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On Totally Characteristic Type Non-linear Partial
Differential Equations in the Complex Domain

By

Hua CHeEN* and Hidetoshi TAHARA**

Abstract

The paper deals with a singular non-linear partial differential equation tdu/dt = F(t, x,u, du/dx)
with two independent variables (7, x) € C? under the assumption that F(t, x,u,v) is holomorphic and
F(0,2,0,0) =0. Set y(x)=(éF/d)(0,x.0,0). In case y(x) =0 the equation was investigated
quite well by Gérard-Tahara [3]. In case y(0) =0 and Rey’(0) < 0 the existence of holomorphic
solution was proved in Chen-Tahara [2] under a non-resonance condition. The present paper
proves the existence of holomorphic solution under the same non-resonance condition but using the
following weaker condition: y(0) = 0 and »'(0) € C\[0, 0). The result is extended to higher order
equations.

§1. Introduction and Main Result

Let (1,x) e C; x C,, and let us consider the following non-linear singular
partial differential equation:

ou ou
(El) 15;~ (l,x,u.a>

with u = u(¢,x) as an unknown function, where F(¢,x,u,v) is a function with
respect to the variables (z, x,u,v) defined in an open polydisk 4 centered at the
origin of C; x Cy x C, x C,. Denote: 49 = AN {t=0,u=0,v=0}. We assume
the following conditions:

(H-1) F(t,x,u,v) is holomorphic on 4,
(H-2) F(0,x,0,0) =0 on 4.

Thus the function F(z,x,u,v) may be expressed in the form

(1.1) F(t,x,u,v) = a(x)t + B(x)u + p(x)v + Z ap, q.o(x)Puv™,
prqta=2
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and the coefficients a(x), f(x), y(x), ap,4(x) are all holomorphic functions on
Ay.

In general, in case y(x) = 0 the equation (E;) is called non-linear Fuchsian
type (or Briot-Bougquet type); and in case y(x) # 0 the equation (E;) is called
non-linear totally characteristic type. These names come from the following
facts: if y(x) = O the linearized equation of (E;) is linear Fuchsian type (in
Baouendi-Goulaouic [1], Tahara [8]); on the other hand, if y(x) # 0 the lin-
earized equation of (E;) is not linear Fuchsian type but is linear totally
characteristic type (in the sense of Hoérmander [7, section 18.3]).

Note that in case y(x) # 0 we have y(x) = xPc(x) with ¢(0) # 0 for some
peZ.. Denote: Z, =1{0,1,2,...} and N ={1,2,...}.

The main theme is:

Problem. Under (H-1) and (H-2), find a holomorphic solution u(z, x) in a
neighborhood of (0,0) € C; x C, satisfying u(0,x) =0 near x =0.

We already know the following results.

(1) (Gérard-Tahara [3]). When y(x) =0, if §(0) ¢ N, the equation (E;)
has a unique holomorphic solution u(z, x) in a neighborhood of (0,0) € C, x C,
satisfying u(0,x) = 0.

(2) (by Cauchy—Kowalewski theorem). When y(0) # 0, for any holomor-
phic function ¢(¢) with ¢(0) =0 the equation (E;) has a unique holomorphic
solution u(z,x) in a neighborhood of (0,0)e C, x C, satisfying u(0,x) =0 and
u(,0) = ¢(2).

(3) (Chen-Tahara [2]). When p(x) = xc(x) with ¢(0) # 0, if

1) i—pB(0)—jc(0)#0 for any (i,j) e N x Z,

i) Rec(0) <0
hold, the equation (E;) has a unique holomorphic solution u(¢, x) in a neighbor-
hood of (0,0) € C, x C, satisfying u(0,x) = 0.

Remark 1. Yamane [9] has also discussed some problem concerning
holomorphic solutions of (E;) under the condition: y(x) =0 and S(0) e N.

In this paper, by using an argument quite different from that in [2] we shall
improve the above result (3) into the following form.

Theorem 1. Assume (H-1), (H-2) and that y(x)=xc(x) with ¢(0)#0.
Then, if

(1.2) li—p(0) = je(0) =a(j+1)  for any (i,j)e Nx Z,

holds for some o > 0, the equation (E\) has a unique holomorphic solution u(t, x)
in a neighborhood of (0,0) € C, x Cy satisfying u(0,x) =0 near x = 0.

Theorem 1 has the following obvious corollary:
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Corollary 1. Assume (H-1), (H-2) and that y(x)=xc(x) with c(0)+0.
Then, if

i) i—p(0)—jc(0)#0 for any (i,j)e N x Z,

ii) ¢(0) e C\[0, )
hold, the equation (E|) has a unique holomorphic solution u(t,x) in a neigh-
borhood of (0,0) € C, x Cy satisfying u(0,x) =0 near x =0.

Note that i) is a kind of non-resonance condition and ii) is the Poincaré
condition on the vector field ¢0/0t — ¢(0)x0/0x.

We shall prove Theorem 1 in the next section, and in sections 3 and 4 we
shall extend Theorem 1 to higher order totally characteristic type non-linear
partial differential equations.

In sections 2 and 3 we shall use the following notations. We denote by
Cl[t, x]] (resp. C][[x]]) the ring of formal power series in the variables (z, x) (resp.
in the variable x). For formal power series

= Z fi b/, g(t,x) = Z g t'x’

i,j=0 i,j=0

in C[[t, x]}, we write f(t,x) < g(t,x) if |f; ;| < g,, holds for all (i,j) e Z, x Z,
and we say that g(z,x) is a majorant series of f(z,x). Also we write

fI(tx) = Y 1f, lex,
1,7=20

f)(tx Zf,J_HZX
i,j=0

Clearly we have f(¢, x) « |f|(t, x),

(1.3) () (tx) = LEX /(60

X

and the following: if f(¢,x) is convergent then !f|(z,x) and S(f)(¢,x) are also
convergent.

§2. Proof of Main Result

Under the condition y(x) = xc(x) with ¢(0) # 0 the equation (E;) is written
as

(2.1) t%:a(x)hl—/)’(x)u—kc(x)( Z ) +Hz<t X, u, Z > +R3(t,x,u,2—z>,

where
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Hy(¢t, x,u,v) = E Ap.q.2(X)tPutv®

p+g+a=2

Rs(t,x,u,v) = E Ap.q.2(X)Pulv*

p+qtoa=>3

First, let us find a formal power series solution of the form

(2.2) u(t,x) = Zu,-(x)ti, ui(x) e C[[x]] (for i>1).

i>1

Substituting this into (2.1) and comparing the coefficients of 7' {for i > 1) in the
both sides of the equation, we have the following recursiv. o uvla:

éx
for i=1,2,...,
where fy(x) =a(x) and f;_; (for i >2) is a polynomial of u,...,u,_. 2ard
Ouy/0x,...,0u;_1/0x. In particular, f(x,u;,du;/dx) is given by
ouy Ouy
(24) fi (xaulva—x) - H2 (Lx,ul’E)-

Note that (2.3); is expressed in the form

oy, .

(2.5); (i — B(0) — c(O)x%)ui = xS(f)(x)u, + xS(c)(x)( (X> - fioy-

If f,_, € Clix]] is known and if i — $(0) — ¢(0)j # 0 for all je Z,, by a simplc
calculation we see that (2.5); has a unique formal solution u,(x) € C[[x]].

Thus, under the condition (1.2) we can solve (2.3), inductively on i and
obtain a unique formal solution u(z,x) of the form (2.2).

Next, let us prove the convergence of this formal solution.
Consider the following equation with respect to Y = Y(z,x):

(2.6) oY = A(x)t+ xB(x)Y + |Hy|(t,x, Y, S(Y)) + |Rs|(t,x, Y.S(Y))
where ¢ > 0 is the constant in (1.2) and
Alx) = lad(x),  B(x) = IS(B)i(x) +1S()|(x)-

It is easy to see that (2.6) has a unique formal power series solution

2.7) Y(t,x) =) Yi(x)t,  Yi(x)eCllx]] (for i>1)

i>1

and the coefficients Y;(x) (i > 1) are determined by the following recursive
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formula:

(2.8) oY;=xB(x)Yi+|fi_1|(x, Y1,..., Y1, S(Y1),...,S(Yiz1)) for i=1,2,...

which yields

il Y, Y, S(N), ., S(Yi)
29) Y= o — xB(x)

for i=1,2,....

Moreover we have:

Lemma 1. Under the condition (1.2) we have for all i=1,2,...

(2.10); u;(x) < Yi(x),
(2.11); %(x) < S(Y)(x).

Proof. Let us prove this by induction on i. Put

ui(x) = Zu,-,jxj.

7=0

First let us check the case i=1. By (1.2) and (2.5); we have

oY (+ D, |x’
%
« 2100 el = |(140) 07 |
< XS + 3150 2| + 17510
<xB) 30U + Dl )
and therefore by (2.9) we have
S0+ Dot < S = v

This easily leads us to (2.10); and (2.11);.
Next, let i > 2 and suppose that (2.10), and (2.11), are already proved for
all p <i. Then, by (1.2), (2.5); and the induction hypothesis we have
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j>0
<« Y106 A0) = 07 = | (1= 40) ~ 07 s )
j=0
<< XIS ()l + x1816) () 52
6u1

éu, 1‘)
0x |

« xB(x) "0 + Dluyj1x7 + 1 110x, Y1y ooy Yier, S(Y1), ..., S(Yiey)).
j=0

; aﬁ_l|<x,iu1|, i,

Combining this with (2.9) we obtain

3o+ Dl < B

This leads us to (2.10); and (2.11),.

Lemma 1 implies that Y(¢,x) is a majorant series of the formal solution
u(t,x). Therefore, to complete the proof of Theorem 1 it is sufficient to prove
that Y (z,x) is convergent near (0,0) € C; x C,.

To do so, we write Y (¢,x) in the form

Y(t,x) = tY(x) + 2 Ya(x) + 2 W (1, x),

where

W(t,x) = Z Yo (x

i>1
By the condition |fy|(x) = |&|(x) = A(x), (2.4) and (2.9) we have
A(x)

Yl(x):a——xm (>0),
Y (x) = 'HZ!(i’f’x);Ef)( 1) (>0).

This implies that Y;(x) and Y>(x) are holomorphic functions in a neighborhood
of x =0 and therefore S(Y7)(x) and S(Y>)(x) are also holomorphic near x = 0.

Let us show that W(s,x) is convergent near (0,0) e C, x Cx. By (2.4),
(2.6) and (2.8) we see that W(z,x) is the unique formal solution with
W(0,x) =0 of the equation

(2.12) oW = xB(x)W + G(t,x,tW,tS(W)),
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where

(2.13) G(1, x, X1, X)
= (|Hy|(1, x, Y1+t Y2+ X1, S(Y1)+tS(Y2)+X2)—|Ha| (1, x, Y1,S(Y1)))

1
+ g 1Rl (6, x, 1Y) + £2Yy + tX1,tS( Y1) + 2S(Y2) + tX3).

In (2.13) we may regard Yi(x), Ya(x), S(Y1)(x), and S(Y>)(x) as known holo-
morphic functions. Since W (¢,x) > 0, to have the convergence of W(¢,x) it is
sufficient to prove

Lemma 2. If ¢ > 0 is sufficiently small, the power series W(ep,p) is con-
vergent in a neighborhood of p=0¢€ C.

Proof. Set
W.(p) = W(ep,p).
Then, by substituting 1 = ¢p, x = p into (2.12) and by using the relation
pS(W)(ep,p) = W(ep,p) — W(ep,0) <« W(ep, p) = We(p),
we have
(2.14) oW, = pB(p) W, + G(ep, p,epWe, epS(W ) (ep. p))
< pB(p) W, + G(ep, p,epW;, e W),

Hence, instead of considering (2.14) we shall consider the following analytic
equation with respect to Z(p):

(2.15) 0Z = pB(p)Z + G(ep, p,epZ,eZ).
Then, the proof of Lemma 2 can be reduced to the following lemma.

Lemma 3. If ¢>0 is sufficiently small, the equation (2.15) has a
unique formal power series solution of the form

(2.16) Z(p) = _Zp' e Cllp]]

1>1

and it is convergent in a neighborhood of p =0¢€ C. Moreover we have W,(p) <
Z(p).

Proof. By (2.13) we see that G(t,x,X7,X>) is an analytic function
with respect to (f,x, X}, X3) in a neighborhood of the origin of C* and that
G(0,0,0,0) =0 holds. Put

0G
K =--1(0,0,0,0).
axz(’ ,0,0)
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Then the equation (2.15) is written in the form
(2.17) (6 —eK)Z = R(p, Z),

where R(p,Z) is a holomorphic function with respect to (p,Z) in a neigh-
borhood of (0,0) € C, x Cz which depends on & and satisfies the following:
R(p,Z) » 0, R(0,0) =0 and (0R/0Z)(0,0) =0.

Hence, if we choose ¢ > 0 so that

o—¢eK >0,

we can easily see that (2.15) has a unique formal solution Z(p) of the form
(2.16). The convergence of Z(p) is obtained by the implicit function theorem.
Moreover, by (2.14) we have

(2.18) (6 — eK)W, < R(p, W),

and therefore by comparing (2.17) and (2.18) we obtain the result:
W.(p) < Z(p).

Thus, the proof of Lemma 3 is completed.

The proof of Theorem 1 is also completed at last.

§3. Case of Higher Order Totally Characteristic PDE

In this section, we shall extend the result of Theorem 1 to the case of higher
order totally characteristic partial differential equations.
Let(t,x) e C; x Cx,me N,putN = #{(j,0) e Zy x Z;j+a<m,j<m},
and denote
Z= {Zj,oc}j+a§m € CN-

j<m

Let us consider

2\ oV 7/ o \*
Em A, = 7V A, a
( ) (t E)t) u=Frltx {(tat) (ax> u}j+a3m

J<m

with u = u(t,x) as an unknown function, where F(¢,x,Z) is a function with
respect to the variables (7, x,Z) defined in an open polydisk 4 centered at the
origin of C, x Cy X C]ZV. Denote: 49 =A4N{t=0,Z =0}. We assume the
following conditions:

(Hp-1) F(t,x,Z) is holomorphic on 4;
(Hx-2) F(0,x,0) =0 on Ay.

Thus we rewrite F(¢,x,Z) near the origin as

F(t,x,Z)=a(X)t+ Y bju(0)Zja+ Y gpulx)PZ",

j+o;s:u p+v|=2
Jj<m
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where
N v v,
V= {vj,d}j+‘0(S)n € Z+ ) v = E Vi as Z" = H (Zj,a)] !
J<m Jra<m Jjra<m
Jj<m j<m

and the coefficients a(x), b, 4(x), g, ,(x) are all holomorphic functions on 4.
For simplicity, we write

o 0 a\" AAAAN
C(X,ta,a> = (l-a—z> —j_;s:mb],a(x) (ta_[) ('é;),

j<m ]
Du = {Dj ,u}; and D; yu= tﬁjioc
= o j-&j—iimq j,a U = ot ox u.
Then the equation (E,) is expressed in the form
0 0
g Y\, = P(DyY
(3.1) C(x, t@t’&x)” a(x)t+ Z dp,v(x)t?(Du)".

p+v|=2

If b, 4(x) =0 for all (j,«) with a« >0, C(x,19/0t,0/0x) is nothing but an
ordinary differential operator in ¢ with a parameter x. In this case, the equation
(Em) was studied quite well in Gérard—Tahara [4]. This is the higher order ver-
sion of non-linear Fuchsian type partial differential equations.

If b, ,(x) # 0 for some (j,a) with « > 0, the equation (E,,) is called non-
linear totally characteristic type partial differential equations. This case is
divided into the following two cases:

Case (I) b, 4(0) #0 for some a > 0.

Case (II) b,4(0) =0 for all (j,a) with a >0, but b;,(x) #0 for some
o> 0.

Gérard-Tahara [6] discussed the case (I) and proved the existence of holo-
morphic solutions and also singular solutions of (E,,).

Here, we shall consider a particular class of the case (II) under the
following assumption:

(H,-3) bja(x) = O(x*) (as x —0) for all (j,a).

Then, b;,(x) is expressed in the form b;,(x) = x*¢, »(x) for some holo-
morphic function ¢, ,(x), and C(x,10/0t,0/0x) is written as

0 0
Clx i< 2
(x’tat’6x>

o\ o\ 0 0 0
= (15) - X euto (15) () (1) (e 2 1),

J<m
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We write

L(2p) =" = D" ulOFp(p = 1) (p—a+ 1).

Jtx<m
j<m

Theorem 2. Assume (Hp-1), (Hy-2) and (H,-3). Then, if
(32)  |L(k,D|zalk+I+1)"(I+1)  for any (k,])eNx Z,

holds for some o > 0, the equation (E,) has a unique holomorphic solution u(t, x)
in a neighborhood of (0,0) € C, x C, satisfying u(0,x) =0 near x = 0.

Denote by ci,...,c, the roots of the equation in X:

X" 3 ¢.(0)X) =0.

Jtoa=m
J<m

Then, if we factorize L(4,p) into the form

L(/Lp) = ('1 - él(p)) U (}' - ém(p))’

we see that

Si(p)

lim =——=¢, fori=1,...,m.
p—x P

Thus, as a corollary to Theorem 2 we obtain

Corollary 2. Assume (H,-1), (Hp-2) and (H,,-3). Then, if

i) L(k,1)#0 for any (k,l)e Nx Z,,

i) ¢eC\[0,00) for i=1,...,m
hold, the equation (E,) has a unique holomorphic solution u(t,x) in a neigh-
borhood of (0,0) € C, x C. satisfying u(0,x) =0 near x = 0.

Remark 2. The above corollary 2 is an improvement of Theorem 2 in
Chen-Tahara [2]. Recall that in [2] we have assumed the conditions (H,,-1),
(H;,-2), (H;-3), 1) and

ii)) Ree, <0 for i=1,...,m.

Proof of Theorem 2. Denote
I={(jj0)eZ, xZ;j+a<m,j<m},

2, x,Z2) =D gpu(0)IPZ",
p+lv|=2

Ry(t,x,Z) = Y gpu(x)PZ".

p+lv[=3
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Assume the conditions (H,,-3) and that b, ,(x) = x*c, ,(x) for (j,a) € I. Then,
the equation (E,,) is written in the form

(3.3) L(t-g—[.xa—ax)u
= x(}%:EIS(c,,a)(x) (z%)j (;%) (;% — 1) e <x% —a+ l>u

+a(x)t + Hy(t, x, Du) + Rs3(t,x, Du).
First, let us find a formal solution of the form

(3.4) u(t,x) = w(x)t*,  w(x)eC[x]] (for k>1).

k>1

Substituting this into (3.3) and comparing the coefficients of t* (for k > 1) we
have the following recursive formula:

(3.5) L(k,x%) "

=x Z S(c),0) (x)k? (x %) (x—;;~ 1) (x%~ o+ 1>uk

(1,a)el
oY )
+he|\ o P 5w 1< p<k-1(0el)
for k=1,2,...,

where fy(x) =a(x) and f,_, (for kK >2) is a polynomial of {p/(0/0x)"up;
l<p<k-1, (j,a) el}.

Since L(k,!) # 0 for any k € N and any / € Z,, we can solve (3.5) uniquely
and formally in C[[x]] by induction on k. Thus, we have obtained a unique
formal solution u(z,x) of the form (3.4). It remains to prove the convergence
of this formal solution.

Next, we consider the following equation with respect to Y = Y (¢, x):
(3.6) oY =xC(x)Y + A(x)t
+ [ Ho| (4,2, {S* (X)) e r) + IR0 X AS*(Y)} ) e )

where ¢ > 0 is the constant in (3.2),

Ax) =lal(x),  Cx)= Y [S(c,a)l(x)

(r,0)el

and S*(Y) is defined by S?(Y) = S(S(Y)),...,S*(Y) = S(S*7!(Y)). Itis easy
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to see that (3.6) has a unique formal solution Y(z,x) of the form

Y(t.x) =Y Ya(x)*,  Yi(x)eC[x] (for k>1),
k>1

and the coefficients Yi(x) (k>1) are determined by the following recursive
formula:

(37) oY ZXC()C)Yk -+ ifk—l|(xv {Sa(YP); l<p< k— 1a(j’ “) EI})’
for k=1,2,....

Moreover we have:

Lemma 4. Under the condition (3.2) we have for any k=1,2,...

(3.8), k' <%> u(x) « S*(Yi)(x)  for any (j,a)el.

Proof: We will prove this by induction on k. It is easy to prove that
(3.8)x holds for k =1. Let k > 2 and suppose that (3.8), is already proved for
all p < k. Denote:

uk(x) = Zuk‘lx', Yk(x) = z Yk,[X[.

>0 >0

Also denote:

Uelx) = (k+1+ 1" (1 + Djuge]x".
1>0

Then, by (3.2), (3.5) and the induction hypothesis we have

d
L (k, xa) U

<x Y IS(G )| () D U= 1) (= o+ g | (x)x

(r,2)el >0

(e o)

« xCOVUe) + i l(e AS* ()i 1 < p<k— 1, (ja) e T}).

(x)

oUi(x) «

(x;1<p<k—1, (j,oc)eI})

Hence, combining this with (3.7) we can obtain
Ur(x) « Yi(x),

which immediately leads us to (3.8).
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By Lemma 4 we see that Y(¢,x) is a majorant series of the formal solution
u(t,x) of (3.4). Thus, to complete the proof of Theorem 2 it is sufficient to
prove the convergence of Y(¢,x) in a neighborhood of (0,0) e C; x C,.

Now, we divide Y(¢,x) into
Y(t,x) = tYy(x) + 2 Ya(x) + 2 W (1, x),
where

W(t, x) = Z Yo x)t

k>1

Then we have

Y1 (x) I%’
_ !HZ}(LX’{S“(YI)}( ,a)el)
Yo(x) = o —xC(x) j ’

and W(t,x) is the unique formal power series solution with W (0,x) = 0 of the
equation

(3.9) oW = xC(x)W + G(t, x, {tS“(W)}(j’a)E,),
where

(tx{/YJ“}jael

= {[H2|(1, x, {S*(Y1) + £5%(Y2) + X, a} () oyer)
= [Ha|(1,x, {S* (Y1)}, e 1)}

2|R3| (t, %, {tS*(Y1) + £2S*(Y2) + tX) o} () yer)

Since Y)(x) and Y>(x) are holomorphic in a neighborhood of x =0, to prove
the convergence of Y(#,x) we only need to prove

Lemma 5. If ¢ >0 is sufficiently small, the power series W(ep™,p) is
convergent in a neighborhood of p=0¢€ C.

Proof. Set

We(p) = W(ep™. p).
Note that the definition of S*(W) implies

a—1
S W)(t,x) = % (W(t X) Z —]l—' ((—) )(t,O)xf>,
Jj=0
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and therefore we have

p*S*(W)(ep™, p)

< W(ep™,p) = Wi(p).
Combining this with (3.9) we obtain
oW, < pC(p) W; + G(ep™, p, {ep™ W2}, yer)
Thus, if we consider the equation
(3.10) 0Z = pC(p)Z + G(ep™, p, {ep™ *Z}(, nyer)-

and if we choose ¢ > 0 so that

oG
o— £<8Xo,m (0,0,0)) >0,

then by the implicit function theorem we can prove that (3.10) has a unique
holomorphic solution Z(p) in a neighborhood of p=0e C with Z(0)=0;
moreover we can prove that W,(p) « Z(p) holds. This complete the proof of
Lemma 5.

Thus, the proof of Theorem 2 is completed.

§4. A Generalization

Let us consider the following two examples:

i 0 0 i ou ou 62u 0*u
(4.1) <t5+x5><az+2xa +1> G(l‘xuta LT Tt 6x2)

AV ou ou 0’u

(4.2) (tb;)( 6t+x5x l)uzG(txuta e (3t(3x>
where G(t,x,X) with X=(Xo,X1,...,X4) or X=(Xp, X1,...,X3) is a holo-
morphic function defined in a neighborhood of (¢,x,X) = (0,0,0) satisfying
G(0,x,0) =0 and (0G/0X)(0,x,0) = (0,...,0) near x =0.

We have:

(1) By Theorem 2 we see that (4.1) has a unique holomorphic solution
u(t,x) in a neighborhood of (0,0) e C, x C, with u(0,x) = 0.

(2) The equation (4.2) does not satisfy the condition (3.2) and so we
cannot apply Theorem 2 to (4.2). Though, by a calculation we can see that
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(4.2) has also a unique holomorphic solution u(z,x) in a neighborhood of
(0,0) e C, x C, with u(0,x) =0.

Being motivated by this, let us give here a slight generalization of Theorem
2 so that we can apply our result to the equation (4.2).

Let me N, let .4 be a subset of {(j,a) e Z. x Z,;j+ o <m,j<m}, and
denote

Z = {Z/,a}(j,a)s VA Z,.€C.

Let us consider

(4.3) (t%)u —F (t,x, { (,%’ (g)«u}w)e //) .

This equation is a particular case of equations of type (E,,) and so the
assumptions (H,,-1), (H,,-2) and (H,,,-3) make sense. We set

Lp)=2"= > ¢u0)¥plp—1)(p—a+1),

(s,0)e 4

$(k,1) = max ((k+1)/(1+1)).

() a)e

Then, by the same argument as in section 3 we obtain
Theorem 3. Assume (H,,-1), (H,-2) and (Hy-3). Then, if
(4.4) |L(k,1)| = ag(k,]) for any (k,1)eN x Z_.

holds for some a > 0, the equation (4.3) has a unique holomorphic solution u(t, x)
in a neighborhood of (0,0) € C, x C, satisfying u(0,x) =0 near x = 0.

Note that in case (4.2) we have . = {(0,0),(1,0),(0,1),(1,1)} and
L(4,p) = A(A+p+1) and therefore we can apply Theorem 3 to (4.2).
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