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Schrodinger Equations
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Abstract

We study the asymptotic behavior in time and scattering problem for the solutions to the Cauchy
problem for the derivative cubic nonlinear Schrodinger equations of the following form

(A) iut+uxx = ̂ (uja)ux,ux), fGR, x£R; u(0, x) =U0G

where

Jf(M, u, w x , M x ) = J f i ! w | 2 M - h / J f 2 | w | 2 M x + z J f 3 w 2 w x + Jf4 ux\
2u-T^r5u

Jf, = jry(|«|2), jT/(z)*EC3(R+) ; JfXz)=A,+O(z), as z^ + 0, jf,, JT6 are real valued functions.

Here the parameters Ai, A6£R, and A2, A3, A4, A5£C are such that A2— /U^R and A4 — A5GR. If

and A5=/z=±l, ^1 = ̂ 2 = ̂ 3 = Jf 4 =Jf6 = 0 equation (A) appears in the classical

pseudospin magnet model [9]. We prove that if u0^H*'0l^H2' l and the norm l lwol l s , o+ llwolk i=e is
sufficiently small, then the solution of (A) exists globally in tune and satisfies the sharp time decay

estimate ||ii(Olkob-^Ce(l+ \t I)'172, where ML,s,pHI(l+x2)s/2 (l-d^m/2<p\\LP, H?>*= {<p£E:S' ;
\\<P\\m,s,p<c°}- Furthermore we prove existence of modified scattering states and nonexistence of
nontrivial scattering states. Our method is based on a certain gauge transformation and an appropriate

phase function.

§ 1. Introduction

In this paper we study the Cauchy problem for the derivative cubic nonlinear
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Schrodinger equation of the following form

(1.1)

where

\2ux,

) ; Jf/(z)=A;-+O(z), asz-^ +0, j f j , Jf6 are real
valued functions. The parameters Ai, A6€=R, and A2, /U, A4, A5^C are such that
A2— /l3eR and A4— A5£R. The linear part of equation (1.1) consists of the linear
Schrodinger operator, while the nonlinearity involves all possible combinations
of derivatives of unknown functions of cubic order with a complex-conjugate
structure. Such kinds of equations are of highest interest in many areas of Physics.
The nonlinear term of (1.1) does not satisfy the condition that du *V(u,u,ux, U*)
is pure imaginary, which is the well known sufficient condition for the local
solvability of the nonlinear Schrodinger equations of the derivative type (see [8] ) .
Here we encounter a difficulty of the derivative loss and so the standard energy
methods can not be applicable directly to such an equation. To overcome this
difficulty one has therefore to use either dispersive smoothing effects of the linear
part of the equation, or some gauge transformation. This last method is used in the
present paper. It relies on some algebraic properties of the nonlinearity (similar to
that of papers [1], [6], [12]) and is subtle. Another difficulty in the study of the
large time asymptotic behavior of solutions to the Cauchy problem (1.1) is that the
cubic nonlinear term of (1.1) is critical for large time values, because it does not
satisfy the so called null gauge condition introduced in [13]. Indeed the non-
linearity of (1.1) in general can not be written in the form (yiU + V2Ux)dx\u

 2,
where v\, v2£C8 To treat the critical cubic nonlinearity of (1.1) we use the
techniques developed in previous works [4] , [5] , where we introduced an appro-
priate phase function.

Note that in the case Jf 1 = Jf6 = 0, Jf2 = Jf 3= -iv\^C and jf 4 = Jtr5=v2^C
the nonlinear term of equation (1.1) has the form (y\ u+v2ux}dx\u\2 and therefore
satisfies the null gauge condition of Tsutsumi [13] . So the global existence of small
solutions and the existence of the usual scattering states were proved in [8] under
the conditions that the initial data uQ^H6'0nH1' 5 and the norm \\uQ\\5, o+ l lwo l lo , 5 is
sufficiently small. Here and below we denote by Hm>s= {<p£L2 : ML,, = 11(1 +
x2)s/2(l-dx

2)m/2<p||L2< 00} the usual weighted Sobolev space.
If we choose Jf5 (z) = ^^ and A5 =// = ± 1, and the rest functions Jfi = Jf2

= j^3 = J^4 = ^'6 = Q9 then equation (1.1) appears in the classical pseudospin
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magnet model [9]. For this case the almost global existence of solutions to (1.1)
was obtained in [8] . More precisely, the existence time T was shown in [8] to be
greater than exp((||tt0lkoH- llwollo.O"2), if the initial data uQ^H5'°nH1'4 have
sufficiently small norm l lwolko+l l^o l lo , 4.

When ^2 = 2, Jf3=l, and the rest functions Jf i = Jf4= Jf5
 = ^6=0, then

equation (1.1) reduces to the derivative nonlinear Schrodinger equation

(1.2) iut+Uxx=i(\u 2«)*,

which was studied in [5], [11]. Note that equation (1.2) also does not satisfy the
null gauge condition of [13]. However, by the gauge transformation technique
(see [3]) equation (1.2) can be translated into a system of nonlinear Schrodinger
equations which do not involve derivatives of unknown functions in the nonlinear
terms. So one can treat equation (1.2) similar to the cubic nonlinear Schrodinger
equation iut+uxx—\u 2u, namely, we can apply the method of papers [2], [4],
[10] to equation (1.2). Thus in the case of equation (1.2), the modified scattering
states were constructed in [5] and the existence of the modified wave operators was
proved in paper [7]. However for the case of equation (1.1) we do not know the
existence of a gauge transformation translating it into a system of nonlinear
Schrodinger equations without derivatives of unknown function in the nonlinear
term and as far as we know the existence of modified wave operators and modified
scattering states for equation (1.1) are still open problems.

In this paper we prove the global existence of solutions to the Cauchy problem
(1.1) in the weighted Sobolev spaces for small initial data as well as the existence
of the modified scattering states (see Theorem 1.1 below). Our result is sharp
because in Theorem 1.2 below we provide a non-existence result of ordinary
scattering state. Furthermore we obtain the large time asymptotics of solutions
(involving the sharp L°° time decay estimates). We now introduce

Notation and function spaces. Let ^(p or <p denote the Fourier transform of
<p defined by <p(|f) = -^Se'^V&^dx. The inverse Fourier transform ^'l(p or <p

is given by 0CO = -^Selx?(p(!~)d£. The free Schrodinger evolution group ^(0 is

written as ^(t^(p = ̂ ~le~1^ <p and also can be represented in the following form
, where M=M(0 =exp(/x2/40, the dilation operator is

00 = T^T^Ofr)- The inverse free Schrodinger evolution group is ̂ ( — 0

= -M(-Oz^r~1^(Tr)M(-05 where Q)'\t} = - ~jjD(~^} is the inverse dila-

tion operator. Using the above identities we easily see that 2T(it}=xJr2itdx =
— 0=M(0(2/f9,)M(— 0- We also widely use the following identities

, ft] = - 1, [jSf, 9"} =0, where J2?=/9, + S,2, dt= -Jr and dx= -£-.
We introduce some function spaces. The Lebesgue space isLp~ {(p£^5f' : \\(p\\p

i
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R} if p = oo. For simplicity we let || <p || = || <p || 2 . Weighted Sobolev space is H™> s =

also Hm's=H2l's and \\cp\\ m,s = \\<p\\m,s, 2. Let C(J ; J?) be the space of continuous
functions from a time interval I to a Banach space B. Different positive constants
might be denoted by the same letter C.

Our main results are

Theorem 1.1. We assume that the initial data u0^H3'°nH2'l and the norm
£ — II WQ I I 3 , o+ II WQ I I 2 , i is sufficiently small. Then there exists a unique global solution of
the Cauchy problem (1.1) such that u^C(M ; H2>0) flL^R ; If3'0), &~u^C(R ;
ff1 > 0) DLfoC(R ; H2'0), and the following time decay estimate

is valid for all t. Moreover there exist unique functions up EzL2 HL00 and real valued
functions ^±eL°°, such that

(1.4) j |#(—Oftif iCO—^""'( iff exp(±/^± log|t|)) <C r ~a,

as f-^ ±00, where j = Q, 1, 2, 0<a< -J-. ^4nd the following asymptotic formula

(1.5)

' <25 f —> ± oo uniformly in

Next we present the nonexistence of the usual scattering states.

Theorem O. In addition to the conditions of Theorem 1.1 we assume that
i| + l /U-xUl H- l /U-AsI + /U| ̂ Oanrf r/iere exists a final state u + ̂ Hl'd, d> ~

such that || u (t) — W (f) w +1| -> 0 as r -> °o. T/ze« the final state u + is identically zero.
Furthermore if the solution satisfies L2 conservation law, then the solution u is also
identically zero.

We organize our paper as follows. Section 2 is devoted to some preliminary
estimates of solutions to the Cauchy problem (1.1). The local existence of solutions
for the Cauchy problem (1.1) in a space Xm 's = {<p^C( [0, T] ; Hm~l> °) HL00 (0, T;
Hm'°) ; ̂ peC([0, T] ;Hm-s-l>^nL°°(Q9 F; J?m-s'°)}, where m>3, 0<s<m,
is stated in Theorem 2.1. Then in our key Lemma 2.1 we prove the optimal time
decay estimate of global solutions to the Cauchy problem (1.1) in the uniform
norm sup f>0 / l+£ HM (Oil 2,0, °o<C, while the norm of solutions ||M (Oily =11^(0 II 3,0
+ ||5r«(OII2jo can slightly grow with respect to time : sup r>0(l+0" r l lw(OllY<C,
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where 7^ (0, -^-). Section 3 is devoted to the proof of Theorems 1.1-1.2. In what

follows we consider the case of the positive time only since the negative time can be
treated in the same manner.

§ 2. Preliminary A Priori Estimates

By virtue of the method of papers [1], [6] and [12] (see also the proof of
a-priory estimates in the norm Y below in Lemma 2.1) we easily obtain the
existence of local solutions in the functional spaces Xm> s, with any integers m > 3,
and 0<s<m. Below we will use this result taking m = 3 and s = 1.

Theorem 2.1. Let the initial data u0^Hm' ° HH m~s> s with some m>3,Q<s<
m, m, sEiN. Then for some time T>0 there exists a unique solution wGEX"1"5 of the
Cauchy problem (1.1). If we assume in addition that the norm of the initial data
HttolL, o+ l l w o l l m - s , s — £ is sufficiently small, then there exists a unique solution wEE
Xm 's of (1.1) on a finite time interval [0, T] with T>l/e, such that the following
estimate sup^o, r] (lit* IL, o+ \\3~su \\m-s, o) < 2e is valid.

We now prove in the next lemma the optimal time decay estimate \\u (0 1|2, o, °o
<C(1+0~1/2 of global solutions to the Cauchy problem (1.1) along with a-priori
estimates of solutions in the norm Y.

Lemma 2.1. Let the initial data uQ^H3' °HH2' l and the norm H i /o i l s , o+ I lw 0 lk i
=£ be sufficiently small Then there exists a unique global solution of the Cauchy

problem (1.1) such that w£C(R ; H2'0) nL°°(R ; #3'°), and 3Tu^C(R ; If1'0) R
L°° (R ; H2" °) . Moreover the following estimate

(2.1)

is valid for all t>Q, where 7^(0, -^-).

Proof Applying the result of Theorem 2. 1 and using a standard continuation
argument we can find a maximal time T>0 such that the nonstrict inequality

(2.2) ( l+0" r l lw(Ol iY + /TTF|iw(01l2)o)oo<15£

is true for all f£E [0, T]. If we prove the strict estimate (2.1) on the whole time
interval [0, f] , then by contradiction arguments we obtain the desired result of the
lemma. By the usual energy method (i.e. multiplying (1.1) by M, integrating over
R and taking the imaginary part of the result) we get
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I, 0,00 H u l l 2 ,

whence in view of the estimate (2.2) by the Gronwall inequality we obtain \\u (?) ||
<2e(l+0r. Applying the operator #"=x + 2itdx=M(fi(2itdx)M(-fi to both
sides of equation (1.1) and using the structure of the nonlinearity «yT(w, u, ux, wx)
and the identity [_&, *T~\ =0, we find

(u, u, ux, iij =M2itdxjV(Mu, Mu, Mux,

(2.3) =JVu$~

whence the energy method with estimate (2.2) yield

(2.4) U

Integrating (2.4) with respect to time we get \3"u\ <2e(l+r)r- Differentiating
equation (1.1) three times with respect to x we get

(2.5) gdlu^JfudxU + JfudxU + m^ ,

where the remainder term ^ has the estimate ||£i|| <C\\u\\2,0, o0||w||3,o<C£3(14-
O7"1 in view of (2.2). Analogously differentiating equation (2.3) two times with
respect to x we obtain

(2.6) X (^ii )„ = ̂ ux t^u)xxx + ̂  &u)m + ̂ 2 •

It is easy to see that the remainder term ^2 in view of (2.2) has the following
estimate ||^2||<C||w 111 o, - (H.TwIL.o+l lw L, o)<Ce3(l+07"1. We can not apply the
usual energy method to (2.5) and (2.6) because of the lost of derivatives, so we use
a gauge transformation similar to that applied in papers [1], [6], [12]. We
compute the multiplication factor

thus the function j/ satisfies the condition dx s$ = — \ s$^£,Jfu with the commuta-

tor relation \_&, jaf] = ijjt + $0XX + 2^x dx= - j^Re^ dx + $0 (-fj^. oo Re C^) t dx

+ -j- (Re^)2- \ (Re<yTUx)x). Multiplying both sides of (2.5) and (2.6) by j*,
we get

(2.7)



CUBIC NONLINEAR SCHR.ODINGER EQUATIONS 507

and

(2. 8) yd (^w)xx =/ Im JTUx $0 (Fu)m + JVax st (^w)xxx + ̂ 4 ,

where the remainder terms ^3 and ^4 have the estimate ||̂ 3|| + 1|̂ 4|| <
C||w|]l>0,cx3(|iw||3,o+li^"w||2,o)<C£3(H-Or"1. Now we can apply the usual energy
method to (2.7) and (2.8) to get

whence the Gronwall inequality yields (||j/3x
3w||2+||jaf (Jr"M)xx

Thus we have the estimate

(2.9) | |ii(OllY<3e(l+07

for all re [0, r]. By the Sobolev inequality \\u II ex, < J2\\u II i, 0 and estimate (2.9) we
obtain

(2.10) sup /TT7||w(Oll2,o)o0<2||t/(OllY<12£.
0 < f < l

So now let us consider the case t>l. As in paper [4] we change the de-
pendent variable u(t, x} = -j^eitx v(t, %), where %=^-. Then since ux(t, x) =

-^eltx J>v(t, %) with «/=/%+ 37 9^, taking into account the complex-conjugate
structure of the nonlinearity in equation (1.1) we obtain

(2.11)

Note also that ZTu (t, x) = ~jreitx vx(t, %), therefore we have the following relations
^NUooHKi-^2^
So we need to prove the estimate || (1 — </2)v ||«, < 12e. In order to get it we multiply
equation (2.11) by operators J and of2. Then we need to extract from the
nonlinearity the main term which diverges for large values of time. Using the
identity

__ 1 _ 1 _
(2.12) (p^(/)= — ((pJ' 0 — 0<>f (p) H (^0)ys2 4t

where we take (p = (/)=v, we write the following representations
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and

i%3V2<fv=ihiV

Applying the identity

(2.13)
£1

with <p = <p=v, we get X^~v^v}J>v = — A 5 |< /v | 2 v + -£7- ( |v |2)^ </v and in the same
manner taking <p = </v, (/>=v in the formula (2.13) and after that choosing (p=(/> =
</v in the identity (2.12), we obtain

Therefore we can represent the nonlinearity in the form Jt^V(^9 -j=-,

0, where the coefficient at the main term is

= i v

and the remainder term is

where

Here the functions Jf} = jTy(-7—), y = l, ... , 6. Now we apply the following

formula ./(00) =0^+ TT^% with <p = Sv, <{>=\<#v\2 and then (2.12) with ^ =
</> = J^v to get
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Finally using the identity </(<p00) =00</<p+#?0</0 + ̂ 0e/0 we represent the

nonlinearity in the form JtJ>jJf(^, -j^, -^-, -̂ -) = -f <&<fjv + 0>
j,j=l, 2, where

the remainder terms are

1 x.

H —5 ^ I ^v
 2>i 4- ^^4- 6 H ^"v 2>)^A4 A s y l ^ v Jx-rjr^ ~r , v, |^v ^

and ^2= -£r9xSv + S0>i . Via inequality (2.2) we have \\&\\oo<Ce2. The differ-

ence tfj—'kj has an additional time decay ||jf} — AyIU< —j-,j=l, ... , 6, therefore

in view of (2.2) we obtain the following estimate ||^Hi,1(Rt) + II ̂ y Hiccup <Cf " 2 l l w l l Y
<C£3r3r~2,y = 0, 1, 2 for the remainder terms. Taking into account the commu-
tator relation [j?, ^] =0, where <£=idt+ -^d2., we get from equation (2.11)

(2.14) J^ 'v+^'v + ̂ O, 7 = 0,1,2.

We define the evolution operator
First of all we note that 11^(0^11 = WL Also it is easy to see that the estimates

and analogously

are valid, where a^ [0, -y). Multiplying (2.14) by TfT (— 0 we obtain

(2.15) i0r(-0^/v)r+y»0r(-0>/v)+a7=of 7=0, 1,2,

where the remainder terms Jy=-
-T*(-0^, via inequality (2.2) have the estimate ||J7IU+ ||JJ <C£3f3r-5/4. To
prove the estimate II ̂ ( — 0«/7'v|U<3£ we change the dependent variable

in the equation (2.15) to get
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(2.16) iS,w, + exp(-i JV(r, *) ̂ )&j = 0> 7 = 0, 1, 2.

Integration of (2.16) with respect to time t yields

(2.17) ||w;-(0-w;-(5)

for all Ks<f, wherep=2, 00,7 = 0, 1, 2, # = -J- -3r>0. By virtue of (2.17) we
obtain supfe[0, rj llw/(0 IU< 3e. Therefore in view of (2.2) we find

The contradiction obtained gives us the result of the lemma.
Q. E. D.

§ 3. Proofs of Theorems 1.1-1.2

Proof of Theorem 1.1. We have the existence result and estimate (1.3) by
Lemma 2.1. Via inequality (2.17) there exist unique limits w/EEL00 HL2 such that
limr^ ooWy(0 =w/f in L°° HZ,2. Hence there exists a unique limit

in L°°. Thus we get

) - -i-e'«Vv= -r

- T^">(«-

(3.,) - v

uniformly with respect to xGR, here //^ ^ — 37>0. For the phase of the
asymptotic representation (3.1) we write the identity

P^(r) — =^+logr + 0(0,
J 1 T

where 0(0 - (#(r) -^+)logt+JK^(r) -#(0) ^r- We have
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(3.2)

for all Ks<t Applying estimates (2.1) of Lemma 2.1 and inequality (2.17) to
(3.2) we get ||0(0—*Cs)l|oo<Ces~/' for Ks<t. This implies that there exists a
unique limit 0+ =limr^00$(0^£°0 such that

(3.3) || 0 (0 — 0+1| oo < Ct~*.

By virtue of (3.3) we find

(3.4) j j &(r, ~^-}~-~~&+logt — 0+ j <Cer~-".

We now put w/=w/ exp(z"0+). Therefore we obtain the asymptotics (1.5) for
t -> oo uniformly with respect to x^R. Via (3.4) and (2.17) we have

whence we get

whence (1.4) follows. This completes the proof of Theorem 1.1.
Q. E. D.

Proof of Theorem 1.2. We prove the theorem by contradiction, so we assume
that u+ is not identically zero. Multiplying equation (1.1) by <^(— 0 and
integrating with respect to time we find

We decompose jY*(u, u, ux, wx) as follows
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(3.6)

where we have used the identity 4r(f)Af =Af®^". Since

where A (f) = A i — (A2— A3)f+ (A4— A5)F2— Aelr 3 is not equal to zero identically, we
have by (3.5), (3.6) and estimates for the solution u(t) provided in Theorem 1.1

|t/(r)-^(r> + ||1(o+ll(M-l> + ||li0)— .r

This implies that for any 0>0 there exists T(0) such that for any t>s>T(ff)

which means u+ = 0 which is the desired contradiction. If the solution satisfies the
conservation of the L2 norm, we have u =0. Theorem 1.2 is proved.

Q. E. D.
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