Publ. RIMS, Kyoto Univ.
35 (1999), 769-794

Sierpinski Gasket as a Martin Boundary II
(The Intrinsic Metric)

By

Manfred DeNkErR* and Hiroshi Sato**t

Abstract

It is shown in [DS] that the Sierpifiski gasket <RY can be represented as the
Martin boundary of a certain Markov chain and hence carries a canonical metric
py induced by the embedding into an associated Martin space M. It is a natural
question to compare this metric p, with the Euclidean metricc. We show first that
the harmonic measure coincides with the normalized H=(log(N + 1)/log2)-dimensional Hausdorff
measure with respect to the Euclidean metric. Secondly, we define an intrinsic metric p which
is Lipschitz equivalent to p,, and then show that p is not Lipschitz equivalent to the Euclidean
metric, but the Hausdorff dimension remains unchanged and the Hausdorff measure in p is
infinite. Finally, using the metric p, we prove that the harmonic extension of a continuous
boundary function converges to the boundary value at every boundary point.

§1. Imtroduction

The Sierpinski gasket in R¥N~! (see Sierpinski’s work (1915) in [S] and
Mandelbrot [M]) is a fundamental example of fractal sets. Its Hausdorff
loghV
log2
Hausdorff measure u is positive and finite ((Ma] and [F]). The harmonic
analysis of the Sierpinski gasket has been investigated by many authors. For
example, Barlow and Perking [BP] defined a Brownian motion on the Sierpinski
gasket and Kigami [K] established a harmonic analysis from an analytical
viewpoint. On the other hand, the authors [DS] represented the Sierpinski

dimension equals H= in the Euclidean metric || - | and the H-dimensional
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gasket as the Martin boundary of a certain Markov chain. This note is a
continuation of the investigations in [DS] intending to establish a harmonic
analysis of the Sierpinski gasket from this point of view.

It is known (see [DS]) that the Sierpinski gasket (&, |) in RV~! is
homeomorphic to the Martin boundary (M, p,) of some Markov chain
X={X,}, where p,; denotes the Martin metric (see (2) below). The state space
# is the word space over the alphabet o/ ={1,---,N}, and the associated
Markov operator is denoted by P. Dynkin’s theorem says that every bounded
harmonic function f for P has an integral representation

Jw)= f k(w, O)$(S)u1 (<)
&

for a function ¢eL (), where y, is the harmonic measure on & and k=k(w, £)
(we#', £€E) denotes the Martin kernel extended to &. Our first result shows
that the harmonic measure u, equals the normalized canonical Hausdorff
measure on <.

The transition probabilities are defined by

1

— if w£w*, aed
2N
— if w=w", aeo
N

for some involution # and where w=a'---a’, (1<a;<N,[;>1,1<i<5s) is a finite
word over the alphabet o/ (see Section 2 below for details). This Markov
chain has the state space #  consisting of all finite words over &/ and has
long range dependence with respect to the natural metric on the tree #". It
follows that M=%"U% is a model of the Martin space of X equipped with
the coarsest topology for which the functions &3&—k(w,f) (we#) are
continuous. This topology is determined by the extension of the metric

© 1
1 w,v)=|274™ 274 4 sup |k(u, w)—k(u,v)|
0y p(w,v)=| | ”go Ny wl; Ik( (w,v)

d(u)=n

to M, where d(W) denotes the length of the word we#". It should be noted
that (1) is Lipschitz equivalent to the Martin metric
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@ pu(W,v)=[274M 274 Z Ik, w — k(u, v)|

(2N>"<">

as can be easily deduced from Theorem 3.4 in [DS] (see also Lemma 2.1
below). (2) is the standard metric for the Martin space introduced by Dynkin
in [Dy]. Hence (1) provides the canonical metric structure on M, and therefore
we call p the intrinsic metric. Likewise we call p|, . o, the restriction of p to
& x &, the intrinsic metric on the Sierpinski gasket and denote it also by p.

Let = denote the space of one-sided infinite sequences x=(x, )", and
define an equivalence relation x~y iff x=yp or

dn>1 such that x,=y, Vk<n and Xx,=y, 11, Vp=X,1x (Vk=1).

It is known that & is bi-Lipschitz equivalent to the quotient space Z/~,
where & carries the Euclidean metric ||E—7n| (£,1e&) and E/~ a metric
derived from the word space metric Z,,,27"1;, ., (for x=(x,), y=(y,)eZ).
Our second result is to show that (see Section 3)

_p(f,n)_*lli nlllog,———

1 1
G) 3l llogz ||€— i

where &,nes, and where A is some constant depending only on N. A
particular consequence of (3) is that the intrinsic metric p is not equivalent
to the Euclidean metric on &. It also follows from this inequality that the
Hausdorff dimension H under the intrinsic metric does not change and that
the H-dimensional Hausdorff measure with respect to p is infinite.

A harmonic function 4 on #  is an eigenfunction for the eigenvalue 1 of
the Markov operator P of X. It is known that the algebra of bounded
harmonic functions is isomorphic to L_(u,). In Section 4 we estimate the
modulus of continuity for harmonic functions in terms of its representing
bounded measurable function on &. It turns out that the modulus of continuity
(over cylinder sets) of harmonic functions 4 is uniformly bounded by the
variation of its representing function in the space C(¥) of continuous functions
on & over cylinders. Another consequence of (3) is that uniformly continuous
functions in the p-metric are uniformly continuous in the word space metric
and vice versa. Hence we can define the space # of uniformly continuous
harmonic functions independently of the metric, and it follows that the
algebra J# is isomorphic to C(¥).
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§2. Harmonic Measure on the Sierpifiski Gasket

Let A=A(py,---,py) denote the non-degenerate regular simplex generated

by N points p,, ---,pye R "1 (N>2). For every fixed ipe{1, ---, N}, the midpoints

P tp;
pl,!o 2

, j=1,--,N) define a corresponding simplex

A(ig)= A(pl,ioa 5 DNio) © A

and an affine map

fio:A(pl’ : "’PN) —)A(pl,ios' "’pN,io)

satisfying f; () =p; ;. We denote the diameter of a subset B< R"~! by | B| and,
for simplicity, assume |[A|=1. It follows from [Ha] and [Hu] that the iterated
function system {f;; 1<i<N} has a unique nonempty compact set ¥, called
the Sirpinski gasket, satisfying

N
7=U ().

Let o/ ={1,2,3,---, N} be the alphabet of N letters (N>2) and
W ={ww,ws--w,; e, n>0}

be the space of finite words, where we also allow n=0 to denote the empty
word 0. If v=v,0,0;---v, and w=w,w,w;---w,. are two words their product
is defined by

Yw= 010203 .- -v,,wl WZWS' . ‘Wn',

and the length of v is denoted by d(v)=n. Let #, denote the set of words
of length n(n>0), #, =), #, and Z the set of all o/-valued sequences. We
define d(x)= oo for xeZE.

If a finite word w includes at least two different letters, then w has a
representation w=uab*, where ue ¥, a,beo/, (a#b), and k>1, and we define
the conjugate of w by w*=uba*. If w contains at most one letter, then w=a*
for aeo/ and k>0 (where a®=0) and we define the conjugate of w to be
w*=a*=w. Let #™ denote the set of all finite words w for which w#w".

Similarly we define the conjugate of xeZ by
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X' =

. {xl -x,ba®,  if3a,b(a+#b)eo such that x =x,---x,ab*
X, otherwise,

where x,---x,ba® denotes x,---x,baaa---. The conjugation defines an equiva-
lence relation ~ on E by

X~y = x=y or y*.

It is known that the Sierpinski gasket % can be identified with the quotient
space E/~ and in the sequel we do not distinguish between them. Let
IT: E—Z/ ~ denote the canonical projection. We extend IT to a map defined
on # UZ taking the identity operator on #” and define I1,: # UE—#",neN by

X1Xy Xy €W s d(x)>n,
X, dx)<n.

IL,(x):= {

fOI' X=XIX2x3"'EWUE.

Let v be the Bernoulli measure on ZE, that is, the product measure v=TII12,v,,
where each v, k>1, is the uniform probability measure on . It is known
that u=voI1"! is the normalized Hausdorff measure on .

In [DS] we considered the Markov chain (X,),., with state space #~
defined by the following transition probabilities p(v,w), v,we# "

(@ For v=a* where aes/ and k>0

1 .
. -, if Ice.o/ such that w=a*c
pla‘,w)y=< N
0, otherwise.

(b) For v=uab* where ue#’, a,best, (a#b), and k>1

1
—, if 3ce o/ such that w=vc or v’c
pluab®, w)=< 2N
0, otherwise.

The associated Markov operator P is defined by

Pfv)= 3, p(v,w)f(w),

weW

and a function f: # >R is called harmonic if Pf=f. Every harmonic function
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h satisfies
2.1) h(v)=h(v“) Jor veW'.

We call a function f on #" symmetric if f satisfies (2.1).
The n-step transition probabilities are given by

pO,v,w)=9,

pnv,w)=Y pWv,zpn—1,z,w), n>1, v,we¥,

zeW

the Green function g(v,w) by
gv, W)=Y pmv,w), V,We¥ .
n=0

and the Martin kernel by

g(v, w)

, V,WEW .
90, w

k(v,w)=

It is shown in [DS] that g(@,w)=N"9">0,

g(v, W) =p(d(w)—d(v), v, W)
and hence
(2.2) k(v, w) = N*™p(d(w) —d(v), v, w)
for v,we# such that d(v)<d(w).

For a finite word w=w,w,w;---w,e#, define

w_ _{ WIWZW3"‘W'I__1, ifnZZ,
R ifn=1,
and define the cylinder set {w) in # UE by
gwy={u=(u)e# UE; du)>dw) and u,=w,, V1<k<dWw)}.

We also use the notations (w)={w)n#, and [w]=(wW)nE.
An explicit formula of the Martin kernel is derived in [DS], Theorem 3.4.
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Lemma 2.1. Let k(v,w)>0. Then either v=w and k(v,w)=N'", or
dv)+ 1<d(w) and w has the form

W=V Wwow, Wy w,e or (V) wow w,-w,c.

In case W=v"wow w,---w,c we have

2.3) kv, W)=k, wy =2 N”“’( 5 Lo | L) )
4 Ko 2¢ 2"

where 1(v) denotes the last letter of v, and 0(v) is defined by

. 3
6(‘!):{ 1’ lf v#Y >
2, if v=v.

In view of this, we define a metric p,, on # by

pulV, W) =279 =27+ ¥ (2N)~U®) k(z, V)~ k(z, W),

zeW

for v,we#" (cf. the introduction). Let M=% be the p,-completion of
#. Then (M,p,) is a compact metric space and the functions wi—k(v, w),
(ve#"), are extended to M continuously. These extensions are also denoted
by k(v,&), Ee# ,vew. The boundary M=% \# is called the Martin
boundary and can be identified with the Sierpinski gasket & (see [DS]). In
fact, combined with [Dy] this result leads to

Theorem 2.2. [DS]

(1) The function v—kdv)=k(v,&) is harmonic in v for every (¥

(2) & is the space of exits as defined in [Dy].

(3) For every harmonic function h>0 there exists a unique finite measure p,
on & such that

h(V)=J k(v, O)un(de).
4

(4) For every bounded harmonic function h, there exists a unique bounded
measurable function ¢ on & such that
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24 h(V)=f k(v, &) o(O)u4(d?),
4

lim AW(X)=¢p(X,) P,—as., Vve¥,

n—w

AX,, such that h(v)=E,[p(X,)], Vve¥

(5) Conversely for every bounded measurable function ¢ on &
(2.3) h¢(V)=J kv, Oo(Ops(dl), vew
i%

defines a harmonic function on W'

We shall denote the map sending a bounded measurable function ¢ on
& to h, by 4, that is,

H(@)=hy,
and we call h, the harmonic extension of ¢.

Theorem 2.3. The harmonic measure p, on & in Theorem 2.2, coincides
with the canonical normalized Hausdorff measure p=voI1~'.

Proof. By Theorem 2.2, the harmonic measure y, is uniquely determine by

1=j k(v,u,(dE), Vvew .
&
On the other hand for every ve#” we have

k(v,TI(x))=lim k(v,I1,(x)) and sup A(v,TI,(x))< NV,

n>1,xeE

Therefore, by the bounded convergence theorem, (2.2) and the definition of v,
for every ve#” we have

r

k(v, EvoT1™1(d8)

ﬂ/~
r

=| kv, Ix)v(dx)

r

=| limk, IL,&)vdx)
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=1imj k(v, [L(x))v(dx)
" Jg

=lim ) kv, w)v([w])

P weWn

=lim ) N"p(n—d(v),v,w) 1—\1,"—=1.

" weW,

Remark 2.4. The measure u is full on &, that is, every non-empty open
subset of & has a positive measure.

Proof. Since v is full on E with respect to the product topology, and
since the map II is surjectiverand continuous, it is evident that u=voII~! is
also full.

§3. The Intrinsic Metric

There is a natural metric on the Sierpinski gasket induced by the Euclidean
norm ||E—7|, & ne&. In [DS] we defined another metric d which is Lipschitz
equivalent to ||é—nl|, but only defined on S (=dM =% \#") and not on the
word space #°. In this section, using the Martin kernel, we define a new
metric p on #,UY. The metric p is Lipschitz equivalent to the metric p,,
of the Martin space M (by Lemma 2.1) and, when restricted to &, is ‘almost’
Lipschitz equivalent to ||€—7].

This metric p on # V¥ is defined by

|
(&, ) =[2~4® =40 4 21 Ny sg}/) |k(u, &) —k(ua, 1),

for &, neW v, where d(€)= + oo for ée, p(&,0)=p@,&)=1 and p(0,0)=0.

p is Lipschitz equivalent to p,. In fact, by definition, it is evident that
p<py.- On the other hand by Lemma 2.1 k(u,w) does not vanish only if
u=1Il;, (W) a or u=(l'[,,(“)(w)“)_a for some ae/ so that

> 1k(u, w)—k(u,v)| <4N sup |k(u, w)—k(u,v)|,

ueWn ueWn

which implies p,; <4Np.
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Let x,ye# UE, define o(x,y) by

min{k>1; [I(x) #II(y)}, ifx#y

ot(X,Y):={ +oo, ifx:y’

and f(x,y) by

ax,y), if IL)E{TL(Y), IL(y)*} for Vk>a(x,y),
min{/>a(x, y); TT(x) # I1(y), [1(y)*}

if TI(x)e{I1(y), I1(y)*} for some k> a(x,y),
+00, if x=y ory*

Bx,y) =

Note that a(x,y)=d(x)+1 if y=xz (xe#",ze #,. UE), and that I1,(x)=T1(y) for
k<a(x,y). Obviously we have a(x,y)<f(x,y).

First we prove the following lemma.
1
Lemma 3.1. 5-2‘”("’”3 p(TI(x), II(y)) for every x,yeW, UE.

Proof. Let x,ye#,UZE. Then if y=x or x*, we have B(x,y)= oo so that
the assertion is trivial.

Next, consider the case where y#x,x*,ye#, and x is an extension of
y, ie. x has the form x=yx, X, Xn+2'» Where m=d(y)+1, whence
X, V)=p(x,y)=m. Therefore for uw=II, (x)=yx, we have k(u,y)=0 and

k(u, x)zé—lt N™ so that

1 Nm_z—m—2= 12-ﬂ(x,y)_

en" 4

p(II(x), TI(y)) =

Now consider the general case when x and y are neither dual nor an
extension of the other sequence. Then we may write

X=vabpxm+p+1xm+p+2"'
—_ q e
y—Vba ym+q+1ym+q+2 9

where v=x;x;---Xp,_ €W, m=uX,y), a,bla#b)ed, Xmip+1(#D), Xpmip+2
Xm+p+3s "',ym+q+1(#“),ym+q+23ym+q+35 "'EMU{Q}a and OSPSqS + 00. Then,
sicne y #x,x*, we have m+p< oo and
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m, ifp=0,
Bx,y)= { 2
m+p+1, ifp>1.

Case 1. dx)>m+p+1. In this case put u=II,, . (X)=vabPx, 1.
Then we have

vabp—lxm+p+1b’ lf 1$PS%

uf = | Vm+14 if 0=p<gq and x,,,,#a,
) voar(v)?, if 0=p<q and x,,,=a#1(v),
vi(vh)?, if 0=p<q and x,,,; =a=1(v).

It follows that u™, (u*)™ # II,,. (y) so that (by Lemma 2.1) k(u,II(y))=0 and

k(u, H(x))>9( )N"‘“’“. Consequently we obtain

1 0—(‘9N"‘ 1 1

p(H(x),l'I(y))_>_(?N_)m_+_p+—1 2 Pl Zg-mtptl) s~ 9= xY),

Case 2. dx)=m+p, p>1. Since y#x*=vab?, we get that y=x*q?"?
Ym+p+1 For u=Il, . (y) it follows that k(u,II(x))=0 and k(u,TI(y))

0(u) ——N™*P*1 hence

O 1

p(H(X)’ H(Y)) ZW 7 tptil >—2 —Aeey),

Case 3 dx)=m<dy) (p=0). If u=II,,,(y), then k(u,II(x))=0 and
k(u, T(y)) > N"' *1 whence

1 1
X > +1 2—m—32_.2‘ﬁ(x,w_
p(T1(x), TI(y)) T N"Hl= 5

Case 4. d(x)=m=d(y), p=0. Since x#y, for u=x, we have k(u,y)=0
and k(u,x)=N™ so that

1
p(I(x), H(y))>W N"=2"m=2-BxY)
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The estimate in the previous lemma is sharp as the following example
shows. However, restricting the metric on & we are able to improve the
estimate as shown in Lemma 3.3 below.

Example 3.2. Let a € . Then a(@®, a™=p@*, a")=m+1 and
p([l(a®),a™) =4-27PE™ for every m>2.

A direct calculation using (2.3) shows that

N", ifl<n<m, wuw=a"
k(u,a™)= .
0, otherwise
and
ifu=a" >
k(u,a”):{ N, ifu a‘forsomen_l
0, otherwise.
It follows that
m 0 © 1 1

M@*),a™m=2""+ + N"= = 4.2~ F@>.am)
ATt 'Z:l 2Ny n=§+1 2Ny 2m-1

1
Lemma 3.3. p(I1(x), H(y))zg B(x,y) 27P*Y) for any x,yeE.

Proof. We may assume that y#x,x*. Let su)=|k(u, T1(x))—k(u, [1(y))|
for we#,. Then, as before, we may write

x=vabpcxm+p+2xm+p+3"'

y=Vbaqym+q+ 1Ym+q+2°""

where v=0,0,-0,,_ €W, m=a(x,y), a,bl@a#b)esl, c(#b), Xyt p+ 25 Xt p+3> """
ym+q+1(#a)9 Ym+q+20 Vm+q+3 e, and OSPSgS + 0. Then’ since Y?éx,xﬁ,
we have m+p<oo and

m, if p=0,

XY= .
pexy) {m+p+1, ifp>1.

Fix1<n<m. Thenforu=v,v,---v,_,bitfollows from (2.3) again that

k(u, T(x))



SIERPINSKI GASKET AS A MARTIN BOUNDARY II 781

—@N" (m—zl_" Ep(vn+0) + m+i_" i + i Eb(xn+k)>
k

4 =0 2k k=m—-n+1 2k k=m+p—n+1 2k

6(u) ( Kb(vn+k) ot 1 i 1 )
<—N" — o+ -

4 k=0 S k=mZn+1 2k k=m+2p:-n+z 2t

(since c#b) and

k(x, H(y))>@ (m_zl_" U >

=0 2k 2m —n
Notice that k(u, I1(y)) > k(u, II(x)), hence
( ) 1

N 2m-—n+p+1 :

s(u) > k(a, TI(y)) —k(u, TI(x)) >——

Fix m<n<m+p. Then for u=vab" ™ !¢

O(w) 1
k(u, l"l(x))>T N" LT

and it is not difficult to show using Lemma 2.1 that I1,_,(y)#u ", (®*) ", hence
k(u, T1(y))=0.
As a result wer get

su) > k(u, TI(x)) — ku, n(y))>92“) !

2m—n+p+1

and finally

mtr 1 O 1

p(I1(x), I(y)) > gl Ny 4 Jmowtpt

m+p 1 .

Example 3.4. Let N>3 and let a,b,c be different letters in of. Define

x=abPc® and y=ba?*'c® for some p>1. It can be calculated in a similar
way as above that a(x,y)=1, f(x,y)=p+2 and

o110, () =P IE2 s,
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The details are left to the reader.

Next we give an upper estimate for p(Il(x,II(y)) for xeE and ye#/, UE.

Lemma 3.5. p(I1(x), [1(y)) < 6f(x, y)2 ~#*»
for any x€E and ye#, UE.

Proof. If TI(x)=II(y), then x=y or y*. It follows that p(I(x),II(y))=0
and B(x,y)= oo, proving the lemma in this case.

Let x,yeE and assume II(x)#II(y). Then without loss of generality x
and y have representations

X=(x)=Vab Xy p1 1 Xm+p+2' A0d Y=(V)=VDAp 1 g1 1Vmrq+27

where V=005 0p_y, @#b, A#Ypigs1, DF Xmip+1, and 0<p<g<+o00. We
have a(x,y)=m, and B(x,y)=m if p=0 and B(x,y)=m+p+1 if p>1. Since
T(x) #I1(y), m+p < + 0.

Let ue#” be arbitrary.

We first consider the case when d(u)<m. Then k(u, I1(x)) and (u, II(y))>0
only if either u™ or (")~ =Tl - ;(X) =T q)-(y) and we have

o)~ ku i) =" $

k=d(u)

It(l.l)(xk) _ It(u)(yk)>

2k —d(u) 2k —d(u)

or

=g(9_)_ Nd(u) i (Ir(u#)(xk) _ Ir(u*)(yk)> .
k=d(u)

4 2k —d(u) Zk —d(u)

Consider the first case, i.e. U~ =T,y - (X) =1 - ((¥). Ift(w) #a, b, then

oW e & 1 N
| e, TIGx) —K(w, TIY) | < —= N* et By 2 < Swrpaw
If 1(u)=a, then
mHEZA® (T (X gy +) _ L0 aw+1) _ 1 " Tegd@ _1_ _ 1 '
k=m—d(u) 2k 2k 2m——d(n) k=m—d(u)+1 2k 2m+p—d(u)

Similarly if t(u)=b, then we have



SIERPINSKI GASKET AS A MARTIN BOUNDARY II 783

m+ 112— d(u) (I,,(xa(n) 0 Lam+ k)) _ " I S 1 ! !

k=m—d(u) 2k 2k k=m—d(u)+1 2k Qm—d(u) gm+p—d(u)

The case where (u*) ™ =TI,y (X) =TI,y ,(y) is similar. Consequently we
have

0(u) 1 Ne®

[ke(u, TT(x)) — k(u, H(y))|<2 Ni®

< .
2m+p—d(n) - 2m+p—d(u)

Now consider the case where m<du)<m+p. Then k(u, II(x))>0 if and
only if u™ or ()™ =TI4)—;(x).

Assume first that u™ =Tl —4(x). Then k(u, I1(y))> 0 if and only if t(u)=>
where u* =TI, (y). Therefore, if t(u)=>b, we have

NE®

- 2m+p—d(n)+1 )

Ik(a, TI(x)) —k(u, TI(y))| s% N Y

1
k=m+p—d(u)+1 2k

If t(u)#b we have

1

k=m+p—du)+1 2k

e, TI()) — K, TI(y)] =k, H(x»s% N®

Nd(n)
- 2m+p—d(n)+1 )

Replacing u™ by (u #)7, ie. (u%)™ =IIq-4(x) and u™ or (%)™ =TT, —,(y),
we obtain the analogous estimate

(w)
Ik (w, [1(x)) — k(u, TT(y))| = k(u, TI(x)) <

_2m+p—d(|l)+1 :
Last, consider the case where d(u)>m+p. Then we have

{e(u, TI(x)) — k(u, H(y))|< (w) N'® Z <N”(“)

The above estimations show that
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p(IE(x), T1(y))
m i N m+p 1 A" © N”
<Y e T
";1 (ZN)n 2m+p—n "=§‘+1 (ZN)" 2m+p—n+1 n=m;p+1 (2N)n

=2~ (m+p), +p2—('"+"+”+2_("‘+")S2ﬁ(x, y)z—ﬁ(x,y)'

It is left to consider the case where xeZ and ye#/,.
Define s(u) = |k(u, [I(x)) —k(w,y)| for ue#.. We have f(x,y)<dy)+1< + 0.
Assume first that x is an extension of y. Then x has the form x=
VXX 4 1Xms 2+ Where m=d(y)+ 1(=2), hence m=a(x,y)= p(X,y).
We consider three cases. First, let du)>m. Since d(u)>d(y), we have
k(n,y)=0 and
su)=k(u, H(x))<9(“) N Y %SN"‘“’.

k=0
Next, let du)=m—1. Then, if u=y we have

— -1 0(“) r(y)(xm 1+1) —1
s(u)=| N™ Z SyTm 1Ak _4 N"‘ ,

1
and if u#y we have k(u,y)=0 so that s(u) < EN"‘”.

Finally, let 1 <d(u) <m—2, which implies m>3. Then k(u,[1(x)) =k(u,y)=0
unless u~ or (%) =M q—(y). If u” =T,4—4(y) then we have

s(u)
9(“) @ Z I{t(y)(xd(u)+k) ) i d lc(u)(yd(u)+k) _ Hz(n)()’d(y)ﬂ)'
= 4 k=0 2k e ok 240~ 1-d()|

IA

9(“) Nd(u)( i i + 1— )

4 k=d) F1-du 2F  240)74®

0w w2 1 @
4 N 2d(y) = d(u) =< om—d(u) N,

IA

We have the same estimate when (u*)™ =I1,,,_,(y).
Combining the above estimations and observing that m>2 we get
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p(II(x), I(y)) = p(T1(x), y)

<2"<'"‘“+mi2 LA N"'—1+§ i
- 1 (ZN)" gm—n 4 (ZN)m—l il (2N)n

3
=2 2T 2227
<3m2 ™ <3P(x,y)2 P,

Finally, consider the case where x is not an extension of y. Then without
loss of generality x and y are expressed in the form

x'__-vabp-xm+p+ 1Xm+p+2""" and y=VbaPym+p+ Ym+p+2°"" Vi)

where v=v,0,---v,,_;, a#b, and 1<m<m+p<+ oo and either a#y,, .4, or
b#Xm4p+1- We have a(x,y)=m, and f(x,y)=m if p=0 and B(x,y)=m+p+1
if p>1.

Applying (2.3) to k(u,y), then by similar arguments as those in the case
x,yeE (observe that an additional term 279®*4® appears due to the fact that
y is a finite word) we have

Q" (m+p—d@w) 4 2=W@y)- d(u))) Nd(u), if 1< d(u) <m,
sm)< {2 (m+p—dm+1) 4 7—dy) —d(u))) N"(“), if m<duw)<m+p,
3N, if du)>m+p,
so that

p(TI(x), y) < 2“*"’+§1 (;W sup s(u)

 mtpt1)

- 2m+p

<6(TI(x), y)2 ~FE®Y),

Lemma 3.6. There exists a positive constant A= Ay (depending only on N)
such that

A2 < 1)~ TI(Y)| <4277
for all x,yekE.

Note that under our assumption of [A|=1 we have 4<1, and in the case
of a symmetric simplex A of diameter 1, it follows from elementary calculations
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1 2 -2
that A2='4' and 16AN=1—(8AN_1) .

Proof. Let x,yeE.

If II(x)=TIl(y), then we have f(x,y)=o0 and nothing has to be shown.
Therefore, we may assume that TI(x) # II(y). Then f=(x,y)< + 00, and

Hﬂ—l(x)=nﬂ—-1(y) or =Hﬁ—1(Y)“-

If w=w,---w, is a finite word, we denote by A (w) the image of A under
the composition of naps f,, o---o f,,.

In the first case we have II(x), II(y)eA(I1,_,(x)) so that

IE—nll <IAQT,- () =2""".

In the second case A(TI,_;(x)) and A(TT,_,(x)*) have a point { =TI(z) =TI1(z)
in common, where z=1I1,_,(x)t(IT;_(x))*. Therefore

ITI(x) — TIy)I| < 1T1Gx) — Ll + 1 =TI | < 2|A(TTp -y (x))] =227

In order to derive the lower bound, notice that A(Tl, . ,(x)) and A(T1,, ((y))
do not have a point in common, hence

ITIx) — T = A4 [A(Ty 4 (x| =427,

where A4 is the minimum distance of two disjoint triangles in {A(w);we #5}.
Combining Lemmas 3.3, 3.5 and 3.6, we can compare p(&, #) and ||€E—7||
on &.

Theorem 3.7. For any {,nes, we have

12 A
<p(¢, ’1)52"5—’1"10& :

€=l

1 1
—||€—nlllog
32 =T

Proof. This follows from a direct calculation observing that the function
n—ne”" is decreasing in n.

The above theorem shows that the Hausdorff dimensions H of & with
respect to the metrics ||£—n]| and p(&,n) coincide. It also follows from standard
considerations that the H-dimensional Hausdorff measure with respect to the
metric p is infinite.

Our next aim is to characterize the cylinder sets by the metric p.
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Lemma 3.8. p(v, w)<6a(v, w)27*"™ for v, we ¥,.

Proof. Without loss of generality we may assume v#w and

1<dv)<dw) and m=a(v,w)<dv)+1.

Let m=1. Since k(u,w)<N‘® for any ue¥’, and we ¥/, we have

x 2N
p,W2TIM 4 Y T <2714 2=5-27v,
ng‘l (2N)"
Assume m>2. Then we have p,=w,, 1<k<m—1.

For ue #7, such that du)<m—1 we have w,w,---w,,_, =v,0,---v,,_, and
k(u,v) and k(u, w) do not vanish if and only if u™ or (u*)” =w'w

=w! 2"'wd(u)—-19
where wy=0. In each of the cases we get
o) 1 1 1
|k(a, v) — k(u, W)|< N kzmz_:d(u) ? 24 =1 d(w)~ 1

< é NA@ = (m—d))

For ue #7, such that du)>m we have

a1 1 1 ]
|k(u, v)— k(u, w)l< N"‘ ) ( ; 5ty 2d(w)—l>S2Nd( )
so that

m—1 Hyn—m ©
pv,w) <2~ "“”+3 Y 2 M Z

2 n=1 (ZN)n ZN)"

2y 3m-d + 2.2 O Gagy, waeem,
2o o

As a corollary of Lemma 3.5 and 3.8 we derive

Lemm 3.9. For any we#, we have

p(w, TI(x)) < 60w, x)2 "™ < 6d(w)2 ™™ for Vxe{w).

Proof. Let wew,. If xe{w) then a(w,x)=d(w)+1 and by Lemma 3.8

(W, X) < 6a(W, X)2 ™™ = 6(d(w) + 1)2~ @™+ D < 6(w)2 4™,
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If xe[w], then by Lemma 3.5

p(w, TI(x)) < 6B(W, x)2 ~ P2 < 6w, x)2 ~ 4™ = (3d(w) + 3)2 4™,

since a(w, X) < f(W, X).

Lemma 3.10. Let weW#., and xeW,UZ. Then p(w, H(x))<%2'““"
implies xedw) or {w").

Proof. Without loss of generality we may assume that x #w,w*. Lemma
3.1 implies f(w,x)>d(w) and, by definition of f(w,x), we have f(w,x)<d(w)+ 1.
Therefore f(w,x)=dw)+1 and we have xedw) or {w*).

Combining Lemmas 3.1, 3.3, 3.5 and 3.9, we derive the following theorem.

Theorem 3.11. If v,we W then
1 - -_
g. 2~ Btv.w) < p(v, W) < 6a(v’ W)2 (v, W)
If we#, and (e then
1
§2 TR < p(w, &) <6f(w,x)2" ﬂ(w,x)’ for Vxell~ 1(6)
If {&,ne then
1
gﬂ(x, V27PN < p(&, ) < 6P(x, y)2 P,

for every xeIl~(¢) and yeIl~\(n).

§4. Variation of Harmonic Functions

In this section we estimate the variation of harmonic functions for the
Markov chain by that of the boundary functions on the Sierpinski gasket,
which is identified with the quotient space Z/~. The following lemma is basic
in the sequel.

Lemma 4.1.  For every bounded measurable function ¢ : & — R the harmonic

Sfunction
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h(W)=f k(w, E)e()u(de)

satisfies

lh(V)—h(W)IS% sup  [o((x)) — @(II(y))|

xelv~],yelw ]

L e - o)

xe[(v#) " ],yel(w¥) "]

for every v,we¥,.

Note that the case when v=v* (resp. w=w")is formally included in the
statement, since in this case 6(v)=2 (resp. 6(w)=2) and the proof below covers
also this case.

Proof. Let v=v,v,---v,, and w=w,w,w;---w, be words in #7,. Then by
Lemma 2.1 and Theorem 2.3, we have

h(v) = | kv, Op(Ou(d?)
4

o

r

= | kv, I(x))p(TI(x))v(dx)

JE

r

= | lim k(v, I (x))p(TT(x))v(dx)

o/

Nd(v) © a
= 4 { Z 27 (X awy + P (T(X)) V()
[v-] k=0

+ f i 2” klz(v#)(xd(v) + k)‘P(H(X))V(dX)}
[

(v¥)~] k=0

N’i(W) o
h(w)= {J 2 2” kIr(w)(xd(w) +eIIx))v(dx)
[

4 w-] k=0

+ j i 2 klr(w#)(xd(w) + k)(P(H(x))v(dx)}
[

(wh)=] k=0

where x, denotes the k-th coordinate of x eZ.

Define a bijective map ¢: [v™]—[w™] by
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oW, if X aw) +an =7(¥) and k=d(w)

1), =1 " if X awy + ary =7(W) and k> d(w)
Xe—dm+dwy I Xe—aomy+a #7V), 7W) and k= d(w)
Wi if 1<k<dw)—1.

For example we have

X=0102 Uy 1 XXt 1" X+ VX4 j 42" X+ WnXm 41427
= HX) =W Wy Wy 1 XXt 17 Xt WX+ 42" Xt OmXm 1427

—
=)

Then it follows that for every non-negative measurable function f on E

SU)vdx)=N" ™71 f(y)v(dy)

v~ w-1

and that
Z 2 klt(w)(t(x)d(w) 0= Z 2 klt(v)(xd(v) 1)
k=0 k=0
Therefore we conclude that

NS 2 (s JOTIOO)R)

[v-1 k=0

— N i 2 klt(w)(xd(w) + k)(P(H(x))V(dx)l

tw-] k=0

= lN’“v) f i 2" klt(v)(xd(v) +)eII(x))v(dx)
[

v—] k=0

— N kio 2'*I,M(t(x).,(w)+k)¢(ﬂ<t<x»)v(dx)l
[v7] *k=

e f S 27y« DOTI)()
[

v-] k=0

— N i 27 Xy + ) PTEX))(X)

v-1 k=0

< i f S 27H 00t + DIOTI0) — TR v()
[

v-] k=0
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<2 sup |o(II(x))— @(TL(y)).

xe[v~],yelw ]

Applying the same reasoning to v* and w', the lemma follows
immediately.

Lemma 4.2. For every we#’,, ve{w) implies (v})" e{w™ Yu{(w") .

Proof. Forevery ve{w), there exists ue % such that v=wu. Ifusu*, then
v'=wu' so that (v/)"e{w™). If u=u*, then there exists ae.«/ and k>0 such
that u=a*. Moreover, if a#t(w), then we have v'=w ar(w)’™, hence
(v")"e{w™). Finally, if a=1t(w), then v* = w*z(w*)*™® implies that (v}) " e {(w") ™).

For every we#/,, define the variation at w of a function A on #" by
Var,(w)= su(p >Ih(u) —h()|,
and the variation at w of a function ¢ on & by
Var,(w)= xSyl:g llfp(H(X)) —o(I(y)).

From Lemmas 4.1 and 4.2, we obtain the following proposition.

Proposition 4.3. For every bounded measurable function @:%—>R the
harmonic function

h(w) =J k(w, Op(S)v(dl)

satisfies
Var,(w) < Var (w™)+ Var (w5)7), Ywe¥/.
Proof. 1t is evident that ve{w) implies [v"]c[w~] and that Lemma 4.2

implies [(v) ]<[w™JU[(w")~]. Therefore by Lemma 4.1 it follows that for
any u,ve{w)

() —h(v)| < sup | (T1(x)) — p(TI(y))\.
x,ye[w ~Jul(w#) "]

Define z=wt(w)® and conclude that z*=w*t(w*)®, hence z*e[w~] and
z*e[(w")™]. Since Il(z)=II(z*) the proposition follows from
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Var,(w)

Smax{ sup |lp(TI(x)) — @(TI(y))l, Var,(w"), Varq,((W“)_)}

xe[w ™ L;yel(w¥) "]

Smax{ sup  (lp(TI(x)) — p(T1@)] +|o(T1(zY) — e(I(¥)))),

xe[w ™ Lye[(w#) "]
Var (w~), Var,(w*)~ )}
<Var,(w™)+ Var(w*)").

Corollary 4.4. Let ¢ be an s-Hélder continuous function on (&, p) with
Holder constant C,. Then for every weW we have

Var,, (w) <2C,(12d(w)y2 4™,

Proof. Let we#,. Then for every xe[w~] we have a(w™,x)=p(W,x)
=d(w) and by Lemma 3.9 p(w, I1(x)) < 6d(w)2 %™ whence p(I(x), TI(y)) < 12d(w)
27 for every x,ye[w~]. This proves the corollary in view of Proposition
4.3.

Lemma 4.5. For every bounded measurable function ¢:% —R the harmonic
Sfunction

h(w)= f k(w, O)p(E)u(d?)
&

satisfies
sup{[h(v)—h(w)i; p(v, W) <27+, v,we W, }
<dsup{lp(Q)—ol; p(&m)<12n27", ¢, ned}.
Proof. Fix any v,we#’ such that p(v,w)<2~"*3). Without loss of
generality we may assume that d(w)<d(v). By Lemma 3.1 we have
27P™ < 8p(v, w) < 27"

so that B(v,w)>n, which implies v,we{z)u(z*) where z=w,w,---w, Con-
sequently by Proposition 4.3, even in the case where ve{z) and we(z*), we have
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A(v) — (w)| < |A(v) — h(z)| + |1(z*) — A(W)|
<Vary(z)+ Var,z") <2(Var (z”) + Var ((z*) 7).

On the other hand by Lemma 3.9 xe[z~] implies p(I1(x), I1(z 7)) < 6d(z)2 ~ 4™,
since «(z,x)=d(z). Hence x,ye[z "] implies p(I1(x), [1(y)) < 12d(z)2 " *® < 12n2~".

Theorem 4.6. Let ¢ be a continuous function on . Then h,, is extended
to a continuous function on W U<, which coincides with ¢ on &. In particular
we have

lim () =0(2)
for every te&.

Proof. Since by Lemma 4.5 h, is uniformly continuous on #7, and 0
is an isolated point, h, is uniformly continuous on the dense subset # of a
compact metric space #” U ¥ and extends to a continuous function z, on # U Y.
On the other hand by Theorem 2.2(4) we have

lim hy(X,) = @(X,.), a.s.(Pp)

and since p=Py X' we have

F&)=0(8), as(u).

Since u is a Radon measure on % and full by Remark 2.4, we have h=o.
Denote the set of all continuous function on & by C(#) and that of all
bounded uniformly continuous harmonic functions on (¥, p) by #¢.

Corollary 4.7. S(C(&L)=H¢.
Lemma 4.8. If a function f on W is uniformly continuous, then we have

4.1 lim sup Var/(w)=0.

N0 wew,

Conversely, if a function f is symmetric, (4.1) implies the uniform continuity

of .

Proof. Assume that f is uniformly continuous on #  and let we#/,.
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Then, since ofu,w)=d(w)+1 for every ue{w) and by Theorem 3.9, we have
p(u, V) <6dw)2"4™ for any wu,ve{w). Therefore, the uniform continuity
implies

lim sup Var (w)

" weW,

<lim sup{l/w)—/(™)}; p(u,v)<6n27", w,ve#}=0.

Conversely, assume that u,ve #7, and p(u,v)<2~®*¥ for some n>1. Then
without loss of generality we may assume d(u)<d(v) and as in the proof of
Lemma 4.5 we conclude that u, ve{z)u<{z") where z=u u,u;---u,. This yields

|f(@)—f )| < Var(z)+ Var(z)<2 sup Var(w)—0

weWn

as n—oo.
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