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Representations of the Quantum Toroidal Algebra
on Highest Weight Modules of the Quantum Affine

Algebra of Type §1N

By

Kouichi TAKEMURA* and Denis UGLOV**

Abstract

A representation of the quantum toroidal algebra of type *1N is defined on every integrable
irreducible highest weight module of the quantum affme algebra of type glN . The ^-version of the
level-rank duality giving the reciprocal decomposition of the g-Fock space with respect to mutually
commutative actions of Ug'(gt#) of level L and U^Cs!^) of level N is described.

§1. Introduction

In this article we continue our study [STU] of representations of the quantum
toroidal algebra of type S\N on irreducible integrable highest weight modules of the
quantum affme algebra of type §1N. The quantum toroidal algebra U was
introduced in [GKV] and [VV1]. The definition of U is given in Section 5. 2. This
algebra is a two-parameter deformation of the enveloping algebra of the universal
central extension of the double-loop Lie algebra $1N [x±l, y±l~\. To our knowledge,
no general results on the representation theory of U are available at the present. It
therefore appears to be desirable, as a preliminary step towards a development of a
general theory, to obtain concrete examples of representations of U.

The main reason why representations of central extensions of the double-loop
Lie algebra, and of their deformations such as U, are deemed to be a worthwhile
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topic to study, is that one expects applications to higher-dimensional exactly
solvable field theories. Our motivation to study such representations comes,
however, from a different source. We were led to this topic while trying to
understand the meaning of the level 0 action of the quantum affine algebra U^Cstjv)
which was defined in [TU], based on the earlier work [JKKMP], on each level 1
irreducible integrable highest weight module of the algebra U9(gtjv). These level 0
actions appear as the ^-analogues of the Yangian actions on level 1 irreducible
integrable modules of st# discovered in [HHTBP, Sch].

Let us recall here, following [STU] and [W2], the connection between the
level 0 actions and the quantum toroidal algebra U. It is known [GKV] (see also
Section 5. 2) that U contains two subalgebras Uh, and Uv such that there are
algebra homomorphisms U9'CslV)~*Ua, and Ug'Cstjv)-*Uv. As a consequence,
every module of U admits two actions of U^Cstar): the horizontal action obtained
through the first of the above homomorphisms, and the vertical action obtained
through the second one. It was shown in [STU] and [W2], that on each level 1
irreducible integrable highest weight module of U9 (glW) there is an action of U,
such that the horizontal action coincides with the standard level 1 action of U^'Cs^v)
CUg(gtjvr), while the vertical action coincides with the level 0 action defined in
[TU]. The aim of the present article is to extend this result to higher level
irreducible integrable highest weight modules of UgCgt#).

The algebra Ug(gtjv) is, by definition, the tensor product of algebras H®
UgCstjr), where H is the Heisenberg algebra (see Section 4. 3). Let A be a level L
dominant integral weight of U^Cst^), and let F(/L) be the irreducible integrable
UgCsftf)-module of the highest weight A. As the main result of this article we
define an action of U on the irreducible U^(gt^) -module

(1.1) P(/1) = K[#-]®K(/1),

where K[/f-] is the Fock representation (see Section 4.4) of H. The
corresponding horizontal action of U^'Cst/v) is just the standard, level L, action on
the second tensor factor in (1.1). The vertical action of Ug'(^t/v) has level zero, this
action is a g-analogue of the Yangian action constructed recently on each
irreducible integrable highest weight module of gt# in [U].

Let us now describe the main elements of our construction of the U-action on
F(/l). To define the U-action we introduce a suitable realization of F(/l) using
the ̂ -analogue of the classical level-rank duality, due to Frenkel [Fl, F2], between
the affine Lie algebras ^N and stL. The quantized version of the level-rank duality
takes place on the q-Fock space (we call it, simply, the Fock space hereafter). The
Fock space is an integrable, level L, module of the algebra U^Gst^)- The action of
this algebra on the Fock space is centralized by a level N action of Ug'Cstr,), and the
resulting action of U^'CstV) ^UgCstz,) is centralized by an action of the Heisenberg
algebra H.
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We give in the present paper a construction of the Fock space in the spirit of
semiinfmite wedges of [St, KMS]. The Fock space defined in [KMS] appears as
the special case of our construction when the level L equals 1. In Theorem 4. 10 we
describe the irreducible decomposition of the Fock space with respect to the action
of #®Ug'(stjv) ®U,'(sti,). This theorem is the g-analogue of Theorem 1. 6 in [Fl].
The decomposition shows that for every level L dominant integral weight A the
corresponding irreducible Uq Cgtjv) -module F(/L) is realized as a direct summand of
the Fock space, such that the multiplicity space of V(A} is a certain level N
irreducible integrable highest weight module of Ug'CstL).

To define the action of the quantum toroidal algebra on V(A} we proceed very
much along the lines of [STU]. The starting point is a representation, due to
Cherednik [C2], of the toroidal Hecke algebra of type §!„ on the linear space K [z f1,
..., z*1] ® (KL)®n. Here K=Q(^). Applying the Varagnolo-Vasserot duality
[Wl] between modules of the toroidal Hecke algebra and modules of U, we obtain
a representation of U on the #-wedge product A"Faff, where Faff = K. [z*1] (8) KN®
K.L. This g-wedge product (we call it, simply, the wedge product hereafter) is
similar to the wedge product of [KMS], and reduces to the latter when L = 1.

The Fock space is defined as an inductive limit (H->°°) of the wedge product
A "Faff. We show that the Fock space inherits the U-action from A"Faff. As the
final step we demonstrate, that the U-action on the Fock space can be restricted on
V(A} provided certain parameters in the U-action are fixed in an appropriate way.

Let us now comment on two issues which we do not deal with in the present
paper. The first one is the question of irreducibility of V(A} as the U-module.
Based on analysis of the Yangian limit (see [U]) we expect that F(/L) is
irreducible. However we lack a complete proof of this at the present.

The second issue is the decomposition of F(A) with respect to the level 0
vertical action of U^Cst^). In the Yangian limit this decomposition was performed
in [U] for the vacuum highest weight A —LAQ. It is natural to expect, that
combinatorially this decomposition will remain unchanged in the g-deformed
situation. In particular, the irreducible components are expected to be
parameterized by semi-infinite skew Young diagrams, and the Ug( si AT)-characters
of these components are expected to be given by the corresponding skew Schur
functions.

The paper is organized as follows. In Sections 2 through 4 we deal with the
^-analogue of the level-rank duality, and the associated realization of the integrable
irreducible modules of Ug (^tjy) • Section 2 contains background information on the
quantum affme algebras and affine Hecke algebra. In Section 3 we introduce the
wedge product, and describe the technically important normal ordering rules for the
g-wedge vectors. In Section 4 we define the Fock space, and, on this space, the
action of /y<8)Ug'Ci^v)®IJg/('sti,)- The decomposition of the Fock space as
U^Cstjv) ®UgCsti,)-module is given in Theorem 4. 10.
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In Sections 5 and 6 we deal with the quantum toroidal algebra U and its
actions. Section 5 contains basic information on the toroidal Hecke algebra and U.
In Section 6 we define actions of U on the Fock space, and on irreducible integrable
highest weight modules of Ug ( gtjv) •

§2. Preliminaries

2.L Preliminaries on the quantum affine algebra. For fc, m£EZ we define the
following q -integers, factorials, and binomials

The quantum affine algebra U,(^tj/) is the unital associative algebra over K =
Q(gO generated by the elements Ef, Fit K,, K~l, D (O^zXM) subject to the
relations:

(2.1)

(2.2)

(2.3) KiFj=q~ai'FJKi,

(2.4)

(2.5)

(2.6)
k Jq

(2.7) (-l
fc=o

Here ay = 28(j.=f)— 50'=7+1)— dQ=j— 1), and the indices are extended to all
integers modulo M. For P a statement, we write <5(P) = 1 if P is true, S(P) =0 if
otherwise.

Ug ( stjif ) is a Hopf algebra, in this paper we will use two different coproducts
A+ and A~ given by

(2.8) A

(2.9) A + (£,) =Et

(2. 10) A



QUANTUM TOROIDAL ALGEBRA 411

(2. 1 1) A + (D) =D (8) 1 + 1 <8>Z>, // - CD) =D <8> 1 + 1 ®D.

Denote by U,'(stjf) the subalgebra of U9(stM) generated by Et, Fi9 Kt, Kr\

In our notations concerning weights of Uq (^M) we will follow [K] . Thus we
denote by A0, A\ , ..., AM-I the fundamental weights, by 5 the null root, and let a/
= 2Ai—Ai+\—Ai-\-\-6itQd (O^zXM) denote the simple roots. The indices are
assumed to be cyclically extended to all integers modulo M. Let PM=
(©,-Z/l,) be the set of integral weights.

Let KN be the JV-dimensional vector space with basis DI , o2, ..., %, and let KL be
the L -dimensional vector space with basis ei , e2 , . . ., CL . We set Faff — IK [z±!] (8) 1KL

® K* Faff has basis {zm ea VE} where m e Z and l^a^L;l^e^#. Both algebras
U9(^tjv) and Ug(stL) act on Faff. U,(stjv) acts in the following way:

(2. 12) ^-(z- efl ue) =

(2.13) EJ-(z^ef lD£)=

(2. 14) F,(zw efl pe) =6E, ̂ '^ ° e

(2.15) D(zmeap£)=mzme f lt>£;

where Q^i<N, and all indices but a should be read modulo N.
The action of U^Csti,) is given by

(2.16) ^0B»e6p.)=^%^-'+1"^L-«z»e6D

(2.17) Efl(zme,D£)=

(2.18) Ffl(z-e,p£)-

(2. 19) D (zm efl D£) =

where O^a < N, and all indices but e are to be read modulo L. Above and in what
follows we put a dot over the generators of Uq Csti) in order to distinguish them
from the generators of U9(stjv). When both U9(stjv) and Ug(^tL) act on the same
linear space and share a vector v as their weight vector, we will understand that
wt(v) is a sum of weights of U9(^tjy) and Ug(^ti,). Thus

Here, and from on, we put dots over the fundamental weights, etc. of U9(stL).
Iterating the coproduct A + (cf . (2. 8-2. 1 1 ) ) n — 1 times we get an action of Uq Cst# )
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on the tensor product F§". Likewise for Ug(sti,), but in this case we use the other
coproduct J".

282e Preliminaries on the affine Hecke algebra. The affine Hecke algebra of type
gln, H«, is a unital associative algebra over K generated by elements Tfl, Xfl, 1

. These elements satisfy the following relations:

(2.20) Ttrrl=TrlTt=i, (r/

(2.21) TtTt+lTt = Tt+lTtTt+l, TtTj^TjTt if

(2.22) XJXj-1=Xj-1Xj = 1, XtXj=XjXt,

(2.23) r,Jr,!T,=?2JrH.i, TiXj=XJTi ify^i, i + l.

The subalgebra HnCHn generated by the elements T1^1 alone is known to be
isomorphic to the finite Hecke algebra of type gln .

Following [GRV] , [KMS] we introduce a representation of Hn on the linear space
(K[z±!] ®KL)®n. We will identify this space with K[z?1, ..., zn

±!] ® (KL)®" by
the correspondence

Let -Efl> &EEEnd(l[L) be the matrix units with respect to the basis {efl}, and define the
trigonometric R-matrix as the following operator on (K[z±r]

) I] Ea,b®Eb>a.
l^b<a^L

Let s be the exchange operator of factors in the tensor square
and let

fl 1>I^ 4* l ""2 /, Zi , Z2) ̂(2.24) ^o,2)!= -- ( 1 — 5 -- j - )— 1.
2

The operator TO, 2) is known as the matrix Demazure-Lusztig operator (cf. [C2]),
note that it is an element of End((IK[z±1] (x>KL)®2) despite the presence of the
denominators

(2.25) r l:=l®
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Proposition 2.1 ([C2], [GRV], [KMS]). The map

(2.26) Xj\—>zj9 Tt\—> Tt

where z/ stands for the multiplication by zJ9 extends to a right representation ofHn on

(2.28) and r(oei®oc,) =2y

Following [J] we define a left action of the finite Hecke algebra Hn on (K*)®" by

(2.27) Tt\—>rr=l®0-1)®:r®l®0|-1'-1), where T^ End ((IK*)®2),

:>£l(8)t>£2 i f£ i=£ 2 ,

'£2®^, i f £ i < £ 2 ,

>c (8)P£ + G?2—l)o£ (8)De if £ i>£ 2 .

§3. The Wedge Product

3.1. Definition of the wedge product. Identify the tensor product F§" with
(K[z±r] ®KL)®"® (K*)®" by the natural isomorphism

Then the operators Tf and T/ are extended on F§" as T/® 1 and 1 ® T/ respectively.
In what follows we will keep the same symbol Tt to mean I*/® 1, and likewise for T1/.
We define the n-fold q-wedge product (or, simply, r/ie wedge product^) A"Faff as the
following quotient space:

1=1

Note that under the specialization q = 1 the operator T (2.24) tends to minus the
permutation operator of the tensor square (Q[z±!] ®QL)®2, while the operator T
(2.28) tends to plus the permutation operator of the tensor square (Q^)®2, so that
(3.1) is a g-analogue of the standard exterior product.

Remark. The wedge product is the dual, in the sense of Chari-Pressley [CP]
(see also [Cl]) of the H«-module (Kfe*1] ®KL)®": there is an evident
isomorphism of linear spaces

For m^Z^o define J3£°eEnd(K§?) as
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(3.2) B<P=z?+z? + '~+z?.

In Section 2.1 mutually commutative actions of the quantum affine algebras
UgCstjy) and U^Gstz,) were defined on F§" . The operators B ̂  obviously commute
with these actions.

The following proposition is easily deduced from the results of [CP], [GRV],
[KMS].

Proposition 3, 1. For each /=!, ..., n — 1 the subspace Im(!F/~r/)CFSf" is
invariant with respect to Uq Cst# ) , Uq Cstz,) and B £° (m £ Z^0) . Therefore actions of
U,(sttf), U,(stL) and 2?£0 are defined on the wedge product A"Faff.

It is clear that the actions of U;(st^)CU,(st^), U;(stL)CU9(stL) and B%> (m
EzZ^o) on the wedge product are mutually commutative.

3o2. Wedges and normally ordered wedges8 In the following discussion it will be
convenient to relabel elements of the basis {zm ea r>£} of Kff by single integer. We put
k=£—N(a-rLm) and denote uk=zmeav£. Then the set {uk \ k^l*} is a basis of
Faff. Let

(3.3) uk/\uk/\ — /\uk

be the image of the tensor ukl®uk2® •" ®Ukn under the quotient map from F§" to
A "Faff. We will call a vector of the form (3.3) a wedge and will say that a wedge
is normally ordered if k{>k2> -° >kn. When q is specialized to 1, a wedge is
antisymmetric with respect to a permutation of any pair of indices k{ , kj , and the
normally ordered wedges form a basis of A"Faff . In the general situation — when
q is a parameter — the normally ordered wedges still form a basis of A"Faff.
However the antisymmetry is replaced by a more complicated normal ordering rule
which allows to express any wedge as a linear combination of normally ordered
wedges.

Let us start with the case of the two-fold wedge product A2Faff. The explicit
expressions for the operators T\ and T\ lead for all k ̂  / to the normal ordering rule
of the form

(3.4) tt*Ai//=cw(g)i//Attfc+(g2-l) E cg )(^)ii/_ /Ai/ f c+ l ,i ^ i , / - i> fc+ i

were Cw(gO, c$(q) are Laurent polynomials in q. In particular ckk(q} = — 1, and
thus uk/\uk = Q. To describe all the coefficients in (3.4), we will employ a vector
notation. For all a, a\9 a2=l9 ..., L; £, e\, ez^l, ..., N; m\, m-i&L define the
following column vectors:
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UE2-N(.a+Lml)

(3.7) z;1
1;;2

2(Wl(m2) =

Moreover let

O O\ VEVe2fM ^ V Vel'El(*~. M V v r£l '£2/' ^ \ :r M-
.By Aa> a V ^ l > ^2y —>^c, a V ^ l j ^2y —-^a, a v'W 1 > ̂ 2y ll ^

^a 1^ '7£l'£2^M/, „« \' '7r£l'£2^11(M ^ N" 'y£l'£2^^M ^^ \ :f My.
^J.lUy ^aj, a 2 V ^ l > ^2y —^ai , a 2 V^l> ^2y —^a,, a2 V^ 1 > ̂ 2y ll ^7 1

And

Ci 11^ v61'62^*^ »v,^V-J. l ly Aa> a v^> ^y

f3 12") F5'5 fm mVVJ.iz,y ^a, , a9 v't> "ty

(3.13) Z^42(m, m)'=
W£2-AT(a1+Lm) /\ W£l-J

(3.14) ^^(m, m)/7 =

f3 15") F^ Tm mVVJ.Uy la a\TTl,TTlJ

0

\J . lUy ^— u j j u^ y^.... 7 . .^y
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For t£=.lL introduce also the matrices:

(317) n* —I " «f \ jn- f+\ — f-l *M 1 ~%

(3.18) MY=

/ o o -(g-^1) -i
(3.19) Mz= x _n 1 x _n2 x _n-(q-q 0 -1 (g-g l)2 (q-q )

(-q~1} 0 /

(3.20)

20 -(g^^+g-2^1) g^^g-2-1 q2t-q~2t

Note that all entries of the matrix Afz(0 are Laurent polynomials in g? i.e. the
numerators are divisible by q2+ 1.

Computing Im(!T— T) we get the following lemma:

Lemma 3.2 (Normal ordering rules). In A2Faff there are the following
relations:

(3.21) ^£-JV(a+L

(3.22) JC £2 (m , , m2) ' =

2 ;£i>£2) ,

(1 T2^ V£, e f**, *M ̂ x S
VJ.^Jy ^ C L O T V ^ I J ^2y —•*»

+ 2
t= i

2; «Zi>a2),
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(3.24) ZJ^On i,mJ'=Mz- Z%%fn2 , m ,) "

t m,-0'

The relations (3.21-3.24) indeed have the form (3.4), in particular, all wedges Uk
/\Ui in the left-hand-sides satisfy k^l and all wedges in the right-hand-sides are
normally ordered. Note moreover, that every wedge Uk/\Ui such that k^l appears
in the left-hand-side of one of the relations. When L = I the normal ordering rules
are given by (3.21) and (3.22), these relations coincide with the normal ordering
rules of [KMS, eq. (43), (45)].

Proposition 3. 3.
( i ) Any wedge from A"Faff is a linear combination of normally ordered wedges
with coefficients determined by the normal ordering rules (3.21-3.24) applied in each
pair of adjacent factors of A"Faff .
(ii) Normally ordered wedges form a basis of A "Faff .

Proof. ( i ) follows directly from the definition of A"Faff .
(ii) In view of (i) it is enough to prove that normally ordered wedges are linearly
independent. This is proved by specialization q = l. Let w\, ..., wm be a set of
distinct normally ordered wedges in AnFaff, and let t\, ..., tm^Vf$ be the
corresponding pure tensors. Assume that

(3.25) S

where Ci(g), ..., cm(^) are non-zero Laurent polynomials in q. Then

(3.26) S c,(f)«,eES Im(f,-r,).

Specializing q to be 1 this gives

(3.27) 2 c/DfjGE S Im(P,+ 1) C <g> ?j Faff,

where Faff=Q[z, z"1] (x^Q^QQ^, and P{ is the permutation operator for the zth
and i + 1th factors in ® Q Faff . Since each tj is a tensor of the form ukl®ukl® ••• (B>
Ukn where fci, k2, ...,£„ is a decreasing sequence, it follows from (3.27) that c/(l)
= 0 for ally. Therefore each c/G?) has the form (q — l)c/(gO(1) where c/(gO(1) is a
Laurent polynomial in g. Equation (3.25) gives now
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(3.28) Ec,-G?)0)w;=0.

Repeating the arguments above we conclude that all c/(#) are divisible by
arbitrarily large powers of (q — 1). Therefore all c/(0) vanish. D

Lemma 3. 4. Let l^m. Then the wedges um/\um-\/\ ••• Aw / + 1 /\ui/\um and
Ui/\um/\um-i/\ '•- A ••• /\tii+i/\Ui are equal to zero.

Proof. As particular cases of relations (3.21-3.24) we have for all k and N

= 0, uk/\uk+i = \ _j
i fJY=l .

The lemma follows by induction from (3.21-3.24). Q

§4. The Fock Space

4.1. Definition of the Fock space. For each integer M we define the Fock space
<FM as the inductive limit (TI-»°O) of A "Fair, where maps A*Faff^A"+1Faff are
given by vl — >vf\uM-n- For v£ A "Faff we denote by v AwM_n AwM-n-i A ••• the
image of v with respect to the canonical map from AnFaff to 3FM • Note that for V(B)
^ A "F^, v<»e ArFaff , the equality

holds if and only if there is s ̂ n, r such that

In particular, V(n) AwM_n AwM_ n_! A ••• vanishes if and only if there is s^n such
that V( n )AM M _ n Aw M _ n _!A ••• AuM-s+i is zero.

For a decreasing sequence of integers (fci >ki > •••) such that fc,-=M— i + 1 for i"3>
1, we will call the vector uk{/\uk2/\ ••• £^M a (semi-infinite) normally ordered
wedge.

Proposition 4e 1. The normally ordered wedges form a basis of 3FM -

Proof. For each w^^M there are n, vEzA"Faff such that w = v A w M _ n A
t/M-n-i A ••• . By Proposition 3. 3 the finite normally ordered wedges form a basis
of A "Faff, therefore w is a linear combination of vectors
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(4.1) w k l A W f c 2 A ••• /\ukn/\uM-n^uM-n-i^ —, where kl>k2> -• >kn.

If kn^M—n9 then there is r>n such that ukfi /\uM-n AwM-n-i A ••• /\uM-r+i
vanishes by Lemma 3. 4. It follows that (4.1) is zero if kn^M— n. Thus the
normally ordered wedges span 3FM •

Suppose Sc( fc l,fc2i...)W fc l Aw f c2A ••• =0, where wedges under the sum are normally
ordered and C(fcl, k2, ...)^ !L Then by definition of the inductive limit there exists n
such that S C(fc l f jk 2 , ...)W fc] l Aw/^A ••• A«fc?j = 0. Thus linear independence of semi-
infinite normally ordered wedges follows from the linear independence of finite
normally ordered wedges. [U

4.2. The actions of U9 Cst^) and Uq Gsti.) on the Fock spaces. Define the vacuum
vector of J^"M as

Then for each vector w from 3FM there is a sufficiently large integer m such that w
can be represented as

(4.2) w = v A -JVLrn), where v£ AM+JVLm Faff.

For each MeZ we define on &M operators Et, F/, Krl, D(Q^i<N) and Efl, Fa,
K<T1,D(Q^a<L^) and then show, in Theorem 4. 2, that these operators satisfy the
defining relations of "UrGst^) and U9CstL) respectively.

As the first step we define actions of these operators on vectors of the form
\-NLm). Letv==u-NLm/\u-NLm-i/\ — /\u-NLton+u + i. We set

(4.3) D I -NLm}=NL

(4.4) Kt I -NLmy=qL6Q=V \ -NLm),

(4.5) ^ | -NLm}=09

0
(4.6) F, I -

lF0(v)A -JVL(m + l)> if i=0.

And

(4.7) D | -NLm}=NL

(4.8) X:fl -NLm}=qN6^=^ \ -NLm),
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(4.9) Ea \ -ATLm>=0,

r o
(4.10) Fa | -NLm) = \

(q-NFQ(y)/\ | -M,(m + l

Then the actions on an arbitrary vector W£=^M are defined by using the
presentation (4.2) and the coproducts (2.8-2.11). Thus for v£ /\M^NLm yaff and w
=v A -NLm)^^M we define

(4.11) D(w)=D(v)A -JVLm>+vAD -NLm)9

(4.12) ^,(w)=J«:i-(v)AjR:/ | -NLm),

(4.13) JB/(w)=£/(v)AJ5:l ! -NLm},

(4.14) ^-(w)=^-(v)A | -7VLm>+kr1(v)AFI- | -NLm}.

And

(4.15) ^(w)=^(v)A | -NLmy+v/\D -NLm},

(4.16) ^fl(w)=^fl(v)Ajtfl -NLm},

(4.17) ^a(w)=£a(v)A | -JVLrn),

(4.18) Ffl(w)=Fa(v)AA:fl-
1 ! -JVLm>+vAFfl | -NLm).

It follows from Lemma 3. 4 that the operators El9 Fi9 Krl, D and Ea , Fa , K^1, D
are well-defined, that is do not depend on a particular choice of the presentation
(4.2), and for vEi A"Faff , u^^u-n satisfy the following relations, analogous to the
coproduct formulas (2.8-2.11):

(4.19)

(4.20) *,(v An) =ft

(4.21) £,(vAtt)=E /(

(4.22) F,(v Aw) =#(

And

(4.23)

(4.24)

(4.25)
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(4.26)

Relations ((4.3, 4.4), (4.11, 4.12)) and ((4.7, 4.8), (4.15, 4.16)) define the weight
decomposition of the Fock space 3Fu • We have

(4.27) wt( -ATLm» =LA0+NA0+NL m^~m ) (5+5),

and for v<EAM+jVLm Faff

(4.28) wt(vA -M,m»=wt(v)+wt( -NLm)\

Theorem 4. 2.
(i) The operators Et, F/, Kt, D (0^z<JV) define on $FM a structure of an
integrable U^(st ̂ -module. And the operators Ea, Ffl, j£fl, D define on $*M a
structure of an integrable U9 (j*&L} -module.
(ii) The actions of the subalgebras U 'q (st^) C U9 ( st^) anrf U J ( stL) C Ug ( stL) on
J^M a^e mutually commutative.

Proof, (i) It is straightforward to verify that the relations (2.1-2.4) are
satisfied. In particular, the weights of Ei9 F/ and Ea, Ffl are ai9 —a/ and df l, — da

respectively. To prove the relations

(4.29) [_Ei,Fj-]=6ij
Ki~Kil

l , and [EQ, F6] =6ab
Ka~Ka *

it is enough, by (4.12-4.14) and (4.16-4.18), to show that these relations hold
when applied to a vacuum vector of the form j ~NLm). If i=£j, a^b we have

[Et,Fj] | -NLmy=Q, [Ffl,Ffe] -JVLm>-0

because at— o/ + wt( — JVLm»(i=?y) and a f l— dfe + wt( ! — JVLm»(a^6) are
not weights of ^ -NLm - The relations

(4.30) [£,,F,] | -NLm) = Ki~K^ \ -NLm)
-

(4.31) [Ffl,Ffl] -NLm} = a\ \ -NLm}
q-q

evidently hold by (4.4-4.6), (4.8-4.10) when /^O, a 7^0. Leta=0. We have

JV

Fo i —
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Then by Lemma 3. 4

E0FQ | -NLm} =ql~N S q*-» -NLm) = q ~q, -NLm).
1=1 q-q

This shows the relation (4.31) for a=Q. The relation (4.30) for z=0 is shown in
a similar way.

Thus Et , FI ,Ki9D and Ea,Fa,Ka,D satisfy the defining relations (2. 1-2.5) .
Observe that for /=0, ...,N— 1; a = 0, ...,L — l and//&P#+P£,//+ra/,//+«da are
weights of $*M for only a finite number of r and n. Therefore ^"M is an integrable
module of Ug (s!2)/ = <E/ , F i 9 K f i y and U9 (sI2)« = <£fl , Fa , K <r '> . By Proposition
B. 1 of [KMPY] this implies that the Serre relations (2.6, 2.7) are satisfied.

Eigenspaces of the operator D and eigenspaces of the operator D are finite-
dimensional. Therefore the integrability with respect to each Ug(sI2)z and U9(sI2)a

implies the integrability of 3FM as both U^Cstjv) -module and U^Cst^) -module.

(ii) The Cartan part of U^Csljy) evidently commutes with UjCstr.), and
vice-versa. By (4.12-4.14) and (4.16-4.18) it is enough to prove that commutators
between the other generators vanish when applied to a vector of the form

I -NLm). The relation

El9Ea -

is trivially satisfied by (4.5, 4.9). The relations

[Fi9Ea] I -

hold because da~ a/ + wt( — JVLm» and at— da + wt( | — 7VLm» are not
weights of & -NLm - The relations

are trivial by (4.6, 4.10) when i^O, a^O; and are verified by using the normal
ordering rules (3.21-3.24) and Lemma 3. 4 in the rest of the cases. Q

4.3. The actions of Bosons. We will now define actions of operators Bn (n E=
li^o) (called bosons) on 3FM • Letw^Aw^A ••• (fc f=Af— /+ 1 for/S>l) be a vector
of ^M- By Lemma 3. 4, for n =£0 the sum
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(4.32) C^tt^Aii^Aii^A - +

contains only a finite number of non-zero terms, and is, therefore, a vector of 3FM .
By Proposition 3. 1 the assignment u fc j Aw^A ••• I — > (4.32) defines an operator
on &*M - We denote this operator Bn . By definition we have for v £ Faff , u £ tFM- 1 "•

(4.33) J

Proposition 4. 3. For all n^Z=^Q the operator Bn commutes with the actions of

Proof. It follows immediately from the definition, that the weight of Bn is
TI (5+5). Thus £„ commutes with Ki9Ka (Q^i<N, 0^a<L).

Let Z be any of the operators Ei9Fi9Ea9Fa (0^i<N,0^a<L). The relations
(4.21, 4.22), (4.25, 4.26) and (4.33) imply now that \_Bn,X] =0 will follow from
[_Bn , X] | —NLmy=Q for an arbitrary integer m.

If n>0, we have [Bn, X~\ \ -JVLm>=-0 because n(5+5)±af +
wt( | -JVLm)) andn(5+5)±dfl + wt( | -JVLm» are not weights of ^-NLm.

Let n < 0. Consider the expansion

where the wedges in the right-hand-side are normally ordered. Comparing the
weights of the both sides, we obtain for all v the inequality k\ > —NLm. For r ^
0 (4.21, 4.22), (4.25, 4.26) and (4.33) give

(4.34) [Bn,X~] | -NLm)
= U-NLm/\U-NLm-i/\

where

\Bn,X\ | -I

Now let r be sufficiently large, so that
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holds for all v. By Lemma 3. 4, the last inequality and k\—NLr>—NL(m+r}
imply that (4.34) vanishes. D

Proposition 4» 40 There are non-zero 7n(g)^Q[#, q~l~\ (independent on Af)
such that

(4.35) [A,A']=&+^ori.(f).

Proof. Each vector of ^M' (M' ̂  Z) is of the form v A | M> where v e A k Faff ,
and k=M'—M is sufficiently large. By (4.33) we have

The vector [#„, !?„'] j M> vanishes if «+«'>() because in this case wt( | Af» +
(n H-H') (5+5) is not a weight of ^M-

Let «+«'<(). Write [5,,, Bn'~\ \ M> as the linear combination of normally
ordered wedges:

Since [Bn,Bn'~] \ M> is of the weight wt( | M» + (n+«0(5+5) with n+n'<Q,
we necessarily have k\>M. For any s>0 eq. (4.33) gives

(4.36) [Bn9 Bn'] \ My=uM/\uM-i A ». AwM-^+i A [BB, ̂ ] | M-NLs},

where

Taking s sufficiently large so that M—k\+NLs^Q holds for all v above, we have
for all v the inequalities

k\-NLs-(M-NLs}>®, and M-(k\-NLs^Q.

Lemma 3. 4 now shows that (4.36) is zero.
Let now n+n' = Q. The vector [_Bn, Bn'l \ M> has weight wt( | M». The

weight subspace of this weight is one-dimensional, so we have [_Bn, B-n~\ M> =
Tn.M^) M> for r»,M(9)eK. Since [B,, JJ-J | M>=t/MA [5W5 JJ-J 1 Af-l>,
Tn,j»f(^) is independent on M.

The coefficients Cfc/(g), c$(q) in the normal ordering rules (3.4) are Laurent
polynomials in g, hence so are 7«(g). Specializing to g = 1 we have 7n(l) =nNL.
Thus all 7,, (g) (n eZ^o) are non-zero. CH
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Proposition 4e 5. IfN=lorL = lorn = l92,we have for 7*(gO the following
formula:

(4.37) r.Cff)^'

Proo/. The L = 1 case is due to [KMS] , and the formula for N= 1 is obtained
from the formula for L = l by comparing the normal ordering rules (3.22) and
(3.23). The n = 1, 2 case is shown by a direct but lengthy calculation. (First act
with B-n on the vacuum vector, express all terms as linear combinations of the
normally ordered wedges, then act with Bn and, again, rewrite the result in terms of
the normally ordered wedges to get the coefficient rn(^).) D

Conjecture 4. 6. The formula (4.37) is valid for all positive integers N, L, n.

Let H be the Heisenberg algebra generated by {Bn}n^z^0 with the defining relations
[#„, Bn'~\ — 5n+n ',o7nG?). Summarizing this and the previous sections, we have
constructed on each Fock space $*M an action of the algebra J?(8>U£Gst#)(8>
UgCsti,). Note that the action of UgCstjv) has level L and the action of U^Csti,)
has level N.

4 A. The decomposition of the Fock space. Let PN and Pjv(L) be respectively
the set of dominant integral weights of U^Cstjy) and the subset of dominant integral
weights of level L G:N:

(4.38) P$

(4.39) P$

For ,/LQP^ let F(/l) be the irreducible integrable highest weight module of
UgCstjy), and let v/i£EKGl) be the highest weight vector.

Let A i , yl 2 , . . . , AN- i be the fundamental weights of slN , and let at = 2At —Ai+\
—Ai-i 1 ̂ i<N be the simple roots. Here the indices are cyclically extended to all
integers modulo N, and A0'-=0. Let QN = ®?^i1Zai be the root lattice of slN. For
an Uj(stjr) -weight yL = S f^o1 fl,-^l,- we will set A = £ iti1 flfA .

A vector w£ J^M is a highest weight vector of H <E>U£Cstjv) (HJUjCsti,) if it is a
highest weight vector with respect to U £ Cst# ) and U ̂  Csti.) and is annihilated by Bn

with n >0. We will now describe a family of highest weight vectors.
With every A = S ^o1 fl/ A^P^ (L), such that /L =^4M mod QN, we associate

^(M)ep + ̂  Q e ^CM) is a Dominant integral weight of U^(stL) of level JV) as

follows. Let M=5 mod NL(fl^s<NL), and let / i^/2^ ... ^/jv be the partition
defined by the relations:
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(4.40)

(4.41)

Note that all /, are integers, and that /jv>0. Then we set

(4.42)

Recall that the indices of the fundamental weights are cyclically extended to all
integers moduloL. Consider the Young diagram of l\^h^ ... ^/# (Fig. 1). We
set the coordinates (x, ;;) of the lowest leftmost square to be (1, 1).

/i

h

[3

D
Fig. 1

Introduce a numbering of squares of the Young diagram by 1, 2, ..., s+NL by
requiring that the numbers assigned to squares in the bottom row of a pair of any
adjacent rows are greater than the numbers assigned to squares in the top row, and
that the numbers increase from right to left within each row (cf. the example
below). Letting GC/, j/) to be the coordinates of the zth square, set ki=xi

JrN(yi —
-s. Thenfc>fc,+ i for all /=l, 2, ...,s+NL-l. Now define

(4.43) </>A=uklAuk2/\ - At/fcs+jV£A | M~s~NL}.

Note that </>A^^M, and <f>A is a normally ordered wedge.

Example 4.7. Let N=3, L = 2, and M=0. The set (A^Pf(2) \ A=Q
modQ3} contains the two weights: 2AQ and A\ +A2 only. The corresponding weights
of E/iOsti.) and the numbered Young diagrams are shown below.
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A=2A0: A=Ai+A2:

1
3
6

2
5 4

Proposition 4.8. For each ylEzP^L) such that A=AM mod QN, </>A is a
highest weight vector o/fT®Uj(st^) ®Uj(itL). The Uj(st^)-wcigAr of 4>A is A,
and the Ug^L) -weight of (^A is A{M\

Proof. The weights of $A are given by (4.27, 4.28). To prove that <pA is
annihilated by Ei9 Ea and Bn (n >0) we use the following lemma.

Lemma 4. 9. Keeping A as in the statement of Proposition 4. 8, define the
decreasing sequence ki, k2, ...from <I>A=ukl/\uk2/\ • • • .

(4.44) ukl/\ukm = ̂  ca,kl,ua/\ukl, where a

Proof. Define ek., ak., mk. (l^£k.^N, l^ak.^L, mfc.eZ) by ki=£k.-N(ak.
.). Using the normal ordering rules, we have

(4.45) ukl A ukm = 1] ca> pua/\ui3,

where km^a>P^ki and a=£k.-N(ak.,+Lma), I3=£k.-N(akf+Lmp)9 i,j, /7,/e
{/, m}, z'^j, /'=£/, ma, m^eZ. From the explicit expression for 0^ (cf. 4.43) it
follows that there is at most one integer 7 such that 7=efc — JV(afc,H-L/nr)G', /'£
{k, /}, mr^Z), ki<y<km and 7^/c/. Moreover, if the integer 7 exists, thena/7^am,
£/>£m and 7=ekl—N(akl+L(mkm+d(akl<akm)^. Note that 7 is the maximal
element of the set {/ / = £fcz- -^"(fl ̂  +Lm/) ,1, /' £ {fc, /} , m/ e Z, fc/ < / < A:m} . If
the 7 exists, then ft in (4.45) is distinct from 7. Therefore ft=ki' for some /x such
that ki'^ki, and the lemma follows. O

Now we continue the proof of Proposition 4. 8. From the definition of 0^ it follows
that Ei(pA , Ea(/>A and Bn(pA(n >0) are linear combinations of vectors of the form

(4.46) uklf\ ••• Aw

Applying Lemma 4. 9 repeatedly, we conclude that vectors (4.46) are all zero.

Let K[ff_] be the Fock module of H. That is 1K[#_] is the ^-module generated
by the vector 1 with the defining relations Bn 1 = 0 for n > 0.

By Theorem 4. 2, ^M is an integrable module of U^(^tjv) and U^(^TL).
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Therefore it is semisimple relative to the algebra
Proposition 4. 8 now implies that we have an injective
linear homomorphism

(4.47) 0 K [H-~] ® K(/l) ® FGi(M))^J*M
(AtEPH (L) | jT=A, mod &,}

sending I®V.I®V^CM) to <pA. It is known (cf. [Fl] [Theorem 1. 6]) that (4.47)
specializes to an isomorphism when q = l. The characters of K[ff-], F(/l),
F(yi(M)), and J^M remain unchanged when # is specialized to 1. Therefore (4.47)
is an isomorphism. Summarizing, we have the following theorem.

Theorem 40 10. There is an isomorphism o/fT®UjCsiV) ^UgC^L) -modules:

(4.48) &M= ©
, mod QN]

§§. The Toroidal Hecke Algebra and the Quantum Toroidal Algebra

5.1. Toroidal Hecke algebra. From now on we will work over the base fieldi i
Q (q™} rather than Q (g) . Until the end of the paper we put K = Q (q ™ ) . Clearly,
all results of the preceding sections hold for this K.

The toroidal Hecke algebra of type gln , Hn , [Wl, VV2] is a unital associative
algebra over K with the generators x*1, Tf\ Xf\ Yfl, I^i<n9 l^j^n. The
defining relations involving T f l , Xfl are those of the affine Hecke algebra (2.20-
2.23), and the rest of the relations are as follows:

the elements x* l are central, xx~ J = x~ ! x = 1 ,

The subalgebras of Hn generated by Tfl
9X^1 and by Tf\ Yfl are both isomorphic

to the affine Hecke algebra Hn (cf. [Wl], [VV2]).

Following [C2] we introduce a representation of the toroidal Hecke algebra on the
space (K[z±1](x)IKL)®"-i;[zr1, ..., z^1] ® (KL)®". This representation is an
extension of the representation of Hn = (T^1, Xj) described in Section 2. 2.

Let v = S a = i ̂  (fl ) £a , where ea =Aa — Aa - \ , be an integral weight of $1L (y (a ) £
Z). Define q»V ̂ End(K[_z±l^ 0K1') as follows:
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Here the basis Ci , ..., CL of KL is the same as in Section 2. 1. For/?&7z define pD

eEnd(]£[z±1](8>i:L) as

For i = l, 2, ..., n — 1 let s/ be the permutation operator of factors i and z'+l in
(K [z±1] (8) KL) ®", and let J\ i+i = -q (71,) ~!. Here 71, is the generator of the finite
Hecke algebra defined in (2.25). For JTeEnd(K:[z±1] (x)KL) let

For / = 1 , 2, . . . , n define the matrix analogue of the Cherednik-Dunkl operator [C2] as

(5.1) Y^ = T^l'--T-\nsn-lsn-2--'Sl(p
D^(q^^Tli2'--Ti-lii.

Letse{0, 1, ..., JVL — 1} and m^Z be defined from n =s +NLm. Put^=JVm.

Proposition 5. 1 ([C2]). The map

Tt\ - >TI9 Xt\ - >zt, Yt\ - >q-±Y<*\ xl - >pl

extends to a right representation ofHn on (K[z±!] ®KL)®".

Remark. The normalizing factor q~= in the map Yf \ — >q~=Y^ above
clearly can be replaced by any coefficient in K. The adopted choice of this factor
makes q~=Y^ to behave appropriately (see Proposition 6.3) with respect to
increments of n by steps of the value NL.

Let % = Sa=il(fl)£a be an integral weight of s!L. Let Ug(bL)* be the non-unital
subalgebra of Ug(^tL) generated by the elements

(5.2) Fo,A,. . . ,FL-i and Ka-q
M~^^ I (a = 1, ..., L- 1).

We define an action of U^(^tL) on I&fz*1] (g)KL by the obvious restriction of the
action on K\z±l~\ ®KL®KN defined in (2.16-2.18). Iterating the coproduct A~
given in (2.8-2.10) we obtain an action of UjCstJ on (K[z±ll

Proposition 5.2. Suppose p^q'^, and v=— % — 2p, where p = Sa=i1^fl.
Then the action of the toroidal Hecke algebra on (i:[z±1] (x)KL)®" defined in
Proposition 5. 1 leaves invariant the subspace Ug(bL)^((lK[z±1] (x) !LL) (8>").

Proof. It is clear that the multiplication by z/, and hence action of Xt

commutes with all generators of UgCstL). From the intertwining property of the
R -matrix it follows that the operators Tt (cf. 2.24) commute with all generators of
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U^Ostz.) as well. Wiihp=q~2L, and v= —i~2p, a direct computation gives

xW-x^l-KjK^tFjntK^+F^KjjYW (a = l, ...,£-1),

1 -*(01 -*„)*• 0-' (FO), Of o), +FoCK0),,)r-
00-

In view of the relation TiY^\Ti=q2Y^\ and the commutativity of 7", with the
generators of UgCslr,), this shows that for all / the operators F/n) leave the image
of Ug(bz,)* invariant. [U

5.2. The quantum toroidal algebra. Fix an integer N^3. The quantum toroidal
algebra of type $1N, U, is an associative unital algebra over K with generators:

E,,k, F,fe, Ht.,, Kf\ q±+\ A±l,

where fc<EZ, /eZ\{0} and i=0, 1, ..., N~l. The generators q±+c and d±l are
central. The rest of the defining relations are expressed in terms of the formal series

£iOO = 2 £*.
tez

as follows:

(5.3)

(5.4) ^^'(zX*1^) =Kj±lWKF&

(5.5) 0-.,(<r dm« ̂ -)^r (zX/ (w) =e-a,y(9
c dm* ̂ -)^+ (wXr (z)

(5.6)

(5.7) ^fcWw) =e±./?+ed:F'1»w
±z:F)Fy(w)i:l

+

(5.8)

(5.9) (d^z-

(5.10) (dm«z-

m f

(5.11) £ £ (- Dr £iCz«(i)) - BiCz^^W^/Czofr+o) - £/(z0(m)) =0
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[ml
(5.12) S £ (~ l)r FiCZaCl)) — F^aW^Cw^CZafr+i)) — Fffea(m)) =0

where in (5.11) and (5.12) i^j and m = l— aiy.

In these defining relations (5(z) = Sr=-°oZn, 0m (z) €= K [ [z] ] is the expansion of
zq

z_qm , fly are the entries of the Cartan matrix of ^t#, and m,y are the entries of the
following N X JV-matrix

/ 0 -1 0 — 0 1 \
1 0 -1 ••• 0 0
0 ! 0 — 0 0M = . . . . . .

0 0 0 — 0 - 1
\-l 0 0 ••• 1 0 /

Let Uft be the subalgebra of U generated by the elements Eit Q,Fi>Q,Kfl(£)^i<N).
These elements satisfy the defining relations (2.1-2.3) and (2.5-2.7) of Uj(s!W).
Thus the following map extends to a homomorphism of algebras:

(513) U'Cst ) —> U • E \ >E F \ > F- K^1 \ ^K^1

Let Uv be the subalgebra of U generated by the elements Eit k, Fit k, Hit /, Kfl (1 ^
/<N; k£=:%*; /EiZ^o), and q± ~*~c, d±l. Recall, that apart from the presentation given
in Section 2. 1, the algebra U^Cst^) has the "new presentation" due to Drinfeld
which is similar to that one of ti above. A proof of the isomorphism between the
two presentations is announced in [D] and given in [B]. Let £it k, Fit k9Hi,i,Krl,
(l^f<JV;fcEEZ;/E:2j^o), and q * "*"e be the generators of U 'q (J^N) in the realization
of [D]. Comparing this realization of U^Csijv) with the defining relations oft) one
easily sees that the map

(5.14) U;(^v)->Uv:£,*l - >l!kEitk9 Fitk\ - -dikFiik, ffttl

where l^i<N, extends to a homomorphism of algebras. Thus each module of U
carries two action of U'q(j^N) obtained by pull-backs through the homomorphisms
(5.13) and (5.14). We will say that a module of U has level(lv, //,) provided the
action of U^Cst^) obtained through the homomorphism (5.13) has level 4 , and the
action of UgCstV) obtained through the homomorphism (5.14) has level /v. On
such a module the central elements q± +c act as multiplications by q ~ 2 v, and the
element K0K\ -•• KN-\ acts as the multiplication by q h.



432 KOUICHI TAKEMURA AND DENIS UGLOV

The following proposition, proved in [VV1], shows that it is sometimes
possible to extend a representation of U,Cs!V) to a representation of U.

Proposition 5* 30 Let W be a module o/U^Cst#). Suppose that there are a, b
^q^9 and an invertible $fe End (W} such that

(5.15) ^OO^i-iCoz), ^iW^-iCte),

(5.16) ^GO^fl-iCaz), r2AG

(5.17) r^rW^J^-iGzz), $^R

where 2^i<N. Then W is a IJ-module with the action given by

d=dl, ^c=^.

w/iere dN=b/a2, and X=E9 F, K*.

5o3o The Varagnolo-Vasserot duality . We now briefly review, following [VV1],
the Schur-type duality between the toroidal Hecke algebra Hn and the quantum
toroidal algebra U.

Let M be a right HB -module, such that the central element x of Hn acts as the
multiplication by x ̂ gz. The algebra HB contains two subalgebras: H J = ( T f 1 , Xj),
and HJ = CT*1, Yj) both isomorphic to the affine Hecke algebra HB . Therefore the
duality functor of Chari-Pressley [CP] yields two actions of U^(stjv) on the linear
space M®Hn(K

N)®n. Here the action of the finite Hecke algebra Hn on (K*)®"
is given by (2.27), and HB is embedded into Hn as the subalgebra generated by Tfl.

For /,y = 1, . . ., N let e/jGiEnd (IK^) be the matrix units with respect to the basis
D i , D 2 , . . . , PA- (cf. Section 2. 1). Fori=0, 1, ..., N— 1 let ki=qeitt~ei+lt l+1, where the
indices are cyclically extended modulo N. For jreEnd(K*) we put (,¥),=

The functor of [CP] applied to M considered as the Hj -module gives the
following action of U;(st*) on

(5.18)
7 = 1

(5.19) Ff (m ® v) = L mXr**** ® (el+ ,. ,•); (fc -
r ') i (fc r ') 2 - (* ,~ V .v,

y = l

(5.20) ^,.(m ®v) =m ® (*,),0k|)2 - (*,),,v.

Here mGM, ve(KA')'8>", and the indices are cyclically extended modulo N.
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Likewise, application of this functor to M considered as the HJ -module gives
another action of ll'/st*) on M®H (K*)®":^ n

(5.21) J?,(m®v) = S mI7*0=0)® (e,.,+ ,)y(*,V,(fc,)y+2 - Cfc,).v,

(5.22)
7 = 1

(5.23) je,(m®v) =m

Here we put hats over the generators in order to distinguish the actions given by
(5.18-5.20) and (5.21-5.23).

Varagnolo and Vasserot have proven, in [VV1], that M®Hn(K jNr)<8)" is a
U-module such that the U^CslW) -action (5.18-5.20) is the pull-back through the
homomorphism (5.13), and the U^Cst^) -action (5.21-5.23) is the pull-back
through the homomorphism (5.14). Let us recall here the main element of their
proof.

Let <p be the endomorphism of M&H/K*)®11 defined by

(5.24) 0: m®t>£l(x)t>£2(8) — ®oC|i I - >
~ ~

where P#+I is identified with t> i . Taking into account the defining relations of Hn

one can confirm that (/) is well-defined.
Let Ei,k, Fi,k, 3iti, K^1 (/cEiZ; /EiZ^o; 1^/XJV) be the generators of the

U;(st*)-action (5.21-5.23) obtained from EJ9 FJ9 Kfl (0^/XJV) by the
isomorphism between the two realizations of U^Cst^) given in [B]. Let E/(z),
F/(z), K f ( z } be the corresponding generating series.

Proposition 5.4 ([VV1 ]). The following relations hold in M (2) H?i ( K
 N ) ®":

Here 2^i<N.

Proposition 5. 3 now implies that M0Hn(KAr)®" is a U-module, in particular, the
central element d acts as the multiplication by x~l/Nq, and the central element q+c

acts as the multiplication by 1.
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5.4. The action of the quantum toroidal algebra on the wedge product. In the
framework of the preceding section, let M= (K[z±!] (8)KL)®" be the Hn-module
with the action given in Proposition 5.1. In view of the remark made in Section 3.1,
the linear space M^i^CK^)®11 is isomorphic to the wedge product AnFaff.
Therefore, by the Varagnolo-Vasserot duality, A"Faff is a module of U. The action
of U^Cstjv) given by (5.18-5.20) coincides with the action of U^(st^) defined on
A "Faff in Section 3.1. Following the terminology of [VV2], we will call this action
the horizontal action of'U^(st#) on A"Faff. The formulas (5.21-5.23) give another
action of UqCSfn) on A"Faff, we will refer to this action as the vertical action.

Recall, that in Section 3. 1 an action of U^Csti,), commutative with the
horizontal action of U^Cstjv), was defined on A"Faff. Recall, as well, that for each
integral weighty of sIL we have defined, in Section 5. 1, the subalgebra Ug(faL)% of
U^Cstz,). The Hn-module structure defined in Proposition 5. 1 depends on two
parameters: v which is an integral weight of sIL, andp^qz. The same parameters
thus enter into the U-module structure on A"Faff.

Proposition 5. 5. Supposep=q~2L
9 and v = —% — 2pfor an integral *\L-weight

X- Then the action of U on A"Faff leaves invariant the linear subspace
Ug(bLXA«Faff).

Proof. It is not difficult to see, that the subalgebras Uh and Uv generate U (cf.
Lemma 2 in [STU]). Therefore, to prove the proposition, it is enough to show,
that both the horizontal and the vertical actions of U^Cst^) on AnFaff leave
U«r(bz.)*(A"Faff) invariant. However, the horizontal action commutes with the
action of UgCstz,), while Proposition 5. 2 implies that the vertical action leaves
lUbL)*(A"Faff) invariant. D

§6. The Actions of the Quantum Toroidal Algebra on the Foek Spaces
and on Irreducible Integrable Highest Weight Modules of U'g(c$N)

6.1. A level 0 action of U^st^) on the Fock space. Let n\ny. U^Cst^) ->
End(A"Faff) be the map defining the vertical action of U^Cstjy) on the wedge
product A "K^ . In accordance with (5.21-5.23), for/e (K^1] ® KL^n and v£
(K*)0" we have

(6.1)

(6.2) a-foCF,) • A(/-®v)
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= A £ (?-ir^)flo

(6.3) JT'ooC*,) • A (/®v) = A/® (fc

where we denote by A the canonical map from Fa1f
n = (K [z*1] ® ]£L) ®" 0 (K jvr) ®n

to A«Faff.
In this section, for each MEEZ, we define a level 0 action of UgCslV) on the

Fock space ^M- Informally, this action arises as the limit «-^°° of the vertical
action (6.1-6.3) on the wedge product. In parallel with the finite case, the Fock
space, thus admits two actions of U£Cst#) : the level L action defined in Section 4.2
as the inductive limit of the horizontal action, and an extra action with level zero.

We start by introducing a grading on 3FM • To facilitate this, we adopt the
following notational convention. For each integer k we define the unique triple k,
k,k, where Jke {1, 2, ...,N},k^{l, 2, ...,

k=k-N(k+Lk).

Then (cf. Section 3. 2) we have uk =z-tn t>£ . The Fock space J^M has a basis formed
by normally ordered semi-infinite wedges w^Aw^A ••• where the decreasing
sequence of momenta ki,k2, ... satisfies the asymptotic condition k, =M— i + 1 for
i^>l. Let o\ , o2, ... be the sequence of momenta labeling the vacuum vector |M>
of J^M, i.e.: Oi=M—i+l for all / ̂  1. Define the degree of a semi-infinite normally
ordered wedge by

(6.4) d e g W f c . A w f e A — = Soi-fc.
2

Let ^"M be the homogeneous component of 3Fu of degree d. Clearly, the
asymptotic condition kt=M— i-\- l(z^l) implies that

*M = ®&dM.
d=0

Let s£={0, 1, ..., NL — 1} be defined from M=s mod NL. For a non-negative
integer / we define the linear subspace VM,S+INL of A*+/JVLFaff by

(6.5) VM,S+INL= © KII* An* A- i /.

where the wedges in the right-hand side are assumed to be normally ordered. For
s=l = Q we put VM,S+INL = ^. The vector space (6.5) has a grading similar to that
one of the Fock space. Now the degree of a normally ordered wedge is defined as
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(6.6)

Note that this degree is necessarily a non-negative integer since k\>k2> °" >
and kg+atL ^ OS+INL imply fc, ̂  o/ for all i = 1, 2, ..., s+lNL. Let FM.S+WL be the
homogeneous component of VM,S+INL of degree d.

For non-negative integers d and / introduce the following linear map:

(6.7) Ql:VdM,s+iNL-^^dM:w\ - >wA M-s-lNL).

The proof of the following proposition is straightforward (cf. Proposition 16 in
[STU], or Proposition 3. 3 in [U]).

Proposition 6. 1. Suppose l^d. Then gf is an isomorphism of vector spaces.

In view of this proposition, it is clear that for non-negative integers d, I, m, such
that d^Km, the linear map

(6.8) Qim: VM,S+INL

w I

is an isomorphism of vector spaces as well.
Now let us return to the vertical action n\n^ of U^(^tjv) on A "Faff given by

(6.1-6.3).

Proposition 6.2. For each d^Q, 1, ... the subspace VM,S+INL£- A5+/jVLFaff is
invariant with respect to the action ?rv(s +/#/,).

Proof. Let n=s+WL, and let us identify FSr with Kkf 1 , ..., zn
±!] (8)

(KL)®"® (K^)®" by the isomorphism

/n i .-^ ^~ m in -i m

Z X^l® - ®Z ^n^n1 - * V •"*-"*•! • • •ea , IV" V

Then ¥M,S+INL is the image, with respect to the quotient map A: FS" -> A"Faff, of
the subspace

(6.9) (z1---zJ^K[zf\...,z-1](8)(]KL)^(8)(i:^)^CFa1f,

while the grading on ¥M,S+INL is induced from the grading of (6.9) by eigenvalues
of the operator D =z\ -j^ H ----- hz« -—- .

The operators Ffn) leave (zi — zn)^ K[z f1, ..., z^T1] (8) (E:L)®M invariant, and



QUANTUM TOROIDAL ALGEBRA 437

commute with D. Now (6.1-6.3) imply the statement of the proposition. D

Proposition 6.3. Let O^d^l, let n=s+lNL9 and let X be any of the
generators Ei9 Ff, Kfl(0^i<N^) of U,Cst#). Then the following intertwining
relation holds for all

(6.10) JTWD(X) • ̂ f>/+i(w)^f, /+1(7rv
w(Z) - w).

Consequently, for Q^d^Km the map Qdijm defined in (6.8) is an isomorphism of
U q ( st ̂ -modules.

Proof. The proof is based, in particular, on Lemma 6. 4, to state which we
introduce the following notation. For m= (m\ , m2, ..., mj EEZ", and a= (GI , a2,
...,0JeE{l, 2, ...,L}"let

^x N m, v + -fl,)+^.-(m, a) x. x
£-(m, a)=p zg f ' 0 = 1, 2, ..., n)

where ̂ , v are the parameters of the representation of Hn introduced in Section 5.
1, and /A(m, a) = —

Lemma 6. 4. For fc = 1, 2, ... consider the following monomial

/=z^1z^^..zrA+^e f l le f l2•••es+feeK[z1
±^...,z„±

+y®

Assume that mi, m2, ..., mn<mn+i : : :=mn+2=: : :-"=mn+fc= : m, and that an+i^an+j for
<j^k. ForjE^{l,2, ...,L} putn(fi = #{i an+i=j, l^i
Define the linear subspaces tf%k, £"?>kc:K[zrl, ..., z±4

s.t.

f=n + l, n+2, ..., n+fc),

,) (/=!, 2, ..., n).

Here m=(mi , . . . , mn+k), SL=(a\9 ..., fln+fc), and m the right-hand side of the last
equation (Y^}±1 act on the first n factors of the monomial f.

A proof of the lemma is given in [TU] for L = 1. A proof for general L is quite
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similar and will be omitted here.
Let w be a normally ordered wedge from FM.H, and let w=£/[/+i(w). The

vector w is a normally ordered wedge from Vd
M,n+NL, we have

(6.11) *=!!*, An*2A - S\ukn+NL=S\(f®v\

where

(6.12) /=(z^z^-z^)(zn+1 -zH+ItL)a®
®(e* 1 e jk 2 - - - efcM)(ei ••• ei)(e2 ••• e2) ... (CL •;• eL),

N times AT times AT times

(6.13) v = (t>^o^ - iQ(pypy-i.- PI) ...
L copies

and m=o n +i=o n +2— ••• =on+NL • The monomial / given by (6.12) satisfies the
assumptions of Lemma 6.4 with k =NL, and n (j) =N for ally £ {1, 2, . . ., L] . Let
^™M. and £"?,NL be the corresponding subspaces of IKtzr1 , ..., z*+NL]®

Lemma 6.5. Lety^(KN^(n+NL\andletfl^^r^NL9f2^^^NL> Then

(i) A
(ii) A

Proo/. This lemma is the special case (6=L and c=AT) of Lemma 6. 8. See
the proof of Lemma 6. 8. [U

Now we continue the proof of the proposition. From the definitions (6. 1-6.3) and
Lemmas 3. 4, 6. 4 and 6. 5, it follows that (6.10) holds modulo ®d'>dVdM,n+NL-
However, the both sides of (6.10) belong to Fir, H+NL since the action of U^(^tjv)
preserves the degree d. Hence (6.10) holds exactly. D

Now we are ready to give the definition of the level 0 action of U^GslV) on the
Fock space 3FM •

Definition 68 6. Let Q^d^L We define a U'^N) -action TLV: UjCst*) I — >
as

(/of)"1

Proposition 6. 3 t/i/5 definition does not depend on the choice of I as long as



QUANTUM TOROIDAL ALGEBRA 439

Thus a U^CstjvO-action is defined on each homogeneous component J^M , and
hence on the entire Fock space 3FM •

6.2. The action of the quantum toroidal algebra on the Fock space. In Section
4.2 we defined a level L action of U^Cst^) on ^M- Let us denote by nh the
corresponding map U£Cst#) -> EndC^). We refer to nh as the horizontal
U g (J^N)- action on the Fock space. In the preceding section we defined another—
level 0-action TTV: U^Cst^) -> EndC^). We call TTV the vertical Uj(st^)- action.
Note that for / = 1, 2, ..., N— 1 we have

i.e. the restrictions of TT* and TTV on the subalgebra ^(sU) coincide.
In this section we show that nh and TTV are extended to an action n of the

quantum toroidal algebra U, such that nh is the pull-back of n through the
homomorphism (5.13), and TTV is the pull-back of ft through the homomorphism
(5.14). The definition of n is based on Proposition 5. 3.

Let 0n: A*Faff-> A"Faff be the map (5.24) for M= (K^1] ® KL)®B. That is

(6.14) 0n:zm ie f l lD £ lAzm 2e f l 2 t> £ 2A — Azm"e f lnr>£n I - >

where o^+i is identified with PI. Let Jr = ©M^rM- We define a semi-infinite
analogue 0oo€=End(«^") of 0n as follows. For m^Z we let

0oo I -mATL>=zm-1eiP1Azm-1e2PiA — Azm-1eLP1A | -mNL).

Any vector in J^ can be presented in the form v A | —mNL}, where v^ A"Faff for
suitable n and m. Then we set

0oo (v A | -mJVL»=0n(v)A000 -mNL}.

By using the normal ordering rules it is not difficult to verify that 0oo is well-defined
(does not depend on the choice of m). Note that 0oo: J^M -* ^M+L , and that 0oo
is invertible. Moreover

(6.15) 0»1

where X=E, F, K and the indices are cyclically extended modulo N.



440 KOUICHI TAKEMURA AND DENIS UGLOV

Proposition 6. 7. For each vector w GE HFu we have

(6.16) 0

(6.17) 0

Proo/. To prove the proposition we use the following lemmas.

Lemma 6. 8. Let Q^d^l, n=s+WL, where M=s mod N, s^ {0, 1, ..., NL
k k k

— 1}. Let w=z-f e^Oj^Az-^e^Oj^A ••• Az-^e^D^ be a normally ordered wedge
from VdM,n,let b, c be integers such that l^b^L, l^c^N. We define
..., z f t j ] <8 (K*)®014*0 as follows.

(6.18)

ei)(e2 ••• e2) ...
c times c times c times

m=on+i=on+2
=::'"::z::On+6c. The monomial f given by (6.18) satisfies the

assumptions of Lemma 6. 4 with k=bc, and n(j)=c for all j^ {I, 29 ..., b}. Let
tf I bc and & I bc be the corresponding subspaces ofK[zf\...,z ^b

that N~

(i)
(ii) A(/2®jO=0.

Proof.
(i ) The vector A (/\ ®j;) is a linear combination of normally ordered wedges

such that kn+i<on+i. This inequality implies that deg u^ ^/+1.
(ii) It is sufficient to show that

(6.19) A(e f l le f l 2 - e^®*^ - o£6c)EE A6cFaff

is zero whenever there is Je {1, 2, ..., 6} such that # {i \ l^i^bc, a/=J} >c.
Using the normal ordering rules (3.21-3.24) one can write (6.19) as a linear

combination of the normally ordered wedges ea;o£; Aefl2D£^ A ••• Aefl^oe^.
The U^sljvr) and Ug(sIL)-weights of the both sides in the normal ordering rules
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are equal. This implies that #{i a/=/} >c and # {j \ 3 i, e/=7, a/=/}^c.
Therefore, there exists some i such that a /=a /+i and s J=£ J+i . On the other hand,
we know that ear t>£^ Ae^ o£r =0. This implies that A (/2®jO =0. D

Lemma 6. 9. Suppose d and I are integers such that Q^d^L Let n=s + INL ,
, 1, ...,NL — 1} is defined from M=s mod NL. Let m be the integer such

that M-s-lNL = -mNL.
For l^b^L we put

Assume v 6= FM, S

(6.20) 7rv
(n+,)(Jfz-(z)) (v Ay*,*) -7rv

(n)(^-(z)) (v)

(6.21) 7rv
(n+2

Here

For the proof, see the appendix.

Retaining the notations introduced in the statement of the above lemma, we
continue the proof of the proposition. We may assume that w^^d

M. Then, by
Proposition 6. 1, w=v A \ — mJVL), where V£=FM ) S+/ATL. By Definition 6. 6, for 2

— 1 we have

(6.22) 7rv(jri-1(^-1z))(vA \ -m]VL»=7rv
wtr/_1(g-1z))(v)A \ -mNL}.

The definition of 0oo yields

vL,N/\(/>~1 \ -mNL}9

where VL,N is defined in the statement of Lemma 6. 9. Applying (6.20) in this
lemma, we have

Taking this, and Proposition 5. 4 into account, we find that the right-hand side of
(6.22) equals

-mNL},
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which in turn is equal, by definition of 0oo , to

(6.23) 0^1(^v(n+

It is clear, that <pn+L(y ^vLjN)^VM^L,n+L for some non-negative integer d '.
Choosing now m large enough, or, equivalently, / large enough (cf. the statement
of Lemma 6. 9), we have by Definition 6. 6:

^) A | -mATL>=;f C?/(z))(0n+L(vAvL,^) A -

Since 0oo (v A — mATL» = </)n+L (v A VL) N) A —mNL}, we find that (6.23) equals

Thus (6.16) is proved.
A proof of (6.17) is similar. Here the essential ingredients are the relation

(6.21), and those relations of Proposition 5. 4 which contain the square of 0. [U

Now by Propositions 5. 3 and 6. 7 we obtain

Theorem 6. 10* The following map extends to a representation of U on £FM>

(6.24) *:*,(*) I— >
(6.25) 7r:*0(z) I - >
(6.26) TT: d I — > J 1,
(6.27) TT:^C I — > 1.

d=p~l/Nq, and X=E9 F, K*.

From (6.24) it follows that the vertical (level 0) U£Cst#) -action TTV is the pull-
back of 7t through the homomorphism (5.14). Whereas from (6.25) and (6.15) it
follows that the horizontal (level L) UgCst#) -action nh the pull-back of ft through
the homomorphism (5.13). Thus as an U-module the Fock space 3FM has level
(0,L) (cf. Section 5.2).

6.3. The actions of the quantum toroidal algebra on irreducible integrable highest
weight modules of Ug(gtAr). Let A be a level L dominant integral weight of
U^(^tjv). In this section we define an action of the quantum toroidal algebra U on
the irreducible module

(6.28)
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of the algebra UjCgt*) =ff ®Ui(st^). Here (cf. Section 4. 4) K[ff-] is the Fock
module of the Heisenberg algebra H, and V(A} is the irreducible highest weight
module of U,(st#) of highest weight A.

In Section 5. 1 we defined, for any integral weight % of slL , the subalgebra
U9(bL)* of U;(stL). A level N action of U;(stL) on the Fock space J^CMeZ)
was defined in Section 2. 1, so that there is an action Ug(bi,)* on ^M- Recall
moreover, that the vertical U^Cst^)- action 7? on ^M, and, consequently, the action
7t of U, depend on two parameters: p^qz, and v which is an integral weight of s\L .

Proposition 6. 11. Suppose p —q~1L, and v = —% — 2pfor an integral 5lL-weight

X- Then the action ft o/U on ^M leaves invariant the linear subspace Ug(bi,)*C^"Af).

Proof. It is sufficient to prove that both the horizontal U 'q ( st#) -action n h and
the vertical U^Cstjy)- action nv leave U^bL^C^r) invariant. The horizontal action
commutes with the action of U^Csti.)- Thus it remains to prove that the vertical
action leaves U9 (bL)* ( J^M) invariant. Let w^J^M and let l^d. By Proposition
6. 1 there is a unique v^Vd

MiS+iNL such that

w = v A M-s-lNL}.

Herese{0, 1, ..., NL- 1}, M=s mod NL.
Let g be one of the generators of Uq (bL}x (cf. 5.2). For all large enough / we have

(6.29) g(w)=g(v) A | M-s-lNL}c(g}9

. If
g =F0 then g (v) e Vlti+wL , otherwise g (v) e Vd

M. S+INL .
Let X be an element of U^Cstjv). Provided / is sufficiently large, Definition

6. 6 gives

By Proposition 5. 5 the right-hand side of the last equation is a linear combination
of vectors

(6.30) /Z(V')A |M-S-/ATL>,

where /i is again one of the generators of U«r(bL)*, and vx belongs to either VM,S+INL
or FM!~*+/M. • Applying (6.29) again, the vector (6.30) is seen to be proportional to
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Thus the vertical action leaves Ug(bL);t(^rM) invariant. D

Now we use Theorem 4. 10 to define an action of U on V(A). Fix the unique M
e (0, 1, ..., N-l} such that A=AM mod QN. Since the dual weights Aw of
UG^tz,) are distinct for distinct A, from Theorem 4. 10 we have the isomorphism
of U 'q (gt#) -modules:

(6.31) PC/1) =

where £ is the finite part of yl(M). That is for yl(M) = S L
a=lnaAa , * = S L

a=\naAa .
By Proposition 5. 5, the U-action # withp^g"21, v= — # — 2p, factors through

the quotient map

and therefore by (6.31) induces an action of U on F(yl).

Appendix A» The Proof of Lemma 6. 9

In this appendix we prove Lemma 6. 9. The idea of the proof is essentially the
same as that of the proof of [STU, Lemma 23] .

Lemma 6. 9» Suppose d and / are integers such that O^d^L Let n =s+lNL,
where sEE {0, 1, . . ., NL — 1} is defined from M=s mod NL. Let m be the integer such
thatM-s-lNL = -mNL.

For l^b^L we put

Assume v ̂  Vd
Mt S+INL- Then

(7.1)
(7.2)

Here

Proof. As is mentioned in the proof of Lemma 22 in [STU] , for each i (1 ^
- 1), the subalgebra of U^Cst*) generated by Eit r, Pt,r, Hit m., Kf (/'^Z, m'

is in fact generated by only the elements Eit0, Fii0, Kf, Ftj i and Pit-i.
By the definition of the representation, every generator of the vertical action
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Uv preserves the degree in the sense of (6.6). So it is sufficient to show that the
actions of Sit 0,Fi>0,K^9 Fit i and Fit - { satisfy the relations (7.1,7.2). For £it 0 , Fit o ,
Kf, this is shown directly by using the definitions of the actions (6.1-6.3). Now
we must show that

(7.3) TTln+b^Fi, ±1) (V AV6, AT) =*'(„)(#, ±1) (v)

(7.4)

Here

We will prove (7.4).
For any M', M" , M'"(l^M', M", M'"^N+2b, M'^M"), we define an

U;(st*)-action on the space Kb?1, ..., z^] (8)(KL)^("+26)(g)(K^)0("+26) in
terms of the Che valley generators as follows:

(7.5) £,.(/<8>v) = S Qri: r/'O)-^® fo^OAV, ... (/C,.)M" v,
y=M'

(7.6) F,.(/®v) = £ («-*£ r/«'">)«'-°>/® (fcrV ___ (fc(-«) (e/+lt()
j=M'

(7.7) Kt (/® v) =/® (fe)ir (fc) jf + 1 ... (fe)

Here / = 0, ..., N—l, indices are cyclically extended modulo N, f^K[zfl, ...,
zn

±
i
1

2,](8)(i:L)®("+2i'), veCK*)®014-^, and the meaning of the notations (c,,^,
(/c^1); is the same as in Section 5. 3. It is understood, that for Mfn <n+2b the
operators Y{M "/} in (7.5, 7.6) act non-trivially only on the variables Zi, z2, ..., zM'"
and on the first M/x/ factors in K®(n+2Jj\ Note that the U;(st^) -action is
well-defined because of the commutativity of F/M ° (/ = 1, . . ., Mx//) . The actions of
the Drinfeld generators are determined by the actions of the Chevalley generators.

Let X be an element of UjCstjy), we denote by Z(M/> M")j M'" the operator giving
the action of X on the space K[zf\ ..., z^]®^)®01^^^^)®^^ in
accordance with (7.5-7.7).

Also, we setX{^'M'"=^'^'M'"0"=l, ..., M"').
With these definitions, for any two elements X and Y from UqCstjv), the

operators Z(M''M"XM'" and Y(N>>N"^M'" commute if M" <N' orN" <M '. Note that for
any JfeU^Gsttf) we have

Let C/JV+ and CW2_ be the left ideals in U^stjv) generated respectively by {£ijk-}
and {fi.k'Fj,,'}. Let UN^''^-^", (UN2-}(M''M"^M'" be the images of these ideals
with respect to the map U^stjv) -> End(K.[zitl, ..., z.^a] <8> (KL)®c"+26)(x)
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(K*)®("+26)) given by (7.5-7.7). Then the following relations hold:

x'k+V&N-i. ,) A (/®v) = A

where /GEKfe,*1, ..., z^] ®(KL)*(*+2*)
f ve(K")*"+2fc.

Here the equivalence = is understood to be modulo

These relations follow from the coproduct formulas which have been obtained in
[Ko, Proposition 3. 2. A] :

(7. 8) A + (Fz- 0 ~Ki ®Fit ! +#, i (8) 1 mod UN+ ®UN2-,

(7.9) J + (FZ- -^-jTr1^- _!+£• _i® 1

ii0 mod UN+&UN2-.

Recall the definition of J+ given in (2.8-2.11).
Jfc & 1L

Let w=z-f1c^1oqAz-^e^203qA ••• Az-^e^Dj^ be a normally ordered wedge
from Fln, and define /EKfef1 , ..., z*M ®"(Ki)®Gl+2*) and ve(i:jv)®("+2l') as
follows.

(7.10) /=(z^z^ -z^

(7.11) V = ( p 3 k P i ' " Pg;
6 copies

when m=on+i=on+2="°=on+2b • Then the monomial / satisfies the assumptions
of Lemma 6. 4 with k = 2b, and n(j) =2 for ally= {1, 2, ..., 6}.

Now we will show the equality

(7.12) n.+2«C/Vi, ±1) A (/®v) - A (F^l^r2)'n+26(/«)v)).

First let us prove that any element in ujyp. *+»-».*+» .
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annihilates the vector/(8)v where /and v are given by (7.10) and (7.11). It is
enough to show that

for vGEKCz,*1, .... z#B-1]®(K1)*0l+a-2)®(KJ'r)00l+B-2). This follows
immediately from the observation that wt(ojy) + wt(r>j\r-i) —a,"— a/ is not a Us(sljv)-
weight of (K*)®2.

Next we will show that AFi?-+
1

1*±i1'"+2*x"+2*(/®v))=0, (here /and v are
given by (7.10) and (7.11)). By the formulas (7.8) and (7.9), we have the
following identities modulo A(CWi"+2*-1}'"+2*(CW2_){"+2*)'"+2*(/0v)) (see also
[STU]):

(7.14) A
A

(7.15) A (F^-i''"

The following formula is essentially written in [Ko, Proposition 3. 2. B] :

(7.16) ^w±?+26(/'® (® A))

where / 'eKCzf, ..., z*^] ® (EL)8("+2fc) and ®;+,2*o^e(K*

By (7.16) we have (£Wi"+2*-11'"+24(CW2-){"+2*)'"+26(/®v))=0, and by
(7.16) and Lemma 6. 4 we have

(7. 17) Fft±?±}- "+2i)- "+

mod ( Jf 7, 2* + JSf S 2*) ® (V(n) ® (pjyPy-i) . . . (Py.ojy-i) (% DJV) ) ,

b — 1 copies

Here c±i are certain coefficients, v^KCzf 1 , ..., 2^-2] ® (lK£)®Cn+26

Using the normal ordering rules, we have A (v0z^+26-i fy DAT^Z^+IA ^ DJV) =0.
By Lemma 6. 8, we have

(7.18)
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— 1 copies

On the other hand the degree of the wedge (7.18) is equal to deg (/(><> v)=cL
Taking into account that d^!9we have A (F^l

2h±l
l>n+2bl "+26(/(x)v)) =0.

Now we prove that A ((K^+^-^n^y'lH^L^^
(/(x)v)) vanishes. We have

a iQ^.lyj

(n+2b~2)® (KNr(n+2b^. By (7.5-7.7) the
operator #&M,+-?f 2)l"+2* is a polynomial in the operators (F/^^)^1, (A:/)/1, G?U');-
where l^j^w+21? — 2 and 1^1,1'^N. By Lemma 6. 45 we have

l, n+2b~2), n-i, -i

mod ( Jf £ 26 + JS? ~ 2*) ® (v (n)

/? — 1 copies

Here c is a certain coefficient, v5 veKtr1 , ..., z^+Vz] ® (i:£)®("+2

(KAT)®(n+26-2)? VK«) is an eiement in (KJV)®«. Repeating the arguments given

after the relation (7.18), we have A(Or^M+2*"2) '"+26)~! I?£-l+^f 2)'*+2*
)=0. Thus we have shown (7.12).

Repeatedly applying the arguments that led to (7.12), we have

(7.20) n,+26)C^-i, ±1) (/®v)) = A

To prove ^v(B+2*)(/^-i, ±i)(/^v)) = A (F^'+^/^v)), we must show that
in the right-hand side of (7.20) we can replace q~^ F/n+26)

Observe that F$i$i*±ilb is a polynomial in the operators

(7.21) (7/"+26))±1, (A:,)/1, (e/,r);. where l^n and 1*57, /^tf.

By Lemma 6. 4 we have

(7.22) (g-^^Ff"

^26, and ^M a polynomial in (7.21), the vector f'
satisfies the assumption of Lemma 6. 8. By this lemma, and by the arguments given
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after (7.18), we have

(7.23)

Combining (7.23), the commutativity of gn and (Y /^
))±1(l^/^n, n=n or

and the fact that (if^^Jf £ 26 + ̂ 2*) C (jf £ 2* + J2T, 2*) , we have
v-i, ±1) A (/®v)) = A (F#-tM/®v)). The relation (7.4) follows.

To prove (7.3), consider the tensor product K[z r1, ..., z^+fc] ® (
(K*)®01**^ use the formulas (7.8), (7.9) and continue the proof in a way that is
completely analogous to the proof of (7.4). D
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