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Abstract

We study the blowing up 7 : X — X of a 3-dimensional terminal singularity X of index m >2 such
that the exceptional locus of 7 consists of a prime divisor E with discrepancy 1/m. A complete
classification of such blowing ups is given and it is proved that these correspond to weighted blow ups
by a certain kind of maximal weights except for the case where X is of type (cD/2). We shall treat the
(cD/2) case later. These also give examples of contractions of extremal rays which contract a divisor
to a point.
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§ 1. Introduction

Let X be a projective 3-fold with only terminal singularities defined over the
complex number field C. If the canonical divisor K¢ of X is not nef, then there is
a projective surjective morphism 7 : X — X, which is the contraction of an extremal
ray. If dim X <3, then 7 is called a fiber type contraction. If dim X =3, then 7 is
a birational morphism. Let E be the exceptional locus of 7. Then x is called a
divisorial contraition if E is an irreducible divisor and called a flipping contraction
if dim E=1.

The most difficult part of the Minimal Model Program was to construct the
flip z* : X* — X when 7 : X — X is a flipping contraction. This was established by
[Mori88] and the structure of flipping contractions and their flips are well-
understood by [KM92].

Divisorial contractions 7 : X — X were considered to be the easy part of the
Minimal Model Program since X has only terminal singularities. However the
detailed description of these are not known except for a few cases :

(1) IfX is smooth or has only Gorenstein terminal singularities, then there is
a complete list of 7 ([Mori82], [Cut88]).

(2) If X has a cyclic quotient terminal singularity, then X is obtained by a
weighted blow up ([Kaw96]).

(3) Ifthe index of X is not greater then that of X, then X is restricted to a very
few cases and we can construct 7 explicitly ([Luo98]).

Recently it seems that a classification of divisorial contractions is indispensable
for the birational study of 3-folds ([Cor95], [Ko197]).

In this paper, we shall study divisorial contractions z : X — X which contract
an irreducible divisor to a point under some assumptions. Since X has only terminal
singularities, we start with a germ of a 3-dimensional terminal singularity X and
look for projective birational morphisms z: X — X which give divisorial con-
tractions. Examples in [Kaw96] and some explicit calculations indicate that the
discrepancy of the exceptional divisor E of 7 is small in many cases. We shall adopt
this as our assumption. Thus our problem becomes as follows :

For each germ of a 3-dimensional terminal singularity X of index m, find all
projective morphisms 7z : X — X such that

(i) X has only terminal singualrities,
(ii) the exceptional divisor E of r is irreducible, and
(ii) Kgx=n*(Kyx)++E.
Such a morphism 7 will be called a divisorial blow up with discrepancy 1/m.

The purpose of this paper is to determine all divisorial blow ups of X with
discrepancies 1/m if X is a germ of a 3-dimensional terminal singularity of index m
>2. Our main results says that this is possible except for the (cD/2) case. These
are all obtained by weighted blow ups and there is a one-to-one correspondence
between these blow ups and certain set of weights. Moreover we found that the
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axial weight will not increase after a divisorial blow up with discrepancy 1/m. By
studying singularities more carefully, we know that we can resolve the singularitiy
of X by a succesion of these blow ups. These are summarized in Section 4 in a
precise form. For the (cD/2) case, we can also determine all divisorial blow ups
with discrepancies 1/2, but some of them are obtained by a different type of
weighted blow ups and the one-to-one correspondence as above does not necessarily
hold. So we shall not include these results here and we treat the (cD/2) case
separately.

By [Kaw93], there is at least one divisor which has discrepance 1/m over X
(this also holds if X is of index 1 by [Mar96]). Our method to find divisorial blow
ups with discrepancies 1/m is similar to the one in [Kaw93] and sometimes we use
the same weighted blow ups. In [Kaw93], the blown up varieties may have non-
terminal singularities or the exceptional divisors may not be irreducible. By
studying these blow ups more carefully, we can determine all the divisorial blow ups
with discrepancy 1/m completely.

This paper is organized as follows: In Section 2, we recall the results on
classification of 3-dimensional terminal singularities and some definitions. In
Section 3, we review the notion of weighted blow ups and discrepancies of divisors.
The notation and definitions in these sections are used later. Main results and some
of their corollaries are summarized in Section 4 with some comments on the proofs.
In Section 5, we shall show the results on cyclic quotient terminal singularities and
some lemmas which is used to estimate the number of divisors with discrepancies
1/m. Sections 6—10 are devoted to proving our main results. We shall use the
classification of 3-dimensional terminal singularities.

The author would like to thank Professor S. Mori for his invaluable sugges-
tions and encouragement.

Notation. The following are the notation which we shall use frequently in
this paper.
(1) For a rational number x, we denote its integral part by [x] and its
fractional part by {x), i. e. [x] satisfies [x | EZ,x — 1< [x] <x, and {x) =x— [x].
(2) Let feCixy, ..., x,} and let M be a monomial. We write MEf if the
coefficient of M in the power series expansion of f is nonzero.
(3) For f(x) =2a,x"=C{x}, we define ord(f(x)) =min {n |a,#0}.

§ 2. Classification of 3-dimensional Terminal Singularities

In this section we fix our notation and summarize the results on classification
of 3-dimensional terminal singularities, which will be used in the following sections.

2.1. We denote the complex space C" with coordinates x, ..., x, by (x;, .

aey
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x.). Let Z,, be a cyclic group of order m. We define the action of Z,, on (xi, ...,
x,) by t(x;) =8*1x,, ..., t(x,) =¢°x, where T is a generator of Z,,,  is a primitive
root of unity and @, ..., a, are integers. The quotient space of (xi, ..., x,) is
denoted by (xi, ..., x,)/Zn(Q1, ..., @) or (x1, ..., X4)/Zm or C"/Z,, if there
would be no confusion.

Let o(xy, ..., x.) EC{xy, ..., x,} be a Z,,-semi-invariant. Then Z,, also acts
on the germ of the hypersurface {¢(x1, ..., x,) =0} € (x4, ..., x,). We denote the
quotient space by {¢(x,, ..., x,) =0}/Z (a1, ..., &) or {9, ..., x,) =0}/Z,n,
which we call a hyperquotient singularity.

In this paper, we mainly deal with the n =4 case and we shall often use the
coordinates x, y, z, u (in this order) instead of x;, x,, x3, xs. So C* with these
coordinates will be denoted by (x, y, z, u).

Now we state the results on classification of 3-dimensional terminal singular-
ities. The first one is due to [Reid83] which deals with terminal singularities of
index 1, and the second one is due to [Dan83], [MS84] and [Mori85] which treats
the case where index>2.

2.2. Theorem. A 3-dimensional singularity is terminal of index 1 if and only
if it is an isolated cDV point.

2.3. Theorem. Let X be a germ of a 3-dimensional terminal singularity of
index >2. Then there is an embedding j : X — (x,y, z, u) /7, such that one of the
following holds :

(cA/m) X={xy+f(z, u) =0}/Z,(a, —a, 1, 0) where a is an integer prime to m
and f(z, u) EClz, u} is a Zn-invariant.
(cAx/4) X={x*+y*+f(z, u) =0} /Z,(1, 3, 1, 2) where f(z, u) EC{z, u} is a Z,-
semi-invariant and u&f(z, u).
(cAx/2) X={x*+y*+f(z,u) =0} /Z,(0, 1, 1, 1) where f(z, u) € (z, u)*C{z, u} is
a Z,-invariant.
(cD/3) X={p(x, y, z, u) =0}/Z;(1, 2, 2, 0) where @ has one of the following
forms :

(cD/3-1) o=u*+x*+yz(y+z),

(cD/3-2) o=u’+x*+yz>+xp* 1 (y*) +y°u(y®) where 2(y*), n(y*)EC{y’}
and 423 +27u*#0,

(eD/3-3) o=u*+x*+y +xya(@®) +xz*8 (%) +yz2°r(23) +2°6 (2*) where
a (@), B, r@), 6()EC{Z*.
(cD/2) X={p(x, y, z, u) =0} /Z,(1, 1, 0, 1) where ¢ has one of the following
forms :

(eD/2-1) ¢o=u+xyz+x*+y*+2z where a, b>2, ¢ >3,

(cD/2-2) ¢o=u*+y*z+Apx"* 1 4g(x,z) where A=C, a>1, g(x, z) € (x*, x*2?,
z)C{x, z}.
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(cE/2) X={u*+x*+g(y, 2)x+h(y, z)=0}/Z,(0, 1, 1, 1) where g(y, 2)E
(»,2)*C{y, z}, h(p, 2D E (p, 2)*C{y, 2}\(p, 2)°C{y, z}.
The index of X is equal to the order of the cyclic group Z.

2.4. For each 3-dimensional terminal singularity X of index m >2, there is an
embedding j: X = (x,,z,u)/Zn, as in (2.3). We fix one of such embedding and
call it a standard embedding of X.

The following result is due to [KSB88] (see also [Ste88]), which completes
the classification of 3-dimensional terminal singularities.

2.5. Theorem. Let X be one of the hyperquotient singularity {¢(x,y,z,u) =
0} /Zr, listed in (2.3). Assume that ¢(x, y, z, u) =0 defines an isolated singularity
at (0) and that the action of Z,, is free outside (0). Then X is terminal.

2.6. Axial weights. Let X={¢(x,y,z, u)=0}/Z,(a, B, 7, ) be a germ of
a 3-dimensional terminal singularity of index m >2 at the origin PEX as in (2.3).
Then there is a linear form /EC{x, y, z, u} such that ¢+ is a Z,,-semi-invariant.
For a Z,-invariant open neighborhood U of the origin of (x, y, z, u), let

X={(Cx,y,z,u, ) EUXClo(x, y, z, u) +tl(x, y, z, u) =0} /Zn(a, B, 7, 6, 0),

and let p : & — C be the projection to the ¢t-axis. If U is sufficiently small and if
0< |t|<1, then p~'(¢) has only cyclic quotient terminal singularities (see [Kaw
86]). The number of cyclic quotient singularities of p~'(¢) is called the axial
weight of X at P. We shall denote this by aw (X, P) or simply aw (X) if there would
be no confusion. If X is smooth or has an isolated cDV point at P, then we shall
define aw(X, P) =1.

Using notation of (2.3), the explicit values of axial weights are as follows :

ord (£(0, u)) if X is of type (cA/m),

(ord(f(0, u) +1)/2 if X is of type (cAx/4),

2 if X is of type (cAx/2) or (cD/3),
aw(X) =

c if X is of type (cD/2-1),

ord(g(0, z)) if X is of type (cD/2-2),

3 if X is of type (cE/2).

This notion coincides with the notion of “weight” in [Morr86] and “axial
multiplicity” in [Mori88] except for the (cAx/4) case. If X is of type (cAx/4),
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then these three notions are all different.

2.7. Divisorial blow ups. Let X be a germ of a 3-dimensional terminal
singularity.

By a partial resolution, we mean a projective birational morphism ¢ : Z — X
such that Z has only terminal singularities. For a Q-Cartier Weil divisor D on X,
the proper transform of D by ¢ will be denoted by ¢~ [D].

Let ¢ : Z—> X be a partial resolution of X and let 2 E; be the exceptional
divisor of ¢. Then we can write

Kz:(b* (Kx) + ZaiEi;

where 0<a;EQ). The coefficient g; is called the discrepancy of E; over X and it is
denoted by a (E;, X). The discrepancy of E; only depends on the discrete valuation
on the function field of X associated to E; and does not depend on the choice of ¢.
Thus we shall often identify prime divisors with the corresponding discrete valua-
tions when we speak about “divisors over X”.
A projective birational morphism 7 : X — X is called a divisorial blow up with
discrepancy a(>0) if the following conditions are satisfied :
(i) X has only terminal singularities,
(ii) the exceptional set of 7 is an irreducible divisor E, and
(ii) Kg=n*Ky)+aE.
Moreover, if 7 is a blow up, then we shall often say that z is divisorial with
discrepancy a.
In this paper, we are interested in divisorial blow ups with discrepancies 1/m
where m is the index of X.

§ 3. Weighted Blow Ups and Weighted Valuations

31. LetY=(x,...,%.)/Zn(ai, ..., a,) be acyclic quotient singularity. We
can describe this by using the theory of toric varieties (cf. [0da88], [Ful93]). Let

e=(1,0,...,0),....e,=(0, ..,0,1) and e=%(a1,...,a,,>.

Then Y= (x1, ..., X,)/Zn(Qi, ..., a,) is the toric variety corresponding to the
lattice N=7Ze,+ -+ +Ze,+Ze and the cone C=Rpe;+ - +Rxoe,, precisely
N and the fan 4 consisting of all the faces of C.

3.2. Weighted blow up. Let 0=--(ay, ..., a,) EN be an element with a,,
.., @, >0 and assume that ey, ..., e, and o generate the lattice N. Such 0EN will
be called a weight. We can construct the weighted blow up 7 : ¥ = Y= (x1, ... ,x.)/
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Z.m with weight o as follows (cf. [KM92, 10]):
We divide the cone C by adding the 1-dimensional cone R0, that is, we
divide C into n cones :

1-th
C,":R2081+ +R200+ +R20en (l'—_l, ceey n).

Let 4’ be the fan consisting of all the faces of C, ..., C,. Then Y is the toric
variety corresponding to N and 4’, and 7 is the morphism which is induced from
the natural map of fans (N, 4") — (N, 4).

The variety Y is covered by n affine open sets U, ..., U, which corresponds to

the cones Cy, ..., C, respectively. These affine open sets and 7 are described as
follows :
(3.2.1) U=, ooy %)/ Lo (@1, ooy M,y ooy —an)
-th
(B322)  #o:UDG, ..., %) > GXA™, X7, L XX EY.

The exceptional divisor E of 7 is isomorphic to the weighted projective space
Pay, ..., a,).

33. Leto(&,...,x,)EC{xy, ..., x,} be a Z,-semi-invariant. For a hyper-
quotient singularity X = {¢ (x1, ..., x,) =0} /Zip © X1, «vv, X0) /L, let X=7""[X]
be the proper transform of X by 7 and let 7=1 |z be the restriction of 7. Then
7 : X — X is also called the weighted blow up with weight o or simply the o-blow
up. Furthermore, we set U;=U, |z for i=1, ..., n. Each U, is a hyperquotient
singularity in U; and X is covered by U, ..., U,. In this paper, U; (resp. U)) is
called the x;-chart of X (resp. 7).

34. Leto=-—(ay, ..., a,) EN be a weight. We define the function

owt:Clxy, ..., x,} —Q
as follows :
First we put o-wt (x,) =a,/m, ..., o-wt(x,) =a,/m. (We shall often abbreviate this
as o-wis(xy, ..., X,)=—(ai, ..., a,).) Next for monomials M=x?1 ... x2, we
define

o-wt(M) =p,o-wt(x;) + -+ +p,0-wt(x,) = (pra1+ - p.a,)/m.
Finally for general f=2;a:M;, a;=C, M; : monomials, we define

o-wt (f) =min {o-wt (M) | a;#0}.
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For f=X;a;M;EC{x,, ..., x,} and IEQ, we define

Sow=1= Z arM;.

o-wt (M;) =1

For a rational number k, we also define
k) ={fECx, ..., x.} |awt () >k},

which is an ideal of C{xy, ..., x,}.
The following is immediate from (3.2) and the above definitions :

35. Lemma. Let7:Y—Y=(xy, ..., x,)/Zm be a o-blow up and let D be
the Q-Cartier Weil divisor defined by a Z,-semi-invariant fEC{x,, ..., x,}. Then
we have

#*D)=z"'[D]+ (o-wt())E,
where E is the exceptional divisor of 7 and 7~ '[D] is the proper transform of D.

From now on until the end of this section, we denote by X a germ of a 3-
dimensional terminal singularitiy of index m >2 and assume that the canonical
cover of X is not smooth.

36. Letj:X— (x,y,z,u)/Zn(a,B,7,0) be the standard embedding of X
asin (2.3). We shall say that the embedding j': X — (x',y’, 2", u')/Zn (e, B, 7, 6)
is liftable if there is a Z,-equivariant automorphism ¥ : (x, y, z,u) — x,y’, 2, u")
such that y oj=j" where x: (x, y, z, )/Zm— ', ¥, 2/, u')/Z,, is the automor-
phism induced by ¥. Such an automorphism  is called a liftable automorphism and
we sometimes identify this with ¥ if there would be no confusion.

Since all the automorphisms x of C*/Z,, and all the embeddings j' : X = (x/,
y',z',u’)/Z.., are liftable in this paper, we shall often omit the word “liftable” and
just call automorphisms and embeddings respectively.

If j/: X—> (', y,2z,u’)/Z, is an embedding, then the canonical cover of X
is a hypersurface in (x’, y, z/, u’). The defining equation of this hypersurface is
called the defining equation of j. Thus we see that if ¢ is a defining equation of j,
then (x~")*(¢) is a defining equation of j'.

3.7. Weighted valuations. By a pseudo weighted valuation v', we mean a pair
consisting of a liftable embedding j': X — (x', y’, z’, u’)/Z. and a weight ¢’ =
L (a,b,c,d). Wedenote it by v'=(j/, ¢’). This defines a weighted blow up of X
asin (3.2) and (3.3). We call this blow up the weighted blow up associated to v’ or
the v’-blow up. If the v'-blow up has an irreducible exceptional divisor, then this
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divisor determines a valuation on the function field of X, which is equivalent to the
one determined by ¢’-wt. In this case, we call v’ the weighted valuation. In general,
the exceptional divisor may not be irreducible, so we call v’ the pseudo weighted
valuation.

Let v'=(j, 0’) and v" =(j", ¢”) be two pseudo weighted valuations. We
define v’ <v” if for all liftable automorphism x : ", y",z", u")/%m— X', y', 2/,
u')/Z., such that x oj” =j" and for all Z,-semi-invariant fEC{x’, y’, z’, u'}, the
inequalities o’-wt (f) <o”-wt(x*f) hold.

This relation defines a pseudo order on the set of pseudo weighted valuations.
Hence the relation v’ ~v” defined by v’ <v” and v” <v’ gives an equivalence relation.

38. Lemma. Let v'=(j', ') and v’ =(j", ") be two pseudo weighted
valuations. Then the following (i) and (ii) are equivalent :
(i) v'=<v".
(ii) For all liftable automorphism x : x",y", 2", u" )/ Zm— &',y , 2", u')/Z
with x oj” =j’, we have

o' wt(x* ') =0 wr(x"), o"-wt(x*(y))=0"-wt(y"),

o' wt(x*@))>0dwt@) and o -wt(x*@W')) >0 -wt@w’).

(3.8.1)

We further assume that o -wt(x"), ..., 0" -wt(w") <o"-wt(¢”) where ¢" is the
defining equation of j”. Then (i) and (ii) are also equivalent to the following :

(iii) For some liftable automorphism y : (x",y", 2", u" )/ lm— &', y', 2, u’)/
Zn, with x °j” =, the inequalities (3.8.1) holds.

Proof. It is enough to prove that (iii) implies (ii). Letx;: &x”,y", 2", u")/
Lm— x',y,2,u")/Zn (i=1, 2) be liftable automorphisms satisfying yx, oj” =j".
Then we have x{f (') —x> ')€" Cx”, y”, z”, u”}. By our assumption,
o -wt(x*(x")) <o”-wt(¢”). Thus we see that o”-wt(x{ ")) =0"-wt (x5 x")).
This equality holds if we replace x’ by y’, z’ or u’. Therefore we see that (iii)
implies (ii). dJ

We shall often abbreviate the condition (3.8.1) as
(3.8.2) o wis(x*&, y, 2, u')) >0 wis(x', Yy, 2, u').

3.9. Discrepancies. Letv'=(j’, ¢’) be a pseudo weighted valuation and let
o =--(a, b, ¢, d). Then we constructed the o’-blow up 7: ¥ —> Y=(x, ', 7/,
u')/Z.,, and the v-blow up 7: X —> X (cf.(3.2), (3.3)). Let E denote the
exceptional divisor of 7. By using the theory of toric varieties or by direct
calculations using (3.2.2), we have
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Ky=7* Ky—f—%(a +b+c+d—m)E,
Ke=n*Kx+w& ) +w(y)+w@)+w@’) —w(p)—1)(E|r)

where ¢’ is the defining equation of j' : X — (x', ', z/, u’)/Z,, and w=0"-wt.
We define

(3.9.1) do)=w&)+w(y ) +wE ) +ww)—wlp)—1
=mL(a +b+c+d)—w(p')—1,

and call it the virtual discrepancy of v'. If E |y is irreducible and reduced, then we
have d (') =a(E|z, X) (cf.(2.7)).

3.10. For a positive rational number «, we define

j:X—= &y, 2, u)/ L, liftable embedding,
Wa=1v'=(, o) .

o : weight, d(')=a

When we fix a liftable embedding j' : X — (x',y’,z’,u’)/%Z,, the subset of #", with
fixed embedding j* is denoted by #,(j').

The relation < and ~ in (3.7) also define a pseudo order and an equivalence
relation on %, respectively. So the relation < defines an order on # ',/ ~.

One of our main objects to study is the maximal elements in #7y,,/~ where
m is the index of X.

§ 4. Main Results and Comments on the Proof

In this section, we shall summarize the main results obtained in this paper and
give some comments on the proof. Our main result is the following :

4.1. Theorem. Let X be a germ of a 3-dimensional terminal singularity of
index m>2, and assume that X is neither a cyclic quotient singularity nor of type
(cD/2). Then the following holds :

(1)  IfvEW \/mis maximal with respect to <, then the v-blow up of X is divisorial
with discrepancy 1/m.

(2) For each divisorial blow up « : X — X with discrepancy 1/m, there are some
VEW 1)m such that m is isomorphic to the v-blow up of X.

(3) There is a one-to-one correspondence between the set of all maximal elements
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of W m/~ and the set of all isomorphism classes of divisorial blow ups of X with
discrepancies 1/m.

4.2. In order to prove (4.1), we proceed as follows :

First we determine all the possible weights ¢’ such that (j’, ¢’) E# 'y, for
some embedding j': X — (x', y', 2/, u')/Zn. Since X is terminal, the defining
equation of j/ must have some lower degree terms, which restricts the possible
weights. We fix one embedding j,: X — (x;, y1, z1, u1)/Z, and determine
W 1m(j1) and maximal elements of #7y,,(j;). This is immediate from the
discussion just above.

Let v=(j1, 0) E# 1/»(j1) and let 7 : X — X be the v-blow up of X. We shall
study singularities of X and the exceptional divisor of z. This calculation will be
done by using the description given in (3.2).

If the exceptional divisor of 7 is reducible or if X has non-terminal
singularities, then closer analysis of these naturally leads to another pseudo
weighted valuation v’ >>v. We repeat the process starting with new pseudo weighted
valuation v’. This process terminates by the “boundedness” of weights.

Let v, ..., vk be all the pseudo weighted valuations which give divisorial blow
ups of X with discrepancies 1/m by the above procedure and assume that these
v;-blow ups of X are not mutually isomorphic.

Next, we shall prove that for every maximal element v'E# 1., v’ >v; for some
i. Since the v;-blow up is divisorial, it follows from (5.8) thatv’~v;. Thus we know
that vy, ..., v, represent all the maximal elements in # ',/ ~. Thus we can prove
4.1 ).

Lastly we count the number of divisors with discrepancies 1/m. Starting with
one divisorial blow up 7 : X — X obtained earlier, we shall make a partial resolution
of v : Z — X so that all divisors with discrepancies 1/m over X appear as divisors
on Z. Such divisors may have discrepancies # 1/m over X, however these can be
determined by case by case analysis. These calculations will be done by using (5.1)
and (5.3).

Let d, be the number of non-isomorphic divisorial blow ups of X with
discrepancies 1/m and let d, be the number of divisors with discrepancies 1/m over
X. In general, we have d,<d,.

If d,=d, (this always holds if X is of type (cA/m), (cAx/4) and (cAx/2)),
then (4.1)(2) will be proved by using (5.7).

If d, <d, (this occurs only if X is of type (cD/3) and (cE/2)), then we shall
again look for the blow up extracting the divisor with discrepancy 1/m. In all the
cases these are obtained by the v'-blow up for v'E%# "}, which are not maximal.

Thus for each divisorial blow up 7z : X — X with discrepancy 1/m, we can find
the maximal element v in #",,, such that the v-blow up of X is isomorphic to 7z, and
this will complete the proof of (4.1)(2).

If v, vEW 1ym satisfy v~v’, then the v-blow up and v’-blow up of X is
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isomorphic by (5.6). Hence (4.1) (3) is an easy consegence of (4.1) (1) and (4.1)
2.

4.3. Remark. If X is a cyclic quotient terminal singularity of index m >2,
then #°1/»/~ contains infinitely many elements and we can not determine the
maximal elements of # 1,.. In this case, there is a nice resolution of X as described
in (5.1) and all the divisorial blow ups of X is determined by [Kaw96].

If X is terminal of type (cD/2), then (4.1)(2) and (4.1) (3) are not true in
some cases. Indeed, if X is of type (cD/2-1) and assume thata=2, >3 in (2.3),
then we can see that #7,,,/~ has only one maximal element, however X has 2
divisors with discrepancies 1/2 and both of them can be obtained as exceptional
divisors of some divisorial blow ups with discrepancies 1/2. If X is of type (cD/
2-2), the situation is more complicated. The details of these will be analysed in our
future paper.

The following three corollaries will be obtained in the course of the proof of
our main theorem. These include the case where X is a cyclic quotient terminal
singularity. In this case, proofs of these colollaries are given at the end of this
section.

4.4. Corollary. Let X be a germ of a 3-dimensional terminal singularity of
index m>2. Assume that X is not of type (cD/2). Then there is at least one
divisorial blow up of X with discrepancy 1/m. Moreover, for each divisor E over X
with discrepancy 1/m, there is a v=(j, 0) EW 1 such that the v-blow up 7 : X —
X satisfies the following :

(i) X has only canonical singularities, and
(ii) E is the exceptional divisor of .

4.5. Corollary. Let X be a germ of a 3-dimensional terminal singularity at P
EX. Assume that the index m of X at P is >2 and that X is not of type (cD/2). Let
7 : X — X be an arbitrary divisorial blow up with discrepancy 1/m. Then we have

2, (aw(¥, @) —D<aw(X, P)—1.
Q€.
The equality holds only if X is a cyclic quotient singualrity or of type (cD/3).

4.6. Corollary. Let X be a germ of a 3-dimensional terminal singularity of
index m=>2. Let n be the number of divisors of discrepancies 1/m. Using the
notation of (2.3), we have the following :

(cA/m) Let t-wt(z) =1/m, t-wt(u) =1. Then n=t-wt(f(z, u)).
(cAx/4) Let t-wt(z) =1/4, t-wt(u) =1/2 and assume that t-wt(f(z, u)) = (2k+
1)/2. Then,
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(i) n=1if fim=x+0n(2, w) is not a square,
(ii) n=2 otherwise.
(cAx/2) Let t-wt(z) =t-wt(u) =1/2 and assume that t-wt(f(z, u)) =k. Then,
(i) n=1if frm=«(z, u) is not a square,
(ii) n=2 otherwise.
(cD/3-1) n=3.
(cD/3-2) n=2.
(cD/3-3) We denote the power series expansion of a(z®) etc. by a(2*®) =0y +a,2°+
Q2%+, etc. Consider the system of equations

(*) x3+Box+6o:0, 3x2+,80=0, aox+7'0=(), ,31x+61=0

in x. Then,

(i) n=1if (*) has no solutions,

(ii) n=2if (*) has a solution.
(cE/2) We denote the degree 4 part of h(y, z) by hae+(y, z) and the power series
expansion of g(y,z) and h(y,z) by g(y,z) =%, ;a;;y'z’ and h(y,z) =%, ;b; ; y'z’
respectively.

(i) If haeg4(y, z) does not have a triple or a 4-ple factor, then n= the number
of distinct factors of haeg 4(y, z). In particular, n <4.

(ii) If hag4(p, z) has a triple factor and a single factor, and if we assume
haeg 4(y, 2) =y*z, consider the system of equations

(T) x3+ao,4x-|~bo,6=O, 3x2+bo,5:0, ao, 6x+bo,g:0, a1,3x+b1,5=O

in x. Then,

(ii-i) n=2if (}) has no solutions,

(ii-ii) n=3if (1) has a solution.

(iii) If haeg«(y, z) has a 4-ple factor, and if we assume haeg +(y, z) =y*, we first
consider the above system of equations ().

(ii- i) n=1if (}) has no solutions.
If (1) has a solution, there is an embedding j, of X such that

J1 X~ {u?+x?+1x%z%+g1(y1, Zl)x1+h1(Y1, 21) :0}/22(0, 1,1, 1)

;(xl,yl’ Zy, u1>/Z2<0’ 1, 1’ 1)

where A=C, twt(g(y,2)) =3, T-wt(h;(y, z)) =5 when we set T-wt(y) =3/2 and
z-wt(u)=1/2. Now we consider

®=u%+lx?2?+g1, z-wt=3(y1 s Zl)x1+h1, r-wt=5<yl ’ Zl)-
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Then,
(iii-ii) n=2 if @ is irreducible and reduced,
(ii-iv) n=2 if ®=u} and the (ji, ~(4, 3, 1, 7))-blow up of X is divisorial,
(ii-v) n=3if ®=u}and the (ji, 5 (4, 3, 1, 7))-blow up of X is not divisorial.

IfX=(,y, z)/Z.(a, —a, 1) is a cyclic quotient terminal singularitiy, then
(4.5) and (4.6) hold by [Kaw96] and (5.1). We define the embedding

Jj: X=u=0/Z,(e, —a, 1,0 = (x,y,2,u)/Zn(a, —a, 1, 0)

and a weight o= ( {a/m), {—a/m), 1/m, 1). We denote v=(j, ). Then the v-
blow up of X extracts the unique divisor with discrepancy 1/m over X. This proves
(4.4) if X is a cyclic quotient terminal singularity. We shall omit cyclic quotient
singularities when we consider terminal singularities of type (cA/m).

Many parts of these corollaries have counterparts in the (cD/2) case. For
instance, (4.5) also holds and we can calculate the number of divisors with
discrepancy 1/2 for terminal singularities of type (cD/2). These also will be
treated in our future paper.

§5. Some Auxiliary Results

In this section, we shall collect some results which will be used in the following
sections.

The following proposition is due to Danilov and Barlow (see [Reid87, (5.7)])
which shows the existence of economic resolutions of cyclic quotient terminal
singularities.

5.1. Proposition. Let X=(x, y, z)/Zn.(a, —a, 1)(a is prime to m) be the
germ of a cyclic quotient terminal singularity of index m=>2. Then there is a
projective birational morphism v : Z — X such that

(i) Z is non-singular,

(ii) Kz=v*(Kx)+Xr'->-F,, where X' 'F, is the exceptional divisor of v.
Furthermore, if D is a Q-Cartier Weil divisor on X defined by a Zn-semi-invariant
fGx,y,2)ECHK, y, z}, then

(i) v*D) =y '[D]+ Xr'd;F;, where v~'[D] denotes the proper transform
of D by v, and d;=0;-wt(f(x, y, z)), 0= ( {ai/m), {—ai/m), i/m).

Proof. The proofs for (i) and (ii) can be found in [Reid87, (5.7)] and
(iii) follows from (3.5). O
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5.2. Corollary. Let X be a germ of a 3-dimensional cyclic quotient terminal
singularity of index m>2. Then there is a unique divisor with discrepancy i/m over
X foreachi=1,2, ...,m—1.

The following will be used to estimate the number of divisors with minimal
discrepancies :

5.3. Proposition. Let X be a germ of a 3-dimensional terminal singularity of
index m>2. Let 7w : X — X be a divisorial blow up with discrepancy 1/m and let E
be the exceptional divisor of m. Let v : Z — X be a partial resolution of X and X F,
be the exceptional divisor of v. If v*(E) =y '[E]+ Xa;F;, then we have

a(F;,, X)=a(F;, X)+a;/m

for each i. In particular, if Q<X is of index <m and QEE, then there are no prime
divisors over Q with discrepancies 1/m over X.

Proof. The first part follows by comparing Kz with v* (z* (Kx)). The second
part is easily deduced from the first part. U

Next, we shall show some lemmas which will be used to determine the maximal
elements in # 1/,. In the following lemmas (5.4)—(5.8), X denotes a germ of a 3-

dimensional terminal singularity of index m>2 and assume that the canonical
cover of X is not smooth.

54. Lemma. Letv=_(j, 0),v'=(j, 0')EW 1/m and assume that c=0'. If
o=—-(a, b, c, d) satisfisfies 0<a, b, ¢, d<m, then we have v~V'.

Proof. Lety:(x',y,z,u')/Zm— (x,y, 2z, u)Z,, be a liftable automorphism
such that y oj’=j. Since x comes from a Z,-equivariant automorphism of C*, we
have

odwis(x*(x, y,z,u) E%(a, b,c,d) modZ*.
Thus our assumption implies that
o’-wis(x*(x, y, z, u)) Zi(a, b, c,d)=o-wts(x, y, z, u).
This shows that v'>v. Similarly, we can prove v’ <. U

5.5. Lemma. Letv=(j, 0),v'=(j,d)EW 1 and assume that c=0 and
v<v". Then we have v~V
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Proof. Lety: &',y 2, u')/Zn— (x, y, z, u)/Zn be a liftable automor-
phism such that y oj’=j and let f(x, y, z, u) EC {x, y, z, u} be a Z,,-semi-invariant.
We assume that o-wt(f) =I and write f=fym—i+fom>. Since v<v’, we have
owt(x*(f)) =L Letf be the lowest degree part of f,.,,—;. Since x comes from an
automorphism of C*, x*(f;) does not vanish and o’-wt(x* (1)) =c-wt(f1) =L
Hence o’-wt(x* (f)) =I and we know that v ~v'. O

5.6. Lemma. Letv,v'EW i satisfy v~v'. Then the v-blow up of X and v'-
blow up of X are isomorphic.

Proof. This is obvious since blowing up ideals coincide. O

The following proposition will be used to prove our main results and it is
proved in [FA92, 6.2] and [Luo98, 2.4].

5.7. Proposition. Let 7: X — X (resp. o’ : X' — X) be a divisorial blow up
with exceptional divisor E (resp. E'). If E and E’ define the same valuation on the
function field C(X) of X, then X and X’ are isomorphic over X.

Proof. Since Kz =n* (Kx) +aE for some ¢ >0, we see that E is Q-Cartier and
—E is z-ample. Similarly, E’ is also Q-Cartier and —E’ is 7/-ample. By our
assumption, E corresponds to E’ by the rational map 7'~ !oz. Thus we get that

X'ZProj(ﬂBo 7[,.:(—1'E)>:Proj(l€i29o n&(—iE'))z}?'. O

The following lemma easily follows from [Kaw96] and will also be used in the
proof of our main results :

5.8. Lemma. Letv=_(j, 0),v'=(, ') EW 1m satisfy v<v'. If the v-blow
up of X is divisorial with discrepancy 1/m, then we have v~Vv'.

Proof. Let 7 :X — X be the v-blow up and let E be the exceptional divisor of
n. Since —E is m-ample, there is a general member L & | —IE | for a sufficient large
and divisible . Let D=m«(L). Since D~0, D is defined by a Z,-invariant f(x, y,
z,u). Then we have 7* (D) =z"'[D] + (c-wt (f))E by (3.5).

Let #: Y — (', ¥y, 2, u')/Z., be the ¢’-blow up, let £’ be the exceptional
divisor of 7’ and let 7’ : X’ — X be the restriction of 7. By (3.5) andd (') =1/m,
we have

Ky =7r’*Kx+%(E’ |2) and 7* (D) ="' [D] + (o"wt (x* ())) (E| )

wherey: &', y’, 2, u')/Zm— (x,y,z,u)/Zn is a liftable automorphism such that
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x°oj'=i.

Let v: Z— X and V' : Z—> X' be common resolutions and let F; be the
exceptional diviosr of v.

Since X has only terminal singularities, we have Kz=v* (K¢) + Xa; F; with all
a;>0. So we see that Kz =v* 7* (Kx) +—(* (E) + Xma;F)) and therefore we get
E'|¢=v%(W*(E)+Xma;F;). On the other hand, we have 7’*(D)=n""'[D] +
(0wt () v* (E) since L=n""[D] is general. Thus we know that

(o-wt () —o-wt (x* (N v* (E) = (0"-wt (x* ()))v's (Zma; F)).

Since v'>v, we have o-wt(f) <o’-wt(x*(f)) so that we have v%(Zma;F;) =0.
Since all the a;>0, we see that E’|# is irreducible and reduced. We also see that
E’|% and E define the same valuation on the function field of X. Therefore X and
X’ are isomorphic over X by (5.7).

Let D, be the Q-Cartier Weil divisor on X defined by x=0. Then we have

o*(D,) =rn"'[D,] + (o-wt(x))E and

7* (D) =n""'[Dy] + (-wt (x* (x))) (E| ),
since the canonical cover of X is not smooth. Since X and X’ are isomorphic, we
see that o-wt (x) =0d’-wt(x* (x)). Thus o-wt(g) =0 -wt(x*(g)) for all Z,,-semi-
invariant g=C{x, y, z, u}. This shows that v ~v". O

8§ 6. Terminal Singularities of Type (cA/m)

6.1. Let X be a germ of a 3-dimensional terminal singularity of type (cA/m)
with m>2. By (2.3), there is a standard embedding

ji X={y+fz, u)=0}/Zn(a, —a, 1,00 (x, y, z, u)/Zn(a, —a, 1, 0)

where « is prime to m and f(z, u) is a Z,-invariant. In this case, we have aw(X)
=ord(f(0, u)). We denote the defining equation of j as ¢=xy+f(z, u). We
assume that X is not a cyclic quotient singularity.

6.2. Lemma. Letj:X— (x',y,z,u')/Zn(a, —a, 1, 0) be an arbitrary
embedding and let ¢’ be the defining equation of j. Then, after a permutation of
coordinates if necessary, we have

(1) x'ye¢ ifm=3. 2) x*,y*c¢’ orx'yE¢ if m=2.
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Furthermore, if (j', 0')EW 1/m, then o’-wt(@')=1/m, d-wt(u') =1.

Proof. Since X is not a cyclic quotient singularity, ¢’ does not contain linear
terms, so the first part follows. To prove the second part, we denote w=0c’-wt.
Since x" y'E¢’ or x?, y?=¢’, we have w(x’) +w(p’) =w(¢’). By (3.9.1), we see
that

1/m=w&)+w(y)+w@)+w@’) —wl@)—12w&)+wl’')—1.
Thus we get w(z’) =1/m and w(u’) =1 since w(u’) is a positive integer. O

For the standard embedding j, we denote t-wt(z) =1/m, t-wt(u)=1 and
assume that 7-wt (f(z, u)) =k. This k is a positive integer. We define 0, ,=—(a,
b, 1, m) and v, ,= (j, a,,,) for positive integers a and b.

6.3. Proposition. For the standard embedding j, we have

Wim(J) = |0<a, bEZ, a+b<mk,a=—b=a (modm)}.
In particular, maximal elements in W 1,,(j) are those v,,, with a-+b=mk.

Proof. If(j, 0) EW 1/m(j), then g-wt(z) =1/m and o-wt(u) =1by (6.2). It
follows from (3.9.1) that o-wt(xy) =o-wt(¢). We also have o-wt(9) <t-wt(f(z,
u)). Hencea+b<mk. Since 0EZ*+-(a, —a, 1, 0)Z, we get the desired result.

)

6.4. Theorem. For each v, ,=W 1m(j) with a+b=mk, the v, ,-blow up
Mo, : X » — X is divisorial with discrepancy 1/m and Zoez, ,(aw(X,,, Q) —1) =
max {aw(X) —k—1, 0}. These m,,; are not mutually isomorphic over X. Further-
more, there are exactly divisors with discrepancies 1/m over X.

Proof.: We first show that X,,, » has only terminal singularities. Let E, , be the
exceptional divisor of 7, ,. Let Q; (resp. @2, Q.) be the origin of the x-chart (resp.
y-chart, u-chart). Since

Ea,b2 {xy +fr~wt=k(z; u) =0} gp(‘z, b; 11 m)y
we see that E, , is Cartier outside {Q,, Q,, Qs} NE, ; and that

Sing(E,,») © {Q1, @2} U {x=y=0}.

By (3.2), X, , is covered by the following four affine open sets :
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U= {y+f&'"z, xa)/x*=0}/Z.(m, —b, —1, —m),
U,= x+f(3""z, 3a)/7*=0}/Zy(—a, m, —1, —m),
Us= {xp+fE"™, za)/z*=0} CC*,

U= {xp+faV™, 4)/a*=0}Zn,(a, b, 1, 0).

Since X has only isolated singularities and 7z,, , is isomorphic over the smooth locus
of X, X, , has singularities only on E, ,. By the above description, the origin Q; of
U, is isomorphic to (X, z,4)/Z,(m, —1, —m) and the origin Q, of U, is isomorphic
to (§, 2, 4)/Zy(m, —1, —m). We also see that X, , has only isolated cDV points
along the #-axis of U;, and the origin Q, of U, is at worst terminal of type
(cA/m). Thus we see that X, , has only terminal singularities. We also have

_ aw Xa,b, Q4)—1=aW(X)_k-1 ifQ4E.X-a’b,
2 (awX,s, Q) —D= _ N
0 lf Q4¢Xa,b-

QEX, 4

Since Q4EX,,, if and only if aw(X) >k, we see that Zgecz, ,(aw(X,,5, Q) —1) =
max {aw(X) —k—1, 0}. ’

Since E, , is irreducible, we have K %, b=7r§'f »(Kx) +%Ea, ». Therefore 7, , is
divisorial with discrepancy 1/m.

Let D be the Q-Cartier Weil divisor on X defined by x=0. By (3.5), we have

755 (D) =153 (D] + " Ey .

Hence these blow ups are not isomorphic over X.

In order to count the number of divisors with discrepancies 1/m, we first take
some v, s & W 1m With a+b=mk and blow up as above. By (5.3), singularities on
X, , with index <m will not produce divisors with discrepancies 1/m over X. So
we shall study singularities on X, , with index >m. We can resolve the origin Q,
of U, by using (5.1). There is a projective birational morphism v : Z — X, , such
that

a—1 3
Kz=v*(Kx b)+ZI_Fx’y
@ =1 a

where 2%} F; is the exceptional divisor of v over Q,. Since E, , is defined by x=
0 near Q;, we have

U* (Ea, b) :y_l [Ea, b:] +E <_%>E-

By (5.3), we have
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i1 mi
a(F, X)=—+—(~"0).

Hencea(F;,X)=1/mifand only ifi=1, 2, ..., [a/m]. Similarly there are exactly
[b/m] divisors with discrepancies 1/m over Q.. Including E, ,, the number of
divisors with discrepancies 1/m is [a/m]+ [b/m]+ 1=k since a and b are both
prime to m. O

6.5. Proposition. If v'=(j', ') EW 1/m is maximal, then there exists v, s
with a+b=mk such that v'>v, ,.

Proof. Let &= {0 s EW 1ym(j) [va,s<v"}. By (5.4), we have v'>v, 4, if ao,
bo<m. Thus we see that o/+#J. Hence there is a maximal element v, ,&.o/.
Assuming that a +b <mk, we shall derive a contradiction. Let x: (x, y’, 2, u’)/
Zm— (x, y, z, u)/Z, be a liftable automorphism such that y oj'=j. We shall
denote

p=x*&x), q=x*(y), r=x*@), s=x*@eCK,y,z,u}.

Then ¢’ =pq+f(r, s) is the defining equation of j’. Since v'>v, », we have o’-wt(p)
>a/m and o’-wt(g) >b/m. If at least one of these inequalities are strict, then v">
Va+m,b OT V' >V, p+m, which is a contradiction. Hence o’-wt(p) =a/m and o’-wt(q)
=b/m. Since a+b<mk and o’-wt(f(r,s)) >k, we have o’-wt(¢’) = (a+b)/m. 1t
follows from (6.2) that, after a permutation of coordinates if necessary,

o-wis(x',y', z',u’) Zi(a', b, 1, m)

for some positive integers a’ and b. Since d(v') =1/m, we see that a’+b"=a+b.
Since yx is induced by an automorphism of C*, after a permutation of x’ and y’ if
necessary, we see that a=a’ and b=b". Thus we have v’ ~v, , by(5.5). This also
contradict the maximality of v. Therefore a +b=mk, which completes the proof.

O

6.6. By (6.4), (6.5) and (5.8), we see that v, , &# 1/ With a +b=mk repre-
sent all the maximal elements in # 1,/ ~. Hence there are exactly k maximal
elements in # 1,/ ~. On the other hand, we have k divisors with discrepancies
1/m over X by (6.4). By (4.2), this completes the proofs for (4.1) and (4.4).
(4.5) and (4.6) are the direct consequences of (6.4).

Figure 1 shows the elements of #7,,»/~ and their relations, in which we are

assuming that 0<a<m and 8=m —a. For the v, ,-blow up 7,  : X,,» —> X witha
+b<mk, the exceptional divisor of 7, , is not irreducible.
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'/vaﬁ—(k——l)m,ﬁ
/ - \
/Va+2m,,€ \ /va+(k—2)m,ﬁ+m
—Vems— J——
va,ﬂ \ /va+m,ﬂ+m \
Vo, B+m

\ /
Va, B+2m \

Va, B+ k—1)m

Figure 1. # y/m/~ for (cA/m) type terminal singularities

§7. Terminal Singularities of Type (cAx/4)

7.1. LetX be a germ of a 3-dimensional terminal singularity of type (cAx/4).
By (2.3), there is a standard embedding

j : X: {x2+yz+f(2, H)IO}/Z4(1, 39 1: 2>(;(x’ Y, Z, u)/Z4(11 3, 1) 2):

where f(z, u) is a Z,-semi-invariant and uZf(z, u). In this case, we have aw(X)
= (ord(f(0, u))+1)/2. We denote the defining equation of j as ¢=x>+p>+
fGz, w).

7.2. Lemma. Letj: X— (X', y, 2z, u')/Zs(1, 3, 1, 2) be an arbitrary
embedding, and let ¢’ be the defining equation of j. Then, after a permutation of
coordinates x’ and z' if necessary, we have x*, y?E¢" or x' 2, y*=¢". Furthermore,
if we assume that (j', 0') EW 14, then the following holds :

(1) Ifx?y?eq¢, then o = Ql+1, 21+3, 1, 2) for some even integer | or o’ =
+QI+3, 2141, 1, 2) for some odd integer I.

Q) Ifx'Z,y*E¢, then o =5(1,3,1,2), +(1, 3,5, 2) or +(5, 3, 1, 2).

Proof. The first part is obvious. For the second part, we write w=0"-wt. In
case (1), sincex,y?E¢’, we have 2w (x"), 2w(y') =w(¢’), in particular w(x") +
w(y ) =w(@’). Sinced(y’)=1/4, we have

1/4=w& ) +w(y ) +w@)+w@’ ) —w(@)—12wE&)+wk’) —1.
Since 0’ EZ*++5(1, 3,1,2)Z, we see that w(x’) =w (&' ) =1/4,w(y’ ) =3/4, w(u’)

=w(¢’)=1/2modZ. Hence we get w(z’')=1/4and w(’')=1/2. Thenw(x’) +
w(y ) =w(@’)+1/2, so we get |[w&')—w(y)|=1/2.
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In case (2), we can prove more easily. O
For the standard embedding j, we denote T-wt(z) =1/4, t-wt(u) =1/2 and

assume that -wt (f(z, u)) = (2k+1) /2. Since t-wt(¢) =1/2 mod Z, we see that k
is a non-negative integer. For non-negative integers /, we define

%(ZH-I, 21+3,1,2) iflis even,

g
%(21+3, 2041,1,2) iflis odd,

and v,= (j, o).
7.3. Proposition. For the standard embedding j, we have
Wia()=W11=0,1,2, ..., k}.
In particular, v, is the unique maximal element in W 1,,(j).

Proof. If(j, ) EW 1,4(j), then it follows from (3.9.1) that (2/+1)/2=
o1-wt (@) <t-wt(f(z, u)) =(2k+1)/2, hence I<k. O

7.4. Theorem. Let 7w: X — X be the vi-blow up and let E be the exceptional
divisor of . Then X has only terminal singularities and Y gc x (aw(X, Q) —1) =max
{aw(X) —k—2, 0}. Moreover, if frw~x+1s2(2, 1) is not a square, then 7 is divisorial
with discrepancy 1/4 and E is the unique divisor with discrepancy 1/4 over X.

Proof. We first show that X has only terminal singularities. We shall assume
that k is even. Let Q;(resp. Q,, Q4) be the origin of the x-chart (resp. y-chart, u-
chart). Since

E={xX"+frm=-+0n, u) =0} CP(2k+1, 2k+3, 1, 2),

we see that E is Cartier outside {Q,, Q.} NE and that Sing(E) S {x=0}. By (3.2),
X is covered by four affine open sets U;, U,, Us and U,. Since Q,ZE, we do not
need U, to cover X :

U= {&+y+f(5*2, 520) /3* V2 =0} /Lne+5(2, 4, —1, —2),

U= {322+z'}72+f(z'1/4, z—l/Zﬂ)/z-(2k+1)/2:0} QC“,

U= & +ap* +f(@"z, @) /a®* 2 =0}/Z,(1, 1, 1, 0).
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The origin Q, of U, is isomorphic to (%, z, @)/Zy+3(2, —1, —2), the origin Q4 of
U, is at worst terminal of type (cD/2), and other singularities of X are all isolated
cDV points. Hence X has only terminal singularities. We also have

aw(X, Q,) —1=aw(X) —k—2 if Q,X,

2, awlX, @ —-D= _
osX if Q,&X.

Since Q4&X if and only if aw(X) >k +1, we see that > gc x (aw(X, Q) —1) =max
{faw(X) —k—2, 0}.

It is easy to see that E is reducible if and only if frw—x+1)2(z, #) is a square.
Thus we know that if fi.,.— x+n,2(z, #) is not a square, then 7 is a divisorial blow
up with discrepancy 1/4.

In order to count the number of divisors with discrepancies 1/4, we shall study
each singularity on X. We can resolve the origin Q, of U, by using (5.1) and get
a projective birational morphism v : Z — X such that

2k+2

Kz=v*(Kz)+ Z

2k+3

where 2272 F, is the exceptional divisor of v over Q,. Since E is defined by X2+
Sfow=ax+12 @, @) near Q,, we have
4k +6—4i L2

@ =By S A

for some d; >0. By (5.3), we have

i 1 4k+6—4i 1 ...
%13 4 2k+3 2 HiTL. kTl
L1
2

a(F;, X)=

%13 d>— ifi=k+2, ..., 2k+2.
Thus there are no divisors with discrepancies 1/4 over Q,. By (5.3), we see that
other singularities on X will not produce divisors with discrepancies 1/4 over X.
Therefore E is the unique divisor with discrepancy 1/4 over X.

If k is odd, we can do the same calculation as above by replacing x with y.
O

7.5. Propoesition. Ifv'=(j, ¢’) is maximal in W /s, then v'>v;.

Proof. LetI=max{l|v’>v}. Since v’ >v,, we see that />0. Assuming that
1<k, we shall derive a contradiction. Letx: (', ¥, 2/, u')/Zs— (X, y, 2z, u)/Zy4
be a liftable automorphism such that ycj'=j, then ¢’=x*(¢) is the defining
equation of j. We first assume that [ is even. Since v'>v;, we see that
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owis(x*(x, y, z, u))Z%(ZIJrl, 21+3, 1, 2).

If o’-wt(x*(x))>QI+1)/4, then v'>v;.;, which contradicts the maximality
of . Hence o’-wt(x*(x))=(2+1)/4. We also see that o’-wt(x*(f(z, u))) >
twt(f(z, u))=2k+1)/2. Hence o'-wt(¢p')=0"-wt(x* x*+y*+f(z, u)))=
(21+1)/2. By (7.2) and (3.9.1), we have ¢’ =0,. Therefore v'~ (j, or) by (5.5).
This also contradicts the maximality of v’ since /<k. Similarly, we can derive a
contradiction if / is odd. d

7.6. In the case frw—(u+1)2(2, u) is not a square, we have v/ ~v; for every
maximal element v'E% ", by (7.4), (7.5) and (5.8). Thus (4.1) and (4.4) hold.
By (7.4), we also see that (4.5) and (4.6) hold. Figure 2 shows the elements of
W 1,4/~ and their relations.

7.7. We shall assume that fi,.—+n-2(2, u) is a square in the rest of this
section. Let frm—(u+12(z, u)=—g(z, u)*. By (7.4), the exceptional divisor of
vi-blow up is reducible. This naturally leads to the following automorphisms and
embeddings. We only treat the case k is even, since otherwise the same proof below

will work by replacing x withy. Let x=: (x, y, z, u)/Z4s—> (x1, y1, 21, u1)/Z4 be
the automorphisms defined by

i) =xtgi uw), xX(yD=y, xX@D=z and x*(u)=uy,

andlet j«+=x+°j: X = (x;,p1,21,u1)/Z4(1, 3, 1, 2) be the embeddings. Then the
defining equations of j- are

0+=x1 F2x:8 (1, u) +pi+h(zi, ur)
where h(z, u) =fru> @02, w).
7.8. Proposition. For each embedding j+, we have
Win(j)={(z, ) |1=0, 1,2, ..., k+1}.
In particular, v+ = (j+, Ox+1) is the unique maximal element in W 1(j+).
Proof. Assume that (j+, 6,) E# 4. Then one sees that gr-wt (@) = Q2+
1)/2. On the other hand, orwt (@) <agrwt(x,g(z;, u1)) < (k+I1+2)/2, hence we

have I<k-+1. Od

7.9. Theorem. Letn- :X+ —> X bethev.-blow ups. Then i+ are both divisor-
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ial with discrepancies 1/4 and > gcz,(aw(X+, Q) —1) =max{aw(X) —k—3, 0}.
These 7+ and w_ are not isomorphic over X. Furthermore, there are exactly 2 divisors
with discrepancies 1/4 over X.

Proof. Let E be the exceptional divisor of 7 and let Q, (resp. Q,, Qs) be the
origin of the x-chart (resp. y-chart, u-chart). Since

Ei= {12g(z, u>x+y2+hr‘wt=(2k+3)/2(z’ u) 20} g]P’(Zk-{—S, 2k+3, 1, 2),

we see that E+ is Cartier outside {Q;, Q«} NE and that Sing(E) S {y=0}. Asin
the proof of (7.4), X~ is covered by three affine open sets :

U= {xF2g @, 0) +72+h x4z, x20) /%2 =0} /Z+5(4, 2, —1, —2),
Us= x2272g (1, @)% +72+h(z*, 224) /%92 =0} CC*,
U,={&a528C, Dx+p*+h@%z, a?) /a®**92=0}/Z,(1, 1, 1, 0).

The origin Q, of U, is isomorphic to (j, 2, @)/Zx+s5(2, —1, —2), the origin Q4 of
U, is at worst terminal of type (cD/2), and other singularities on X are all isolated
cDV points. Hence X+ has only terminal singularities. We also have

aw(X+, Q) —1=aw(X)—k—3 ifQ,eX.,
2 (awX+, Q-1 = _
QEX: 0 if Q4¢Xi.

Since Q,&X + if and only if aw(X) >k+2, we see that dext(aw(X’i ,0)—1)=
max {aw(X) —k—3, 0}.

Since E - is an irreducible divisor, we have Kz =7z% (Kx) + +E:. Thus 7z are
both divisorial with discrepancies 1/4.

Let D be the Q-Cartier Weil divisor on X defined by x+g(z, u) =0. By (3.5),
we have

zX*(D)=n37'[D] + +3

E. and n*(D)=r-'[D]+ :1

E_.
Hence 7, and 7 are not isomorphic over X.

In order to count the number of divisors with discrepancies 1/4, we shall use
7+ as the first blow up. We can resolve the origin Q; of U; by (5.1) and get a
projective birational morphism v : Z — X such that

2k+4

Kz=v (KX+)+Z 2k+5F

where 2 %7*F; is the exceptional divisor of v over Q;. Since E. is defined by
—2g @, @) + 7 +hewi—u+,(E, 1) =0 near Q,, we have
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2k+1 K2 4k+10—4i e

* — -1 . oA
vED=VIEY oy Rt T Bt X diF,
where d;>0. Hence we get
1 1 2k+1_1 o
%54 2kts 4 if i=1,
)i 1 4k+10-4i 1 .
a(Fi, X)= 2k+5+4 %+s 3 ifi=2, ..., k+2,
i lgst ifi=k+3, ..., 2%+4
%+5 4% .

By (5.3), we see that other singularities on X, will not produce divisors with
discrepancies 1/4. Therefore E . and F, are the divisors with discrepancies 1/4 over
X. O

7.10. Propesition. Ifv'=(j’, ') is a maximal element in W 1/, then v’ >v
orv'>v_.

Proof. We shall show that v'>v_ assuming v’ #v.. Lety: (x',y', 2", u’)/Z,
— (x1, y1, Z1, u1)/Z4 be a liftable automorphism such that y oj’=j.. Then ¢'=
x2* (¢+) is a defining equation of j. By (7.5), we see that v'>v,~ (j+, 0x). Hence
we get

o’ -wis(x* (x1, y1, 21, ul))Z—i—(Zk-l—l, 2k+3, 1, 2).

Our assumption v’ #v. implies o’-wt(x* (x,))=Qk+1)/4. If we assume that
o-wt(x*(x1—2g(Z, u)))=Qk+1)/4, then o’-wt(¢’)=0"-wt(x* (x(x—2g(z,
u))+y*+h(z,u)))=Qk+1)/2. Sinced(»’)=1/4, (3.9.1) and (7.2) imply that
o'=0,. By (5.5), we see thatv'~ (j+, g;) is not maximal. Therefore o’-wt (x* (x,
—2g(z1, u1))) = (2k+5)/4, and this shows that v'>v_. 0

Vo Vi Yy e — V&
Case : fr—w=(x+1,2(, u) is not a square

/v+
\

V-

Vo V1 Vo~ — Vi

Case : fr—wm—x+1,2(2, u) is a square

Figure 2. # 1 for (cAx/4) type terminal singularities
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7.11. In the case frm—(a+12(2, u) is a square, we have v'~v. or v’ ~v_ for
every maximal element v'E% 1,4 by (7.9), (7.10) and (5.8). Thus (4.1) and (4.4)
hold. By (7.9), we also see that (4.5) and (4.6) hold. Figure 2 shows the elements
of W 1,4/~ and their relations.

§8. Terminal Singularities of Type (cAx/2)

8.1. LetX bea germ of a 3-dimensional terminal singularity of type (cAx/2).
By (2.3), there is a standard embedding

i X={x*+y*+f(z, u)=0}/Z,(0, 1, 1, NV (x, y, z, u)/Z>(0, 1, 1, 1)
where f(z, u) € (z, u)*C{z, u} is a Z,-invariant. In this case, we have aw(X) =2.

The discussions below are almost the same as the one in section 7 and the
proofs can be done by a similar method. So we shall omit the proofs here.

8.2. Lemma. Letj: X— (x,y, 2z, u')/Z,0, 1, 1, 1) be an arbitrary
embedding, and let ¢’ be the defining equation of j. Then, after a permutation of
coordinates if necessary, we have x*, y*=¢’. Furthermore, assume that (j', 0’)E
Wi, then o =51, 1+1, 1, 1) for some even integer | or ' =5-(1+1, 1, 1, 1) for
some odd integer .

For the embedding j, we denote t-wt(z) =7-wt(u)=1/2, and assume that
z-wt(f(z, u)) =k. Then k is a positive integer. For positive integers I, we define

—;—(Z, I1+1,1, 1), ifliseven,

a;

%(H—l, 11, 1), iflis odd,

and v,= (j, op).
8.3. Proposition. For the standard embedding j, we have
Win(HD=W1=1,2, ..., k}.
In particular, vy is the unique maximal element in W 1,,(j).

8.4. Theorem. Let 7:X — X be the vi-blow up and let E be the exceptional
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divisor of m. Then X has only terminal singularties and 3 e z(aw(X, Q) —1) =0.
Moreover, if frum-«(z, u) is not a square, then 7 is divisorial with discrepancy 1/2 and
E is the unique divisor with discrepancy 1/2 over X.
8.5. Proposition. Ifv'=(j, ') is a maximal element in W \,,, then v'>vy.
8.6. We shall assume that f,.,,—(z, u) is a square in the rest of this section.
Let fr=i(z, u) = —g(z, u)®. As in section 7, we only treat the case k is even.
Lety=: (x,p,z,u)/Zy— (X1,y1,21,u1)/Z; be the automorphisms defined by
x¥x)=xtg(z u), x¥*(yD=y, x¥@)=z and x:@)=uy,

and letj+=x+0j: X = (x1,y1,21,41)/Z,(0, 1, 1, 1) be the embeddings. Then the
defining equations of j+ are

¢+=xt F2x18 (1, u) +yi+h(zi, ur)

where h (z, u) =fro>k (2, u).

8.7. Proposition. For each embedding j+, we have

Wip(Ge) =G, o) [I=1, 2, ..., k+1}.

In particular, v+ = (j+, Ox+1) is the unique maximal element in W 1,,(j+).

8.8. Theorem. Let 7+ : X+ —> X be the v+-blow ups. Then 7 are both divi-
sorial with discrepancies 1/2 and X e ¢ i(aw(X’ ,0)—1)=0. These 7. and n_ are
not isomorphic over X. Furtheremore, there are exactly 2 divisors with discrepancies

1/2 over X.

8.9. Proposition. Ifv'= (', ¢0') is a maximal element in W 1,,, then v'>v.
orv'>v_.

8.10. By the same discussion as in section 7, the above propositions and
theorems complete the proofs of (4.1), (4.4), (4.5) and (4.6). The elements of
W1/~ and their relations are almost the same as in Figure 2. (The minimal
element is v; in this case.)

§9. Terminal Singularities of Type (cD/3)

9.1. Let X be a germ of a 3-dimensional terminal singularity of type (cD/3).
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By (2.3), there is a standard embedding
jiX={pCx,y,z,u)=0}/Z3(2,1,1,0) = (x, y,z,u)/Z3(2, 1, 1, 0).
In the above expression,

w+x*+yz(y+z),
o=1ul+x3+yz>+xp* A (y) +y°u(p*), or
w+x’+y* +xy2 a(2®) +xz*B(2*) +y2’ r () +2°6 (),

where A (y®), £ (YN EC{y%}, 423 +27u*#0, a(Z®), B(E*), (@), 6@ EC{Z’}. In
this case, we have aw(X) =2.

As before, we first determine all the possible weights ¢’ such that (j/, o) &
W 1,3 for some embedding j' : X — (X', y', 2/, u')/Z5(2, 1, 1, 0).

9.2. Lemma. Letj: X— (X, y, 2z, u')/Z5(2, 1, 1, 0) be an arbitrary
embedding and let ¢’ be the defining equation of j. Then u’*, x* and some cubic
terms in y' and z’' appear in ¢'. Furthermore, if(j', ') EW s, then the following
holds :

() Ify*sq¢,then d'=52, 1, 1,3),5(2,4,1,3) or ~(5, 4, 1, 6).

Q) Ify*ZE¢ oryz?E¢’, then =+, 1,1,3),5(2, 4, 1,3) or ~(2, 1, 4,
3). In particular, if the cubic part in y’ and z’ of ¢’ does not have a triple factor, then
d=52,1,1,3),52,1,4,3) or (2,4, 1, 3).

Proof. The first part is obvious. Let w=¢’-wt and v'=(j’, ¢’). Then in case
(1), wehave 3w(x" ) =>w(¢"), 3w(y ) =>w(¢’) and 2w(w') >w(¢’). Sinced(y') =
1/3, (3.9.1) implies that

1/3=w&)+w(y)+w@)+ww’) —w(@) —1>wE’) +w(p’ ) /6—1.

Since 0'EZ*++5(2, 1, 1, 0)Z and w(¢') EZ, we see that w(x’) =2/3, w(y' )=
w(Z')=1/3,w(@')=0modZ. So the above inequality shows that w(z’') =1/3 and
w(@’) <6. Using these, the rest follows from case by case analysis. For example,
if w(¢’)=6, then we have w(x’)>8/3, w(y')>7/3, w(u')>3. Thus we get
w&x ) +w(y ) +w@ ) +w@’) —w(p’) —1>4/3, which is a contradiction. There-
fore w(¢") =6 does not occur. Case (2) can be treated similarly. O

We define



544 TAKAYUKI HAYAKAWA

00:—;_(2, 19 1) 3)9 01,12%(21 4’ 1, 3)’
0=32 1,43 and 0,=5(54,1,6).

9.3. Letj:X— (x,y,z,u’)/Z;(2, 1, 1, 0) be an embedding and let ¢’ be
the defining equation of /. We shall consider the following conditions on ¢’. (See
(3.4) for the definition of I°1.1(4) etc.)

(9.3.1) ¢'=u"+x"+yz?modI°11(3).

9.32) @'=W+x"*+x2"*Bo+2"900) + (y2"+x'2"7 5, +2"° 61) mod I’ 1(4)
for some By, 81, 00, 0,EC.

(9.33) @'=@"?+x"*+x2"*Bo+2"%60) +y'2” X a0 +z"10) +2"7 (x'B1+2"261)
mod I°1,1(4) for some ay, ..., 6;=C, and y*&¢'.

(9.3.4) @' =u?+Ax"2"+y+ax'y'z”*+Bx'z""+ 7'z’ + 62" mod I°2(5) for
some a, 8, 7, 0, AEC and x*E¢’.

9.4. Proposition. Let 7 : X — X be the (j, 01,1)-blow up and E be the ex-
ceptional divisor of m. Then the following holds :
(1) If (9.3.1) or (9.3.2) holds, then = is divisorial with discrepancy 1/3.
(2) If (9.3.3) holds, then X has only canonical singularities and E is irreducible.
Furthermore, if the system of equations

(*) x3+JC/30+50=0, 3x2+/30=0, xao+70:0, x,81+61=0
has no solutions in x, then x is divisorial with discrepancy 1/3.
(3) Assume that (9.3.1), (9.3.2) or (9.3.3) holds. In case (9.3.3), we further

assume that (*) has no solutions. Then the origin of the y'~chart of X is the unique
non Gorenstein point and it is terminal of type (cAx/4) with axial weight 2.

Proof.  First we assume that (9.3.1) holds. Then E = {u*+x*+yz2=0} CP (2,
4, 1, 3), and it is irreducible. We easily see that E is Cartier outside

(z=u=0} U {x=y=2z=0})NE={(0:1:0:0)}
and that Sing(E)={(0:1:0:0)}. Asin (3.3), X is covered by four affine chart
U, ..., U,. Since X has only isolated singularities, we see that X is smooth outside
the origin of the y’-chart U,. On the other hand, since

U,={@*+x+22+5¢ &, 3, 2, 1) =0} /Z4(2, 1, 1, 3)

for some ¢ =C{x, y, Z, i}, we know that the origin of U, is terminal of type (cAx/
4) with axial weight 2. Since d(v') =1/3, we see that Ky =7* (Kx) +5E. Thus z
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is divisorial with discrepancy 1/3. This proves (1) and (3) when ¢’ satisfies
(9.3.1).

Next, we assume that ¢’ satisfies (9.3.3). Then E = {#®+x3+x2z*8,+2°5,=0}
CP(2, 4, 1, 3), and it is also irreducible. As before E is Cartier outside {(0:1:
0:0)} and

{(0:1:0:0)} if x*+xBo+ 6, has no multiple root,

Sing(E) =
{(0:1:0:0}U{(E:*:1:0)|*&C} if x—&)?|x*+xB0+ .

Thus, in order to study singularities of X, we need only the y’-chart U, and the z’-
chart Us:

U,={0:(%, 5,2, 1) =0} /Z4(2, 1, 1,3) and Us={p:(%, j, 2z, 4) =0} SC*,

where

0, =2 +x3+x2*Bo+2%0, modyCix, y, z, u},

Il

03 =a?+x3+xBo+ 6o +yz (Rao+70) +2(X%B1+6;) mod22C(x, y, Z, i}.

We also have j*€¢, and j°2°E¢@;. Since X has only isolated singularities, we see
that Sing (U,) € { =0} and Sing(U;) € {£=0}.

If (*) has no solutions, then we see that U, and Us; have only isolated
singularities and these are all isolated cDV points except at the origin of U,. The
origin of U, is a terminal singularity of type (cAx/4) with axial weight 2. If ()
has a solution x =, then X has 1-dimensional singular locus, which are canonical.

In each case, we have Ky=7*(Ky)++E since d(v')=1/3. Hence 7 is
divisorial with discrepancy 1/3 if (#) has no solutions. This proves (2) and (3)
when ¢ satisfies (9.3.3).

The proof for the case (9.3.2) is almost the same as the one for (9.3.3). In this
case, Sing(X) is always isolated and 7 is always divisorial with discrepancy 1/3.

O

9.5. Proposition. Assume that ¢’ satisfies (9.3.4). Let m: X — X be the
(j’, 0,)-blow up and let E be the exceptional divisor of m. Then 7 is divisorial with
discrepancy 1/3 and X is Gorenstein outside two points. One of them is the origin
Q. of the x'~chart of X and it is isomorphic to (,2,4)/Zs(1, 4, 4). The other point
Q. is isomorphic to C*/Z,(1, 1, 1). Furthermore, E is defined by 4>+ Az*+j*+ayz’
+p52"+ 19284622 =0 near Q,.

Proof. This can be proved by almost the same method as (9.4). O
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§9.A. Terminal singularities of type (cD/3-1)
9.6. In this subsection, we assume that X has a standard embedding
ji X=W+x*+yz(y+2)=0}/Z5(2, 1, 1,0) S (x, y, z, u) /Z3(2, 1, 1, 0).
The following is immediate from (9.2).
9.7. Proposition. For the standard embedding j, we have
W1s(j)={(j, 0) |o=0y, 01,1 07 01,5} .

In particular, vi 1= (j, 01,1) and v,,=(j, 01,,) are the maximal elements in
Wi ().

9.8. We need another pseudo weighted valuation for our study of (cD/3-1)
case. This naturally arises if we consider the (j, g;)-blow up of X.
Let x1: &, y,2,u)/Zs— (x1,y1, z1, u1)/Z; be the automorphism defined by

2 GD=x, xf(yD=y+tz, xf@)=z and x{u)=u

We get the embedding j,=x;°j : X = (x1, y1, 21, u1)/Z3(2, 1, 1,0). The defining
equation of j; is

o1=ul+xi+yiz:(yi—z1).
We denote vy, 3= (ji1, 01,1), which is maximal in #",,3(j).

9.9. Theorem. Foreachi=1,2and 3,the v,  -blowup m, : X, — X is divisorial
with discrepancy 1/3 and Tpex (aw(X;, Q) —1)=1. These m; are not mutually
isomorphic over X. Furthermore, there are exactly 3 divisors with discrepancies 1/3
over X.

Proof. By (9.4) (1), m, is divisorial with discrepancy 1/3. We also see from
(9.4)(3) that Xgex(aw(X:, @) —1)=1. Similarly, 7, and 7 have the same
properties.

Let D be the Q-Cartier Weil divisor on X defined by y=0 and let E; be the
exceptional divisor of 7; (i=1, 2, 3). By (3.5), we have

i (D) =m'[D] +%E1 and 7 (D)=n;"[D] +%—E2.

Hence X; and X, are not isomorphic over X. Similarly 7, 7, and 73 are not
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isomorphic over X.

In order to count the number of divisors with discrepancies 1/3, we use 7; as
the first blow up. By (9.4) (3), X, has a unique non Gorenstein point which is of
type (cAx/4). By (7.4) and (7.9), every terminal singularity of type (cAx/4) has
at most 2 divisors with discrepancies 1/4. Hence there are at most 3 divisors
(including E;) with discrepancies 1/3 over X by (5.3). On the other hand, we
already know that there are 3 divisors with discrepancies 1/3 over X. Therefore
there are exactly 3 divisors with discrepancies 1/3 over X. O

9.10. Proposition. Ifv'=(j’, d") is a maximal element in W 13, then v’ >v, ;
for some i=1, 2 or 3.

Proof. If 0’=0o, then v~ (j, 0p) is not maximal by (5.4). Hence we may
assume that 0’=g, ;0r 0y, by (9.2). By symmetry, we assume that o’=g, ;. We
shall show that v'>v, ; assuming that v v, ; and v’ /v, ,. Letx: &',y 2", u’)/
Zs— (x, y, z, u)/Z; be a liftable automorphism such that xyoj'=j. By our
assumption,

s (1% G, 9,2, ) 252, 4,1,3) and E3(2,1,4,3).
Thus we see that o’-wt(x*(y)) =d’-wt(x*(z)) =1/3. For the defining equation
¢ =x*(¢) of j/, we have o’-wt(¢’) =2 since d(»’) =1/3. On the other hand, if
o’ -wt(x*(y+z))=1/3, then o’-wt (¢") =0’-wt (x* W’ +x*+yz(y+2))) =1,
which is a contradiction. Hence o’-wt(x* (y+z)) >4/3, which shows that v'>
V1, 3. O

9.11. By (9.9) and (9.10), we see that (4.1) and (4.4) hold. (4.5) and (4.6)
follows from (9.9). Figure 3(9.A) shows the elements of # 1,3/~ and their
relations.

§9.B. Terminal singularities of type (cD/3-2)
9.12. In this subsection, we assume that X has a standard embedding

JiX= W +x+y2+xp* 2 () +you(y®) =0} /Z;5(2, 1, 1, 0)
g (x) y5 z, u)/ZS(Z, 19 1, 0)’

where 1 (%), u(y>) EC{y?*} and 423+27u2+0.

As before, we first determine #1,5(j).
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9.13. Proposition. For the standard embedding j, we have
W) =1{({j, 0)|o=00, 01,1 0r 04,5} .

In particular, vi,1=(j, 01,1) and v, ,=(j, 01,2) are the maximal elements in
W ().

9.14. Theorem. For eachi=1and 2, the v, ;-blow up ; : X; — X is divisorial
with discrepancy 1/3 and > pe xi(at (X;, Q) —1)=1. These m; and m, are not
isomorphic over X. Furthermore, there are exactly 2 divisors with discrepancies 1/3
over X.

Proof. By (9.4) (1), m; is divisorial with discrepancy 1/3. By changing y and
z and applying (9.4) (1), 7, is also divisorial with discrepancy 1/3. Thus we get 2
divisorial blow ups with discrepancies 1/3. By (9.4) (3), we also see that 2oe,
(aw(X;, @)—1)=1 for i=1 and 2. As in the proof of (9.9), these are not
isomorphic over X.

For the last part, we use 7; as the first blow up. By (9.4)(3), X is non
Gorenstein only at the origin of

U,= {@*+x*+2+x9* 2 (") +5°u () =0} /Z,(2, 1, 1, 3).
Since x*+x5*2 (0) +5°1 (0) can not be a square, (7.4) shows that there is a unique
divisor with discrepancy 1/4 over X,. Thus there are exactly 2 divisors with
discrepancies 1/3 over X as in the proof of (9.9). O

9.15. Proposition. Ifv'=(j’, ¢’) is a maximal element in W 1,3, then v'>
vi,10r vV >V .

Proof.  As in the proof of (9.10), we may assume that 0’=0;,,. We shall
derive a contradiction assuming that v’ v, ; and v’ v, .. Lety: &',y 2z, u')/
Zs—> (x,y,z,u)/Zs be aliftable automorphism such that x oj’=j. Then we have
o-wt(x*(y))=0-wt(x*()) =1/3 by our assumption, so that o’-wt(x*(yz»)) =
1. Thus we get o’-wt (¢’ ) =1 for the defining equation ¢’'=x* (¢) of j. This is a
contradiction since d (') =1/3. O

9.16. By (9.14) and (9.15), we see that (4.1) and (4.4) hold if X is of type
(cD/3-2). By (9.14), we also see that (4.5) and (4.6) hold. Figure 3(9.B) shows
the elements of #"y,3/~ and their relations.
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§9.C. Terminal singularities of type (cD/3-3)
9.17. In this subsection, we assume that X has a standard embedding

jrX= {2+ 4y +xyB a@®) +x2* B (23) +y2° r (@) +2°6 (2*) =0}
/ZS(Z: 1, 11 0>g (x, y, z, u)/ZE!(zy 19 19 O)y
where a (z*), 8(2*), v(@®), 6(@*)=C{z’}. We denote the power series expansion of

a(@®),etc. by a(@®) =ap+a,;z +a,z°+a32°+ -+, etc. Here we consider the system
of equations

(*) x3+Xﬂo+6o:O, 3x2+,80=0, aox+7’o=0, ,31x+51=0

in x, and divide the case whether (*) has a solution or not. As we shall see later,
the (j, 01,1)-blow up of X is divisorial if (*) has no solutions. But if () has a
solution, then the (j, 01,1)-blow up of X is not divisorial and we need another
pseudo weighted valuation for our study of this case.

9.18. Under the notation and the assumption (9.17), we first assme that ()
has no solutions in x. We shall study this case in (9.19)—(9.22).

9.19. Proposition. For the standard embedding j, we have
W s (j)=1{(j, 0)|lo=a0 or a1, 1}.
In particular, v, 1= (j, 01,1) is the unique maximal element in W 1,3(j).
Proof. By (9.2), it is enough to prove that (j, ) ¥ 1:(j). If (j, ;) E
W 1,3(j), then (3.9.1) implies that g,-wt(¢) =4. Thus we get Bo="70=0,=0;=0.
This is a contradiction since (%) has a solution x =0. O
9.20. Theorem. Thev, ;-blow up n: X — X is divisorial with discrepancy 1/3

and Yex(aw(X, Q) —1) =1. The exceptional divisor E of r is the unique divisor
with discrepancy 1/3 over X.

Proof. Since (*) has no solutions, (9.4) (2) implies that 7z is divisorial with
discrepancy 1/3. By (9.4) (3), we have > gcx(aw(X, Q) —1)=1 and X is non
Gorenstein only at the origin Q of

U,= {2 +x3+92+x52° a (52°) +x2* B (32°) +y2° y (32°) +2°6 (y2°) =0}
/Z4(2, 39 3) 1)‘
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As x3+xz* By +2°8, is not a square, (7.4) implies that there is exactly one divisor F
with discrepancy 1/4 over Q and F is obtained by the weighted blow up with weight
%(2, 5,1, 3) over U,. We denote this blow up by v : Z — X. Since E is defined by

$=0in U, (3.5) implies that v* (E) =v~'[E]+>F. By (5.3), we see that a (F, X)
=1/4+5/4 - 1/3=2/3. Thus we know that E is the unique divisor with discrep-
ancy 1/3 over X. O

9.21. Proposition. Ifv'=(j, 0') is a maximal element in W 1,5, then v'>
Vi, 1.

Proof.  As in the proof of (9.10), we may assume that o’=0; ; or g,. We shall
derive a contradiction assuming that v’ v, ;. Letx: &', y’, 2, u')/Zs— (x,y, z,
u)/Z; be a liftable automorphism such that x oj'=j and ¢’=x* (¢) be the defining
equation of j. By our assumption, we see that z’Ex*(y). This implies that z*&
¢’, so we have o’-wt(¢’) =1. This contradicts the fact that d(»") =1/3. O

9.22. By (9.20) and (9.21), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (9.18). Figure 3(9.C.a) shows the elements of # 5/~ and
their relations.

9.23. Under the notation and assumption (9.17), we next assume that (x)
has a solution x =€ C. Then x=F is a double root of x*+Box +5,=0, so we can
write x*+Boxz* 4+ 80z° = (x —£2z2)? (x +2£z%). This leads the automorphism y; : (x,
v, 2z, u)/Zs—> (x1, y1, 21, u1)/Z; defined by

xt ) =x—&z>, xF(yD=y, xf@)=z and xf(@w)=u,

and the embedding j,=y:°j: X —> (x1, y1, z1, u1)/Z3(2, 1, 1, 3). The defining
equation of j; is

@or=ui+xi+3Exizi+yi+xiyizia’ @) +x1218' @) +y128r @) +2126' @D,
where o' (z*) =a(z*), /(@) =(BE) —Bn) /2*, ¥ @) = (Ea @) +7(@) /2, &' ()
=[(BE)—B)E+(6(=>)—0b60)]1/2z°. As before, we denote the power series

expansion of a’(z*), etc. by ap+aiz’+a3z°4 -+, etc. We shall study this case in
(9.24)-(9.28).

9.24. Proposition. For the embedding j,, we have

W 13D = {1, 0) |o=00, 01,1 0r 02} .
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In particular, v;= (ji: 0;) is the unique maximal element in W 1,5(j1).

9.25. Theorem. The vy-blow up n’ : X' — X is divisorial with discrepancy 1/3

and Ygex(aw(X’, Q) —1) =0. There are exactly 2 divisors with discrepancies 1/3
over X.

Proof.  Since the defining equation ¢, satisfies (9.3.4), we can apply (9.5) and
see that 7’ is divisorial with discrepancy 1/3 and that X ez (aw(X’, @) —1) =0.

Each point of X’ has index < 3 except at the origin Q, of the x;-chart U; and
X’ is isomorphic to (7, z,i)/Zs(1, 4, 4) near Q;. We can resolve Q; =X’ by using
(5.1) and get a projective birational morphism v : Z — X’ such that K;=v* (K3
+ 34+ F;, where 3% F, is the exceptional divisor of v over Q;. Let E be the
exceptional divisor of 7. By (9.5) and (5.1), we have

VE) = E T+ IR A S A S Rt 2R,
5 5 5 5

Using (5.3), we see that a (F,, X) =1/3 and a (F;, X) >2/3 for i>2. Therefore E’
and F; are the divisors with discrepancies 1/3 over X. O

9.26. Remark. Thus we know that there are exactly 2 divisors with dis-
crepancies 1/3 over X. One of them is obtained as the exceptional divisor of the
v;-blow up. The other one is obtained as the exceptional divisor of the weighted
blow up 7 : X — X associated to (j, 01,1) ~ (ji, 01,1). This is not divisorial since X
has non-terminal singularities.

9.27. Proposition. Ifv'=(j’, ¢’) is a maximal element in W \,3, then v'>

Proof We may assume that ¢’=0;, or 0; as in the proof of (9.10). By
(9.21), we see that v'>> (j, a1,1) ~ (jr, 01, 1).

If o’=0,1, then (5.5) shows that v/~ (j;, 0y, 1) is not maximal.

Let 0’=0, and let x: (X', y', 2, u')/Zs— (x1, y1, 21, u1)/Zs be a liftable
automorphism such that y oj’=j,. Since v'> (ji, 01,1), we have

o'wis (2 Gor, 31, 21, 1)) 232, 4, 1, 3).

Thus we have to show that o’-wt(x*(x))>5/3 and o’-wt(x*(u))>2. Since
d(')=1/3, (3.9.1) shows that o’-wt(¢’) =4 where ¢'=x*(¢,) is the defining
equation of j. Let

p=x*&x1, q=x*y), r=x*@v, s=x*@W)ECK,y, 2, u'}.
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If z°Es, then z°€¢’, so we have o’-wt (¢’ ) <2, which is a contradiction. Hence
z"*&s and we get o’-wt(s) >2. Let p=ax’+bz">+ (other terms) and r=cy’+dz’+
(other terms). Since Y is an automorphism, a #0, d #0. Since o’-wt(¢’) =4, the
coefficients of x’z"* and 2’6 in ¢’ are both zero, so that we have ab (3b+6£d) =b*(b
+3£d*) =0. These equalities imply that b=0 which shows ¢’-wt(p) =>5/3. Thus
we know that v/ >v3. O

9.28. By (9.25), (9.26) and (9.27), we see that (4.1), (4.4), (4.5) and (4.6)
hold under the assumption (9.23). Figure 3(9.C.b) shows the elements of # 3/

~ and their relations.

9.29. By (9.22) and (9.28), we complete the proof of (4.1), (4.4), (4.5) and
(4.6) if X is of type (cD/3-3).

Vo~ V1,1

V1,1 Vi1
Yo {W, 2 Yo < (9.C.a)
V1,3 V1,2 Yo Vi1 1
(9.A) (9.B) (9.C.b)

Figure 3. % 1, for (cD/3) type terminal singularities

§ 10, Terminal Singularities of Type (cE/2)

10.1. LetX be a germ of a 3-dimensional terminal singularity of type (cE/2).
By (2.3), there is a standard embedding

jiX={W+x*+g(y, 2)x+h(y,z) =0} /Z,(0, 1, 1, 1)
g(x, yy z, u)/ZZ(Os 1, 1, 1)

where g(y, z), h(y, 2)E(y, 2)*C{y, z} and the degree 4 part hags(y, z) of
h(y,z) is not zero. In this case, we have aw(X) =3. We shall denote the defining
equation as ¢=u’+x*+g(y, z)x+h(y, z), also we denote the power series ex-
pansion of g(y,z) and h(y, z) as g(y,z) =2, a,;y'z and h(y, z) =X, ;b;; y'z’
respectively.

As before, we first determine all the possible weights ¢ such that (j',0") E# 1,
for some embedding j' : X — (X', y', 2/, u')/Z,(0, 1, 1, 1).

10.2. Lemma. Letj :X— (x',y’, z/, u')/Z,(0, 1, 1, 1) be an arbitrary
embedding and let ¢’ be the defining equation of j. Then, after a permutation of
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coordinates if necessary, u’*, x” and some degree 4 terms in y’, z’' appear in ¢’
Furthermore, if (j', 0’)EW 12, then the following holds :

(D Ify*Eg¢,thend’=5(2,1,1,1),75(2,1,1,3),5(2,3,1,3),5(4,3,1,9,
+(4,3,1, 7 or5(65,1,9.

Q) Ify*reg, thend=5(2,1,1,1),5(2,1,1,3),5(2,3,1,3), %2, 1, 3,
3)or+(4,3,1,5).

(3) Ify?z*€¢, then o =52, 1,1,1),5(2,1,1,3),5(2,3, 1,3 or 2(2, 1,
3, 3). In particular, if the degree 4 part in y’ and z’ of ¢’ does not have a triple or a
4-ple factor, then o’ =5(2,1, 1, 1), (2,1, 1, 3), (2,3, 1, 3) or (2, 1, 3, 3).

Proof. The first part is obvious. Let w=0"-wt andv' = (j', 0’). Ifu’? x", y*
E¢’, then we see that 2w (') >w (@), 3w(x’) >w(¢’) and 4w (y’) >w(¢’). Since
d(v')=1/2, it follows from (3.9.1) that

12=w&x)+w(y)+w@)+w@w’) —w(@)—1>2wE@) +w(p’)/12—1.

Since 0’ €Z*+3-(0, 1, 1, 1)Z and since w (¢’ ) EZ, we see that w(x') =0, w(y') =
wE)=w@')=1/2modZ. So the above inequality shows that w(z’) =1/2 and
w(@’) <12. The rest follows from case by case analysis. For example, if w(¢’) =
9, then we have w(x’) >3, w(y')>5/2, w(u')>9/2. Since o’-wt(x'y'z'u’)=21/2,
these inequalities must be equalities. Therefore we have 0’=5(6, 5, 1,9). We can

prove other cases similarly. O
We define
1 1 1 1
UO_—(Z, 1, 1, 1), 01=_(2, 15 ly 3), 02, 1=_(21 3, 1’ 3)3 0‘2,2:—_(2, 13 3’ 3);
2 2 2 2
03=%(4, 3, 1,5), 042%(4, 3,1,7) and 05=%(6, 51,9).

10.3. Letj :X— (x',y’,z/,u’)/Z,(0, 1, 1, 1) be an embedding and let ¢’ be

the defining equation of j. We define z-wt(y’) =3/2, t-wt(z’) =1/2 and T-wt (y’)
=5/2, 7-wt(z’) =1/2. We shall consider the following conditions on ¢’. (See(3.4)
for the definition of I°21(4) etc.)

(103.1) @'=u"+x"+aq4z"*x +bo sz°+y'z* mod I°2. 1(4).

(10.3.2) ¢'= W +x"*+ao,4z*x"+bo, 62") +y'z"* (a1, 3x" +b1,52"*) +2"%(ay, 6x’
+bo,32%) +y?z*mod I°2. 1(5) for some a;;, b; ;=C.

(10.3.3) @'=W?+x"+ao 42*x"+bo, 6z’®) +y'z" (a1, :x"+b1, 52'%) +2"%(ao, 6x’
+by, 32*) mod I°2 1(5) for some a; ;, b, ;=C, and y"”z’ or y“*E¢’.

(103.4) ¢'=u"+Ax"2"*+gew=3(y’, 2" )x"+he=s(y’,z) mod I?3(6) for some
AEC,g(y,2),h(y,2)eC{y, 2}, and x*€¢’.

(10.3.5) ¢’ =(ax'z’+By'z?+71z°)u'+x"+grw=4(y, 2 )x +he-s(y’,z) mod
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I°4(7) for some a, B, yEC, g(y',2'), h(y',2)EC{y’, z'}, and uE¢".
(10.3.6) ¢'=u"+x"+grm=6(y’, 2 )x"+hep-9(y’, ') modI°(10) for some
g(y,2),h(y,2)eC{y, 2}, and y"*E¢'.

The proofs for the following propositions (10.4)—(10.7) are almost the same
as the one for (9.4) and (9.5). So we shall omit their proofs.

10.4. Proposition. Let 7: X — X be the (j', 0, 1)-blow up and let E be the
exceptional divisor of m. Then the following holds :
(1) If (10.3.1) or (10.3.2) holds, then = is divisorial with discrepancy 1/2.
(2) If (10.3.3) holds, then X has only canonical singularities and E is irredu-
cible. Furthermore, if the system of equations

(T) X3‘|“ao, 4Z4X+b0,5:0, 3x2+a0,4=0, a1,3x+b1,5=0, Ao, sx+bo,3=O

has no solutions in x, then 7 is divisorial with discrepancy 1/2.

(3) Assume that (10.3.1), (10.3.2) or (10.3.3) holds. In case (10.3.3), we
further assume that (1) has no solutions. Then the origin of the y'-chart of X is the
unique non Gorenstein point and it is of type (cD/3).

10.5. Proposition. Assume that ¢’ satisfies (10.3.4). Let n: X — X be the
(j', 05)-blow up and let E be the exceptional divisor of m. Then the following holds :

(1) IfyPzZ’E¢, then r is divisorial with discrepancy 1/2.

) Ify*Z &, u*+Ax"*z2*+grm=3(y, 2 )x" +hw-s(y’, 2") is irreducible and
reduced and y*E ¢, then = is also divisorial with discrepancy 1/2.

(3) Under the above conditions of (1) or (2), X is Gorenstein outside two points.
One of them is the origin Q; of the x"-chart of X and it is isomorphic to (J, z, 1)/ Z.4
(3, 1, 1). The other point is the origin Q, of the y’~chart of X and it is isomorphic to
&, 9, 4)/7Z:(1, 1,2) in case (1) and (%, 2, 1)/Z5(1, 1, 2) in case (2). Moreover,
E is defined by 1+ 2A2*+gr—3(P, 2) *he=s(J, Z2) =0 near Q,. Near Q,, E is
defined by =0 in case (1) and 4*+A%*7*+g.u=3(1, 2)% +hrp=s(1, 2) =0 in case
2.

10.6. Proposition. Assume that ¢’ sotisfies (10.3.5). Let m: X — X be the
(§'s 04)-blow up and let E be the exceptional divisor of m. Then the following holds :
(1) If (a,B, 1) #(0, 0, 0), then 7 is divisorial with discrepancy 1/2.
(2) Ifa=B=1=0, then X has only canonical singularities and E is irreducible.
Moreover, X is terminal outside the z'chart of X and Sing(X) is isolated.
(3) X is Gorenstein outside the origin Q of the u’-chart of X and it is isomorphic
to (%, 9,2)/Z:(4, 3, 1). E is defined by (axz+Byz*+72°) + %>+ gewm=e(J, 2)X+
hew=6(J, 2) =0 near Q.
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10.7. Proposition. Assume that ¢’ satisfies (10.3.6). Let m: X — X be the
(j', @’ )-blow up and let E be the exceptional divisor of m. Then 7 is divisorial with
discrepancy 1/2 and X is Gorenstein outside two points. One of them is the origin
Q, of the y'chart of X and it is isomorphic to (%,z,4)/Zs(4, 4, 1). The other point
Q, is isomorphic to C*/Z;(2, 1, 1). E is defined by w*+x*+gr,-¢(1, 2)x+
hyow=9(1, 2) =0 near Q.

Now, we divide the case into several cases.
§ 10.A. hue4(y, z) has 4 distinct factors
10.8. If hue4(y, z) has 4 distinct factors, we may assume that the standard
embedding j is given so that hae 4 (¥, z) =yz(y+2,2) (y +2,z) for some 4;, 1,EC
by a linear change of y and z. We shall treat this case in (10.9)—(10.13).
The following proposition is immediate from (10.2).
10.9. Proposition. For the standard embedding j, we have

W12 =1{{j, 0)l0=00, 01, 03,1 0r 03,2} .

In particular, v, 1= (j, 0,1) and v, ,=(j, 02,2) are the maximal elements in
Wl/2(j>'

10.10. We need two more pseudo weighted valuations, which naturally arise
if we consider the (j, 0,)-blow up of X. For eachi=1and 2, let x;: (x, y, z, u)/
Z,— (i, yi, i, u;)/Z; be the automorphism defined by

xx)=x, x* (,Vi) =y+dz, x* (z)=z and X () =u,

and let ji=x;0j : X = (x;, yi, zi, u)/Z2(0, 1, 1, 1) be the embedding. Then their
defining equations are

<Pi=ui2+x?+gf(y.~, Zi>xi+ht<yi, z),

where g:(y,z) =g(y—2;z,2), hi(y,z) =h(y—A:z, z). In particular, the degree 4
part of h:(p, z) is yz(y —X:z) (y—pz) where g1=21—22, ta=A,—2;. Let vy 3=
Gty 02,15 v2,4= (ja, 02, 1), then vy, 3, 2, s EW 12

10.11. Theorem. For each i=1, 2, 3 and 4, the v, :-blow up m;: X;—> X is
divisorial with discrepancy 1/2 and X ge x[(aw()f,-, Q) —1)=1. These =; are not
mutually isomorphic over X. Furtheremore, there are exactly 4 divisors with dis-
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crepancies 1/2 over X.

Proof. By (10.4)(1), = is divisorial with discrepancy 1/2. As terminal
singularities of type (cD/3) have axial weight 2, we see from (10.4) (3) that
Yoex,(aw(X,, Q) —1)=1. Similarly, 7,, 7; and 7, have the same properties.

Let D be the Q-Cartier Weil divisor on X defined by y=0 and let E; be the
exceptional divisor of 7; (i=1, 2, 3, 4). By (3.5), we have

rrl*(D)=m"1[D]+%E1 and 7[,-*(D)=7z,-‘1[D]+~21—E,- i£itl.

Hence 7; and 7; (i#1) are not isomorphic. Similarly z,, 7,, 73 and 7, are not
isomorphic over X.

In order to count the number of divisors with discrepancies 1/2, we use 7; as
the first blow up. By (10.4) (3), the origin of the z-chart of X, is the unique non
Gorenstein point of X; and it is of type (cD/3). By using the results in section 9,
we see that there are at most 3 divisors with discrepancies 1/3 over X;. By (5.3),
there are at most 4 divisors with discrepancies 1/2 over X (including E;). On the
other hand we already have 4 divisors E;, ..., E4 with discrepancies 1/2 over X.

O

10.12. Proposition. Ifv'=(j', 0’) EW 1, is maximal, then v'>v,,; for some
i=1,2,3o0r4.

Proof. If 0'=0p, thenv'~ (§j, gy) is not maximal by (5.4). In case ¢’ =0, it
is also easy to see that v'~ (j, 0;) is not maximal.

Thus we may assume that 0’ =0,,; or 0, , by (10.2). By symmetry, we assume
that 0’=0,, ;. We shall show that v'>v, 5 or v/ >>v, 4 assuming that v’ v, 1, v
vy,2. Lety: &, y',z',u')/Zy— (x,y, z, u)/Z, be a liftable automorphism such
that j=xoj. Since v'> (§j, 01), we have

owts(x*(x, y, z, u))z%@, 1, 1, 3).

Thus our assumption implies that ¢’-wt(x*(y)) =0"-wt(x*(z))=1/2. For the
defining equation ¢’ =x* (¢) of j', we have o’-wt(¢’) =3 since d (') =1/2. Hence
o'-wt(x*(y+21,2))>3/2 or o’-wt(x*(y+2,2z)) >3/2. This proves that v'>v, 3
orv'>vy . O

10.13. By (10.11) and (10.12), we see that (4.1), (4.4), (4.5) and (4.6) .
hold if hqe4(p, z) has 4 distinct factors. Figure 4(10.A) shows the elements of
W 1/~ and their relations.
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§10.B. hqe4(y, z) has 1 double factor and 2 single factors

10.14. If h4e;2(y, z) has 1 double factor and 2 single factors, we may assume
that the standard embedding j is given so that e 4(y, z) =pz2(y+z) by a linear
change in y and z. We shall study this case in (10.15)—(10.19).

The following proposition easily follows from (10.2).
10.15. Proposition. For the standard embedding j, we have
Wx/z(j) = {(J, 0) IUZUO, 01, 03,1 0F Oy, 2.

In particular, v, = (j, 02,1) and vy ,=(j, 0,,) are the maximal elements in
Wl/Z(j)-

10.16. As in (10.A), let x1: (x, y, z, u)/Zy— (x1, y1, z1, u1)/Z, be the
automorphism defined by

2 )=x, xFf(yD)=y+z, xfG@)=z and xi@)=u,

and let ji=yx,°j: X = (x1, y1, z1, u1)/Z,(0, 1, 1, 1) be the embedding. The
defining equation of j; is

(olzu%+x'§‘+g1(y1, zOx1+hi(y1, z0),

whereg,(y,z) =g(y—z,2z),h:(y,z) =h(y—2z, z) so that degree 4 part of h,(y, z)
is yz>(y—z). Then vy 3= (j1, 0, DEW 112.

10.17. Theorem. For each i=1, 2 and 3, the v, ;-blow up m;: X;— X is
divisorial with discrepancy 1/2 and Y z,(aw(X;, Q) —1)=1. These m are not
mutually isomorphic over X. Furthermore, there are exactly 3 divisors with discrep-
ancies 1/3 over X.

Proof. By (10.4) (1), we see that each z; is divisorial with discrepancy 1/2.
By (10.4) (3), we also see that > e xi(aw()f',-, Q) —1)=1. These 7; are not iso-
morphic over X as in the proof of (10.11).

In order to count the number of divisors with discrepancies 1/2 over X, we

shall use 7, as the first blow up. By (10.4) (3), X, has non Gorenstein point only
at the origin of

U,= {@*+x3+g (3% 522) /9 - x+h (§*?, $22) /5 =0} /Z;(2, 1, 1, 0)
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which is of type (cD/3-2). There are exactly 2 divisors with discrepancies 1/3 over
this point by (9.14). Thus we know that there are at most 3 divisors with dis-
crepancies 1/2 over X by (5.3). On the other hand, we already know that there are
at least 3 divisors with discrepancies 1/2 over X. O

We can prove the following by the same method as the proof of (10.12).

10.18. Proposition. Ifv'=(j, 0') EW ., is maximal, then v’ >v,,; for some
i=1,2or 3.

10.19. By (10.17) and (10.18), we see that (4.1), (4.4), (4.5) and (4.6)
hold if A 4(p, z) has 1 double factor and 2 single factors. Figure 4(10.B) shows
the elements of #°1,,/~ and their relations.

§ 10.C. haez4(y, z) has 2 double factors

10.20. If hge; 4(y, z) has 2 double factors, we may assume that the standard
embedding is given so that A4 4 (p, z) =y*z* by a linear change of y and z. We shall
study this case in (10.21)—(10.24).

10.21. Proposition. For the standard embedding j, we have
Wr1n(D)=A{(j, 0)|o0=00, 01, 02,1 0r 03,5}

In particular, v, 1= (j, 05,1) and vy, ,=(j, 0,,) are the maximal elements in
Wl/l(j)'

10.22. Theorem. Foreachi=1and 2,thev, ;-blow up x; : X, — X is divisorial
with discrepancy 1/2 and ez, (aw(X;, Q) —1)=1. These m and 7, are not
isomorphic over X. Furthermore, there are exactly 2 divisors with discrepancies 1/2
over X.

Proof. By (10.4)(1), we see that m; and 7, are both divisorial with
discrepancies 1/2. By (10.4) (3), we also see that > ge z,(aw X, Q) —1)=1. As
in the proof of (10.11), z; and 7, are not isomorphic over X.

For the last part, we shall use 7; as the first blow up and let E; be the
exceptional divisor of 7;. As in the proof of (10.17), there are 2 divisors F; and F,
with discrepancies 1/3 over the origin of U,. These are obtained by the weighted
blow up with weight 7,=+(2, 1, 4, 3) and 1,=+(2, 4, 1, 3) over U respectively.
Since E; is defined by =0, (3.5) and (5.3) imply that a (Fy, X)=1/3+1/2 -
4/3=1anda(F,,X)=1/3+1/2 - 1/3=1/2. Thus E; and F, are the divisors with
discrepancies 1/2 over X. |
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We can easily prove the following as in the proof of (10.12).

10.23. Proposition. If v'=(j’, o') EW ., is maximal, then v'>v, ; or v'>
V2, 2.

10.24. By (10.22) and (10.23), we see that (4.1), (4.4), (4.5) and (4.6)
hold if hgeg 4(y, z) has 2 double factors. Figure 4(10.C) shows the elements of
W 1,2/~ and their relations.

V2,1

/ /Vz, 1 /Vz, 1

7 —"V2,2

- Vo V1 V3,2 Vo Vi
Vo Vi ,

\

\VZ, 3 \Vz, 3 \Vz, 2
V2,4

(10.A) (10.B) (10.0)

Figure 4. % 1, for (cE/2) type terminal singularities

§10.D. hge +(y, z) has a triple factor and a single factor
10.25. In the case hdeg4( ¥, z) has a triple factor and a single factor, we may
assume that the standard embedding j is given so that hee 4(y, z) =y°z by a linear
change of y andz. Asin (9.C), we first consider the system of algebraic equations
(T) x3+ao, 4x+b0,5=0, 3x2+a0,4=0, ao, 6x+bo’s:0, a1,3x+b1,5=0

in x and divide the cases whether () has a solution or not.

10.26. We first assume that (t) has no solutions in x and we shall study this
case in (10.27)—(10.30).

10.27. Proposition. For the standard embedding j, we have
Wl/z(j) = {(], o) |U:00, 01, 03,1 07 Oy, 2

In particular, v, ,=(j, 02,1) and v, ,=(j, 0a,2) are the maximal elements in
Wl/Z(j)'

Proof. By (10.2), it is enough to prove that (j, ;) % 1,(j). If (j, o) E
W 1,,(j), then (3.9.1) implies g3 -wt (¢) =5. Thus we get aq, s =bo, s=bo, s=b1, s=0.
This is a contradiction since () has a solution x =0. O
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10.28. Theorem. Foreachi=1and 2,thev, ;-blow up 7, : X; — X is divisorial
with discrepancy 1/2 and Ygex,(aw(X;, @) —1)=1. These m and =, are not
isomorphic over X. Furthermore, there are exactly 2 divisors with discrepancies 1/2
over X.

Proof. We see that m; (resp. m,) is divisorial with discrepancy 1/2 by (10.4)
(2) (resp. (10.4)(1)). We also see that Xoe z,(aw(X;, @) —1) =1 by (10.4) (3).
Since singularities on X, and X, are different, 7, and 7, are not isomorphic over X.
We can prove the last part exactly by the same method as (10.22) using 7; as
the first blow up. O

We can easily prove the following as in the proof of (10.12).

10.29. Proposition. If v'=(j’, 0') EW 1., is maximal, then v'>v, , or v'>>

V2,2,

10.30. Thus, if A4 «(y, z) =y*z and if () has no solutions in x, then (10.28)
and (10.29) imply that (4.1), (4.4), (4.5) and (4.6) hold. Figure 5(10.D.a) shows
the elements of #"1,,/~ and their relations.

10.31. We next assume that (1) has a solution x =£&C and we shall treat
this case in (10.32)—(10.36).

In this case, x> +aq, sx2*+ b, 62° = (x —£22)?(x +2£2%) asin (9.23). Lety; : (x,
v, 2, u)/Zy—> (x1, y1, 21, u1)/Z, be the automorphism defined by

xt D) =x—Ez>, xf(yD=y, xFfG@)=z and x{fW)=uy,

and letj;=y,9j : X = (x1, y1, 21, u1)/Z,(0, 1, 1, 1) be the embedding. Then the
defining equation of j, is

or=uitxi+3Extzt+g1(y1, z0x1thi (1, 1),
where g1(y, 2) =g(y, 2) —ao42*, hi(y, 2) =E2*(g(y, 2) —ao 4z) + (W (y, 2) —
bo,6z%). Since x =£ satisfies (T), we know that z-wt(g,(y, z)) >3, T-wt (h;(y, z))
>5 if we denote T-wt(y) =3/2, -wt(z) =1/2.
10.32. Proposition. For the embedding j,, we have

Wl/z(jl): {(jl, 0) 10:00, 01, 03,1, 02,2 OF 03}

In particular, vs= (j1, 03) and vy .= (j1, 0,,) are the maximal elements in
Win(Go).
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10.33. Theorem. The vs-blow up 73 : X; — X and the v, ,-blow up m, : X, —
X are both divisorial with discrepancies 1/2 and these w3 and m, are not isomorphic
over X. We also have Zge 2,(aw (X3, Q) —1) =0and Xpex,(aw(X;, Q) —1)=1.
Furthermore, there are exactly 3 divisors with discrepancies 1/2 over X.

Proof. By (10.5) (1) (resp. (10.4)(1)), we see that 73 (resp. m,) is divi-
sorial with discrepancy 1/2. By (10.5)(3) and (10.4)(3), we also see that
Ygez,(aw(X;, Q) —1)=0 and Yocz,(aw(X,, Q) —1)=1. These 7; and 7, are
not isomorphic over X since singularities of X, and X; are different.

In order to count the number of divisors with discrepancies 1/2, we shall use
3 as the first blow up. Let E; be the exceptional divisor of z3. By (5.1), there is
a projective birational morphism v : Z — X;, which is a resolution of the origin
0, of the x; -chart U; and the origin Q, of the y,-chart U,, such that K;=v* (K 33)
+ X s Fi+ X214 G;, where ZF; (resp. 2G;) is the exceptional divisor of v over
0, (resp. @,). By (10.5)(3) and (5.1), we have

" o 1 3 1 2
v*(Es) =v ' [Es] +7F1 +F2+7F3+?G1+?G2.
Hencea(F;,X)=a(G,X)=1/2anda(F,,X),a(F,X),a(G,,X)>1. Therefore
E;, F, and G, are the divisors with discrepancies 1/2 over X. O

10.34. Remark. Among these three divisors, two of them are obtained in
(10.33). The remaining one is obtained as the exceptional divisor of the v, ;-blow
up 7, 1 : Xa,1 —> X where v, 1= (j, 05,1). This is not a divisorial blow up since X5, ;
has non-terminal singularities.

10.35. Proposition. If v'=(j, 0’)EW 1 is maximal, then v'>v; or v'>
v;,z.

Proof. Asin the proof of (10.12), v is not maximal if ' =0, or ;. Hence we
may assume ¢’ =0, ; or g3 by (10.2). We shall show that v'>>v; assuming that v’}
v32. Since vj ,~v, 5, (10.29) implies that v'>v, 1~ (i, 05,1). If ’=0y, 1, then
v'~(ji1, 05,1) is not maximal by (5.5). So we assume ¢’ =03 in the following.

Lety: (x',y,z',u’)/Z>—> (x1,y1,21, u1)/Z, be aliftable automorphism such
that x oj'=j, and we dence

p=x*&x), g=x*(y), r=x*QG), s=x*wW)ECK,y,z,u'}.
Then ¢'=y*(@,) is the defining equation of j. Since v'> (ji, 03, 1), we have

o -wis(x* (x1, y1, z1, ul))Z%(Z, 3,1,3).
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If y'Es, then y?E¢’ so that ¢"-wt(¢’) <3, which is a contradiction. Hence y’&s.
Similarly we see that z°&s and x’z'&s. Thus we get o’-wt(s) >5/2. Letp=ax’'+
bz"+ (other terms) and q(x’, y’, z/, u’) =cy’+dz’+ (other terms). Since ¥ is an
automorphism and z’'&r, we see that #0 and d #0. As o’-wt(¢’) =5, we see that
the coefficients of x’z’* and z’® are both zero. So we have ab (3b+6£d>) =b*(b+
3£d*) =0, which shows that 5=0. Thus we get o’-wt(p) >2. Therefore v'>v;.
]

10.36. By (10.33), (10.34) and (10.35), we see that (4.1), (4.4), (4.5) and
(4.6) hold if haey 4(y, z) =p*z and if (f) has a solution in x. Figure 5(10.D.b)
shows the elements of #7,,,/~ and their relations.

10.37. By (10.30) and (10.36), we complete the proof of (4.1), (4.4), (4.5)
and (4.6) if hae;4(y, z) has a triple and a single factors.

/Vz, 1 /Vz, 1 V3
Vo — VoV —
V2,2 V;, 2
(10.D.a) (10.D.b)

Figure 5. # 1, for (cE/2) type terminal singularities

§10.E. haee4(y, z) has a 4-ple factor
10.38. If hde“( ¥, z) has a 4-ple factor, we may assume that the standard
embedding j is given so that hqe4(p, z) =y* by a linear change of y and z. As in
(10.D), we first consider the system of equations
(T) x3+ao,4x+bo,6=0, 3X2+ao,4:0, Qo, 6x+bo’3:0, a1,3x+b1,5=0

in x.

10.39. We first assume that (T) has no solutions in x and this case will be
treated in (10.40)—(10.43).

10.40. Proposition. For the standard embedding j, we have
Wl/z(j) = {(], o) leUO, 01 07 O, 1
In particular, v, 1= (j, 02,1) is the unique maximal element in W 1,(j).

Proof. This follows from (10.2) and a similar calculations as in the proof of
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(10.27). O

10.41. Theorem. The v, -blow up m,: X, — X is divisorial with discrepancy
172 and > pe xl(aw(X' 1, @ —1)=1. The exceptional divisor of m, is the unique
divisor with discrepancy 1/2 over X.

Proof. By (10.4) (2) and (10.4) (3), we see that 7 is divisorial with discrep-
ancy 1/2 and that >ge ;zl(aw (X,, @) —1)=1. For the last part, we shall use 7; as
the first blow up. The origin of the y-chart of X is of type (¢D/3-3) and we can
extract the unique divisor F with discrepancy 1/3 over X, by the weighted blow up
with weight 5-(2, 1, 4, 3). Soa(F, X)=1/3+1/2 - 4/3=1. Thus E, is the unique
divisor with discrepancy 1/2 over X. 4

We can easily prove the following as in the proof of (10.12).

10.42. Proposition. Ifv'=(j, o) EW 1, is maximal, then v'>v,, ;.

10.43. By (10.41) and (10.42), we see that (4.1), (4.4), (4.5) and (4.6)
hold if ez 4« (, z) =y* and if () has no solutions in x. Figure 6(10.E.a) shows the
elements of #71,,/~ and their relations.

10.44. If (f) has a solution x =E=C, then we shall change the embedding as

in (10.31). Let x: (, y, z, u)/Z,— (x1, y1, z1, u1)/Z; be the automorphism
defined by

xt &) =x—Ez*, x{f(yD=y, @)=z and x{f(u)=uy,

and letj;=y;°j: X = (x1, y1, z1, u1)/Z5(0, 1, 1, 1) be the embedding. Then the
defining equation of j; is

or=ui+xi+3Extzi+g:(y1, z0x1+hi(y1, z0),

where twt(g,(y, 2)) =3, wt(h,(y, z)) =5 if we set T-wt(y) =3/2, twt(z) =
1/2. Let

(D=u%+3’§x%y%+g1, r—wt=3(yl s 21)x1+h1, r—wt=5(yl ’ 21)-

Then the exceptional divisor of the (j;, 0;)-blow up of X is isomorphic to {®=0}
CP(4,1,3,5). We divide the cases whether @ is irreducible and reduced, or not.

10.45. Under the notation and the assumption (10.44), we further assume
that the above @ is irreducible and reduced. This case will be treated in (10.46)—
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(10.50).
10.46. Proposition. For the embedding j,, we have
WG = {1, 0) lo=0y, 01, 04,1 07 0O3}.
In particular, vi= (j, 03) is the unique maximal element in W 1,,(j).

Proof. By (10.2), it is enough to prove that (j;, 02), (j1, 05) E# 1,(j1). If
(G1, 0D EW 12(j1) for =4 or 5, then (3.9.1) implies 0;-wt(¢,) >6. Thus we get
®=u?, which is not our case. O

10.47. Theorem. The v;-blow up m;: X; — X is divisorial with discrepancy
1/2 and Ygezx, (aw(X3, Q) —1) =0. There are exactly 2 divisors with discrepancies
1/2 over X.

Proof. By (10.5) (2) and (10.5) (3), we see that 7; is divisorial with discrep-
ancy 1/2 and that Xpe 2,(aw(X3, @) —1) =0. For the last part, we can carry out
almost the same calculation as in the proof of (10.33). The only difference is the
coefficient of Gy in v* (E;). In this case, it is 4/3, so we have a (G, X) =1. Thus
E, and F, are the divisors with discrepancies 1/2 over X. ]

10.48. Remark. Among these two divisors with discrepancies 1/2, one is
obtained in (10.47), and the other one is obtained as the exceptional divisor of the
weighted blow up associated to v, 1~ (ji, 0, 1). The latter one is not a divisorial
blow up as we saw in (10.34).

We can prove the following by a similar argument as in the proof of (10.35).

10.49. Proposition. Ifv'=(j’, 0’) EW ., is maximal, then v'>v;.

10.50. By (10.47)—(10.49), we see that (4.1), (4.4), (4.5) and (4.6) hold

under the assumption (10.45). Figure 6(10.E.b) shows the elements of %,/ ~
and their relations.

10.51. Next we treat the case @ is reducible or not reduced. If @ is reducible,
then 3&x3zi+g1, cwe=3(P1, z)X1+h1, cm=s(y1, 21) is square and we can set

3EX%Z%+g1, wz=3(y1 s zl)xl +h1, r-m=s(,v1 ’ Zl) = (axlzl +,3,V12%+72?)2

for some a, 8, YEC. Let x+: (x1, y1, z1, u1)/Zy—> (X2, ¥, 22, u2)/Z, be the
automorphisms defined by
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X)) =x1, 2X(y)=y1, x%t(@)=z
and Xi(uz)zuli(axlzl‘*‘ﬁylz%“‘?’z?),

and let j+ =x- oj; : X = (x3, ya, 22, u2)/Z>(0, 1, 1, 1) be the embeddings. Then
their defining equations are

o+ =u3F2(ax2z,+By225 +72)us +x3+8:(y2, 2)x2+ha (32, 22),

where g2(p, 2) =g1, ww=4(p, 2), h2(p, 2) =h1, cs>6(y, 2). We denote the power
series expansion of g,(y, z) and h,(y, z) by g.(», 2) =3, ;aPy'z/ and h,(y, z) =
3,62y 2 respectively.

10.52. Under the notation and the assumption (10.51), we further assume
that ax,z,+ 8y, zi+7:23#0. Thenj, and j_ give different embeddings. We shall
treat this case in (10.53)—(10.57).

10.53. Proposition. For each embedding j- , we have
Win(j=) ={(jx, 0)|0=00, 01, 02,1, 03 0r 04} .
In particular, v+= (j+, 0) is the unique maximal element in W 1,,(j+).

Proof. If (j+, 0s)E#1,(j+), then (3.9.1) implies os-wt(¢+)=9. On the
other hand, we easily see that gs-wt (¢") <os-wt ((ax,y,+8y3+7y3z,)u,) <8, which
is a contradiction. O

10.54. Theorem. Let 7+ : X+ — X be the v.-blow ups. Then m- are both
divisorial with discrepancies 1/2 and Yoz (aw(X+, Q) —1)=0. These 7+ and 7—
are not isomorphic over X. Furthermore, there are exactly 3 divisors with discrep-
ancies 1/2 over X.

Proof. By (10.6) (1) and (10.6) (3), we see that 7+ are both divisorial with
discrepancies 1/2 and Ypcz_ (aw X+, Q) —1)=0.

For the last part, we shall use 7, as the first blow up. Let E. be the
exceptional divisor of 7. The origin Q of the u,-chart of X is the unique non
Gorenstein point. We can resolve this by (5.1) and get a projective birational
morphism v : Z—> X, such that Kz=v*(Kx ) + X6, 4 F;, where TF, is the ex-
ceptional divisor of v over Q. By (10.5)(3) and (5.1),

3 8 6 4 9

- 5 ,
V¥ (EL)=v ' EL] +7F1+‘7‘F2+T7—F3'1“7F4+—7—F5+7F5.
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Therefore a (F,, X) =a(F,, X)=1/2 and a (F;, X) >1 for i>3. Thus E., F; and
F, are the divisors with discrepancies 1/2 over X. 0

10.55. Remark. Among these three divisors with discrepancies 1/2, two of
them are obtained in (10.54), and the remaining one is obtained as the exceptional
divisor of the weighted blow up associated to v, 1~ (j+, 05,1). But this is not a
divisorial blow up as we saw in (10.35).

10.56. Proposition. If v'=(j’, 0') EW 1., is maximal, then v'>v. or v'>

Proof. We shall show that v'>v_ assuming v’ Fv.. Letyx: (x',y’,z,u’)/
Z,—> (%2, ¥2, 22, u2) /7, be a liftable automorphism such that y oj’=j.. Then ¢’
=x*(¢+) is the defining equation of j. By (10.49), we see that v’ >v;= (ji, 03) ~
(j+, 03). We may assume that o’ =0, since otherwise v’ is not maximal by (5.5).
Thus (3.9.1) implies that ¢"-wt(¢’) =6. Since v'>> (j+, 03), we also have

o'-wis(x* (x2, y2, 22, uz))Z%@, 3, 1,5).

By our assumption, we have o’-wt (x* (u,)) =5/2. Thus ¢’-wt(¢’) =6 implies that
o'-wt (x* (uy—2(ax22,+By223+723))) > 7/2, which shows that v’ >v_. O

10.57. By (10.54)—(10.56), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.52). Figure 6(10.E. ¢) shows the elements of #y,,/~
and their relations.

10.58. Under the notation and the assumption (10.51), we next assume ax;z;
+By123+7z1=0. We see thatj,=j_ in this case. So we shall denote the common
embedding by j, and its defining equation by ¢,. We also denote v4= (j,, 04). Let
74 : X4 — X be the v,-blow up and E; be the exceptional divisor of 7,. By (10.6)
(2), X, has only canonical singularities and E . is irreducible. We also see that
X, is terminal outside the z,-chart U; of X, :

Us={@*z+x*+g,(y2¥2, V2 /2* - x+h,(y2*7, V%) /2°=0} CC*.
We divide the case whether X, has only terminal singularities or not.

10.59. Under the notation and the assumption (10.58), we first assume that
X, has only terminal singularities. This case will be studied in (10.60)—(10.64).

10.60. Proposition. For the embedding j,, we have
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Wl/z(jz) = {(jz, o) |0:00, O1, 02,1, O3 OF Od}.
In particular, vs= (j,, 04) is the unique maximal element in W 1,(j2).

Proof. Assume that (j,, 05) E# 1,2(j»). We see from (3.9.1) that os-wt (¢,)
=9, hence a{3=0if 5i+j< 12 and bX=0 if 5i+j<16. These conditions imply that

the origin of the z,-chart U; of X, is non-terminal. O

10.61. Theorem. The v4-blow up 7, : X, — X is divisorial with discrepancy
1/2 and Ype z,(aw Xy, Q) —1) =0. There are exactly 2 divisors with discrepancies
1/2 over X.

Proof. Since E . is irreducible, the first part follows. For the second part, we
can do almost the same calculation as in the proof of (10.54). The only difference
is the coefficient of F; in v* (E,). In this case, it is 12/7 and a (F;, X) =1. Hence
E. and F, are the divisors with discrepancies 1/2 over X. O

10.62. Remark. Among these two divisors with discrepancies 1/2. One is
obtained in (10.61), and the other one obtained as the exceptional divisor of the
weighted blow up associated to v, 1~ (ja, 02,1). The latter one is not a divisorial
blow up as we saw in (10.34).

We can prove the following by almost the same method as (10.56).
10.63. Proposition. Ifv'=(j, ') EW 1), is maximal, then v >v,.

10.64. By (10.61)—(10.63), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.59). Figure 6(10.E.d) shows the elements of # ",/ ~
and their relations.

10.65. Under the notation and the assumption (10.58), we next assume that
X, has non-terminal singularities. We shall study this case in (10.66)—(10.70). In
this case, we first analyse the non-terminal singularities more closely. By (10.6)
(2), we need to study only the z,-chart U; of X,. We see from the description of
U; that the non-terminal singularities in U; lies in { § =8, 2=0} for some 6&C. Let
X3 : (X2, y2, 22, U2)/Zy — (X3, y3, z3, Us) /7, be the automorphism defined by

X (x3)=x2, x¥(y3)=y,—0z3, x5 (@)=z, and x5 (ws)=u,,

and let js=x3%j,: X = (X3, y3, 23, u3)/Z,(0, 1, 1, 1) be the embedding. Then the
defining equation of j; is
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¢3=u§+x§+gs(y3, z;)x3+h3(y3, z3),

where g3(y, z) =g,(y+62%, z), hs(y, z) =h,(y+06z%, z). We denote the power
series expansion of g;(y, z) and h;(y, z) by g;(y, 2) =X ;,a’)y'z’ and hs(p, z) =
> jbi(,:}) y'z/ respectively.

Now let 73 : X; — X be the v4-blow up. We have X; =X, since v4~v;. Thus the
z3-chart of X; has non-terminal singularities. Moreover, these lies in y=2z=0.
Thus, in addition to the conditions 7-wt(gs(y, z)) >4 and t-wt(h3(y, z)) =6, we
see that

3 3 3
ais=agy=ai 0 =b3s=b1>=bi11=bi 12 =b5 14 =0,

which implies that ’-wt (gs(y, z)) >6 and 7-wt (h;(y, z)) >9 if we set 7-wt(y) =
572, T’-wt(z) =1/2.

10.66. Proposition. For the embedding j;, we have
Wl/Z(j3) = {(js, o) |U:00, O1, 02,1, O3, 04 OF os}.
In particular, vs= (s, 0s) is the unique maximal element in W ,(js).

10.67. Theorem. The vs-blow up ms: Xs;— X is divisorial with discrepancy
1/2 and Zge xs(aw (X5, Q) —1)=0. There are exactly 3 divisors discrepancies 1/2
over X.

Proof. We see that 7s: X5 — X is divisorial with discrepancy 1/2 and that
>oe xs(aw()fs ,0)—1)=0by (10.7). Let E; be the exceptional divisor of zs. B
(5.1), there is a projective birational morphism v : Z — X5 such that, which is a
resolution of the origin of the j-chart of Xs, such that K;=v* (Kx,) +Zh L F,
where X/, F; is the exceptional divisor of v. By (10.7) and (5.1), we have

6 Fz+iF3+£F4.

3
* —,,1 2 Rl
v (Es) v [Es]‘l’ 5 F1+ 5 5 5

Hence a(F,, X) =1/2 and a(F;, X) >1 for i >2. There is also an index 3 point on
Xs, so there are at most 3 divisors with discrepancies 1/2 over X. On the other
hand, as we shall soon see in (10.68), there are at least 3 divisors with discrepancies
1/2 over X. O

10.68. Remark. Among these three divisors with discrepancies 1/2, one is
obtained in (10.67), others are obtained as the exceptional divisors of the (j, g3, 1)-
blow up and the (j;, gs)-blow up.
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10.69. Proposition. Ifv'=(j, ') EW . is maximal, then v >vs.

Proof. Let x: (x', ¥y, 2, u')/Z,— (x3, y3, 23, u3)/Z, be a liftable auto-
morphism such that y oj;=j. By (10.63), we see that v'>v,= (j,, 04) ~ (3, 0.
Thus we have

o' -wis(x* (x3, y3, 23, u3)) 2%(4, 3, 1,7).
For the defining equation ¢’ =x* (¢;), we have o’-wt(¢’) =9 by (3.9.1). Let
p=x*x3), q=x*(y3), r=x*@z), s=x*w)eECK,y,z,uv'}.

Since y’'&s and z'&s, we have u'Es.

If x'z'Es, then xz'u’E¢’, so we get o’-wt(¢’) <8, which is a contradiction.
Thus we know that xz'&Z¢". Similarly, we see that y’z?&s. Assume that z"*&p.
Since x’'Ep, we see that x?z*E¢’, so that o’-wt(¢’) <8, which is a contradiction.
Hence z*&p, which shows that o’-wt(p) >3. By a similar argument, we see that
z*¢r and z'"&s, which shows that o-wt(r) >5/2 and o’-wt(s) >9/2. O

10.70. By (10.67)—(10.69), we see that (4.1), (4.4), (4.5) and (4.6) hold
under the assumption (10.65). Figure 6(10.E.e) shows the elements of # ./~
and their relations.

10.71. Thus we complete the proof of (4.1), (4.4), (4.5) and (4.6) if
haeg +(p, z) has a 4-ple factor.

Vo V1 V2 Vo V1 V2 V3
(10.E.a) (10.E.b)

Vo Vi V2 V3

(10.E.c)

Vo Vi V2 V3 Va
(10.E.d)

Vo V1 vV, V3 V4 Vs
(10.E.e)

Figure 6. % 1, for (cE/2) type terminal singularities
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