 case is due to [KMS], and the formula for N=1 is obtained
from the formula for L=1 by comparing the normal ordering rules (3.22) and
(3.23). The n=1, 2 case is shown by a direct but lengthy calculation. (First act
with B_, on the vacuum vector, express all terms as linear combinations of the
normally ordered wedges, then act with B, and, again, rewrite the result in terms of
the normally ordered wedges to get the coefficient 7,(q).) O

Conjecture 4. 6. The formula (4.37) is valid for all positive integers N, L, n.

Let H be the Heisenberg algebra generated by {B,},cz 4o With the defining relations
[B., By]=0n+n07.(q). Summarizing this and the previous sections, we have
constructed on each Fock space % an action of the algebra HQU/,(5ly) ®
U, (50.). Note that the action of U, (sly) has level L and the action of U} (sl,)
has level N.

4.4. The decomposition of the Fock space. Let Py and Py (L) be respectively
the set of dominant integral weights of Uy, (sly) and the subset of dominant integral
weights of level LEN:

(4~38) Py= {00/10+01A1+"' Ffay 1Ay | aiEZ>o},

(439) qu\*l— (L> = {aOA0+alAl+"‘+aN~1AN_1 | a,-EZ>0, Z a,~=L}.

For AEPy let V(A) be the irreducible integrable highest weight module of
U;(ETN), and let vyEV(A) be the highest weight vector.

Let A, A,, ..., Ax_1 be the fundamental weights of sly, and let a;=2A;— ;44
—A;-1 1<i<N be the simple roots. Here the indices are cyclically extended to all
integers modulo N, and A,:=0. Let Qy=@¥7'Za; be the root lattice of sly. For
an U, (6ly)-weight A=Y Yo' a,A; we will set A=217"a,A;.

A vector wE F y, is a highest weight vector of HQU,(sIy) ® U, (l,) if it is a
highest weight vector with respect to U, (sy) and U (51.) and is annihilated by B,
with n >0. We will now describe a family of highest weight vectors.

With every A =X Mo a, A,EP (L), such that A=/, mod Qy, we associate
AMepF(N) (e. A™ is a dominant integral weight of U,(sI.) of level N) as
follows. Let M=s mod NL(0<s<NL), and let [,=1,> ... =y be the partition
defined by the relations:
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(4.40) i—li=a; (1<i<N),
(44D li+5+ - +Iy=s+NL.

Note that all /; are integers, and that Iy >0. Then we set
(4.42) /1<M>:=_/'111+A12+...+A1N_
Recall that the indices of the fundamental weights are cyclically extended to all

integers modulo L. Consider the Young diagram of [; =1, > ... =Iy (Fig. 1). We
set the coordinates (x, y) of the lowest leftmost square to be (1, 1).

h

bl

3

- g

z

Fig. 1

Introduce a numbering of squares of the Young diagram by 1, 2, ..., s+NL by
requiring that the numbers assigned to squares in the bottom row of a pair of any
adjacent rows are greater than the numbers assigned to squares in the top row, and
that the numbers increase from right to left within each row (cf. the example
below). Letting (x;, y:) to be the coordinates of the ith square, set k;=x;,+N(y;,—
L—1)+M—s. Then k;>k;+; for alli=1, 2, ..., s+NL—1. Now define

(4.43) ba=ur, Nugy\ =+ Aug o N | M—s—NL).
Note that ¢, EFy, and ¢, is a normally ordered wedge.
Example 4.7. Let N=3, L=2, and M=0. The set {A€P;(2) | A=0

mod Qs} contains the two weights: 2/\o and A+, only. The corresponding weights
of U,(S1.) and the numbered Young diagrams are shown below.
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A=2Aol A:A1+A2:
A(O):3A0 A(O):Ao+2/il
(1]
3(2]1 3|2
6]5]4 6|5]4]

Proposition 4.8. For each ASP} (L) such that A=A, mod Qy, ¢, is a
highest weight vector of HQU,(sly) U, (sl.). The U,(sly)-weight of ¢4 is A,
and the U, (T.)-weight of ¢ is A™,

Proof. The weights of ¢, are given by (4.27, 4.28). To prove that ¢, is
annihilated by E;, E, and B, (n >0) we use the following lemma.

Lemma 4.9. Keeping /A as in the statement of Proposition 4.8, define the
decreasing sequence ki, ki, ... from ¢a=ux Nug, N\ -

(444) ukl/\ukm = Z Ca, kl,ua/\ukl, where o >k1’ Zkl
7

Proof. Define &, ax,, m, (ISz-:kISN, 1<a,<L, mkiEZ) by k,:eki—N(aki
+Lmki). Using the normal ordering rules, we have

(445) ukl/\ukm= Z ca,,gua/\uﬁ,

where k,, =a >8>k, and azaki—N(aki,-%Lma), ,BZEkj—N(akj,+Lmﬁ), Lji,je
{I, m}, i#j, i’ #j’, m,, mgEZ. From the explicit expression for ¢, (cf. 4.43) it
follows that there is at most one integer 7 such that y=g,—N (aki,+Lm,) G,i'e
k, I}, m,=Z), k;<y<k, and y #k;. Moreover, if the integer 7 exists, then a;#a,,,
&1>¢en and y=ey,—N(ay,+L (my, +06(ar,<ar,))). Note that 7 is the maximal
element of the set {7 | 7'=5ki—N(aki,+Lm7'), Li'elkl},mEZ k<y<kn}. If
the 7 exists, then 8 in (4.45) is distinct from 7. Therefore 8=k, for some I’ such
that ky>k;, and the lemma follows. O

Now we continue the proof of Proposition 4. 8. From the definition of ¢; it follows
that E;¢,, E.¢, and B, ¢,(n >0) are linear combinations of vectors of the form

(446) ukl/\ e /\uki_l/\ukj/\ukiﬂ/\ see /\ukj/\....

Applying Lemma 4. 9 repeatedly, we conclude that vectors (4.46) are all zero. [ ]

Let KLH_] be the Fock module of H. That is K[H_] is the H-module generated
by the vector 1 with the defining relations B, 1=0 for n >0.
By Theorem 4.2, %y is an integrable module of U,(sly) and U,(sl.).
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Therefore it is semisimple relative to the algebra H ®U;(§TN) U, (5IL).
Proposition 4. 8 now implies that we have an injective HQ U/, (sly) ® U, (&l.)-
linear homomorphism

(4.47) @D K[H-1®V (D) ®VAM)—>7Fy

{A€P; (L) | A=Ay mod On}

sending 1®va®v ) to ¢4. It is known (cf. [F 1] [Theorem 1. 6]) that (4.47)
specializes to an isomorphism when g=1. The characters of K[H_], V(A),
V(A®), and % remain unchanged when g is specialized to 1. Therefore (4.47)
is an isomorphism. Summarizing, we have the following theorem.

Theorem 4. 10. There is an isomorphism of H®U,;(sly) ® U, (5l.)-modules:

(4.48) Fu

In

P K[H_-1®V(A)QV(AM),

{A€Pi(L) | A=Ay mod @i}

§5. The Toroidal Hecke Algebra and the Quantum Toroidal Algebra

5.1. 1Toroidal Hecke algebra. From now on we will work over t}}e base field
Q(g®) rather than Q(g). Until the end of the paper we put K=Q(g>). Clearly,
all results of the preceding sections hold for this K.

The toroidal Hecke algebra of type gl,, H,, [VV1, VV2] is a unital associative
algebra over K with the generators x™!, 7!, X!, Y;*!, 1<i<n, 1<j<n. The
defining relations involving T;*!, X *! are those of the affine Hecke algebra (2.20~
2.23), and the rest of the relations are as follows:

the elements x*! are central, xx '=x"'x=1,
VY '=Y;'Y,=1, Y.Y,=YY:,
T,'_IYiT,'_lzq_z }’H-l, T,I’]:Y‘]T‘, lf];él, i+1.

XX, - X)) Y =xY, (X1 X, - X)), X, Y 'X;'Y, =q *T1.

The subalgebras of H, generated by T*!, X' and by T*!, Y;*! are both isomorphic
to the affine Hecke algebra H, (cf. [VV1], [VV2]).

Following [C2] we introduce a representation of the toroidal Hecke algebra on the
space (K[z"']QKH®*=K[z{!, ..., zZ']J®(KL)®". This representation is an
extension of the representation of H,,_= {T;"', X;» described in Section 2. 2.

Letv=X%_,v(a)e,, wheree,=A,—A,;, be an integral weight of sl (v(a) €
7). Define ¢ €End (K [z*'] ® KL) as follows:

\ —
qv (zm ea) zqu(L+l a)zm e,
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Here the basis e, ..., e, of K’ is the same as in Section 2. 1. For p&q” define p®
EEnd (K [z*'] ® KL) as

pP(Z™e,) =p™z™e,.

For i=1, 2, ..., n—1 let 5; be the permutation operator of factors i and i+1 in
(K[z*']®K~)®", and let T; ;+,=—q(T;) ~'. Here T is the generator of the finite
Hecke algebra defined in (2.25). For X€End (K [z*'] ® KE) let

X);=1°"Dex®1°-VcEnd(K[z*!] @ KL)®"

Fori=1,2, ...,n define the matrix analogue of the Cherednik-Dunkl operator [C2] as
(5.1) Y®=T by Toliasnoisnz - s10Pi(@" )i Ty2 o Tioa, e
Lets={0, 1, ..., NL—1} and mE&Z be defined from n=s+NLm. Put n=Nm.

Proposition 5.1 ([C2]). The map

T—>T, Xz, Yi—>q2Y®, x+—pl

extends to a right representation of H, on (K[z*']Q K)®".

Remark. The normalizing factor ¢ % in the map Y; ——> ¢ 2Y{ above
clearly can be replaced by any coefficient in K. The adopted choice of this factor

makes ¢ 2Y ™ to behave appropriately (see Proposition 6.3) with respect to
increments of n by steps of the value NL.

Let y=>%_,x(a)e, be an integral weight of sl.. Let U,(b.)* be the non-unital
subalgebra of U} (sl,) generated by the elements

(5.2) Fo,Fy,..,F,_, and K,—g*@2@*V1 (g=1,...,L—1).

We define an action of U, (5I.) on K{z*'] ® K. by the obvious restriction of the
action on K[z*!'] ® KL® K" defined in (2.16-2.18). Iterating the coproduct 4~
given in (2.8-2.10) we obtain an action of U,(sl.) on (K[z*'] ® KE)®".

Proposition 5.2. Suppose p=q %, and v=—x—20, where p=2 L] /Lla.
Then the action of the toroidal Hecke algebra on (K[z*']®KL)®" defined in
Proposition 5. 1 leaves invariant the subspace U, (b )*((K[z*'] @ K-)®").

Proof. 1t is clear that the multiplfcation by z;, and hence action of X;
commutes with all generators of U,(s[.). From the intertwining property of the
R-matrix it follows that the operators T; (cf. 2.24) commute with all generators of



430 KouicHl TAKEMURA AND DENIs UGLov
U, (&0.) as well. With p=¢~%, and v=—y —2p0, a direct computation gives
Y PF,=((g"® V1 —K)K T FDn KD +F.KD)Y®  (@=1, ..., L—1),

Y;E")Fo=((qu_xm 1—K)K 5 ' (Fo)n Ko)n+Fo(Ko)n)Y ™.

In view of the relation T, Y ]c",-=q2 Y, and the commutativity of T, with the
generators of U, (5I.), this shows that for all i the operators ¥ leave the image

of U, (b.)* invariant. [

5.2. The quantum toroidal algebra. Fix an integer N =3. The quantum toroidal
algebra of type sly, U, is an associative unital algebra over K with generators:

+1 *+4c +1
Ei,k’ E,ks Hi,l; Ki ’ q T’ d ’

where kEZ, IEZ\{0} and i=0, 1, ..., N—1. The generators ¢~ ** and d*! are
central. The rest of the defining relations are expressed in terms of the formal series

E@) =X E.z% F@) =Y F, ™% K@ =K exp(£ (q—q ) T H,1z™),
kEZ kEZ k=1

as follows:

(5.3) KK '=K['Ki=q*¢q *c=q T¢q7c=dd '=d " 'd=1,

(5.4) KF @K W) =K WK F' @)

(5.5) 0-0,(a78" 2 ) K7 @K, W) =0, (¢°™ ) K;* WK @)
(5.6) K= @E W) =0z,,(¢" +d "W z)EWK [ @)

(5.7 KF@FW)=0:0,(g d w2 )FEWK @)

(5.8) [EG), Fw)=6, ﬁ {6l D)k @ w)—o(e 5)ki @+ 2)}
(5.9 @"z—q Tw)E,@)E;(w)=(q"1d" z—w)E;(w)E;(z)

(5.10) @"z—q TWFE@QFEW)=(q “d"iz—w)F,W)Fi(z)

(5.11) Z i (=1 fm:] Ei(zo(l)) Ei(za(r)>Ej(w)Ei(za(r+l)) Ei(za(m)) =0

0EG, r=0 |_ r
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1) T3 (-1 [ ]F@a(n) « Fi ot ) E; ) F:Gor1y) * Fizotm) =0

0EG, r=0

where in (5.11) and (5.12) i#j and m=1—aj;.

In these defining relations §(z) =X ;> —«2", 6,(z) EK[[z]] is the expansion of
zzq qm , a; are the entries of the Cartan matrix of sly, and my; are the entries of the

following N X N-matrix

O -
- O
.o |

—
(>l e]
(oo}

o
[« 0
o

|
—_

0 sese
-1 0 0o - 1 0
Let U, be the subalgebra of U generated by the elements E; o, F; o, K;"'(0<i<N).

These elements satisfy the defining relations (2.1-2.3) and (2.5-2.7) of U, (sIy).
Thus the following map extends to a homomorphism of algebras:

(5.13) U,(sly) > Uy E;—>E; o, Fi——>F, o, K'+——K"\

Let U, be the subalgebra of U generated by the elements E; ¢, F; «, H; ;, K (1<
i<N;kEZ;1EZ,,), and ¢~ *¢, d*'. Recall, that apart from the presentation given
in Section 2. 1, the algebra U, (sly) has the “new presentation” due to Drinfeld
which is similar to that one of U above. A proof of the isomorphism between the
two presentations is announced in [D] and given in [B]. Let E, «, Fi ,, H,;, K",
(1<i<N;kEZ; IEZ ), and ¢* +° be the generators of U, (sly) in the realization
of [D]. Comparing this realization of U, (sly) with the defining relations of U one
easily sees that the map

(5.19) U;(sly) = U,: B d*“E,y, F,x+——>d*F,,, H, ——d'H,,

where 1<i<N, extends to a homomorphism of algebras. Thus each module of U
carries two action of U/, (sly) obtained by pull-backs through the homomorphisms
(5.13) and (5.14). We will say that a module of U has level (I, I,) provided the
action of U}, (sly) obtained through the homomorphism (5.13) has level I, and the
action of U,,(/TN) obtained through the homomorphism (5.14) has level I,. On
such a module the central elements g~ *¢ act as multlpllcatlons by q = *, and the
element KoK --- Ky_; acts as the multiplication by q .
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The following proposition, proved in [VV1], shows that it is sometimes
possible to extend a representation of U/ (sly) to a representation of U.

Proposition 5.3. Let W be a module of U;(ETN). Suppose that there are a, b
€q%, and an invertible $=End (W) such that

(5.15) ¢E@$=Ei-1(a2), ¢TE\@F=Ey-(b2),
(5.16) 9 E@F=Fi-1(az), §F@P=Fy-.(b2),
(5.17 ¢RF@Dg=Kiti(a2), $RT@DF=Ki-1(b2),

where 2<i<N. Then W is a U-module with the action given by

X,@)=Xdz) (U<i<N), Xo@=¢ 'Xi(a"'d"'2)¢,
d=d1l, gq*°=¢*"

where d¥=b/a?, and X=E, F, K™,

5.3. The Varagnolo-Vasserot duality. We now briefly review, following [VV1],
the Schur-type duality between the toroidal Hecke algebra H, and the quantum
toroidal algebra U.

Let M be a right ﬂ,,-module, such that the central element x of i—i,, acts as the
multiplication by x Eg%. The algebra H, contains two subalgebras: H=<{T{"!, X,
and H = (T}, Y;) both isomorphic to the affine Hecke algebra K, . Therefore the
duality functor of Chari-Pressley [CP] yields two actions of U, (sly) on the linear
space M®y, (IK")®". Here the action of the finite Hecke algebra H, on (K*)®"
is given by (2.27), and H, is embedded into H, as the subalgebra generated by T/,

Fori,j=1, ..., Nlete,;©End (K") be the matrix units with respect to the basis
1, Dy, ..., by (cf. Section 2. 1). Fori=0, 1, ..., N—1letk;=¢ ™" “*%'*! where the
indices are cyclically extended modulo N. For XEnd(K") we put (X),=1®¢"V
RX® 180D,

The functor of [CP] applied to M considered as the H%-module gives the
following action of U, (sly) on M®HH(KN )&,

(5- 18) E; (m ®V) = Z me's(i:o) ® (ei, i+1)j (ki)j—H (ki)j+2 (ki)nV,
(5.19) F(m®v) =Z mX;°0=0® (g1, ); (kD1 ki Dz o kT D-w,
(5.20) Km®v)=m® k)1(k)s -+ k).

Here mEM, v& (KKY)®", and the indices are cyclically extended modulo N.
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Likewise, application of this functor to M considered as the H-module gives
another action of U,(5ly) on M®Hn(KN )®n.

(5.21) Ei(m ®V> = 2 "‘ll"j—‘s(izo)® (ei, i+1)j(ki)j+1(ki)j+2 (ki)nV,
(522 Fm®) =3 mYIO® e, ki ik Dz e Dy,
(5-23) Iei(m ®V) =m® (ki)l(ki)Z (ki)nv-

Here we put hats over the generators in order to distinguish the actions given by
(5.18-5.20) and (5.21-5.23).

Varagnolo and Vasserot have proven, in [VV1], that M®q (KY)®" is a
U-module such that the U} (&ly)-action (5.18-5.20) is the pull-back through the
homomorphism (5.13), and the U,(sly)-action (5.21-5.23) is the pull-back
through the homomorphism (5.14). Let us recall here the main element of their
proof.

Let ¢ be the endomorphism of M®H"(KN )®" defined by
(5.24) ¢: mQ@u,, v, ® - ®v, >
le_‘FN, 61X2_6N’ €2 eee Xn_aN’ En ®D51+1 ®D52‘Y‘1 ® ot ®Dan+1 ’
where vy is identified with v;. Taking into account the defining relations of H,
one can confirm that ¢ is well-defined.
Let E, «, F,«, H,;, K (kEZ; IEZ+; 1<i<N) be the generators of the
U, (sly)-action (5.21-5.23) obtained from E;, F;, K' (0<j<N) by the

isomorphism between the two realizations of U,(sly) given in [B]. Let E;(z),
F.(2), K (z) be the corresponding generating series.

Proposition 5.4 ([VV1]). The following relations hold in M®Hn(lKN ) ®m.

(5.25) ¢'Ei@)¢=E_(q"'2), ¢E @) =Ey_1(x"'¢" %),
(5.26) ¢ 'F@)¢=F_(q '2), G @QP=Fy_1(x 7' 2),
(5.27) ¢ 'R @)¢=Kt:(@q '), ¢ RT@)P*=K - 1(x7'gV " %2).

Here 2<i<N.

Proposition 5. 3 now implies that M®y (IK")®" is a U-module, in particular, the
central element d acts as the multiplication by x """, and the central element g* ¢
acts as the multiplication by 1.
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5.4. The action of the quantum toroidal algebra on the wedge product. In the
framework of the preceding section, let M= (K [z*'] ® KX)®" be the H,-module
with the action given in Proposition 5.1. In view of the remark made in Section 3.1,
the linear space M®y (KV)®" is isomorphic to the wedge product A"Ve.
Therefore, by the Varagnolo-Vasserot duality, A"V, is a module of U. The action
of U,(sly) given by (5.18-5.20) coincides with the action of U (sly) defined on
A"V in Section 3. 1. Following the terminology of [VV2], we will call this action
the horizontal action of U, (5ly) on A"V,g. The formulas (5.21-5.23) give another
action of U, (sly) on A"V, we will refer to this action as the vertical action.

Recall, that in Section 3.1 an action of U,(sl.), commutative with the
horizontal action of U, (sly), was defined on A"V,x. Recall, as well, that for each
integral weight x of sl; we have defined, in Section 5. 1, the subalgebra U, (b.)* of
U,(s.). The H,-module structure defined in Proposition 5. 1 depends on two
parameters: v which is an integral weight of sl., and p&qZ% The same parameters
thus enter into the U-module structure on A"V.

Proposition 5. 5. Suppose p=q >, and v=—) — 20 for an integral sl;-weight
% Then the action of U on A"V. leaves invariant the linear subspace
U, (b)*(A"Vase)

Proof. Tt is not difficult to see, that the subalgebras U, and U, generate U (cf.
Lemma 2 in [STU]). Therefore, to prove the proposition, it is enough to show,
that both the horizontal and the vertical actions of U,(5ly) on A"V, leave
U, (bL)*(A"V.) invariant. However, the horizontal action commutes with the
action of U,(sl.), while Proposition 5.2 implies that the vertical action leaves
U, (b.)*(A"V) invariant. N

§6. The Actions of the Quantum Toroidal Algebra on the Fock Spaces
and on Irreducible Integrable Highest Weight Modules of U/, (gly)

6.1. A level 0 action of U,(sly) on the Fock space. Let 7%y: U,(Sly) —
End(A"V.) be the map defining the vertical action of U,(5ly) on the wedge
product A"V,. In accordance with (5.21-5.23), for f& (K[z* ) @ KL)®" and veE
(K¥)®" we have

61 7t (E) - AFY)
= A2 (@ 2Y) OFD Ceyey ks (g (v,

6.2) @ F) - AN(f®V)
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=N le (q_—'":Yj("))a(FO)f@ (ei+l,i)j(k i_1>1(k 1_1)2 (k i—l)j—lvy
7=

6.3) 7w &) « A(fRV)=Af® k) 1(k)2 -+ (kdw,

where we denote by A the canonical map from V= (K[z*'] @ KE)®"®@ (KV)®"
to A"Vt

In this section, for each MEZ, we define a level 0 action of U/, (sly) on the
Fock space & . Informally, this action arises as the limit n—>co of the vertical
action (6.1-6.3) on the wedge product. In parallel with the finite case, the Fock
space, thus admits two actions of U}, (sl): the level L action defined in Section 4.2
as the inductive limit of the horizontal action, and an extra action with level zero.

We start by introducing a grading on &y . To facilitate this, we adopt the
following notational convention. For each integer k we define the unique triple k,
K, k, where k€ {1, 2, ..., N}, kE{1, 2, ..., L}, kEZ by

k=k—N(k+LEk).

Then (cf. Section 3. 2) we have u, =z%e; vy . The Fock space %y has a basis formed
by normally ordered semi-infinite wedges wu, Auk,/\ --- where the decreasing
sequence of momenta k1, k», ... satisfies the asymptotic condition k,=M —i—+1 for
i>1. Let oy, 01, ... be the sequence of momenta labeling the vacuum vector |M)
of Fy,i.e.:0,=M—i+1 for alli =1. Define the degree of a semi-infinite normally
ordered wedge by

(6.4) deg ux A, \ +++= > 0i—k;.
=21 — -

Let #% be the homogeneous component of %y of degree d. Clearly, the
asymptotic condition k;=M —i+1(>>1) implies that

Fu=D F4.
d=0

Let s€{0, 1, ..., NL—1} be defined from M=s mod NL. For a non-negative
integer I we define the linear subspace Vi, ;4w of ATV by

(6.5) VM,s-HNL:k @ Kuie, Auiey N = N

where the wedges in the right-hand side are assumed to be normally ordered. For
s=I1=0 we put Vi, s+ =K. The vector space (6.5) has a grading similar to that
one of the Fock space. Now the degree of a normally ordered wedge is defined as
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s+INL

(66) deg ukl/\ukz/\ o /\ukSHNL: Z Oi—ki.

-1 — —

Note that this degree is necessarily a non-negative integer since k; >k, > -** >ksnr
and K+ < 0g+inz imply k; < o; for all i=1, 2, ..., s+INL. Let V%, i be the
homogeneous component of VM:+INL of degree d.

For non-negative integers d and / introduce the following linear map:

(67) Q‘]’ V)du,s-HNL - .97%4 whkE—wA | M_S_INL>

The proof of the following proposition is straightforward (cf. Proposition 16 in
[STU], or Proposition 3. 3 in [U]).

Proposition 6. 1. Suppose | =d. Then of is an isomorphism of vector spaces.

In view of this proposition, it is clear that for non-negative integers d, I, m, such
that d <I<m, the linear map

(6-8) led,m: Vﬁl,sHNL g Vﬁ{,meL:

W WA Uy —s—inL NUpt—s—iNL—1/\ " NUp—s—mNL+1

is an isomorphism of vector spaces as well.
Now let us return to the vertical action 7%, of U,(sly) on A"V, given by
(6.1-6.3).

Proposition 6.2. For each d=0, 1, ... the subspace Vi ;-ive. C N TNV e is
invariant with respect to the action 7'+iyr).

Proof. Let n=s+INL, and let us identify V¥ with K[z{}, ..., z;']®
(KL)®"® (IKY)®" by the isomorphism

m m m m
z ‘e,,ln£1® "t @z "eg D F>Zy | Zy " € De vt Dg .

n

Then Vi, s+ is the image, with respect to the quotient map A: V& — A"V, of
the subspace

(6.9) @ z) 2 Kzi, .z 1@ (RO @ (KM CV F,

while the grading on Vy, ;4. is induced from the grading of (6.9) by eigenvalues
of the operator D=z, azi. +-tz, a,i,-

The operators Y ™ leave (z; - z,) 2 K[z 1, ..., z; '] ® (K-)®" invariant, and
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commute with D. Now (6.1-6.3) imply the statement of the proposition. ]

Proposition 6.3. Let 0<d<I, let n=s+INL, and let X be any of the
generators E;, F;, K'(0<i<N) of U,(sly). Then the following intertwining
relation holds for all WEV Y, s+

(6.10) 7Tv(n+NL)(X) ° Q?{lﬂ(w) :in,zﬂ(ﬂ‘&n)(X) - w).

Consequently, for 0<d<I1<m the map 0} . defined in (6.8) is an isomorphism of
U, (sly)-modules.

Proof. The proof is based, in particular, on Lemma 6. 4, to state which we
introduce the following notation. For m= (m,, m,, ..., m,) EZ", and a= (a,, a,,
v @)E{L, 2, ..., L}" let

&(m, a)=p™ig T TR™D 1.2 . n)

where p, v are the parameters of the representation of H, introduced in Section 5.
1, and g;(m, a) = —H {j<i | m<m;, g;=a} + H {j<i | m;=Zm;, a;=a} +H {j>
) | mj>mi, aj=a,-} _# {]>l [ m,~<m;, a,-=a,~}.

Lemma 6.4. For k=1, 2, ... consider the following monomial

f=z1"2," ...z,,"k‘,?"@eale‘,2 eK[zi, ...,z @ (KE) @0,

e‘1n+k
Assume that m,, m,, ..., My <My 1 =My 2= =My = M, and that a,.;<a,+; for
1<i<j<k. Forje={1,2,..,L} putn(j)=%H1{i | anri=j, 1<i<k}.

Define the linear subspaces A7y, L C K[z, ..., z”k]@(KL)@(Hk) as
Jfollows:

A=K zn+k+"®e | ee (KD mi,...,muw
<m,#{m, mi=m} <k},
me=K {1 z,.+k+"®eb1 &, ., | My, amu<mymii, .., moc=m;

Aj<anik s.t. H i | basi=j, 1<i<k} >n(j)}.
Then
(Y (H=L(m, a)* fmod (A 7+ 200 (G=n+1,n+2,..,n+k),
¥Ry (=g T PEP) () mod T+ L0 (=12, ..., n).

Here m=(m,, ..., My+1), a= (a1, ..., Gu+i), and in the right-hand side of the last
equation (Y V)" act on the first n factors of the monomial f.

A proof of the lemma is given in {TU] for L=1. A proof for general L is quite
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similar and will be omitted here.
Let w be a normally ordered wedge from V4 ,, and let w=p0%,.,(w). The
vector W is a normally ordered wedge from V4 ,+x., we have

(6.11) W= AN, N\ - /\ukn+NL=/\(f®v)’
where
(6.12) =Gz 28 @osr *** Zaaa)"®
® (e ek, - ek, ) (01w er) (e o+ e5) ... (e -+~ er),
N times N times N times

(6.13)  v={(vg vg - &) (oyoy—1 " 0y) ... (yOy_; =+ p) E (KV)PCHND,

L copies

and M =0,+1=0n+2= *** =0,+nz. The monomial f given by (6.12) satisfies the
assumptions of Lemma 6.4 with k=NL, and n(j) =N for allj= {1, 2, ..., L}. Let
A"y and L7y be the corresponding subspaces of K([zi!, ..., z;3iw]®
(KL) ®(n +NL).

Lemma 6.5. Let y= (KY)®®™¥D gnd let fiEAX 7 e, LEL T xe. Then

(i) /\(fl®}’)e®d’>l Vﬂ,wNL,
(ii) A (£,®y)=0.

Proof. This lemma is the special case (b=L and ¢c=N) of Lemma 6. 8. See
the proof of Lemma 6. 8. ]

Now we continue the proof of the proposition. From the definitions (6.1-6.3) and
Lemmas 3.4, 6.4 and 6. 5, it follows that (6.10) holds modulo @y s V% ninr .
However, the both sides of (6.10) belong to ¥4 .+ since the action of U;(?TN)
preserves the degree d. Hence (6.10) holds exactly. N

Now we are ready to give the definition of the level 0 action of U, (sly) on the
Fock space # .

Definition 6.6. Let 0<d<I We define a U,(sly)-action n’: U,(5ly) —>
End(F %) as

7 (X) =0f o 2y X)) © (D' XEUGIY).

By Proposition 6. 3 this definition does not depend on the choice of | as long as | =d.
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Thus a U,’,(ETN)-action is defined on each homogeneous component % %, and
hence on the entire Fock space & .

6.2. The action of the quantum toroidal algebra on the Fock space. In Section
4.2 we defined a level L action of U,(sly) on %. Let us denote by 7" the
corresponding map U;(ETN) — End(%4). We refer to n" as the horizontal
U, (5ly)-action on the Fock space. In the preceding section we defined another—
level 0—action 7’: U, (5ly) — End(F»). We call 7’ the vertical U (sly)-action.
Note that fori=1, 2, ..., N—1 we have

" (E)=r(E), n"(F)=nrF), ="K)=rK),
i.e. the restrictions of 7* and 7’ on the subalgebra U,(sly) coincide.

In this section we show that 7" and 7’ are extended to an action 7 of the
quantum toroidal algebra U, such that z"* is the pull-back of 7# through the
homomorphism (5.13), and 7’ is the pull-back of 7 through the homomorphism
(5.14). The definition of 7 is based on Proposition 5. 3.

Let ¢ A"Vae —> A"V be the map (5.24) for M= (K [z*!'] ® KX)®". That is

(6.14) Dy zm‘e,,llael/\zm2 98 SVANREE Nz™ e, De, >

Mm%, N my=0, N .. my~0 N
v Ve, Ve 41 /\Z 27, D, i\ m Az w ey De +1,

where vy4; is identified with v;. Let F=@yF . We define a semi-infinite
analogue ¢ =End (%) of ¢, as follows. For m EZ we let

G | —mNLY=z""e; 0, AZ" 1oy A\ -+ A2" lep oy A | —mNL).

Any vector in & can be presented in the form vA | —mNL), where v&E A"V for
suitable n and m. Then we set

YA | =mNL))=¢,(») N¢pos | —mNL).

By using the normal ordering rules it is not difficult to verify that ¢ is well-defined
(does not depend on the choice of m). Note that ¢o: Fy — F 11, and that do
is invertible. Moreover

(6.15) ¢ XD Yo =1"Xi-1) @=0,1, ..., N—1),

where X =E, F, K and the indices are cyclically extended modulo N.
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Proposition 6. 7. For each vector wE %y we have

6.16) ¢rEX@)pW)=r"X_1(g7'2)) (W), (Q<isSN—1D),
6.17) ¢ Xi@)oiw) =" Ey_1(p~'g"22)) W),

where X=E, F, K*.
Proof. To prove the proposition we use the following lemmas.

Lemma 6.8. Let 0<d<I, n=s+INL, where M=s mod N,s< {0, 1, ..., NL
—1}. Let w=z% e, nk—l/\z% e, g /\ *o /\z# e;, Ok be a normally ordered wedge
from Vi, ., let b, c be integers such that 1<b<L, 1<c<N. We define fEK[z{",
cerr Zihe] @ (IKE) @5 g5 follows.

k k. k
(6.18) f=G3z32 238 @atr ** Zusne)™
® (eg ex, - eg ) (er - e) (e -+ eg) ... (&5 °+ &),
¢ times ¢ times ¢ times
where M =0p+1=0p+2="""=0n+c. The monomial f given by (6.18) satisfies the

assumptions of Lemma 6. 4 with k=bc, and n(j) =c for all jE{1, 2, ..., b}. Let
A7 o and L7 . be the corresponding subspaces of K[z, ..., z 5] ® (KE) ®¢+ee),

Lety=y®® (0, ® -+ Qv ) E(K")*"® (K")®* such that N—c+1<&sN
(1<i<bc), and let fFEAX T b, LEL 4. Then

(1) N (f[i®Y) E@u>iV i, ntbes
@) A (f/2®y) =0.

Proof.
(i) The vector A (fi®y) is a linear combination of normally ordered wedges

u(ki)Zukl/\ukz/\ /\ukn/\uknﬂ/\ /\uk"+bc

such that k,+1<0,+1. This inequality implies that deg Uk =[+1.
(ii) It is sufficient to show that

(6.19) A (&g, €ay " €, @D D, =+ 0, JE NPV g

is zero whenever there is JE {1, 2, ..., b} such that F {i | 1<i<bc, a;=J} >c.
Using the normal ordering rules (3.21-3.24) one can write (6.19) as a linear
combination of the normally ordered wedges eq; v; /\eq; Dy A ==+ Aeg g .

The U, (sly) and U, (sl.)-weights of the both sides in the normal ordering rules
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are equal. This implies that # {i | a;=J} >c and H{j | 3 i, ei=j, a;=J} <c.
Therefore, there exists some i such that a;=a;;, and £;=¢€;+;. On the other hand,
we know that e, v ey vy =0. This implies that N (f,®y) =0. O

Lemma 6. 9. Suppose d and I are integers such that 0Sd<I Let n=s+INL,
where s {0, 1, ..., NL — 1} is defined from M=s mod NL. Let m be the integer such

that M—s—INL =—mNL.
For 1<b<L we put

Vo, n=2Z" e Dy N\Z" e oy /\ - AZ" ey 1y,
Vo, N—1=2" 1 OyAZ" e Dy 1 AZ" e, Oy A\Z" 0y A\ - AZ" e, oy AZm ey 0y .

Assume vEVYy sriv. Then

(6.20) o0y X (@) 0 A, ) =70y (Xi(2)) 0) A, v,
(6.21) T (n+26) (XN—I(Z)) ¢ AVo, N—1) =Tn) Eyv-1@) ) AVp, N—1
Here 1<i<N-—2.

For the proof, see the appendix.
Retaining the notations introduced in the statement of the above lemma, we
continue the proof of the proposition. We may assume that wE.% 4. Then, by
Proposition 6. 1, w=vA | —mNL), where v&EV% ;.. By Definition 6. 6, for 2
<iSN—1 we have
(6.22) w&Xio(@ ')A | —mNL)) =1y Xi-1(g"'2)) @) A | —mNL).
The definition of ¢ yields

| =mNL)=v, yN¢$p ' | —mNL),

where v, y is defined in the statement of Lemma 6. 9. Applying (6.20) in this
lemma, we have

Ty Xic1(@7'2)) O A v) =7 Xi—1(g7'2)) 0) Avr, i

Taking this, and Proposition 5. 4 into account, we find that the right-hand side of
(6.22) equals

Gate sy K@) nir O Ave, y) NP &' | —mNL),
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which in turn is equal, by definition of ¢, to

(6.23) ¢ (@) X @) Pnsr O Ave, ) A | —mNL)).

It is clear, that ¢,..(WAvL y) EV%.r .+ for some non-negative integer d’.

Choosing now m large enough, or, equivalently, / large enough (cf. the statement
of Lemma 6. 9), we have by Definition 6. 6:

n+L) (Xi(z))¢n+L (V /\VL,N) A ‘ —mNL> = (X’:(Z)) (¢n+L (V /\VL,N) AN | _mNL>)-
Since ¢ WA | —=mNL)) =¢,+. v Ave, y) A | —mNL), we find that (6.23) equals
o' X@)p (WA | —mNL)).
Thus (6.16) is proved.
A proof of (6.17) is similar. Here the essential ingredients are the relation
(6.21), and those relations of Proposition 5. 4 which contain the square of ¢. []

Now by Propositions 5. 3 and 6. 7 we obtain

Theorem 6. 10. The following map extends to a representation of U on F y.

(6.24) Xz +—— rXdz) (1<i<N),
(6.25) i Xo(z) F— ¢'rXilgd '2))¢o,
(6.26) i d — dl,

(6.27) mgtc > 1.

Here d=p g, and X=E, F, K*.

From (6.24) it follows that the vertical (level 0) U}, (sly)-action 7’ is the pull-
back of # through the homomorphism (5.14). Whereas from (6.25) and (6.15) it
follows that the horizontal (level L) U/, (5ly)-action z* the pull-back of 7 through
the homomorphism (5.13). Thus as an U-module the Fock space % has level
(0, L) (cf. Section 5. 2).

6.3. The actions of the quantum toroidal algebra on irreducible integrable highest
weight modules of U,(gly). Let /A be a level L dominant integral weight of
U, (&ly). In this section we define an action of the quantum toroidal algebra U on
the irreducible module

(6.28) V) =K[H-1®V)
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of the algebra U/, (gly) =H®U,(5ly). Here (cf. Section 4. 4) K [H_] is the Fock
module of the Heisenberg algebra H, and V' (A) is the irreducible highest weight
module of U,(sly) of highest weight A.

In Section 5. 1 we defined, for any integral weight x of sl., the subalgebra
U,(b.)* of U,(5I.). A level N action of U, (5l.) on the Fock space #y(MEZ)
was defined in Section 2. 1, so that there is an action U,(b.)* on . Recall
moreover, that the vertical U, (5Iy)-action 7’ on %, and, consequently, the action
7 of U, depend on two parameters: p g%, and v which is an integral weight of sl .

Proposition 6. 11. Suppose p=q **, and v= —x —2p for an integral sl;-weight
x. Then the action 7 of U on F y leaves invariant the linear subspace U, (b.)*(F ).

Proof. 1Itis sufficient to prove that both the horizontal U/, (sly)-action 7" and
the vertical U/, (sl y)-action 7’ leave U, (b,)*(F ) invariant. The horizontal action
commutes with the action of U;(s[.). Thus it remains to prove that the vertical
action leaves U, (b.)*(Fy) invariant. Let wE % 4 and let [ =d. By Proposition
6. 1 there is a unique v&E VY ;v such that

w=vA | M—s—INL).

Heres={0, 1, ..., NL—1}, M=s mod NL.
Let g be one of the generators of U,(b.)* (cf. 5. 2). For all large enough I we have

(6.29) gw)=g(W)A | M—s—INL)c(g),
where ¢(g) =¢ Y if g=F,, and c(g) =1 if g=F,, K,—¢q*®*@*D1 (1<a<L). If
g=F, then g(») EV& L, otherwise g(») EV o .

Let X be an element of U,(5ly). Provided [ is sufficiently large, Definition
6. 6 gives

7 (X)gW) =%y X)gW) A | M—s—INL)c(g).

By Proposition 5. 5 the right-hand side of the last equation is a linear combination
of vectors

(6.30) hGYAN | M—s—INL),

where A is again one of the generators of U, (b.)%, and v’ belongs to either V4 ;-
or V4 ime. Applying (6.29) again, the vector (6.30) is seen to be proportional to

hG'N | M—s—INL)).
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Thus the vertical action leaves U, (b.)*(%,) invariant. O

Now we use Theorem 4. 10 to define an action of U on ¥(A). Fix the unique M
€{0, 1, ..., N—1} such that A=A, mod Qy. Since the dual weights A®" of
U;(ETL) are distinct for distinct /A, from Theorem 4. 10 we have the isomorphism
of U}, (gly)-modules:

(6.31) V() =Fuw/U,(b)*(F ),
where y is the finite part of A®. That is for A’ =3 Lin, A, x= Zf;‘n,/i,,.

By Proposition 5. 5, the U-action 7 with p=q~%, y= —x —2p, factors through
the quotient map

Fu— fM/Uq(bLy(yM),

and therefore by (6.31) induces an action of U on 7(A).

Appendix A. The Proof of Lemma 6. 9

In this appendix we prove Lemma 6. 9. The idea of the proof is essentially the
same as that of the proof of [STU, Lemma 23].

Lemma 6. 9. Suppose d and | are integers such that 0<d<l Let n=s+INL,
wheres< {0, 1, ..., NL — 1} is defined from M=s mod NL. Let m be the integer such
that M—s—INL=—mNL.

For 1<b<L we put

v,,,NZZ”’elnN/\z'”ean/\ /\z”‘ebnN,
vb’N_I:zmele/\z"‘ e oy A\z" ean/\z"‘ean_I/\ e AZTey DN/\Zm e, Oy—1.

Assume vEVY coive. Then

(7.1) Ton5) X (@) 0 Ay, ) =7 (Ki(2)) O) Avs, v,
(7.2) Tins20) Ry-1@)) 0 A, v—1) = 7%y Ry-1@)) (V) Avp, y—1

Here 1<isSN—2.

Proof. As is mentioned in the proof of Lemma 22 in [STU], for eachi (1<
i< N—1), the subalgebra of U, (sly) generated by E, /, F, y, H; ', K UEZ, m’
€Z\{0}) is in fact generated by only the elements E; o, £, o, K, F, , and F, _,.
By the definition of the representation, every generator of the vertical action
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U, preserves the degree in the sense of (6.6). So it is sufficient to show that the
actions of E; o, F; o, K, F, ; and F;, _, satisfy the relations (7.1, 7.2). For E, o, F; o,
K, this is shown directly by using the definitions of the actions (6.1-6.3). Now
we must show that

(7.3) ) (B, 1) O Ay, §) =%y (Fy 1) ) A, s
(1.4) 7 (n+20) (FN—l, =) AN7S N-1) =T (FN—l, +1) () AV, N—1

Here 1<SisSN—2.

We will prove (7.4).

For any M, M", M""(1<M’, M", M""<N+2b, M'<M"), we define an
U, (sly)-action on the space K[z, ..., z;l5] ® (KL)@’("“”)@ (KY¥)®@+a) jn
terms of the Chevalley generators as follows:

(1.5) Ei(f@ﬁ) :ng, (q g Yj(Mm)> _d(i=0)f® (ei, i+l)j (ki)j-r—l v.. Kdu ¥,
(7.6) F,(f®%) = g (@& Yj(Mm))‘s(i:o)f® ki Dy oo ki Djmileiry, D
a.71n K:(f®%)=f® kd)w ks +1 ... k).

Here i=0, ..., N—1, indices are cyclically extended modulo N, fEK[z{}, ...,
2] ® (KE) @) 5= (KV)®®*®) and the meaning of the notations (e; );,
(k1); is the same as in Section 5. 3. It is understood, that for M’ <n+2b the
operators Y in (7.5, 7.6) act non-trivially only on the variables z1, zs, ..., Zy~
and on the first M factors in K®®*®, Note that the U,(sly)-action is
well-defined because of the commutativity of Y™ (=1, ..., M"”"). The actions of
the Drinfeld generators are determined by the actions of the Chevalley generators.

Let X be an element of U, (sly), we denote by X™>¥M” the operator giving
the action of X on the space K[z7}, ..., z; %] @ (KE)®0 2 @ (K¥)®¢+2) i
accordance with (7.5-7.7).

Also, we set XU M =RUDM"(j=1 _ M").

With these definitions, for any two elements X and ¥ from U,(sly), the
operators X" ¥ M" and YV N M” commute if M” <N’ or N” <M’. Note that for
any XU, (5ly) we have

T 28) (X~) A (f®\7) = A(X(l,ww),nub(f@ﬁ)).
Let UN. and UNZ be the left ideals in U, (sly) generated respectively by {E; «}

and {F, v F;/}. Let UNY¥)-M" (UN2L)M:MD.M" e the images of these ideals
with respect to the map U,(sly) = End(K[zi}, ..., z7l] @ (KH)E" Mg
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(KV)®@+2)) given by (7.5-7.7). Then the following relations hold:

Thntan) Fy—p, DN (FRF) = A (R §ort2 =D nt B o 2b -1 nt20), 25

FFRA P2 (fON),

Ty Fy—1, -D) A (fON =N ((R ey 272 m ) TIF QAP s
+EQ n+2- 2, n+2b+(q—1_q) (R {n+2=2,n+2b)~1

ﬁl(\ll +2b 2), n-LZbF(n+2b 1, n+2b), n+2b) (f®V)>
where  fEK[zi), ..., z5%] @ (K2 j& (K¥)er+2,
Here the equivalence = is understood to be modulo
A (UN&_],n-#Zb—Z),n-I-Zb R (UNZ_)(n+2b—l,n+2b),n4.2b<f®v_)).

These relations follow from the coproduct formulas which have been obtained in
[Ko, Proposition 3. 2. A]:
(78) A+(E, 1)EK~[®F"[’1+E’1®1 mod UN+®UNZ—,
(7.9) A+(F'i, —1) EK~i_1®E,—1+Fi,—1®1
+(q_l'_q)ﬁi_lﬁi,_1®l"=i,o mod UN+®UN2—
Recall the definition of 4% given in (2. 8—2 11).

Let w =z@ e, UF; /\z% eg, 05 /\ -+ /\z— e;, bg; be a normally ordered wedge
from V%, ,, and define fEK [z{", ..., 235 ® (KL)®("+"”) and 7€ (KV)®@®+2) 54
follows.

(710)  f=GTP 22 23 Guer * Zasn)" ® (i 6, - ) (erereses = 55,

(7.11) 5= (vg vg; - v&) (oyy—1) oy Oy—1) ... (oyOy-1),
b copies

when m =0,4+1=0n+2="""=0.+» . Then the monomial f satisfies the assumptions
of Lemma 6. 4 with k=2b, and n(j) =2 for allj= {1, 2, ..., b}.

Now we will show the equality
(7.12) Tty Fy—1, =) A (f®F) = A (FF 2722 (f®9)).

First let us prove that any element in UN{:"+%-2:n+2% o (N2 )(+25—1n+25), nt2
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annihilates the vector f®7 where f and 7 are given by (7.10) and (7.11). It is
enough to show that

(7.13) (F@rjp—tonta), "+2bF]$?I-!—2b~1’ 242 (FQ (27 25—1 5 ON Dz 2 €5 0y—1)) =0,

for F€K[z/*, ..., ziln_o] QK B-DQ(K¥)®®+%-2  This follows
immediately from the observation that wt(vy) +wt(oy—1) —ay—a; is not a U, (sly)-
weight of (KY)®2

Next we will show that AFJ2cln2.n+%( r@§)) =0, (here f and 7 are

given by (7.10) and (7.11)). By the formulas (7.8) and (7.9), we have the
following identities modulo A (UN {2%-thnt2 (N2 ) nt2hntb( r5)) (see also
[STUD):

(714) /\(F~(n+2b-—l n+2b), n+2b(f®f;)):
/\((K (n+2b 1}, n+2bF(n+2bI n+2b+F +2b 1}, n+2b) (f@\’))
(7.15) N (FQepzlntmntd( f@5)) =
/\(((Kl{ﬁtlzb—l),n+2b)—1F’“1g;1_+lz,b)_,1n+2b_|_}7~1{6._+12’b_—11),n+2b

+ (q—l_q) [E +2b 1},n+2b F{n+2b 1}, n+2b:|F(n+2b} n+2b) (f®v))
The following formula is essentially written in [Ko, Proposition 3. 2. B]:

(7.16) Fu (@ (®74,))
=(g~ n+2b(Y(n+2b)) 1)+y‘ ®(® IDE>®6I EID,+1®(®J I+lns)

where f'EK[z{, ..., z;1%] ® (KE)®® %) and ®"+2bDE e (KN)®w+»),

By (7.16) we have (UN #+%-1 "“"(UNZ_){"””’ "t (f®%)) =0, and by
(7.16) and Lemma 6. 4 we have

(7.17)  FQrpslnt®hnt2( fQF) =ca v @z -1 0y Dz 2 € Dy
mod (fnm,zb+gﬁ'52b)®(17(")®(01v01v—1) ... (oyoy—1) (DNDN)):

b—1 copies

Here c+; are certain coefficients, 7€ K[z, ..., Zilp_o] R (KL)2®+b-D g
(KN) ®(n+2b—2), ‘g(n)e (KN)@n.

Using the normal ordering rules, we have A (F®z 721 ¢, by ®z 2 ¢, 0y) =0.
By Lemma 6. 8, we have

(7.18) AN+ L0 )
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QR G™ R (oyvy—1) ... (oyoy—1) (O ox))) E sV, ns0.

b—1 copies

On the other hand the degree of the wedge (7.18) is equal to deg(f®7¥)=d.
Taking into account that d <I, we have A (FJ 2l nt2):»+2( £Q§)) =0.

Now we prove that A (R §on+2-2 n+2b)—1HI(v1,_nlj—3bl—2),n+2bF"'1(\;:_+17:b0—1,n+2b),n+2b
(f®%)) vanishes. We have

(7.19) A (R §Jenv2=Dun+2) ~1FF ( n 42 =2, nt i at2b =L nt20), nt2b5 @ m 16, py
Rz 742 € UN—I) A ((f (1—"+2b 2 "+2b) IH(I—nj—Eb by
Rzrim—1e, 08Xz e DN)’

here vEK[zT, ..., 25 2] @ (KL +2-2@ (KVN)®¢#+2%-2 By (7.5-7.7) the
operator H ("%~ Done is a polynomial in the operators (¥ **2)=!, (k) =Y, (e, r);
where 1<]<n+2b 2 and 1<], 'S N. By Lemma 6. 4, we have

(K(l n+2b—2), n+2b) lH(l n+2b 2), n+2bv®zn+2b IebvN®zn+2b e, Dy

:c(v®z,,+2b_1ebv1v®zn+zb ebl)N)
mod (A 7+ L7 5%)® FW® (oyvy—1) ... (oyon—1) (oyoy)).

b—1 copies
Here ¢ is a certain coefficient, 3, €K [z{, ..., ziln o] ® (KX 22 g
(KV)®@+2=2 5@ js an element in (KY¥)®". Repeating the arguments given

after the relation (7.18), we have A (K2 -2nt2)-1 f{ln+2-2,n+2%
Frrtnt®intd(£@5))=0. Thus we have shown (7.12).

Repeatedly applying the arguments that led to (7.12), we have
(7.20) Ty Fy—1, 20) (fOF)) = A FR 272 (fOD)).
To prove T +a) FEy_1, 1) (fFOF)) = A F§FP2,(f®%)), we must show that
in the right-hand side of (7.20) we can replaceq 22 Y "% by g 2 Y™ (1<i<n).
Observe that F§{:%:2{% is a polynomial in the operators
(7.21) (Y= (k)j, (eyr); where 1<j<n and 1<, I'SN.
By Lemma 6. 4 we have

(7.22) (@ 22y&)F(f9) =@ 2Y")*'(f®%) mod(A 7 3+ L7 ») ®F.

For f'€A 7 u+ L7 %, and &, a polynomial in (7.21), the vector f'®&,
satisfies the assumption of Lemma 6. 8. By this lemma, and by the arguments given
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after (7.18), we have
(7.23) AN((ATRpt+PLrw)®ET)=0.

Combining (7.23), the commutativity of &, and (¥{°)*!'(1<i<n, fi=n or
n+2b), and the fact that (¥Y)* (A I+ L0 u) C(A T u+ LT 5), we have
Ty Fy—1, D) A (FOD)) = A (F{:2,(fQ%)). The relation (7.4) follows.

To prove (7.3), consider the tensor product K[z}, ..., z;,] ® (KD
(KY)®®+5 yse the formulas (7.8), (7.9) and continue the proof in a way that is
completely analogous to the proof of (7.4). ]
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