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Coincidence Points for Perturbations of
Linear Fredholm Maps of Index Zero

By

Ravi P. AGARWAL* and Donal O'REGAN**

Abstract

Coincidence points for single and set valued maps are discussed in this paper. We show if
F is essential and F^ G then G has a coincidence point.

§1. Introduction

The notion of an essential map was introduced by Granas in [4]. He
showed in [4] that if F is essential and F^G then G is essential. Since the
property of being essential is quite general Granas was only able to show this
homotopy property for particular classes of maps. However from an
application point of view he was asking too much. What one needs usually
in applications is the following question to be answered: if F is essential and
F^G, does G have a fixed (or more generally a coincidence) point? Recall
two maps F:X-*2Y and G:X-+2Y have a coincidence if F(x0)nG(x0)^0 for
some x0eX'9 the point x0 is called a coincidence point. In this paper we
discuss this question in detail. In Section 2 we discuss single valued maps
which satisfy the Monch-Precup condition and in Section 3 multivalued fc-set
contractive maps. Our results extend those in Precup [9] and Volkmann [1 1].

For the remainder of this section we present some concepts which will
be needed in Section 2 and in Section 3. Let (Z,d) be a metric space and let
Oz be the bounded subsets of Z. The Kuratowskii measure of noncompactness
is the map a:Qz-*[0,oo] defined by (here

^(Jn
i=lBi and diam(Bi)<r}.
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Let S be a nonempty subset of Z and suppose G:S-+2Z (here 2Z denotes the
family of nonempty subsets of Z). Then (i). G:S-*2Z is fc-set contractive
(here k>0) if (x,(G(A))<k(x.(A) for all nonempty, bounded sets A of S (here
G(A)=(jxeAG(x))9 and (ii). G:S-*2Z is condensing if G is 1-set contractive and
u(G(A))<a(A) for all bounded sets A of S with a(^)^0.

Let X and £ be Frechet spaces and L:domL^X-+E (doinL is a vector
subspace of 1) is a linear Fredholm map of index zero i.e. L is a linear (not
necessarily continuous) single valued map with ImL closed and dim(ker
L) = codim(ImL)<oo. Let X=X1®X2 and E=El@E2 (topological direct
sums) where Xl=kerL and E2 — ImL. Let P:X-*Xl9 Q:E-^E1 be continuous
linear projections and J:Xl-^-El a linear isomorphism (i.e. a linear homeo-
morphism). Finally ^:X-j>El will be a linear, continuous single valued map
with L + <D: domL-*E an isomorphism; for convenience we say ^eH^X.E^).

§2. Single Valued Maps

Let X and E be Frechet spaces, U an open subset of X, Oe C7 and ®eHL(X, E^
is fixed (here L and £t are as described in Section 1).

Definition 2.1. We let MdU(U9E;L^) denote the set of all continuous
maps F: V-*E which satisfy the Monch-Precup condition (i.e. if C^ U is
countable, W^ker L is compact and C£co({0}u(L + *)~1(^+*)(c))+ W then
C is compact) and with (L — F)(x)^Q for xedUndomL; here 5(7 is the bound-
ary of U in X9 U the closure of U in X and o?(,4) denotes the closed convex
hull of A.

Remark 2.1. If (L + <I>)~1<D(£7) is a bounded set in fcerL then it is well
known [9] (note dim(kerL) <oo) that (L + ty'^^U) is relatively compact, so
as a result in this case we could define the Monch-Precup condition in
Definition 2.1 as: if C^U is countable, W^kerL is compact and C^
~co({Q}v(L + ®)~1F(C))+ W then C is compact. To see why we need only
note that (L + <b)~l®(C)^kerL is relatively compact since (L + O)""1O(t7) is
relatively compact.

Definition 2.20 A map FeMdV(U9E'9L99) is essential if for every
(U,E\L,<$) with G\dU = F\8U we have that there exists xeUndomL with

= G(x).

Theorem 2.1. Let X and E be Frechet spaces, U an open subset of X, Oe U
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and <beHL(X,E^. Suppose FeMdlJ(U,E\L,<$) is an essential map and H:Ux
[0,1] -+E a continuous map with the following properties:

(2.1) H(x,Q)=F(x)for xzU

(2.2) Lx/Ht(x) for any xedUn domL and fe(0,1] (here Ht(x) = H(x, t))

and

for any continuous /r. C7-»[0,l] with n(dU) = Q the map
Rfl:U-*E defined by RfJL(x) = H(x,iJl(x)) satisfies the Monch-Precup

(2.3) condition (i.e. if C^U is countable, W^kerL is compact and
7^co({0}u(L + <l>)~1(jRM + <I>)(C))+ W then C is compact).

Then there exists xeUn>domL with Lx = Hi(x).

Remark 2.2. If (L + O)"1^?/) is a bounded set in X we could define the
Monch-Precup condition in (2.3) as: if C^ £7 is countable, W^kerL is compact
and Cc^OjutL + Or^CO+JF then C is compact.

Proof. Let

B={xeUndomL:Lx = Ht(x) for some re[0, 1]}.

It is immediate that

B={xeU:x = (L + ®rl(Ht + ®) (*) for some re[0,l]}.

When r = 0, H0 = F and since FeMai7(£7,£;L,O) is essential there exists
with Lx = F(x). Thus B^ty. The continuity of H, <D and

guarantees that B is closed. In addition (2.2) (together with
FeM5L7(f7,Is;L,<I>)) implies BndU=®. Thus there exists a continuous #:£/-»
[0,1] with /i(5L/) = 0 and p(B) = l. Define a map R:U-*E by

Now ^ is continuous and satisfies the Monch-Precup condition (see
(2.3)). Moreover for xedUndomL,

so ReMdU(U,E;L,Q>). Also notice R\dU = HQ\dU = F\8U and since FeMai7

(U,E\L,<$) is essential there exists xeUr\domL with (L — jR)(x) = 0 (i.e.
(L-Hfl(x)(x) = 0). Thus xe.8 and so /<x)=l. Consequently (L-^1)W = ° and
we are finished (since (2.2) implies xeUr\domL). Q
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We now use Theorem 2.1 to obtain a nonlinear alternative of Leray-
Schauder type for Monch-Precup maps. To prove our result we need
the following well known result from the literature [2]. For the remainder
of this section X and E will be Banach spaces.

Theorem 2*2* Let X be a Banach space, D a closed, convex set of X with
OeD. Suppose J0:D-*D is a continuous map which satisfies MoncKs condition
(i.e. if C^U is countable and C^co({0}u/0(C)) then C is compact). Then J0

has a fixed point in D.

Theorem 2.3. Let X and E be Banach spaces, U an open subset of X,
QeUndomL and 9eHL(X,E^ is such that (L + 9)~19(U) is a bounded set in
kerL. Suppose G: U-*E is a continuous map which satisfies the Monch-Precup
condition (i.e. if C^U is countable, W^kerL is compact and C^
v(L + ®)~lG(C)) + W then C is compact) and assume

(2.4) Lx^tG(x) + (l -t)(-®(x)) for xeBUndomL and /e(0, 1)

is satisfied. Then there exists xeUnidomL with Lx = G(x).

Proof. We assume Lx^G(x) for xedUndomL (otherwise we are
finished). Then

(2.5) Lx / tG(x) 4- (1 - 1)( - O(jc)) for xeBUndomL and te [0, 1].

(Note if t = 0 and if LxQ= — *(x0) for x0edUr\domL, then (L + O)(x0) = 0 so
x0 = 0, which is a contradiction since Oe C/n dom L). Let H(x, t) = tG(x) + (l — t)
(-O(x)) for (jc, t)e Ux [0, 1] and F[x)= -®(x) for XG U. Notice (2.1) and (2.2)
hold. To see (2.3) let C^U be countable and W^kerL compact with

(2.6) C<=:cd({Q}v(L + ®)-l(Rll + ®)(C))+ W.

Notice for xeC, (jRM + *)(x) = /i(x)[G(x) + O(x)] and as a result

In addition since
u{0}) and co((L + ^)~1(G + $)(C)u{0}) is convex we have

^co(co((L + ̂ )-i(G + ̂ )(C)u{Q}))+ W

W.

Now since G satisfies the Monch-Precup condition we have that C is
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compact. Thus (2.3) holds. We can apply Theorem 2.1 if we show
FeMdU(U,E;L,®) is essential. First notice FeMdU(U,E'9L,(i}) [It is immediate
that F satisfies the Monch-Precup condition in Remark 2.1. Also note if
(L — F) (x0) = 0 for some x0edUn dom L then x0 = 0, a contradiction] . To show
Fis essential let 0eMai/(C7,£;L,<P) with 0\eu=F\dU= —9\du. We must show that
there exists xeUndomL with Lx = 0(x). Let D = co((L + ®ri(6 + ®)(U)) and
let J0:D-*D be defined by

Hfl + *)(*), xeU

Note OeD and J0:D-+D is continuous. We now show /0 satisfies Monch's
condition. To see this let C c D be countable with C c co({Q} u/0(C)). Then

(2.7) Cc^{0}u(L + *)~H0 + *)(tfnC)).

Note as well that (L + ^)~1O(t7n C)^kerL is relatively compact and this
together with (2.7) gives

where W^kerLis a compact set. Since 0 satisfies the Monch-Precup condition
we have Cn U compact. Thus since (L + <£) ~ i 6 is continuous, (L + €>) ~ x 0(Cn £/)
is compact and Mazur's Theorem implies co({0}u(L + <X>)~10(CnO))+ W is
compact. Now since Ccc^({0}u(L + $)~10(£7nC))+ PF we have that C is
compact. Consequently J0:D-*D is continuous and satisfies Monch's
condition. Theorem 2.2 implies that there exists xeD with J0(x) = x. Now if
x$U, we have 0 = /0(x) = x, which is a contradiction since Get/. Thus xeU so
jc = /0(x) = (L + <D)~1(0 + €>)(jc) i.e. xeUndomL and Zjc = 0(;c). Hence F is
essential and we may apply Theorem 2.1 to deduce the result. D

Theorem 2.3 gives us a nice criteria for recognizing essential maps (see
Remark 2.4.). Our next result is particularly useful in applications.

Theorem 2.4. Let X and E be Banach spaces. U an open subset of X and
QeUndomL. Let P9 Q, J be as in Section 1 with $> = JP and assume
(L + JP)~iJP(U) is a bounded set in her L. Suppose G:U-*E is a continuous
map with (L + JP)'1^: U->Xk-set contractive (hereO<k<l) and(L + JP}~lG(U)
a bounded set in X. Also assume

(2.8) QGeMdU(U,E;L,JP) is an essential map
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(2.9) QG(x) /O for all xGdUnXl

and

(2.10) Lx / tG(x) for xEdUn(dom L\X,) and f e(0, 1)

are satisfied. Then there exists xeUndomL with Lx = G(x).

Proof. Assume Lx^G(x) for xedUndomL. Let H(x,t) = tG(x) + (l-t)
QG(x). To see (2.2) notice if Lx = Ht(x) for some xedUn domL&nd Je(0, 1] then

(2.11) Lx = tG(x) + (l-t)QG(x).

It is easy to see that (2.11) is equivalent to

(2.12) Lx = t(I-Q)G(x) and QG(x)= 0.

This together with (2.9) gives Lx = tG(x) for xedU^domLXX^ a contradiction.
As a result (2.2) holds. To see (2.3) let C^U be countable and W^kerL
compact with

(2.13) Cc

here €>=/P. Now since

we have

(2.14)

Now (2.13), (2.14), (L + O)"1^^-^^ fc-set contractive, (L + JP)~1QG =
P(L + JP)~1G with P having finite dimensional range (so P is completely
continuous), immediately guarantees that C is compact. Thus (2.3) holds so
we may apply Theorem 2.1 to deduce the result. D

Remark 2.3. It is also easy to establish, under extra assumptions, the
analogue of Theorem 2.4 with general $ and (L + ®)~1G being fc-set contractive
replaced by the more general assumption that G satisfies the Monch-Precup
condition. We leave the details to the reader.

Remark 2.4. It is reasonably easy to put conditions on G in Theorem
2.4 to guarantee that (2.8) is satisfied. For example if
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(2.15) <QG(x)9 /(x)><0 for

then (2.8) is satisfied; here <.,.> denotes the euclidean inner product on El

(note dimE^ao). To see this let 9eMdU(U,E;L,JP) with 0\du = QG\dU. We
will now use Theorem 2.3 to show that there exists xeUndomL with
Lx = 9(x). We need only check (2.4). Suppose there exists xedUn domL and
re(0, 1) with

Then

It is easy to see that

Lx = Q (i.e. xeXi so P(x) = x) and

Thus xedUnXi and

This contradicts (2.15), so (2.4) holds. Theorem 2.3 guarantees that there exists
xeUndomL with Lx = 9(x), so (2.8) holds.

As an application of the results above consider the system of « first order
differential equations

Let CP[0,l] = {MeC[0,l]:M(0) = w(l)}, C0 = {weC[0,l]:w(0) = 0}, and let
C0 be given by

) = u(t)-u(Q).

let a denote the cc
immediate that
For each 0eR" let a denote the constant function in CP with value a. It is

and ImL = {veC0: v(l) = 0}.

Since each veC0 can be expressed as v(t) = tv(l) + [v(i) — tv(lj] we have the direct
sum decomposition CQ=(tW)@ImL. Thus L is a Fredholm map of index
zero and we may set Pu = u(l), (Qv) (t) = tv(l), Ja = ta and 3>=JP.

We will assume/:[0,1] x R"->RW is continuous. Let G:CP-*C0 be defined
by
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= f fat
Jo

(2.17) Gu(t)=\ f(s,u(s))ds.
Jo

It is well known that G:CF-»C0 Is continuous and completely continuous.

Theorem 2.6. Let f : [0, l]xR"-»RM be continuous. Suppose there is a

constant R>0 with \u\0 = mptelQti]\u(t)\<R for any solution weC^O, 1] to

y = Wf,y) for

X0) =

/or 0</1<1. Also assume

(2.19) /or a// aeR" with \a\ = R we have f(s9a)ds¥=Q
Jo

and

(2.20) /or all aeW1 with \a\ = R we have O, /(^5a
Jo

. Then there exists a solution weC^O,!] to (2.16) wWj |w|

Proof. Let

and G:CP-»C0 be as in (2.17). Notice (see the definition of kerL) we have
dUnkerL = {a:aedU}. If (2.9) fails then QG(a) = Q for some aedUnXi i.e.
|S| = jR and

QG[a) = tl f(s,a)ds = Q for all te [0,1].
Jo

Consequently Ji/(s,a)& = 0 for some aeW with |a| = R. This contradicts (2.19),
so (2.9) holds. If (2.15) fails then <fiG(a), /(fl)>>0 for some aedUnX, i.e.

|5|0 = ̂  and

t J(s,a)ds,a >0 for all
\Jo /

Consequently <^lj[s,a)ds, 0>>0 for some aeRn with \a\ = R. This contradicts
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(2.20), so (2.15) holds. In addition since |w|0<^ for any solution u to (2.18)A

we have that (2.10) holds. Our result now follows from Theorem 2.4 with
Remark 2.4. D

Remark 2.5. Notice (2.20) can be replaced by any condition that will
guarantee for us that QG^MdU(U,E\L,JP) is an essential map.

Remark 2.6. We let M*8V(U,EiL,®) denote the set of all continuous maps
F: U-+E which satisfy the Mdnch-Precup* condition (i.e. if C^ £7 is countable,
W^kerL is compact and C<^w({$}v(L + ®)~lF(C})+ W then C is compact)
and with (L — F)(x)^0 for xedUndomL. There are obvious analogues of
Theorem 2.1, Theorem 2.3 and Theorem 2.4 in this case (we leave the details
to the reader). It is of interest to note that "(L + <!>)" 1O(0) is a bounded set in
ker L" is not needed in the analogue of Theorem 2.4 (however it is needed in
the analogue of Theorem 2.3).

§3. Set Valued Maps

Let X and E be Frechet spaces, U an open subset of X, Oe U and 9eHL(X, EJ
is fixed (here L and El are as described in Section 1).

Definition 3.1. A multivalued map F: U->2E (here 2E denotes the family
of nonempty subsets of E) is said to be (L,<D) upper semicontinuous if
(L + ®)~iF:U-+CK(X) is an upper semicontinuous (u.s.c.) map; here CK(X)
denotes the family of nonempty, compact, convex subsets of X.

Remark 3.1. It is possible to take (L + 9)~1F:U-+AC(X) instead of
(L + Q>)~1F:U-*CK(X) in the above definition and throughout this section (for
example in Theorem 3.1); here AC(X) denotes the family of nonempty, compact,
acyclic subsets of X. Recall a subset A of X is acyclic if Hm(A) = 60mZ, where
{Hm}meN denotes the Cech cohomology functor with integer coefficients.

Definition 3.2. A multivalued map F:U-+2E is said to be (L,d>) fc-set
contractive if (L + 9)~1F:0-*CK(X) is a fc-set contractive map.

Definition 3.3. We let MM(U,E;L,®) denote the set of (L,$) u.s.c., fc-set
contractive (here 0 < k < 1) maps F: U-+2E with (L + ®) " lf( U) a bounded set in X.

Remark 3.2. It is possible to discuss (L,3>) condensing maps instead of
(L,®) fc-set contractive maps in Definition 3.3 (and throughout this section).
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Remark 3.3. One could also discuss in this section (for example in Theorem
3.1) (L,<£) admissible maps [6], (L,®) closed maps [7], and (L,®) approximable
maps [7,8].

Definition 3.4. We let MM8U( U, E\ L, d>) denote the maps FeMM( C7, E\ L, <U)
with Lx$F(x) for xedUndomL.

Definition 3.5. A map FeMM8U(U,E;L,®>) is essential if for every
GeMMai7(t7, E;L9<&) with G\8U = f]8U we have that there exists XE Un domLwith
LxeG(x).

Theorem 3.1. Let X and E be Frechet spaces, U an open subset of X,
Oe£7 and ^eH^X.E^. Suppose FtMM8lJ(U,E\L,®) is an essential map and
H: Ux [0, l]-»Cc(jE) (here Cc(JE) denotes the family of nonempty, closed subsets
of E) is a (L,<P) u.s.c. map (i.e. (L + ®)~lH:Ux[Q,Y]-+Cc(E) is u.s.c) with the
following properties:

(3.1) H(x,Q) =F(x) for xeU

(3.2) Lx$Ht(x)for any xedUndomL and re(0,l] (here Ht(x)=H(x,t))

and

( for any continuous \JL : U-» [0, 1] with fi(d U) = Qthe map
1 jR^:E7-»C4E) defined by Rfl(x) = H(x9^(x)) is in MM(U,E;L9®).

Then there exists xeUndomL with LxeH^x).

Proof. Let

B={xeUndomL:LxeHt(x) for some

^r some

As in Theorem 2.1, B^$. Moreover the continuity of <1>, (L-f €>)-1 and the
(L,®) upper semicontinuity of H guarantees [1] that B is closed. Then there
exists a continuous ju:£7-»[0, 1] with n(dU) = Q and fj(B)=l. Define a map
R:U-*Cc(E) by

By (3.3) we have ReMM(U,E;L,®). In addition for xedUndomL,
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R(x) = H0(x)=F(x)

and so ReMM8U(U9E',L9^). Also since R\dU = H0\dU = F\gu and FeMM8U

(U,E;L,3>) is essential there exists xeUndomL with LxeR(x) (i.e. LxeH^x)).
Thus xeB and so JLL(X)=!. Consequently LxeH^x). D

Next we recall a result [3] from the literature.

Theorem 3.2. Let X be a Frechet space and let D be a nonempty, closed,
convex subset of X. Suppose J0:D-+CK(D) is a U.S.G., k-set contractive (here
0<k<l) map with J0(D) a bounded set in D. Then J0 has a fixed point in D.

Our next theorem extends a result of Volkmann [11 pp. 240].

Theorem 3.3. Let X and E be Frechet spaces, U an open subset of X,
QeUndomL and 0>€HL(X9E^. Suppose G:U-+2E is a (L,$) U.S.G., k-set
contractive (here Q<k<l) map with (L + O)"1^^/) a bounded set in ker L. In
addition assume

(3.4) (L + $)~1<I>(£7) is a bounded set in X

and

(3.5) Lx$tG(x) + (l -t)(-®(x)) for xedt/n domL and fe(0, 1)

are satisfied . Then there exists xeUndomL with LxeG(x).

Proof. We assume Lx£G(x) for xedUndomL (otherwise we are
finished). Then

(3.6) Lx$tG(x) + (l-t)(-®(x)) for xedUndomL and

Let H(x,t) = tG(x)+(l-t)(-®(x)) for (x,t)eUx [0,1] and F(x)=-®(x) for
xe U. It is clear that H: U x [0, 1] -> Cc(E) is a (L, <D) u.s.c. map. Also (3.1) and
(3.2) hold. To see that (3.3) is true notice if W^ U then

We now have immediately that RlleMM(U,E;L,<^) and so (3.3) holds. We can
apply Theorem 3.1 if we show FeMMdV(U,E\L,^) is essential. Notice it is
immediate from (3.4) that FeMM8U(U,E;L,$) [Note if LxQ€F(xQ) for some
xQE8UndomL then A:0 = 0, a contradiction]. To show F is essential let
0eMMau(£7,£;L,<D) with 0\dU=F\dU= -®\du. Let D =



736 RAVI P. AGARWAL AND DONAL O'REGAN

and let J0:D^CK(D) be defined by

Note OeD and it is easy to see that /0 is a u.s.c., fc-set contractive map (note
(L + O)~1O(Q) is relatively compact for any bounded subset Q, of X) with J0(D)
a bounded set in D. Theorem 3.2 implies that there exists xeD with
xeJ0(x). Now if x^U, we have ;ce/0(x) = {0}, a contradiction. Thus xeU so
jce/0(x) = (L + *)~1(0 + <D) (*) i-e- xeUndom L and Lxe6(x). Hence Fis essential
and we may apply Theorem 3.1 to deduce the result. D

Remark 3.4. There is an obvious analogue of Theorem 2.4 in this
setting. We leave the details to the reader. Also it is possible to apply our
results to differential inclusions following the ideas in Section 2.
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