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Multiple Poles at Negative Integers for [, f ‘] in
the Case of an Almost Isolated Singularity

By

Daniel BARLET*

Résume

Nous donnons une condition nécessaire et suffisante topologique sur 4 € H°({f # 0},C), pour
un germe analytique réel f : (R"*!,0) — (IR,0), dont la complexifiée présente une singularité isolée
relativement & la valeur propre 1 de la monodromie, pour que le prolongement analytique de
I f *[] présente un pole multiple aux entiers négatifs assez “grands”. On montre en particulier que
si un tel pole multiple existe, il apparait déja pour 4 = —(n+ 1) avec 'ordre maximal que nous
calculons topologiquement.

Summary

We give a necessary and sufficient topological condition on 4 e HO({f # 0},C), for a real
analytic germ f : (R"*!,0) — (IR,0), whose complexification has an isolated singularity relatively to
the eigenvalue 1 of the monodromy, in order that the meromorphic continuation of [, f ] has a
multiple pole at sufficiently “‘large” negative integers. We show that if such a multiple pole exists, it
occurs already at A= —(n+ 1) with its maximal order which is computed topologically.
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converse proved in [6] to the case of the eigenvalue 1. So we shall give a
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necessary and sufficient topological condition in order that the meromorphic
extension of the holomorphic current.

-] o

defined in a neighbourhood of the origin in R"*! has a pole of order a least 2
at A= —(n+1), in the case of a real analytic germ f : (R""!,0) — (R,0)
satisfying the following condition: we assume that the complexification f¢
of f admits an isolated singularity at 0 for the eigenvalue 1 of the mono-
dromy. This notion, introduced in [2], means that for any x # 0 in f¢'(0) near
0, the monodromy of f acting on the reduced cohomology of the Milnor fiber
of f¢ at x has no non zero invariant vector.

Of course this hypothesis is satisfied when f has an isolated singularity at
0, but it allows also much more complicated situations.

In our result the interplay between connected components of the semi-
analytic set {f # 0} is essential: we denote by A = Za: cyA, an element in

o=1
HO({f #0},C) so A4, are connected components of {f # 0} and ¢, are
complex numbers (we shall precise below the meaning of fA7 f*O0 when 4, c
{f < 0}). Our topological necessary and sufficient condition is given on A.

The main new point here, compare to [5] and [6] is the use of [3] which
explains how to compute the variation map in this context of isolated singularity
for the eigenvalue 1, in term of differential forms.

I want to thank Prof. Guzein-Zade who point out to me that the
orientations are not enough precise in [5]; so I shall try to take them carefully in
account here. The reader will see that it is not so easy. [ want also to thank
Prof. B. Malgrange who suggests several improvements to the first draw of this
article.

§1. Mellin Transform on R*
Let p € C*(IR*) such that

(i) supp ¢ = [~4,4]
(ii) ¢ is bounded

We define for Rel >0

Mol = |

in

+ o d +oC
L x’l(p(x)%—e*'"’l.JO x'lqo(—x)d—;].

Examples. Let o € € with Re(a) > 0 and let ¢y(x) = |x|* near 0 and ¢, (x)
= |x|"sgn(x) near 0. Then we have



MULTIPLE POLES AT NEGATIVE INTEGERS 573

a 1 1—e™ f -
M = — ———— +enti ti
®o(4) n Ato + entire function o
and
1 14e ™ . )
Mp,(A) = — ——— tire funct f A
?1(4) P R + entire function o

So for « ¢ N we have a simple pole at 1 = —a. For o = 2k with ke N, Mg,
has no pole but Mg, has one at A = —2k.

For «=2k+1 with ke N Mg, has no pole but Mg, has one at
A= =2k —1. This is reasonnable because |x|2k is C* at 0 and )x|2k+1 sgn(x) is
also C* at 0 for k€ N. So poles of My measure the singularity of ¢ at 0, as
usual.

Without the condition ii) the situation is slightly more complicated: we shall
use the following elementary lemma.

Lemma 1. Let P and Q in C[x]| of degrees at most k — 1 and let

_ [ P(logx) for x>0
o(x) = { O(loglx| —in)  for x <0

near 0, and assume ¢ satisfies condition 1) and ¢ € C*(IR*).
Then Mo has no pole at A=0 iff P = Q. Morever if P = Q Mg is entire.
I ,dz .
Proof. For P = Q we have Mp(A) = P P(logz)z*— modulo an entire
-1 z

function of A, where logz =log|z| +iArgz with —n < Argz <zn. From
Cauchy formula on the path

0
this give — J P(i0)e'*’d® which is an entire function of A.

+1
If P # Q, as we have already seen that J Q(log z)z’ld—_z is entire in 4, it is
-1

enough to show that jol(Q—P)(logx)xA@ has a pole of order >1 at
A=0. But we have *
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! dx d' /(' ,dx
[ 2%t _ % 19
Jo (logx)x x di <Jo x X)

i (=1
=(-1) e

which gives the conclusion.

§2. Statement of the Result

Let f: Xr — ]—9,d] a Milnor representative of the non zero real analytic
germ f : (R™!,0) — (R,0). This is, by definition, the restriction to R"! of a
Milnor representative of the complexification fg : (€™, 0) — (C,0) of f.

Let (Ax),e(1,4 be the connected components of the; relatively compact semi-

analytic open set {f # 0} N Xg and denote by 4 = > c,4,, where the ¢, are
x=1

complex numbers, a fixed element in HO({f # 0} N Xg, C).

Definition. For a compactly supported C* n-form ¢ on Xg, and for —J <

s <0, set
Lo=|
(f=s)N4,

where the orientation of {f =s}N A, is choosen in such a way that we have
inMI,(/l):J f'lwx\al if 4, <{f >0}
Aax f
af

(1)
inMy, (1) = —e~™ L () oA T i Ac{f<0}

where the open set A4, is oriented by the canonical orientation of R"*! (assumed
to be fixed in the sequel).

For 4 =) cyA, we define
1
In(s) ==Y ¢

|
1 (f=s)N4,

with the previous conventions. So we shall get, by definition,

inM,A(/I)zj flqz/\% where
4

N g\ Y _ N
J fron s AKC%O}C“L/ Iy A,gio}‘“La( Jreny

with the natural orientations of the open sets 4,.
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bl
i

Define now, for any a € [l,aq]

Fi, = fNso)NA, if 4, = {f >0}

and

Ey o= fY=s0)NA4, if A, c{f <0}

where s is a base point in D} choosen in Dy NIR**. Here we assume that we
have a Milnor fibration for f:

Jo: Xe— f¢'(0) = D;
and we shall denote by Fg the complex Milnor fiber (that is to say Fg :=
fc'(s0)). We define then F4:= 3 ¢, Fy, as a closed oriented n-cycle of Xg,

o=1
the orientation of the F, being given by (1).
We define 6, : Ey, — F¢ as the obvious inclusion if 4, < {f > 0}; and for
A, < {f <0} 6, is given by the closed embedding of F;, = f~'(—s) N4, in
fc'(s0) = Fe given by a C® trivialisation of Fg along the half-circle |s| = so
and Arg(s) € [-n,0l.
For 4 = i ¢y A, define the closed oriented n-cycle G4 of Fg

a=1

Ga=Gar =Gy = > (O).E,— Y (0a).Es.
A, ={f>0} A, ={f<0}

The minus sign in this definition comes from the following facts:

In our definition of Mellin transform, R* is oriented by the natural
orientation coming from IR. Using the monodromy brings the orientation of
R*~ we have chosen to the opposite orientation of R**. If we want to keep
the global orientation of R™*! in this transfert (we push the Milnor fiber Fg :=
£ (=s0) 11/ (s0) in F¢) we have to.change the orientation in f~'(—sp). This
explains our definition of the cycle G4 in Fg.

When ¢ e C*(F¢) is a n-form, we have

J 9= Z C“J 0,(p) — Z szJ 0, (9)
G A, (>0 A, {f<0}

where F, is oriented as before.

This gives a linear form on H! (F¢, C) associated to the oriented n-cycle G4
in qui

oy
Gy

where g € C*(Fg) is a d-closed n form.
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We shall denote by 6(4) the cohomology class in H"(F¢, C) which gives
this linear form on H/(Fg¢,C) via the Poincare duality: H"(F¢,C) x H!(F¢.C)
— €. Our result is the following analogue of [5] and its converse [6].

Theorem. Let f:(R™'0) — (R,0) a non zero real analytic germ.
Assume that 0 € € is an isolated singularity relative to the eigenvalue 1 of the

monodromy of f¢ the complexification of f.
Let A=Y c,Ay an element in H({f # 0}, C) and 6(A) the corresponding

a=1
class in H"(Fg,C) (see the definition above). Then we have an equivalence
between:

(i) o6(A4) has a non zero component on H"(F¢,C),_, wm the spectral
decomposition of the monodromy acting on H"(F¢,C)

(i) the meromorphic extension to the complex plane of the distribution
A=, f*0 (holomorphic in i for Re A > 0), admits a pole of order >2 at i =
—(n+1). Moreover, the order of the pole —v for ve N and v>n+1 of the

1 .
meromorphic continuation of m IS *0 is exactly the nilpotency order of T — 1
acting on 6(A),, the component of 5(A) on H"(F,T),_,.

Remarks. 1) The notion of an isolated singularity relative to the
eigenvalue 1 of the monodromy has been introduced in [2]. It means that for
any x # 0 near 0 in €™ such that fg(x) =0, the monodromy acting on the
reduced cohomology of the Milnor fiber of fi at x has no non zero invariant
vector.

2) In the case where 4 is a connected component of the open set {f # 0},
(i) is equivalent, in term of asymptotic expansion of integrals s — [, PR
when s — 0, with ¢ € C°(x) is a n-form, to the non vanishing of the coefficient
of s”(log|s|)’ for some peIN and some jeIN* (for some choice of ¢).

3) The precise order of poles at large negative integers is describe in a
purely topological way.

§3. The Proof

We shall use here the notations of [3]. For A4 given, let ¢ be the com-
ponent of 6(4) on H"(F¢,C),_,, the spectral subspace of H"(F¢,TC) associated
to eigenvalue 1 of the monodromy.

Assume e #0 and let us prove that (i) = (ii). As the canonical her-
mitian form # is non degenerated on H"(Fg¢,C),_; (see [2]) there exists
e’ e H"(Fg,T),_, such that h(e',e) # 0.

From [3] we know that % is topological and can be computed by the
following formula:

h(e',e) = I(var(e'),e)
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where I is the (hermitian) intersection form on F¢ which gives the Poincare
duality

I:H!(Fg,C) x H"(Fg,C) —» €
which is invariant by the monodromy and where
var: H"(F¢,C),_, — H!(F¢,T),_,
is the composition of the “ordinary variation map” (built in this context in [3])
and of the automorphism
O(x) := ilog(l + x) with
V+x =Ty, o), here T is the monodromy.

So, if " := O(e’), we have

I(var(e"),8(4)) # 0,

using the fact that / is monodromy invariant, which implies that the spectral
decomposition of H"(F¢,C) is I-orthogonal.

If now pe C*(F¢) if a closed n-form representing var(e”) = var(e’) in
H!(F¢,C) we shall have

JG,,”O 2)

But in [3] it is explained how to represent var(e’) = var(e”) by a de Rham
representative (that is to say how to build such a ¢) for a given class e’ €
H"(Fe,C),_;. Let us give a direct construction of the variation map in this
context (as suggested by B. Malgrange) following [9].

Let ¥, and &, the spectral parts for eigenvalue 1 of the monodromy of
respectively nearby and vanishing-cycle sheaves of f. The assumption says that
@, is concentrated at 0 and so we have an isomorphism

RF{O}@I 5 D;.

Now the variation map var : @; — ¥; gives a map RI';,®1 — R, #1. The
composition

can

¥) — & — RI[(,®1 — R\ ¥) — R ¥
induces our variation map (see [3])
H"(F,C),_, — H!(F,C),_,.

Let & the complex of semi-meromorphic forms with poles in f =0 and
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& [log f] the complex given by polynomial in log f with coefficients in & and
the differential

D(u.(log £)U)) = du.(log /) —I—% Au.(log £)V71)

! J
= (log /).
Then the exact sequence of complexes

where (log /)

0> C*®— &logf]— & [logf]/C* —0
corresponds to the distinguished triangle

C @,
D,

and &°[log f] is a complex of fine sheaves representing Y.
Let consider now a n-cycle x in &"[log f]

x=xp + xp_1-(log f) + -+ xl.(logf)(k'l)
(this strange way of indexation will be compatible with notations in [3]!).
Then Dx =0 gives dxk+% AXp—1=0,...,dx +% Ax; =0 and dx; =0.
To compute var on [x] we have to write
x=y+z+ Dt

Where t e &" [log f],z is C* of degree n and y is in &"[log f] with compact
support. So that D(y + z) = 0 and var[x] (see above var = @ o var) is given by

N(y+2)=N(y) =y +yialogf+ -+ yp.(log )72
if
y=y+ylogf + -+ y.(log f).
Now in [3] this is performed in an “explicit” way for a given w (=x)
w = wi +wi_1.log f + - -+ wy.(log )&V

such that wy|r =e' in H"(F,C),_,.
In a first step w is replaced by a cocycle w in &"[log f] with degree k in
log f such that Nw has compact support in the Milnor ball X and such that
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d o . .
Wk = Wi +—j: A& still induces e’ in H"(F,C),_;. For a C* function ¢ on X

f

which is equal to 1 on a large enough compact set, we will have
D(ow) = W =do A <wk +% /\ék>

which is in &"*! and has compact support near 0X and is d-closed. Using a
Leray residu on {f =0} near 0X (where 1 is not an eigenvalue of the
monodromy of f in positive degrees) we write

W =w+D(a+n.logf)

=w-+ A An+do (3)
A
where 7 is C* d-closed of degree n with compact support near 0X,w is C® of
degree n + 1 with compact support near dX and also d-closed, and where « € £
has compact support near 0X.
Then var(e') is given by W, where

Ww=aWw—a+n.logf

induces a n-cocycle with compact support in & [{log f]/C®; so that w € §"[log f]
has degree k > 1 in log f and coincide with W on a large compact set (Nw =
Nw and Wy = gV + 71 = vx +# with the notation in [3] p. 20).

Now (2) gives

J vk+n#0 4)
G,

d
This will show that the meromorphic extension of [, f vk +77)7J: will have

at A=0 a pole of order >1 (see lemma 2 below). Consider now the
meromorphic function

_ df J df
A A
Wk g N —F = OWj N —

[ Frawant =] siomn
as

1 1

Id(fiﬂ’kﬂ) = fig AWper1 + zfldwkﬂ for Re(4) » 0,
Stokes formula and the analytic continuation give

idf (=)™ df 1
Lf WA _—TLfﬂ(vk +7) A T_ZJA o (5)
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using dwiy; = do A (wk +ﬁ’fi A§k> -+ a% AUk, (3) and the fact that ovx = vk

(6 =1 on the support of vx). As w is C* the meromorphic function [, f ‘o

has no pole at A =0, and so % [r *o has at most a simple pole at 0. We

conclude from (3) and (4) that [, f Lawi A L—jfji has at least a pole of order 2 at

A =0 from the following lemma:

Lemma 2. Let be Hy) (X, 6" (k)) such that 66 =0 and [ b #0. Then

d
the meromorphic extension of [, f “Be A 4 has a pole of order >1 at 1 =0.

f
Proof. For xe R near 0 define ¢(x) = f( 7=x)n4 k- Then we shall have

dx
apply lemma 1 to ¢. The main point is now to show that if P,Q e C[x] of
degre <k — 1 are such that

d\* ) .
(x—) =0 on IR* near 0 because of the assumption 602 =0. So we can

o(x) = P(logl|x|) for 0 < x«1
o(x) = Q(log|x|) — in) for —1«x<0
we have P # Q!
The hypothesis [; % #0 can be written fGﬁ o — Jg, Ok #0
if A=A"+ A4 with A"= Y c¢4A, and A~ = > c¢y4,. We have

Ay, ={f>0} A, ={f<0}
Ux = ¢(sg) by definition. To compute [. o; we have to follow, along the
GA+ Gy

half-circle spe’,0 e [~7,0], the holomorphic multivalued function given by
f( f=syna- Dk where (f=s)NA" is a notation for the horizontal family of
oriented, closed n-cycles in the fibers of fi with value

(f=—-s)NA~ at s = —s9 = spe” ".

From the fact that ¢(x) = Q(log|xj —in) for —1 « x < 0, this multivalued
function is Q(logs) for the choice —z < Args < 0. So we get fG U = Q(log s0)
and then fG ok = (P — Q)(logsg) # 0.

So we have P # Q and by lemma 1 we get the desired pole of order >1 at
A=0. H

So (i) = (ii) is proved if we can choose ¥ in order to have

5 A 5;/: e C*(Xc).

af

In fact Ty = v +# where 7 is C® so we only need to satisfy £y, A ¥ €
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C®(X¢). But from [3] p. 20 we have

d
U = Wr—1 —d&, +—f NS

f
df df

and so —f—_/\ka—/\wk‘l —dl/\dék. Now

f f

Adf B fA+1
[ i £

by Stokes formula (for Re4 >» 0 so everywhere) and it is enough to choose w
such that f"w is holomorphic.

This is possible from [3] (see the begining of the proof of theorem 2) and
this complete the proof of (i) = (ii).

We shall prove now that d(4); =0 implies in fact that

0

BRI
nmLfD

has no pole at negative integers.

Proposition. Ler f: (R"",0) — (IR,0) a non zero real analytic germ such
that 1 is not an eigenvalue of the monodromy of f¢ acting on the reduced

cohomology of the Milnor fiber of fr at any xe€ fq_jl(O) close enough to the
origine.
Let Ay be a connected component of the open set {f # 0} in Xg.

1
Then, the meromorphic extension of ——fAO If !l[l has no pole at a negative

integers. r

Proof. The point is to explain that the Bernstein-Sato polynomial b of f
at 0 has only one simple root in Z which is —1. For that propose, remark that
our hypothesis implies that the vanishing cycles sheaf @ of f satisfies @; =0,
and so ¥, the nearby-cycles sheaf of f satisfies ¥, — (C,T = 1).

From [8] or [7] we conclude that all integral roots of b are simple (using
that 0 is a simple root of 5’ and the final inequalities of [8]). If & has two
different integral roots, then using the De Rham functor, we obtain a non trivial
decomposition of (€, 7T =1) ~ ¥;. Of course this allows us to conclude that b
has exactly one integral (simple) root. But of course —1 is a root of b. So we
obtain that b(s) = (s+ 1)bi(s) where b; has no integral root. Using now a
Bernstein identity to perform the analytic continuation of IAO lf il[] leads to, at
most, simple poles at negative integers (because b(A) ... b(4 + k) has, at most, a
simple root at —0 for d € N*). |
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Corollary. If 0 is an isolated singularity for the eigenvalue 1 of fc, for any

Ae H°({f #0},C) the Laurent coefficients of the poles of F(/I IA 'O ar
negative integers have there supports in {0}.

Proof. This is an obvious consequence of the proposition. ®
Assume now that we have a pole of order j>2 at 1= —k (ke N*) for

1
J, /0. Let T be the coefficient of (/1+— in the Laurent expansion at

PAY
A=—k of |, f*0. Then T #0 by assumpti)on.
Let N = order(¥) (recall that supp T < {0} by the corollary) ant let ¢ €
C*(Xg)"™" such that (T,¢) #0.
Using a Taylor expansion at order N at 0 for ¢, we get a w e Q"H such
that (T, wy, > =<T, 0> #0. Let pe C*(X¢) with p=1 near 0. So the
meromorphic extension of |, f%pw has a pole of order j >2 at A = —k. Now

af

using the fact that f/Q™' « = AQ" near 0 in €' for some / € N, we can

. d
assume that there exist « € Q" such that [, f XA A pa has a pole of order j > 2

f
at A= -k -1
Let @i ...w, be a meromorphic Jordan basis form the Gauss-Manin system
in degree n near 0 for fz. We can write

i
azZapwp+df/\£—Ld;7.
p=1

Where a, € C{f}[f '] and where ¢ and # are meromorphic (n — 1)-forms with
poles in {f¢ = 0}.
Now
d

| % wptafacvan = x| % napan

af f
will have, at most, simple poles at negative integers because dp = 0 near 0 (and
the corollary). As is it enough to consider the case a, = f™ where m € Z and

this only shift A by an integer, we are left only with integrals like [, f /17f A pw
where w is an element of the Jordan basis (*) for the monodromy acting
on H"(F¢,C) where Fg is the Milnor fiber of f¢ at 0. If w belongs to an

eigenvalue #1 we can assume w = wy with

(*) see the computations with the sheaves Q(k) in [1]
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dwy zug /\wk+ﬁ AWg_1

f f
d d
dwi_1 =u7f AWg_1 +7f AWg_o, etc...,
and wo =0, O<u<l.
But
dj d
“J fl—f/\Pwlzj fiPdW1=—/1J f'l—f /\Pwl—J fld/’/\Wl
A f A A f 4
gives

(/1+u)Lf’1—0—ZJJ;/\pw1 :-Lf’ldp/\wl

and dp = 0 near 0 with u €]0,1[ gives that |, f’liijj; Apw; has at most simple

. . . .
poles at negative integers <as R is holomorphic near Z). An easy in-

duction leads to the same result for jA f A% A PWy.

So we are left with the eigenvalue 1 Jordan blocs, that is to say the u =0
case; but then, we are back to the computation made in the direct part of the
theorem. The point is now that [, f *dp nwy will not have (simple) pole at
2. =0 because d(4), = 0 will gives I(var(e'),d(4)) =0. So these Jordan blocks

. . 1 .
for the eigenvalue 1 does not give pole, for m—)h f*0 at negative integers

from our assumption 6(4), =0 and the equivalence of i) and ii) is proved
because we have contradicted our assumption T # 0. Let us prove now the last
statement of the theorem:
Let e =J(A4), and let 1 € N* be the nilpotency order of T — 1 acting on d(4),.
So we have N"7'(e) #0 and N'(e) =0 (N =T —1).

Then we choose e’ such that

h(e',N""1(e)) # 0

and so I(var(e”), N"!(e)) # 0.
Then, as var commutes with N, we have

I(var[N""1(e")], d(4)) #0.

So we get now for 1> 2
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J Vk_he1 70 (notations as above)
Gy

and then a pole of order >2 at A =0 for [, F Wk_pi1 A %

w
o 0 A af
Now, using 6w = | . |, we conclude that Jy flrowe A 7 has a pole of
0
order>2+h—1=h+1at1=0. So we obtain that the order of poles of
1
m IS *[ at (big) negative integers is at least the nilpotency order of T — 1

acting on J(4);. The fact that this happens for v = —(n + 1) is obtained as in
the case #=1. Conversly, if we have a nilpotency order equal to 4 > 1,
arguing in the same way that in the proof of ii) = i), we conclude that the poles

1 !
of mfAf [] are of order at most A. -]
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