On Totally Characteristic Type Non-linear Partial Differential Equations in the Complex Domain

By

Hua CHEN* and Hidetoshi TAHARA**

Abstract

The paper deals with a singular non-linear partial differential equation $t\partial u/\partial t = F(t, x, u, \partial u/\partial x)$ with two independent variables $(t, x) \in \mathbb{C}^2$ under the assumption that F(t, x, u, v) is holomorphic and $F(0, x, 0, 0) \equiv 0$. Set $\gamma(x) = (\partial F/\partial v)(0, x, 0, 0)$. In case $\gamma(x) \equiv 0$ the equation was investigated quite well by Gérard-Tahara [3]. In case $\gamma(0) = 0$ and $\operatorname{Re} \gamma'(0) < 0$ the existence of holomorphic solution was proved in Chen-Tahara [2] under a non-resonance condition. The present paper proves the existence of holomorphic solution under the same non-resonance condition but using the following weaker condition: $\gamma(0) = 0$ and $\gamma'(0) \in \mathbb{C} \setminus [0, \infty)$. The result is extended to higher order equations.

§1. Introduction and Main Result

Let $(t, x) \in C_t \times C_\lambda$, and let us consider the following non-linear singular partial differential equation:

(E₁)
$$t\frac{\partial u}{\partial t} = F\left(t, x, u, \frac{\partial u}{\partial x}\right)$$

with u = u(t, x) as an unknown function, where F(t, x, u, v) is a function with respect to the variables (t, x, u, v) defined in an open polydisk Δ centered at the origin of $C_t \times C_x \times C_u \times C_v$. Denote: $\Delta_0 = \Delta \cap \{t=0, u=0, v=0\}$. We assume the following conditions:

- (H-1) F(t, x, u, v) is holomorphic on Δ ;
- (H-2) $F(0, x, 0, 0) \equiv 0$ on Δ_0 .

Thus the function F(t, x, u, v) may be expressed in the form

(1.1)
$$F(t, x, u, v) = \alpha(x)t + \beta(x)u + \gamma(x)v + \sum_{p+q+\alpha \ge 2} a_{p,q,\alpha}(x)t^p u^q v^{\alpha}.$$

Communicated by T. Kawai, January 18, 1999. Revised March 25, 1999. 1991 Math. Subject Classification(s): Primary 35A07; Secondary 35A10, 35A20.

^{*} School of Mathematics, Wuhan University, Wuhan, 430072, China.

^{**} Department of Mathematics, Sophia University, Tokyo, 102-8554, Japan.

and the coefficients $\alpha(x)$, $\beta(x)$, $\gamma(x)$, $a_{p,q,\alpha}(x)$ are all holomorphic functions on Δ_0 .

In general, in case $\gamma(x) \equiv 0$ the equation (E₁) is called *non-linear Fuchsian* type (or Briot-Bouquet type); and in case $\gamma(x) \neq 0$ the equation (E₁) is called *non-linear totally characteristic type*. These names come from the following facts: if $\gamma(x) \equiv 0$ the linearized equation of (E₁) is linear Fuchsian type (in Baouendi-Goulaouic [1], Tahara [8]); on the other hand, if $\gamma(x) \neq 0$ the linearized equation of (E₁) is not linear Fuchsian type but is linear totally characteristic type (in the sense of Hörmander [7, section 18.3]).

Note that in case $\gamma(x) \neq 0$ we have $\gamma(x) = x^p c(x)$ with $c(0) \neq 0$ for some $p \in \mathbb{Z}_+$. Denote: $\mathbb{Z}_+ = \{0, 1, 2, ...\}$ and $N = \{1, 2, ...\}$.

The main theme is:

Problem. Under (H-1) and (H-2), find a holomorphic solution u(t, x) in a neighborhood of $(0, 0) \in C_t \times C_x$ satisfying $u(0, x) \equiv 0$ near x = 0.

We already know the following results.

(1) (Gérard-Tahara [3]). When $\gamma(x) \equiv 0$, if $\beta(0) \notin N$, the equation (E₁) has a unique holomorphic solution u(t, x) in a neighborhood of $(0, 0) \in \mathbb{C}_t \times \mathbb{C}_\lambda$ satisfying $u(0, x) \equiv 0$.

(2) (by Cauchy-Kowalewski theorem). When $\gamma(0) \neq 0$, for any holomorphic function $\phi(t)$ with $\phi(0) = 0$ the equation (E₁) has a unique holomorphic solution u(t, x) in a neighborhood of $(0, 0) \in C_t \times C_x$ satisfying $u(0, x) \equiv 0$ and $u(t, 0) \equiv \phi(t)$.

- (3) (Chen–Tahara [2]). When $\gamma(x) = xc(x)$ with $c(0) \neq 0$, if
 - i) $i \beta(0) jc(0) \neq 0$ for any $(i, j) \in \mathbb{N} \times \mathbb{Z}_+$,
 - ii) Re c(0) < 0

hold, the equation (E₁) has a unique holomorphic solution u(t, x) in a neighborhood of $(0,0) \in \mathbb{C}_t \times \mathbb{C}_x$ satisfying $u(0,x) \equiv 0$.

Remark 1. Yamane [9] has also discussed some problem concerning holomorphic solutions of (E_1) under the condition: $\gamma(x) \equiv 0$ and $\beta(0) \in \mathbb{N}$.

In this paper, by using an argument quite different from that in [2] we shall improve the above result (3) into the following form.

Theorem 1. Assume (H-1), (H-2) and that $\gamma(x) = xc(x)$ with $c(0) \neq 0$. Then, if

(1.2)
$$|i - \beta(0) - jc(0)| \ge \sigma(j+1) \quad \text{for any } (i,j) \in \mathbb{N} \times \mathbb{Z}_+$$

holds for some $\sigma > 0$, the equation (E₁) has a unique holomorphic solution u(t, x)in a neighborhood of $(0,0) \in C_t \times C_x$ satisfying $u(0,x) \equiv 0$ near x = 0.

Theorem 1 has the following obvious corollary:

Corollary 1. Assume (H-1), (H-2) and that $\gamma(x) = xc(x)$ with $c(0) \neq 0$. Then, if

i) $i - \beta(0) - jc(0) \neq 0$ for any $(i, j) \in N \times \mathbb{Z}_+$,

ii) $c(0) \in C \setminus [0, \infty)$

hold, the equation (E₁) has a unique holomorphic solution u(t,x) in a neighborhood of $(0,0) \in C_t \times C_x$ satisfying $u(0,x) \equiv 0$ near x = 0.

Note that i) is a kind of non-resonance condition and ii) is the Poincaré condition on the vector field $t\partial/\partial t - c(0)x\partial/\partial x$.

We shall prove Theorem 1 in the next section, and in sections 3 and 4 we shall extend Theorem 1 to higher order totally characteristic type non-linear partial differential equations.

In sections 2 and 3 we shall use the following notations. We denote by C[[t, x]] (resp. C[[x]]) the ring of formal power series in the variables (t, x) (resp. in the variable x). For formal power series

$$f(t,x) = \sum_{i,j \ge 0} f_{i,j} t^i x^j, \qquad g(t,x) = \sum_{i,j \ge 0} g_{i,j} t^i x^j$$

in C[[t, x]], we write $f(t, x) \ll g(t, x)$ if $|f_{i,j}| \le g_{i,j}$ holds for all $(i, j) \in \mathbb{Z}_+ \times \mathbb{Z}_+$, and we say that g(t, x) is a majorant series of f(t, x). Also we write

$$|f|(t,x) = \sum_{i,j \ge 0} |f_{i,j}| t^i x^j,$$

$$S(f)(t,x) = \sum_{i,j \ge 0} f_{i,j+1} t^i x^j.$$

Clearly we have $f(t, x) \ll |f|(t, x)$,

(1.3)
$$S(f)(t,x) = \frac{f(t,x) - f(t,0)}{x}$$

and the following: if f(t, x) is convergent then |f|(t, x) and S(f)(t, x) are also convergent.

§2. Proof of Main Result

Under the condition $\gamma(x) = xc(x)$ with $c(0) \neq 0$ the equation (E₁) is written as

(2.1)
$$t\frac{\partial u}{\partial t} = \alpha(x)t + \beta(x)u + c(x)\left(x\frac{\partial u}{\partial x}\right) + H_2\left(t, x, u, \frac{\partial u}{\partial x}\right) + R_3\left(t, x, u, \frac{\partial u}{\partial x}\right),$$

where

HUA CHEN AND HIDETOSHI TAHARA

$$H_2(t, x, u, v) = \sum_{p+q+\alpha=2} a_{p,q,\alpha}(x) t^p u^q v^{\alpha},$$
$$R_3(t, x, u, v) = \sum_{p+q+\alpha\geq 3} a_{p,q,\alpha}(x) t^p u^q v^{\alpha}.$$

First, let us find a formal power series solution of the form

(2.2)
$$u(t,x) = \sum_{i \ge 1} u_i(x)t^i, \quad u_i(x) \in \mathbb{C}[[x]] \quad (\text{for } i \ge 1).$$

Substituting this into (2.1) and comparing the coefficients of t^i (for $i \ge 1$) in the both sides of the equation, we have the following recursive form vie:

$$(2.3)_{i} \qquad \left(i - \beta(x) - c(x)x\frac{\partial}{\partial x}\right)u_{i} = f_{i-1}\left(x, u_{1}, \dots, u_{i-1}, \frac{\partial u_{1}}{\partial x} \dots, \frac{\partial u_{i-1}}{\partial x}\right)$$

for $i = 1, 2, \dots,$

where $f_0(x) = \alpha(x)$ and f_{i-1} (for $i \ge 2$) is a polynomial of u_1, \ldots, u_{i-1} and $\partial u_1/\partial x, \ldots, \partial u_{i-1}/\partial x$. In particular, $f_1(x, u_1, \partial u_1/\partial x)$ is given by

(2.4)
$$f_1\left(x, u_1, \frac{\partial u_1}{\partial x}\right) = H_2\left(1, x, u_1, \frac{\partial u_1}{\partial x}\right)$$

Note that $(2.3)_i$ is expressed in the form

$$(2.5)_i \qquad \left(i-\beta(0)-c(0)x\frac{\partial}{\partial x}\right)u_i = xS(\beta)(x)u_i + xS(c)(x)\left(x\frac{\partial u_i}{\partial x}\right) - f_{i-1}.$$

If $f_{i-1} \in \mathbb{C}[[x]]$ is known and if $i - \beta(0) - c(0)j \neq 0$ for all $j \in \mathbb{Z}_+$, by a simple calculation we see that $(2.5)_i$ has a unique formal solution $u_i(x) \in \mathbb{C}[[x]]$.

Thus, under the condition (1.2) we can solve $(2.3)_i$ inductively on *i* and obtain a unique formal solution u(t, x) of the form (2.2).

Next, let us prove the convergence of this formal solution.

Consider the following equation with respect to Y = Y(t, x):

(2.6)
$$\sigma Y = A(x)t + xB(x)Y + |H_2|(t, x, Y, S(Y)) + |R_3|(t, x, Y, S(Y))$$

where $\sigma > 0$ is the constant in (1.2) and

$$A(x) = |\alpha|(x), \qquad B(x) = |S(\beta)|(x) + |S(c)|(x).$$

It is easy to see that (2.6) has a unique formal power series solution

(2.7)
$$Y(t,x) = \sum_{i \ge 1} Y_i(x)t^i, \qquad Y_i(x) \in \mathbb{C}[[x]] \quad (\text{for } i \ge 1)$$

and the coefficients $Y_i(x)$ $(i \ge 1)$ are determined by the following recursive

formula:

(2.8)
$$\sigma Y_i = xB(x)Y_i + |f_{i-1}|(x, Y_1, \dots, Y_{i-1}, S(Y_1), \dots, S(Y_{i-1}))$$
 for $i = 1, 2, \dots$

which yields

(2.9)
$$Y_i = \frac{|f_{i-1}|(x, Y_1, \dots, Y_{i-1}, S(Y_1), \dots, S(Y_{i-1}))}{\sigma - xB(x)}$$
 for $i = 1, 2, \dots$

Moreover we have:

Lemma 1. Under the condition (1.2) we have for all i = 1, 2, ...

$$(2.10)_i \qquad \qquad u_i(x) \ll Y_i(x),$$

$$(2.11)_i \qquad \qquad \frac{\partial u_i}{\partial x}(x) \ll S(Y_i)(x).$$

Proof. Let us prove this by induction on i. Put

$$u_i(x)=\sum_{j\geq 0}u_{i,j}x^j.$$

First let us check the case i = 1. By (1.2) and $(2.5)_1$ we have

$$\sigma \sum_{j \ge 0} (j+1) |u_{1,j}| x^{j}$$

$$\ll \sum_{j \ge 0} |(1-\beta(0)-c(0)j)u_{1,j}| x^{j} = \left| \left(1-\beta(0)-c(0)x\frac{\partial}{\partial x} \right) u_{1} \right| (x)$$

$$\ll x |S(\beta)|(x)|u_{1}| + x |S(c)|(x) \left| x\frac{\partial u_{1}}{\partial x} \right| + |f_{0}|(x)$$

$$\ll x B(x) \sum_{j \ge 0} (j+1) |u_{1,j}| x^{j} + |f_{0}|(x)$$

and therefore by (2.9) we have

$$\sum_{j\geq 0} (j+1)|u_{1,j}|x^{j} \ll \frac{|f_{0}|(x)}{\sigma - xB(x)} = Y_{1}(x).$$

This easily leads us to $(2.10)_1$ and $(2.11)_1$.

Next, let $i \ge 2$ and suppose that $(2.10)_p$ and $(2.11)_p$ are already proved for all p < i. Then, by (1.2), $(2.5)_i$ and the induction hypothesis we have

$$\sigma \sum_{j \ge 0} (j+1) |u_{i,j}| x^{j}$$

$$\ll \sum_{j \ge 0} |(i - \beta(0) - c(0)j)u_{i,j}| x^{j} = \left| \left(i - \beta(0) - c(0)x \frac{\partial}{\partial x} \right) u_{i} \right| (x)$$

$$\ll x |S(\beta)|(x)|u_{i}| + x |S(c)|(x) \left| x \frac{\partial u_{i}}{\partial x} \right|$$

$$+ |f_{i-1}| \left(x, |u_{1}|, \dots, |u_{i-1}|, \left| \frac{\partial u_{1}}{\partial x} \right|, \dots, \left| \frac{\partial u_{i-1}}{\partial x} \right| \right)$$

$$\ll x B(x) \sum_{j \ge 0} (j+1) |u_{i,j}| x^{j} + |f_{i-1}| (x, Y_{1}, \dots, Y_{i-1}, S(Y_{1}), \dots, S(Y_{i-1})).$$

Combining this with (2.9) we obtain

$$\sum_{j\geq 0} (j+1)|u_{i,j}|x^j \ll \frac{|f_{i-1}|(x, Y_1, \dots, Y_{i-1}, S(Y_1), \dots, S(Y_{i-1}))}{\sigma - xB(x)} = Y_i(x).$$

This leads us to $(2.10)_i$ and $(2.11)_i$.

Lemma 1 implies that Y(t, x) is a majorant series of the formal solution u(t, x). Therefore, to complete the proof of Theorem 1 it is sufficient to prove that Y(t, x) is convergent near $(0, 0) \in C_t \times C_x$.

To do so, we write Y(t, x) in the form

$$Y(t, x) = t Y_1(x) + t^2 Y_2(x) + t^2 W(t, x),$$

where

$$W(t,x) = \sum_{i\geq 1} Y_{i+2}(x)t^i$$

By the condition $|f_0|(x) = |\alpha|(x) = A(x)$, (2.4) and (2.9) we have

$$Y_{1}(x) = \frac{A(x)}{\sigma - xB(x)} \quad (\gg 0),$$

$$Y_{2}(x) = \frac{|H_{2}|(1, x, Y_{1}, S(Y_{1}))}{\sigma - xB(x)} \quad (\gg 0).$$

This implies that $Y_1(x)$ and $Y_2(x)$ are holomorphic functions in a neighborhood of x = 0 and therefore $S(Y_1)(x)$ and $S(Y_2)(x)$ are also holomorphic near x = 0.

Let us show that W(t, x) is convergent near $(0, 0) \in C_t \times C_x$. By (2.4), (2.6) and (2.8) we see that W(t, x) is the unique formal solution with $W(0, x) \equiv 0$ of the equation

(2.12)
$$\sigma W = xB(x)W + G(t, x, tW, tS(W)),$$

where

$$(2.13) G(t, x, X_1, X_2) = (|H_2|(1, x, Y_1 + tY_2 + X_1, S(Y_1) + tS(Y_2) + X_2) - |H_2|(1, x, Y_1, S(Y_1))) + \frac{1}{t^2} |R_3|(t, x, tY_1 + t^2Y_2 + tX_1, tS(Y_1) + t^2S(Y_2) + tX_2).$$

In (2.13) we may regard $Y_1(x)$, $Y_2(x)$, $S(Y_1)(x)$, and $S(Y_2)(x)$ as known holomorphic functions. Since $W(t, x) \gg 0$, to have the convergence of W(t, x) it is sufficient to prove

Lemma 2. If $\varepsilon > 0$ is sufficiently small, the power series $W(\varepsilon \rho, \rho)$ is convergent in a neighborhood of $\rho = 0 \in \mathbf{C}$.

Proof. Set

$$W_{\varepsilon}(\rho) = W(\varepsilon\rho, \rho).$$

Then, by substituting $t = \varepsilon \rho$, $x = \rho$ into (2.12) and by using the relation

$$ho S(W)(\epsilon
ho,
ho) = W(\epsilon
ho,
ho) - W(\epsilon
ho, 0) \ll W(\epsilon
ho,
ho) = W_{\epsilon}(
ho),$$

we have

(2.14)
$$\sigma W_{\varepsilon} = \rho B(\rho) W_{\varepsilon} + G(\varepsilon \rho, \rho, \varepsilon \rho W_{\varepsilon}, \varepsilon \rho S(W)(\varepsilon \rho, \rho))$$
$$\ll \rho B(\rho) W_{\varepsilon} + G(\varepsilon \rho, \rho, \varepsilon \rho W_{\varepsilon}, \varepsilon W_{\varepsilon}).$$

Hence, instead of considering (2.14) we shall consider the following analytic equation with respect to $Z(\rho)$:

(2.15)
$$\sigma Z = \rho B(\rho) Z + G(\varepsilon \rho, \rho, \varepsilon \rho Z, \varepsilon Z),$$

Then, the proof of Lemma 2 can be reduced to the following lemma.

Lemma 3. If $\varepsilon > 0$ is sufficiently small, the equation (2.15) has a unique formal power series solution of the form

(2.16)
$$Z(\rho) = \sum_{i \ge 1} Z_i \rho^i \in C[[\rho]]$$

and it is convergent in a neighborhood of $\rho = 0 \in C$. Moreover we have $W_{\varepsilon}(\rho) \ll Z(\rho)$.

Proof. By (2.13) we see that $G(t, x, X_1, X_2)$ is an analytic function with respect to (t, x, X_1, X_2) in a neighborhood of the origin of C^4 and that G(0, 0, 0, 0) = 0 holds. Put

$$K=\frac{\partial G}{\partial X_2}(0,0,0,0).$$

Then the equation (2.15) is written in the form

(2.17)
$$(\sigma - \varepsilon K)Z = R(\rho, Z),$$

where $R(\rho, Z)$ is a holomorphic function with respect to (ρ, Z) in a neighborhood of $(0,0) \in \mathbb{C}_{\rho} \times \mathbb{C}_{Z}$ which depends on ε and satisfies the following: $R(\rho, Z) \gg 0$, R(0,0) = 0 and $(\partial R/\partial Z)(0,0) = 0$.

Hence, if we choose $\varepsilon > 0$ so that

$$\sigma - \varepsilon K > 0,$$

we can easily see that (2.15) has a unique formal solution $Z(\rho)$ of the form (2.16). The convergence of $Z(\rho)$ is obtained by the implicit function theorem.

Moreover, by (2.14) we have

(2.18)
$$(\sigma - \varepsilon K) W_{\varepsilon} \ll R(\rho, W_{\varepsilon})$$

and therefore by comparing (2.17) and (2.18) we obtain the result: $W_{\varepsilon}(\rho) \ll Z(\rho)$.

Thus, the proof of Lemma 3 is completed.

The proof of Theorem 1 is also completed at last.

§3. Case of Higher Order Totally Characteristic PDE

In this section, we shall extend the result of Theorem 1 to the case of higher order totally characteristic partial differential equations.

Let $(t, x) \in C_t \times C_x$, $m \in N$, put $N = \#\{(j, \alpha) \in \mathbb{Z}_+ \times \mathbb{Z}_+; j + \alpha \le m, j < m\}$, and denote

$$Z = \{Z_{j,\alpha}\}_{\substack{j+\alpha \leq m \\ j < m}} \in \mathbb{C}^N.$$

Let us consider

(E_m)
$$\left(t\frac{\partial}{\partial t}\right)^m u = F\left(t, x, \left\{\left(t\frac{\partial}{\partial t}\right)^J \left(\frac{\partial}{\partial x}\right)^\alpha u\right\}_{J=\alpha \le m}\right)$$

with u = u(t, x) as an unknown function, where F(t, x, Z) is a function with respect to the variables (t, x, Z) defined in an open polydisk Δ centered at the origin of $C_t \times C_x \times C_Z^N$. Denote: $\Delta_0 = \Delta \cap \{t = 0, Z = 0\}$. We assume the following conditions:

 $\begin{array}{ll} (\mathrm{H}_m\text{-}1) & F(t,x,Z) \text{ is holomorphic on } \varDelta;\\ (\mathrm{H}_m\text{-}2) & F(0,x,0) \equiv 0 \text{ on } \varDelta_0. \end{array}$

Thus we rewrite F(t, x, Z) near the origin as

$$F(t,x,Z) = a(x)t + \sum_{\substack{j+\alpha \leq m \\ j < m}} b_{j,\alpha}(x)Z_{j,\alpha} + \sum_{p+|\nu| \ge 2} g_{p,\nu}(x)t^p Z^{\nu},$$

where

$$v = \{v_{j,\alpha}\}_{\substack{j+\alpha \le m \\ j < m}} \in \mathbb{Z}_+^N, \qquad |v| = \sum_{\substack{j+\alpha \le m \\ j < m}} v_{j,\alpha}, \qquad \mathbb{Z}^v = \prod_{\substack{j+\alpha \le m \\ j < m}} (\mathbb{Z}_{j,\alpha})^{v_{j,\alpha}}$$

and the coefficients a(x), $b_{J,\alpha}(x)$, $g_{p,\nu}(x)$ are all holomorphic functions on Δ_0 . For simplicity, we write

$$C\left(x,t\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right) = \left(t\frac{\partial}{\partial t}\right)^m - \sum_{\substack{j+\alpha \le m \\ j < m}} b_{j,\alpha}(x) \left(t\frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha},$$
$$Du = \{D_{j,\alpha}u\}_{\substack{j+\alpha \le m \\ j < m}} \text{ and } D_{j,\alpha}u = \left(t\frac{\partial}{\partial t}\right)^j \left(\frac{\partial}{\partial x}\right)^{\alpha}u.$$

Then the equation (E_m) is expressed in the form

(3.1)
$$C\left(x,t\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right)u = a(x)t + \sum_{p+|\nu|\geq 2} g_{p,\nu}(x)t^p(Du)^{\nu}.$$

If $b_{j,\alpha}(x) \equiv 0$ for all (j,α) with $\alpha > 0$, $C(x,t\partial/\partial t, \partial/\partial x)$ is nothing but an ordinary differential operator in t with a parameter x. In this case, the equation (E_m) was studied quite well in Gérard-Tahara [4]. This is the higher order version of *non-linear Fuchsian type* partial differential equations.

If $b_{j,\alpha}(x) \neq 0$ for some (j, α) with $\alpha > 0$, the equation (E_m) is called *nonlinear totally characteristic type* partial differential equations. This case is divided into the following two cases:

Case (I) $b_{j,\alpha}(0) \neq 0$ for some $\alpha > 0$. Case (II) $b_{j,\alpha}(0) = 0$ for all (j,α) with $\alpha > 0$, but $b_{j,\alpha}(x) \neq 0$ for some $\alpha > 0$.

Gérard-Tahara [6] discussed the case (I) and proved the existence of holomorphic solutions and also singular solutions of (E_m) .

Here, we shall consider a particular class of the case (II) under the following assumption:

$$(\mathbf{H}_m-3)$$
 $b_{j,\alpha}(x) = O(x^{\alpha})$ (as $x \to 0$) for all (j, α) .

Then, $b_{j,\alpha}(x)$ is expressed in the form $b_{j,\alpha}(x) = x^{\alpha}c_{j,\alpha}(x)$ for some holomorphic function $c_{j,\alpha}(x)$, and $C(x, t\partial/\partial t, \partial/\partial x)$ is written as

$$C\left(x,t\frac{\partial}{\partial t},\frac{\partial}{\partial x}\right)$$
$$=\left(t\frac{\partial}{\partial t}\right)^{m}-\sum_{\substack{j+\alpha\leq m\\j$$

We write

$$L(\lambda,\rho) = \lambda^m - \sum_{\substack{J+\alpha \leq m \\ J \leq m}} c_{J,\alpha}(0) \lambda^J \rho(\rho-1) \cdots (\rho-\alpha+1).$$

Theorem 2. Assume (H_m-1) , (H_m-2) and (H_m-3) . Then, if

(3.2)
$$|L(k,l)| \ge \sigma (k+l+1)^{m-1} (l+1)$$
 for any $(k,l) \in N \times \mathbb{Z}_+$

holds for some $\sigma > 0$, the equation (E_m) has a unique holomorphic solution u(t, x)in a neighborhood of $(0,0) \in C_t \times C_x$ satisfying $u(0,x) \equiv 0$ near x = 0.

Denote by c_1, \ldots, c_m the roots of the equation in X:

$$X^m - \sum_{\substack{j+lpha=m\ j< m}} c_{j,lpha}(0) X^j = 0.$$

Then, if we factorize $L(\lambda, \rho)$ into the form

$$L(\lambda,\rho) = (\lambda - \xi_1(\rho)) \cdots (\lambda - \xi_m(\rho)),$$

we see that

$$\lim_{\rho\to\infty}\frac{\xi_i(\rho)}{\rho}=c_i\qquad\text{for }i=1,\ldots,m.$$

Thus, as a corollary to Theorem 2 we obtain

- **Corollary 2.** Assume (H_m-1) , (H_m-2) and (H_m-3) . Then, if
- i) $L(k,l) \neq 0$ for any $(k,l) \in N \times \mathbb{Z}_+$,
- ii) $c_i \in \mathbb{C} \setminus [0, \infty)$ for $i = 1, \ldots, m$

hold, the equation (E_m) has a unique holomorphic solution u(t,x) in a neighborhood of $(0,0) \in C_t \times C_x$ satisfying $u(0,x) \equiv 0$ near x = 0.

Remark 2. The above corollary 2 is an improvement of Theorem 2 in Chen–Tahara [2]. Recall that in [2] we have assumed the conditions (H_m-1) , (H_m-2) , (H_m-3) , i) and

ii)' Re $c_i < 0$ for i = 1, ..., m.

Proof of Theorem 2. Denote

$$egin{aligned} I &= \{(j, lpha) \in oldsymbol{Z}_+ imes oldsymbol{Z}_+; j + lpha \leq m, j < m\}, \ &H_2(t, x, Z) = \sum_{p+|
u|=2} g_{p,
u}(x) t^p Z^
u, \ &R_3(t, x, Z) = \sum_{p+|
u|\geq 3} g_{p,
u}(x) t^p Z^
u. \end{aligned}$$

Assume the conditions (H_m-3) and that $b_{j,\alpha}(x) = x^{\alpha}c_{j,\alpha}(x)$ for $(j,\alpha) \in I$. Then, the equation (E_m) is written in the form

$$(3.3) \quad L\left(t\frac{\partial}{\partial t}, x\frac{\partial}{\partial x}\right)u$$
$$= x\sum_{(j,\alpha)\in I} S(c_{j,\alpha})(x)\left(t\frac{\partial}{\partial t}\right)^{j}\left(x\frac{\partial}{\partial x}\right)\left(x\frac{\partial}{\partial x}-1\right)\cdots\left(x\frac{\partial}{\partial x}-\alpha+1\right)u$$
$$+ a(x)t + H_{2}(t, x, Du) + R_{3}(t, x, Du).$$

First, let us find a formal solution of the form

(3.4)
$$u(t,x) = \sum_{k \ge 1} u_k(x) t^k, \quad u_k(x) \in C[[x]] \quad (\text{for } k \ge 1).$$

Substituting this into (3.3) and comparing the coefficients of t^k (for $k \ge 1$) we have the following recursive formula:

$$(3.5) \qquad L\left(k, x\frac{\partial}{\partial x}\right)u_{k}$$

$$= x \sum_{(j,\alpha)\in I} S(c_{j,\alpha})(x)k^{j}\left(x\frac{\partial}{\partial x}\right)\left(x\frac{\partial}{\partial x}-1\right)\cdots\left(x\frac{\partial}{\partial x}-\alpha+1\right)u_{k}$$

$$+ f_{k-1}\left(x, \left\{p^{j}\left(\frac{\partial}{\partial x}\right)^{\alpha}u_{p}; 1 \le p \le k-1, (j,\alpha) \in I\right\}\right),$$
for $k = 1, 2, ...,$

where $f_0(x) = a(x)$ and f_{k-1} (for $k \ge 2$) is a polynomial of $\{p^j(\partial/\partial x)^{\alpha}u_p; 1 \le p \le k-1, (j, \alpha) \in I\}$.

Since $L(k, l) \neq 0$ for any $k \in N$ and any $l \in \mathbb{Z}_+$, we can solve (3.5) uniquely and formally in $\mathbb{C}[[x]]$ by induction on k. Thus, we have obtained a unique formal solution u(t, x) of the form (3.4). It remains to prove the convergence of this formal solution.

Next, we consider the following equation with respect to Y = Y(t, x): (3.6) $\sigma Y = xC(x)Y + A(x)t$

+ $|H_2|(t, x, {S^{\alpha}(Y)}_{(j,\alpha) \in I}) + |R_3|(t, x, {S^{\alpha}(Y)}_{(j,\alpha) \in I}),$

where $\sigma > 0$ is the constant in (3.2),

$$A(x) = |a|(x),$$
 $C(x) = \sum_{(I,\alpha) \in I} |S(c_{I,\alpha})|(x)|$

and $S^{\alpha}(Y)$ is defined by $S^{2}(Y) = S(S(Y)), \ldots, S^{\alpha}(Y) = S(S^{\alpha-1}(Y))$. It is easy

to see that (3.6) has a unique formal solution Y(t, x) of the form

$$Y(t,x) = \sum_{k \ge 1} Y_k(x) t^k, \qquad Y_k(x) \in \boldsymbol{C}[[x]] \quad (\text{for } k \ge 1),$$

and the coefficients $Y_k(x)$ $(k \ge 1)$ are determined by the following recursive formula:

(3.7)
$$\sigma Y_k = xC(x)Y_k + |f_{k-1}|(x, \{S^{\alpha}(Y_p); 1 \le p \le k-1, (j, \alpha) \in I\}),$$
for $k = 1, 2, \dots$

Moreover we have:

Lemma 4. Under the condition (3.2) we have for any k = 1, 2, ...

$$(3.8)_k \qquad \qquad k^j \left(\frac{\partial}{\partial x}\right)^{\alpha} u_k(x) \ll S^{\alpha}(Y_k)(x) \qquad for \ any \ (j,\alpha) \in I.$$

Proof. We will prove this by induction on k. It is easy to prove that $(3.8)_k$ holds for k = 1. Let $k \ge 2$ and suppose that $(3.8)_p$ is already proved for all p < k. Denote:

$$u_k(x) = \sum_{l \ge 0} u_{k,l} x^l, \qquad Y_k(x) = \sum_{l \ge 0} Y_{k,l} x^l.$$

Also denote:

$$U_k(x) = \sum_{l \ge 0} (k+l+1)^{m-1} (l+1) |u_{k,l}| x^l.$$

Then, by (3.2), (3.5) and the induction hypothesis we have

$$\sigma U_k(x) \ll \left| L\left(k, x \frac{\partial}{\partial x}\right) u_k \right| (x)$$

$$\ll x \sum_{(j,\alpha) \in I} |S(c_{j,\alpha})|(x)k^j \sum_{l \ge 0} l(l-1) \cdots (l-\alpha+1)|u_{k,l}|(x)x^l$$

$$+ |f_{k-1}| \left(x, \left\{ p^j \left| \left(\frac{\partial}{\partial x}\right)^{\alpha} u_p \right| (x); \ 1 \le p \le k-1, \ (j,\alpha) \in I \right\} \right)$$

$$\ll x C(x) U_k(x) + |f_{k-1}| (x, \left\{ S^{\alpha}(Y_p); \ 1 \le p \le k-1, \ (j,\alpha) \in I \right\}).$$

Hence, combining this with (3.7) we can obtain

$$U_k(x) \ll Y_k(x),$$

which immediately leads us to $(3.8)_k$.

By Lemma 4 we see that Y(t, x) is a majorant series of the formal solution u(t, x) of (3.4). Thus, to complete the proof of Theorem 2 it is sufficient to prove the convergence of Y(t, x) in a neighborhood of $(0, 0) \in C_t \times C_x$.

Now, we divide Y(t, x) into

$$Y(t, x) = t Y_1(x) + t^2 Y_2(x) + t^2 W(t, x),$$

where

$$W(t,x) = \sum_{k\geq 1} Y_{k+2}(x)t^k.$$

Then we have

$$egin{aligned} Y_1(x) &= rac{A(x)}{\sigma - xC(x)}, \ Y_2(x) &= rac{|H_2|(1,x,\{S^lpha(Y_1)\}_{(J,lpha)\in I})}{\sigma - xC(x)}, \end{aligned}$$

and W(t, x) is the unique formal power series solution with $W(0, x) \equiv 0$ of the equation

(3.9)
$$\sigma W = xC(x)W + G(t, x, \{tS^{\alpha}(W)\}_{(I,\alpha) \in I}).$$

where

$$\begin{split} G(t, x, \{X_{J,\alpha}\}_{(J,\alpha) \in I}) \\ &= \{ |H_2| (1, x, \{S^{\alpha}(Y_1) + tS^{\alpha}(Y_2) + X_{J,\alpha}\}_{(J,\alpha) \in I}) \\ &- |H_2| (1, x, \{S^{\alpha}(Y_1)\}_{(J,\alpha) \in I}) \} \\ &+ \frac{1}{t^2} |R_3| (t, x, \{tS^{\alpha}(Y_1) + t^2S^{\alpha}(Y_2) + tX_{J,\alpha}\}_{(J,\alpha) \in I}). \end{split}$$

Since $Y_1(x)$ and $Y_2(x)$ are holomorphic in a neighborhood of x = 0, to prove the convergence of Y(t, x) we only need to prove

Lemma 5. If $\varepsilon > 0$ is sufficiently small, the power series $W(\varepsilon \rho^m, \rho)$ is convergent in a neighborhood of $\rho = 0 \in C$.

Proof. Set

$$W_{\varepsilon}(\rho) = W(\varepsilon \rho^m, \rho).$$

Note that the definition of $S^{\alpha}(W)$ implies

$$S^{\alpha}(W)(t,x) = \frac{1}{x^{\alpha}} \left(W(t,x) - \sum_{j=0}^{\alpha-1} \frac{1}{j!} \left(\left(\frac{\partial}{\partial x} \right)^j W \right)(t,0) x^j \right),$$

and therefore we have

$$\rho^{\alpha} S^{\alpha}(W)(\epsilon \rho^{m}, \rho)$$

$$= W(\epsilon \rho^{m}, \rho) - \sum_{j=0}^{\alpha-1} \frac{1}{j!} \left(\left(\frac{\partial}{\partial x} \right)^{j} W \right) (\epsilon \rho^{m}, 0) \rho^{j}$$

$$\ll W(\epsilon \rho^{m}, \rho) = W_{\epsilon}(\rho).$$

Combining this with (3.9) we obtain

$$\sigma W_{\varepsilon} \ll \rho C(\rho) W_{\varepsilon} + G(\varepsilon \rho^m, \rho, \{\varepsilon \rho^{m-\alpha} W_{\varepsilon}\}_{(J.\alpha) \in I}).$$

Thus, if we consider the equation

(3.10)
$$\sigma Z = \rho C(\rho) Z + G(\varepsilon \rho^m, \rho, \{\varepsilon \rho^{m-\alpha} Z\}_{(j,\alpha) \in I}),$$

and if we choose $\varepsilon > 0$ so that

$$\sigma - arepsilon iggl(rac{\partial G}{\partial X_{0,m}}(0,0,0) iggr) > 0,$$

then by the implicit function theorem we can prove that (3.10) has a unique holomorphic solution $Z(\rho)$ in a neighborhood of $\rho = 0 \in \mathbb{C}$ with Z(0) = 0; moreover we can prove that $W_{\varepsilon}(\rho) \ll Z(\rho)$ holds. This complete the proof of Lemma 5.

Thus, the proof of Theorem 2 is completed.

§4. A Generalization

Let us consider the following two examples:

(4.1)
$$\left(t\frac{\partial}{\partial t} + x\frac{\partial}{\partial x}\right) \left(t\frac{\partial}{\partial t} + 2x\frac{\partial}{\partial x} + 1\right) u = G\left(t, x, u, t\frac{\partial u}{\partial t}, \frac{\partial u}{\partial x}, t\frac{\partial^2 u}{\partial t\partial x}, \frac{\partial^2 u}{\partial x^2}\right)$$

(4.2)
$$\left(t\frac{\partial}{\partial t}\right)\left(t\frac{\partial}{\partial t}+x\frac{\partial}{\partial x}+1\right)u=G\left(t,x,u,t\frac{\partial u}{\partial t},\frac{\partial u}{\partial x},t\frac{\partial^2 u}{\partial t\partial x}\right),$$

where G(t, x, X) with $X = (X_0, X_1, ..., X_4)$ or $X = (X_0, X_1, ..., X_3)$ is a holomorphic function defined in a neighborhood of (t, x, X) = (0, 0, 0) satisfying $G(0, x, 0) \equiv 0$ and $(\partial G/\partial X)(0, x, 0) \equiv (0, ..., 0)$ near x = 0.

We have:

(1) By Theorem 2 we see that (4.1) has a unique holomorphic solution u(t, x) in a neighborhood of $(0, 0) \in C_t \times C_x$ with $u(0, x) \equiv 0$.

(2) The equation (4.2) does not satisfy the condition (3.2) and so we cannot apply Theorem 2 to (4.2). Though, by a calculation we can see that

(4.2) has also a unique holomorphic solution u(t, x) in a neighborhood of $(0,0) \in C_t \times C_\lambda$ with $u(0, x) \equiv 0$.

Being motivated by this, let us give here a slight generalization of Theorem 2 so that we can apply our result to the equation (4.2).

Let $m \in N$, let \mathcal{M} be a subset of $\{(j, \alpha) \in \mathbb{Z}_+ \times \mathbb{Z}_+; j + \alpha \leq m, j < m\}$, and denote

$$Z = \{Z_{J,\alpha}\}_{(J,\alpha) \in \mathscr{M}}, \qquad Z_{J,\alpha} \in C.$$

Let us consider

(4.3)
$$\left(t\frac{\partial}{\partial t}\right)^m u = F\left(t, x, \left\{\left(t\frac{\partial}{\partial t}\right)^J \left(\frac{\partial}{\partial x}\right)^{\alpha} u\right\}_{(J,\alpha) \in \mathscr{H}}\right).$$

This equation is a particular case of equations of type (E_m) and so the assumptions (H_m-1) , (H_m-2) and (H_m-3) make sense. We set

$$egin{aligned} L(\lambda,
ho) &= \lambda^m - \sum_{(J,lpha) \in \ \mathscr{M}} c_{J,lpha}(0) \lambda^J
ho(
ho-1) \cdots (
ho-lpha+1), \ \phi(k,l) &= \max_{(J,lpha) \in \ \mathscr{M}} ((k+1)^J (l+1)^lpha). \end{aligned}$$

Then, by the same argument as in section 3 we obtain

Theorem 3. Assume (H_m-1) , (H_m-2) and (H_m-3) . Then, if

(4.4) $|L(k,l)| \ge \sigma \phi(k,l)$ for any $(k,l) \in N \times \mathbb{Z}_+$

holds for some $\sigma > 0$, the equation (4.3) has a unique holomorphic solution u(t, x)in a neighborhood of $(0,0) \in C_t \times C_\lambda$ satisfying $u(0,x) \equiv 0$ near x = 0.

Note that in case (4.2) we have $\mathcal{M} = \{(0,0), (1,0), (0,1), (1,1)\}$ and $L(\lambda, \rho) = \lambda(\lambda + \rho + 1)$ and therefore we can apply Theorem 3 to (4.2).

Acknowledgement

The work was supported by the NNSFC and the Sophia Lecturing-Research Grants of Sophia University, Tokyo.

The research was started while CH was a visiting professor in Department of Mathematics of Sophia University (Tokyo) during April–July 1997; he would like to thank the Institute for the invitation and its hospitality.

References

 Baouendi, M. S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455–475.

- [2] Chen, H. and Tahara, H., On the holomorphic solution of non-linear totally characteristic equations, *Preprint 98/20, Institut für Mathematik, Potsdam,* 1998.
- [3] Gérard, R. and Tahara, H., Holomorphic and singular solutions of nonlinear singular first order partial differential equations, *Publ. RIMS, Kyoto Univ.*, **26** (1990), 979–1000.
- [4] —, Solutions holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. RIMS, Kyoto Univ., 29 (1993), 121–151.
- [5] —, Singular nonlinear partial differential equations, Vieweg, 1996.
- [6] ——, Holomorphic and singular solutions of non-linear singular partial differential equations, II. "Structure of differential equations, Katata/Kyoto, 1995" (edited by Morimoto-Kawai), 135–150, World Scientific, 1996.
- [7] Hörmander, L., The analysis of linear partial differential operators III, Springer, 1985.
- [8] Tahara, H., Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math., 5 (1979), 245–347.
- [9] Yamane, H., Nonlinear singular first order partial differential equations whose characteristic exponent takes a positive integer value, *Publ. RIMS*, *Kyoto Univ.*, 33 (1997), 801–811.