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Algebraic Coset Conformal Field Theories II

By

Feng Xu*

Abstract

Some mathematical questions relating to coset conformal field theories (CFT) are considered
in the framework of algebraic quantum field theory as developed previously by us. We consider
the issue of fix point resolution in the diagonal cosets of type A. We show how to decompose
certain reducible representations into irreducibles, and prove that the coset CFT gives rise to a
unitary modular category and therefore may be used to construct 3-manifold invariants. We
prove that if the coset inclusion satisfies certain conditions which can be checked in examples,
the Kac-Wakimoto Hypothesis (KWH) is equivalent to the Kac-Wakimoto Conjecture (KWC),
a result which seems to be hard to prove by purely representation considerations. Examples are
also presented.

§1. Introduction

This paper is a sequel to [X4]. Let us first recall some definitions from
[X4].

Let G be a simply connected compact Lie group and let H c G be a
connected Lie subgroup. Let nl be an irreducible representations of LG with
positive energy at level1 k on Hilbert space Hl (cf. §2.1). Suppose when
restricting to LH, Hl decomposes as:

and 7ra are irreducible representations of LH on Hilbert space Hx . The set
of (/, a) which appears in the above decompositions will be denoted by
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1 When G is the direct product of simple groups, k is a multi-index, i.e., k = (kl, ...,£„),
where k{ e N corresponding to the level of the i-th simple group. The level of LH is determined
by the Dynkin indices of H c= G. To save some writing we write the coset as H a Gk.
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exp.
We shall use nl (resp. n^2 to denote the vacuum representation of LG

(resp. LH). Let s/ be the vacuum sector of the coset G/H as defined in §2.1
of [X4]. The decompositions above naturally give rise to a class of co variant
representations of jtf, denoted by nitX or simply (/, a). By Th. 2.3 of [X4],
7c l f l is the vacuum representation of j/.

In §2.2 we consider the decompositions of certain reducible representations
in the diagonal cosets of type AN_l as considered in §4.3 of [X4] when the
action of the- Dynkin diagram automorphisms is not faithful (cf. (2) of Th. 4.3
of [X4]), which is part of the point resolution problems known in physics
literature (cf. [Gep], [LVW] and [SY]). Such problems have been known
for some time, and there are no even clear mathematical formulations of
such questions before. We will show that the results of [X4] provide the
right mathematical framework for understanding such questions.

We first prove a general Lemma 2.1 which we believe will play an important
role in all fixed point resolution problems. Using Lemma 2.1 and Lemma 2.2,
we prove (cf. (1) of Th. 2.3) that certain S-matrices are non-degenerate. It
follows from Th. 2.3 (Cor. 2.4) that the diagonal cosets of type AN,l give rise
to a unitary modular category in the sense of Turaev (cf. P. 74 and P. 113 of
[Tu]), and may be used to construct 3-manifold invariants (cf. P. 160 of
[Tu]). We also calculate S matrices when N is prime. The results agree
with some of the results of [FSS1], [SY] from different considerations based
on physics.

To describe the results in §3, let us denote by Stj (resp. S^) the S matrices
of LG (resp. LH) at level k (resp. certain level of LH determined by the
inclusion H c Gk). Define3

where <,> is defined in §2.1. Note the above summation is effectively over
those (/',/?) such that (/,/?) eexp. The Kac-Wakimoto Conjecture (KWC) states

2 This is slightly different from the notation n° (resp. n0) in [X4]: it seems to be more appropriate
since these representations correspond to identity sectors.

3 Our (/,/?) corresponds to (M,ju) on P. 186 of [KW], and it follows from the definitions that
<(/,/?), (!,!)> is then equal to multM(^p] which appears in 2.5.4 of [KW]. Our formula (1) is
then identical to 2.5.4 of [KW].
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that if (i.,(x)Eexp, then 6(7, a)>0.
The Kac-Wakimoto Hypothesis (KWH) states that if <(/,/?),(1,1)>>0 and

(i,a)eexp, then StjS^ >0.
Note that since 5£1>0, Sai>Q, (l,l)eexp, KWH implies KWC.
KWC has proved to be true in all known examples. In fact, in §2 of

[X4] an even stronger conjecture, Conjecture 2 (C2) is formulated (also cf. [L4]).
Unfortunately KWH is not true. In [X2] counter examples were found

by using subfactors associated with conformal inclusions. However, KWH
has been checked to be true in so many examples, and it seems that it should
be true or equivalent to KWC under some general conditions. The first main
result in §3.1 is to describe such a condition (cf. Th. 3.3). The condition4

is that:

if <(!,$,(!, 1)>>0, then 0=1. (2)

Th. 3.3 states that if H c: Gk satisfies (2), and certain assumptions in §3.1 which
are expected to be true in general, then KWH is equivalent to KWC for the
inclusion H c Gk.

Condition (2) can be shown to be equivalent to the normality of certain
inclusions, but we will not discuss this in this paper.

In §3.1 we also give an example which does not satisfy (2), and verifies
KWC but not KWH. This is also the first example of non-conformal inclusion
which does not verify KWH.

It is interesting to note that Th. 3.3 can be thought as a statement about
representations of affine Kac-Moody algebras without even mentioning von
Neumann algebras, yet it seems to be hard to obtain such results without
using subfactor theory (cf. [J]). We give another example of this nature in
Prop. 3.2. For more such statements, see inequality on P. 11 of [X2] and
in particular (2) of Th. 4.3 of [X4].

In §3.2 we prove a property (Prop. 3.4) of Conjecture 2 (C2) in [X4]. It
states that if H± a H2 and H2 c G verify C2, then H± c= G also verifies C2,
thus reducing C2 to maximal inclusions which are classified in [Dynl],
[Dyn2]. We also give an example related to N=2 superconformal theories.

If we identify (I,j8) with (M,j«), where M is the vacuum representation, as on P. 186 of [KW],
then condition (2) is the statement that if (M,fj)eSm, with Sm defined on P. 186 of [KW], then
/u must be the vacuum representation of the subalgebra.
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§2o Fixed Point Resolutions in the Diagonal Cosets of Type AN_i

§2.1 PreliminarieSe Let us first recall some definitions from [X2]. Let
M be a properly infinite factor and End(M) the semigroup of unit preserving
endomorphisms of M. In this paper M will always be the unique hyperfinite
///! factors. Let Sect(M) denote the quotient of End(M) modulo unitary
equivalence in M. We denote by [p] the image of peEnd(M) in Sect(M).

It follows from [L3] and [L4] that Sect(M), with M a properly infinite
von Neumann algebra, is endowed with a natural involution 0 -»5; moreover,
Sect(M) is a semiring with identity denoted by id.

If given a normal faithful conditional expectation e: M -» p(M\ we define
a number dt (possibly oo) by:

(cf. [PP]).
We define

d— Mini{di \ di< oo}.

d is called the statistical dimension of p. It is clear from the definition that
the statistical dimension of p depends only on the unitary equivalence classes
of p. The properties of the statistical dimension can be found in [LI], [L2]
and [L3]. We will denote the statistical dimension of p by dp in the
following, dp is called the minimal index of p.

Recall from [X2] that we denote by Sect0(M) those elements of Sect(M)
with finite statistical dimensions. For A, \i e Sect(M), let Hom(/l, \JL) c M denote
the space of intertwiners from /L to ^, i.e. 0 e Hom(/l, #) iff al(x) = ̂ (x)a for
any xeM. Hom(A, p) is a finite dimensional vector space and we use <A, jU> to
denote the dimension of this space. <A,/*> depends only on [A] and
[ju]. Moreover we have <v>l,jii> = </l,v/i>, <vA, #> = <v, /xJ> which follows from
Frobenius duality (See [L2]). We will also use the following notation: if p is
a subsector of \JL, we will write as ^<A or A>^. A sector is said to be
irreducible if it has only one subsector.

Recall (cf. [L2]) of each p e End(M) and its conjugate p with finite minimal
index, there exists Rp e Hom(W, pp) and Rp e Hom(zW, pp) such that

and \\RP\\ = \\RP\\ =T/d~p. The minimal left inverse <j>p of p is defined by
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The following lemma plays a fundamental role in §2.2.

Lemma 2.1. Let a,b,c€End(M\ [_c] = [_ab] and a, b have finite statistical
dimensions. Suppose ieEnd(M) has order t in Sect(M\ i.e., t is the least
positive integer such that [V] = [zW], and [0T] = [a], [i6] = [6]. If

then Hom(c,c) is an abelian algebra with dimension t and hence there exist
irreducible sectors cl9...,ct such that

ck.
i<k<t

Moreover, dCk = \dc , k = 1 , . . . , t.

Proof. From [01] = [0] we conclude by using Frobenius duality that
<a0, T*> > 1, and since T has order t in Sect(M\ we must have

da > Z T'-

Similarly

Since

it follows that all the > are = and in particular <<2a,zW> = <56,zW> = l, i.e.,
both a and b are irreducible. It is enough to prove the case c = ab. Since
[T&] = [&]5 there exist unitary elements veM such that

v e Hom(£, ib).

Define T;V = V*T;V, then
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and so

Since [ir] = [>?], there exists a unitary v1 such that T[=AdVl9 where
AdVl(m) := i^muf , Vm e M. So v1 e Hom(£, b). Since b is irreducible, i^ is equal
to identity up to a complex number whose absolute value is 1, so

From [at] = [ar J = [a] there exists a unitary u such that w e Hom(aTy , a). It
follows that

so w' = x.l with X E € , x has absolute value one, since a is irreducible. Define
i

w = x*u so that wt=l. Note vv e Hom(a6, a&) since b = ivb. Denote by 0a, ^
the minimal left inverses of a, 6 respectively. We claim that ^)b^a(^

i) = dadbdiQ
for 0 < / < r — 1. It is enough to show $fe$a(wO = 0 for 0 < / < f — 1. Since 6 is
irreducible, ^(wOeHom&fcJsCl, and so <l)b(l)a(w^ = R$<j)a(w

i}Rb. But

=lV

and use the fact ivb = b we have TJ,(/?f)/?5eHom(6,6)(W,TJ,). Since <Tr,iW>
= 0, 0</<r-l , it follows that 4(/2f)^=0 and so (f>b(t>a(w

i) = dadbSiQ for

If S0^ I-<,_1x iw
I = 0> -^i^C, multiply both sides by w*"* and apply

0fr0fl, we get xf = 0. So id,w,w2, • • - ,w t" 1 are linearily independent in
Horn(c,c). And since Hom(c,c) has dimension r, Hom(c,c) is therefore an
abelian algebra with basis id,\v,w2,'",v^~l. Note wt=l, so the minimal
projections Pk,k = l,-~,t in Hom(c,c) are given by Pfc = Z0<J-<f_1Kexp(17^)w)J.
Let cfc<c be the irreducible sector corresponding to Pk, then by Th. 5.5 of [LI]

Q.E.D.
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Next we will recall some of the results of [Reh] (also cf. [FRS]) and
introduce notations.

Let {[pj,ie/} be a finite set of equivalence classes of irreducible
superselection sectors (cf. [GL]). Suppose this set is closed under conjugation
and composition. We will denote the conjugate of [pj by [pj] and
identity sector by [1] if no confusion arises, and let ̂ -^[^[/^[pj). We
will denote by {Te} a basis of isometrics in Hom(pfe , p{p^. The univalence of
pt (cf. P. 12 of [GL]) will be denoted by copi.

Let $,- be the unique minimal left inverse of p{ , define:

where c(pj,pl) is the unitary braiding operator (cf. [GL]).
We list two properties of Ytj (cf. (5.13), (5.14) of [Reh]) which will be used

in §2.2:

¥„=¥„= Y j f ^ Y g . (1)

pk. (2)

Let us explain the proof of (2) since similar but different proof appears in the
proof of lemma 2.2.

We have:

dpk

e cok p.pj,

where in the first = we used the monodromy equation (cf. [FRS] or P. 359
[XI]), and the second = follows from [L3]. (2) now follows immediately.

Define d := S^co^ 1 . If the matrix (Ytj) is invertible, by the proposition
on P. 351 of [Reh] d satisfies \d\2 = ̂ tdp. . Suppose d = |<r|exp(/;c), x e R. Define
matrices

S:= \g\~i Y, r:=exp i- DiadfoJ. (3)
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Then these matrices satisfy the algebra:

SS* = TT^ = id, (4)

TSTST=S, (5)

S2 = C, TC=CT=T9 (6)

where Cy = <5y is the conjugation matrix. Moreover

Nfj=ZSimSjmS*m- (7)
m Slm

(7) is known as Verlinde formula.
Now let us consider an example which verifies (1) to (7) above as in §1

of [XI]. Let G = SU(N). We denote LG the group of smooth maps
/ : S i i— > G under pointwise multiplication. The diffeomorphism group of the
circle BiffS1 is naturally a subgroup of Aut(LG) with the action given by
reparametrization. In particular the group of rotations RotSl~U(l) acts on
LG. We will be interested in the projective unitary representation n : LG -» U(H)
that are both irreducible and have positive energy. This means that n should
extend to LG (X Rot S1 so that H= ©n>0//(«), where the H(n) are the eigenspace
for the action of RotS1, i.e., r0£ = exp(in9)£ for ^£H(ri) and dim H(n)<oo with
H(Q)j^Q. It follows from [PS] that for fixed level K which is positive integer,
there are only finite number of such irreducible representations indexed by
the finite set

where P is the weight lattice of SU(N) and Af are the fundamental weights
and h = N+K. We will use 1 to denote the trivial representation ofSU(N). For
hli,ve P\ + , define

where S^ is given by the Kac-Peterson formula:
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(9)

Here ew = det(w) and c is a normalization constant fixed by the requirement
that (S^) is an orthonormal system. It is shown in [Kac] P. 288 that N^ are
nonnegative integers. Moreover, define Gr(CK) to be the ring whose basis are
elements of P + + with structure constants N^ . The natural involution * on
P\ + is defined by Ah-» A* = the conjugate of A as representation of SU(N). All

§
the irreducible representations of Gr(CK) are given by A -» -^ for some ju.

5M
The irreducible positive energy representations of LSU(N) at level K give

rise to an irreducible conformal precosheaf j?/ and its covariant representations
(cf. P. 362 of [XI]). The unitary equivalent classes of such representations
are the superselection sectors. We will use A to denote such representations.

For A irreducible, the univalence a>A is given by an explicit formula. Let
us first define

(10)l 'K+N

where c2(A) is the value of Casimir operator on representation of SU(N) labeled
by dominant weight A (cf. 1.4.1 of [KW]). AA is usually called the conformal
dimension, and coA = exp(27i/AA).

Define the central charge (cf. 1.4.2 of [KW])

(11)
K+N

and T matrix as

T=diag(ti>j (12)

where COA = oj^expl — -^ J. By Th. 13.8 of [Kac] S matrix as defined in (9)
V 24 /

and T matrix in (12) satisfy relation (4), (5) and (6).
By Cor. 1 in §34 of [W], the fusion ring generated by all A e P + + is

isomorphic to Gr(CK)9 with structure constants N^ as defined in (8). One
may therefore ask what are the Y matrix (cf. (0)) in this case. By using (2)
and the formula for N^, a simple calculation shows:
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and It follows that Y^ is nondegenerate, and S9 T matrices as defined in (3)
are indeed the same S9 T matrix defined in (8) and (11), which is a surprising
fact. If the analogue of Cor. 1 in §34 of [W] is established for other types
of simple and simply connected Lie groups, then this fact is also true for other
types of groups by the same argument.

In §2.2 we will also consider the case when G is the direct product of
two type A groups. In that case the 5, T matrices are just the tensor product
of the S9 T matrices corresponding to each subgroup.

§2,2 Fixed point resolutions. We preserve the set up of §4.3 of [X4]. We
consider the coset G:=SU(N)m,xSU(N)m,./H:=SU(N)m,+m'.9 where the em-
bedding H c: G is diagonal. Let Al9...9AN-l be the fundamental weights of
SL(N). Let keN. Recall that the set of integrable weights of the affine
algebra SL(N) at level k is the following subset of the weight lattice of SL(N)°.

where h=k+N. This set admits a ZN automorphism generated by

N-l

We define the color r(X):='L£A,i — l)imod(N) and Q to be the root lattice of
SL(N) (cf. §1.3 of [KW]). Note that leg iff ^)eZ.

We use i (resp. a) to denote the irreducible positive energy representations
of LG (resp. LH). To compare our notations with that §2.7 od [KW], note
that our i is (A', A") of [KW], and our a is A of [KW]. We will identify
i = (A',A") and a=A where A', A", A are the weights of SL(N) at levels m'9
m", m' + m" respectively. Suppose

Then the fusion coefficients Nfji=N^2.N^^f (resp. N^:=N^iA2) of LG (resp.
LH) are given by Verlinde formula (cf. §2.1). Recall from §4.3 of [X4] that
nitX are the covariant representations of the coset G/H. The set of all
(f,a):=(A', A", A) which appears in the decompositions of nl of LG with respect
to LH is denoted by exp. This set is determined on P. 194 of [KW] to be
(A'9A",A)eexp iff A' + A"- A eg. The ZN action on (/,«), Vi, Va is denoted
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by a(i, a) := (tr(A'), 0-(A"), cr(A)), aeZN. This is also known as diagram automor-
phisms since they corresponds to the automorphisms of Dykin diagrams.
Note that this ZN action preserves exp and therefore induces a ZN action on
exp.

We define a vector space W over C whose orthonormal basis are denoted
by z®a with i = (A',A"), a = A. W is also a commutative ring with structure
constants given by N^N*p . Let V be the vector space over C whose basis are
given by the irreducible components of O^K^ (cf. §4.3 of [X4]). Then
V= F0© F! , where F0 is a subspace of V whose basis are given by
the irreducible components of o^^ with (z, a) e ex/?, and Vl is the orthogonal
complement of F0 in F. The composition of sectors gives F a ring
structure. By (1) of Th. 4.3 of [X4], the irreducible subrepresentations of (/, a) of
the coset are in one-to-one correspondence with the basis of F0 and this map is
a ring isomorphism by (1) of Prop. 4.2 of [X4], and we will identify the
irreducible subrepresentations of (z, a) of the coset with the basis of F0 in the
following when no confusion arises. Note that F0 is a subring of F and

Define a linear map P\ W-* V such that P(/(x)a) = cr^1(g)-. By Th. 4.3 of
[X4]

iff <TS(Z) = Z", cjs(a) = a' for some seZ. Also <P(z®a), />(/(x)j?)>=0 if
T^(/®/?) by (*) of §4.3 of [X4].

Note P(a(l)®cr(l))= 1 and P is a ring homomorphism from Wto V. Define
W0 :=P~ \VQ\ Wl :=P~ HFO, then W= W0® Wl since exp is a invariant. Note
that i® a e W0 iff z — a e Q. Define the action of ZN on W as a(/® a) = <r(z')(x) cr(a).
Much of the following depends on the relation between W and F.

Assume o-s(/®a) = /®a for some /®ae W, and 0<51<7V is the least positive
integer with this property. Let t = % . By equation (*) in §4.3 of [X4] we have:

Our first question is to decompose P(i®a) when
Apply Lemma 2.1 to the present case with

we conclude that there exists ci,'",cteV such that
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ck
i<k<t

and dck = ̂ dtda, fc = l,.. . ,f. Note that if P~1(^0'®a)) = {i'1(x)a1, ...,is®as}, then

Note we identify the covariant representations of the coset with the basis
of P(WQ)=VQ. The univalence of A\=P(i®&\ i®oceW0 are given by:
(w^ = exp(27ci(A£ — AJ), where A4, Aa are the conformal dimensions (cf. §2.1, and
if i = (A',A"), A; := AA, 4- AA-). Note if A> a, then coa = coA. The univalence
is only defined for covariant sectors which correspond to elements of
F0. However, for convenience let us define coi9ai := cotco~ l for /®<XE W. Then
if /®aeW0 , ctffO)"1 which is the univalence of P(/®«) depends only on
P(i®a), i.e,. cOfCo"1 depends only on the orbit of i'®a under the ZN action.

Suppose A'=P(i®v\ B:=P(j®$\ i®a, j®$£WQ. Let ^, 0B be the
unique minimal left inverses of A, B. Define

YAB '•= dAdB<l>B(<i>MB, A)e(A, B)) *). (1)

Note (1) is similar to (0) of §2.1, the difference here is that our A, B may be
reducible and hence we need to include $E in the definition since
</>A(6(B,A)e(A,B))* may not be a scalar.

To avoid confusions we will denote S matrices associated to indices / (Recall
from §2.1 this is the tensor product of S matrices associated to two type A
subgroup of G) by Stj and the 5 matrices associated to indices a by 5^.

Lemma 2.2. Suppose A\=P(i®vi\ B°=P(j®f$\ /®a, j®peW0, and A
= ̂ l^lcimthdc=\dA. Them
(1)

(3)

(4)

Proof. Ad(l): Denote by C\=P(k®$). Then by Frobenius duality

By the definitions of B, C,
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where />0 is an integer, and D are elements of the form P(k'®d') which are
different from A, and by (*) in §4.3 of [X4] <£,^> = 0, and so <Ac£> = 0. It
follows that

which is independent of i. Since v4 = S1< f< tc I 5 (1) follows.
Ad (2): The main point of the proof is that even though A, B may be

reducible, their univalence are complex numbers, so the monodromy equation
(cf. [FRS] or P. 359 of [XI]) holds, and we have:

A)e(A9 B)) *) = 0B(<^( X TeT?t(A, B) *e(B, A) *TeTe*))
eeV

where e e V means we sum over the basis of V. Note that the summation
above is effectively over VQ since A e VQ, Be V0 and V0 is a subring. Suppose

2+ •-• +em, k®8eWQ, with dei = ̂ dkdd, a>e. = o}kco^1. Assume
) = kl®8l,—9kn®Sn, with mn = N. Then

m JVJJd UAUB

By equation (*) in §4.3 of [X4],

We conclude that

A B ( o k d A B
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and so

_^didj

where in the last = we have used (2) and the comment after (12) in §2.1.
Ad (3): As in the proof of (2) let P(k®d), k®deWQ,P(k®S) = el+ — +em,

) = {kl®dl,...,kn®6n}, with mn = N. Then

,.>̂ ^
<*>ej ™ Vk®d

t m cofc(g>(5

ej

where on the second = we used (1), and (3) follows immediately.
Ad (4): First note cob. = a)B. By (2) of §2.1, we have:

0) e 0)

Q.E.D.

Recall the basis of K0 corresponds to a finite set of irreducible covariant
sectors of the coset: it is closed under composition, conjugation and contains
identity by Th. 4.3 of [X4]. Define the F matrix as in (0) of §2.1. Then we have:

Theorem 203. (1) The matrix Y is invertible.
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(2) The number a := DeeFde
2o> ~1 is given by

where

1^ ^ #2~1 N(N2-l){ 1 , 1
24 24 24 \m' + N m' + N m'+m"

Proof. By (i) of Prop, on P. 351 of [Reh] it is enough to show that if
e is such that

Yeg = dedg, Vg,

then e=l (Remember if a sector is denoted by 1, then it is the identity or
equivalently vacuum sector). Suppose ^:=
By (4) of Lemma 2.2

Suppose ^4=P(/®a) = S 1 < f < t Cj>^, dc. = \dc. Then by (3) of Lemma 2.2 we
have:

V0.

By (2) of Lemma 2.2 we have

and it follows that

for any 7® j8 e WQ. Note

^Su
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there must exist a^eR such that

Sss v , S~n

for any 7® ft E W0 . Suppose (/, ft) = (A', A" ; A), (/, a) = (M'9 M"\ M\ then A' + A"
-Aejg, M' + M"-Mee. From

we get

for any AeP<f +*"), and so

i.e., ^M = l. It follows that MM is the identity sector, and so MA is always
irreducible. Choose A corresponding to the defining representation of SU(N),

it follows from the fusion rules that M must be of the form os(l) for some
seZ. Since P(i®a) = P(a-s(i®a)) = A9 replacing (*,a) = (M',M";<7s(l)) by <r~\i,

a) = (0-~s(M'), a~s(M");l) if necessary, we may assume 5 = 0, i.e., a = l.
Similarly (M',M") = (aSl(\\aS2(l)\ and using a=l we have

*^M'A' *^M"A" j j 1 W / A ' A"^— -- - - = dM'dM" = ̂  V(A,A ).

Choose A' to be the vaccum representation, from the above equation we have

Since S matrix is unitary by (9) in §2.1, we conclude M" is the vacuum
representation. By the same argument M' is also the vacuum representation.

So we have proved P(i®u)>-e is the vacuum sector, and therefore e must
be the vacuum sector.

Ad (2): First we claim:

geW0
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Suppose P(g)=f, P-\P(g))={g,,-,gn}, and P(g)=f=el+ - +em, with

mn=N. Since (oe. = cog, dei=—, dgj=dg, a>gj = <og, we have

and so

€i ^ ^ gj

It follows that

eeKo

Next let us show

Again Suppose g = /®a, P(g)=f, /)~1(P(g)) = {g1, -.g,}, and
••• +em, with mn = N. So we have (7"(i,a) = (/,a), gfc = crfc~1g1, l<fc<«. Note
that by definitions

Denote by z:=exp(-^ — — I, then zn = l since (jll(i,a) = (i,a), but z/1 since
\ N J

i'(g)a is not in W0, i.e., - ^Z. So

-i= y
gk L,

gk

We have
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^CXPV 24 /SnSh

where in the last = we have used (3), (12) and comments after (12) in §2.1,
and CG and CH are central charges given by (1.4.2) of [KW], i.e.,

m'+N m

_(N2-l)
H

(2) now follows by a simple calculation. Q.E.D.

Corollary 2.4. The irreducible covariant sectors of the diagonal coset of
type A corresponding to the basis of F0 , with its braiding and S, T matrices as
defined in §2.1, is a unitary modular category (cf. [Tu]).

Proof. By the definition of unitary modular category as on P. 74 and
P. 113 of [Tu], it is enough to show that the Y matrix is invertible, which
follows from (1) of Th. 2.3. Q.E.D.

When the Z action on exp is faithful, i.e., for any (i, a) e exp, <TS(J, a) = (i, a)
iff N \ s, by (2) of Th. 2.3 we have that SAB = NSijS^ where A\=P(i®QL\
B'=P(j®P) and both A, B are irreducible.

Let us calculate ^-matrices in the case N is a prime and there exists a
(necessarily unique) fixed point jF:=P(/0(x)a0)e F0 under the action of a. By
Lemma 2.1, F=E1<I-<JVF£ with irreducible and dF.=^dF. Recall Sab:= \ff\~ 1Yab,
where

, 1 1 1

which follows from (2) of Th. 2.3.
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So Sab = NSllS'llYab9 and by (3) of Lemma 2.2 Sab for a = P(i
determined as follows:

(2)

if b:=P(j®P)^Fk, and

o o ~ c ^ / 1 \

It remains to determine SFiFj. Note

and Tab = dab(ba, where o)a = a)aa)9 and &> is determined by (2) of Th. 2.3 and
(3) of §2.1 as:

(CG - CH) .

We have

«F, " ̂ F.F^Ffc" 1 = Z SFlAcbASAFk

Z ^» /
Jr j^4 \ A

= .* +± v ? rn,F FiFfc A^2

, ^ 1
= W^^ + ̂ 2x

where we used S2 is equal to conjugate matrix in the fourth =, and (3) of
Lemma 2.2 in the sixth =. So we have
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2-- Z SFA(a)-A-Q}F)SAF.

But

Z SFA(corA-ofF)SAF = Z SFtA(arA-arF)SAFj
AeVo AeV0,l<i,j<N

AeV0,l<i,j<N AeV0,l<i,j<N

= Z WP'^-SF-FJ— Z SFiA(ar
AeV0,l<i,j<N

where SFF = \d\~lYFF9 and in the fourth = we used (4) of Lemma 2.2, and in
the last step we used F=F and

So we have:

1
(SFF-i

1M"

Let us show

Recall c% = exp(27c/AF), and since F is the unique fixed point, by a simple
calculation using (10) of §2.1 we get

A N2-l N(N2-\)
A =

r

24 24 W + AT m'

and it follows that

co = exp( — 2ni—(CG — CH) } = a>F
 i
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by (2) of Th. 2.3, so co-F=l.
Therefore we have

SFiFk = <Wfc + (SFF

Since F=F, SFA is real for all A9 so SFka is real for any irreducible a, and we
must have Fk = Fk since S matrix is invertible. So:

-N) (4)

The formula (2), (3) and (4) above agree wiht formula (4.40) of [FSS1] (Note
our SFF = NSioioS'gio0io9 where F=P(/0®a0)). However one should notice that
our definition of S matrices are very different from those of [FSS1].

In [FSS1] and [FSS2], certain formula about S matrices were derived
from other considerations in the case when N is not prime and other types
of simple simply connected Lie groups, and it will be interesting to extend our
calculations above to these cases and to see if the results agree with [FSS1]
and [FSS2].

By Cor. 2.4, one may calculate 3-manifold invariants using S matrices
obtained above as in [Tu]. These and related questions will be addressed in
another publication.

§3. Miscellaneous Results

§3.1 KWH and KWC. Let H c Gk be as in the introduction. Through out
this section, we will assume the following: H and G verifies the statements as
in Cor. 1 in §34 of [W] (cf: comments after (12) in §2.1), and H c: Gk is cofinite as
defined in §3 of [X4].

Note the assumption is satisfied by many examples (cf. Cor. 4.2 of [X4])
and is expected to be true in general.

We also assume that H c Gk is not conformal, so the coset theory is
non-trival.

We will use the notations of §4.2 of [X4] and ideas of [X2]. We denote
the set of irreducible sectors of 0"ifli®A by V. Notice o^eF, and these are
referred to as special nodes in §3.4 of [XI]. Let:

beV
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where V«b are nonnegative Integers. Denote by FA the matrix such that
(F^=FaV Define matrix Nc by Nb

ca = (ca,b} for a,b,ceV. Then FA

= T,CV^CNC. Since [a1(g)I] = [a1(g> J, [ff/i1(8A] = [fl1<8>^]9 ^ ^ are commuting
normal matrices, so they can be simultaneously diagonalized. Recall the
irreducible representations of the ring Gr(Ck) generated by A's are given by

Assume

where \l/(^s} are normalized orthogonal eigenvectors of FA (resp. Nff) with
s s

eigenvalue -^ (resp. -^). (^xp) is a set of i, ^9 j's and s is an index indicating

the multiplicity of /, jU. We denote by Exp the set of (i, ju) such that (/, /x, 51) e (
for some s. Recall if a representation is denoted by 1, it will always be the
vacuum representation. The Perron-Frobenius eigenvector ^(1)1) is given by

, up to a positive constant. Note all the entries of ^(1>1) are positive.

Proposition 3X (/, a) e Exp if and only if b(i, a) > 0.

Proof. Recall (1) of §1:

By the proof of (2) of Prop. 4.2 of [X4] and (2) of Cor. 3.5 of [XI]
we have

so:
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o o~
- V V T~~ pd jk li//<W,a)|2
- L ^ijb*fi-*--Z-\Yl I

(k,8,s)e(Exp) &id dik

Note the equality above is similar to (1) on P. 12 of [X2], and the rest of
the proof is the same as the proof on P. 12 of [X2]. Q.E.D.

Note if &(/,a)>0, then (i,a)ee*p, so by Prop. 3.1 Exp c exp, and KWC
is equivalent to the statement that Exp = exp.

Proposition 3.2. // 6(1, 1) > 0, then {$$ = fc -

Proof. If 6(1, 1) > 0, by Prop. 3.1, (i, 1) € £jcp. Suppose (/, j8) > (1, 1). Then

since o- is irreducible. It follows that

and if b = al®p — Gj, then Vb:=Vft — Nj is a normal matrix with non-negative
entries, with a Perron-Frobenius eigenvalue |f|— fft- ^ follows that

Si Sll &li

sa

So all the > are =, which happens only if

Prop. 3.1 now follows from the definitions. Q.E.D.

Theorem 33. If H c= Gk satisfies (2) in the introduction, then KWH is
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equivalent to KWC.

Proof. We just have to show that KWC implies KWH.
By (2) of the introduction we have if <(1,<5),(1, 1)>>0, then 6 = 1. For

any a, /?, we have (cf. Prop. 4.2 of [X4]):

=<«,/»>.
In particular al<B>p is irreducible if j3 is irreducible.

Suppose <(/', 0), (1, 1)> > 0, then {aja1 ^ , 1 > > 0, and so <<7J5 a^ w> > 0. Since
both 0j and fl10/3 are irreducible, it follows that

Now suppose (i,a)eexp. By KWC, 6(z,a)>0, so by Prop. 3.1, (i,oi)eExp9

and from G = a( we must have:

Therefore

which proves KWH. Q.E.D.

Let us give an example which does not satisfy the assumption of our
theorem, and verifies KWC but not KWH. This is the coset St/^g c SU(3)2

discussed in §4.4 of [X4] (also cf. [DJ]) and we will use the notations there. The
vacuum representation space H of LSU(3) at level 2 decomposes as:

H= (00, 0)® 0 + (00, 4)® 4 + (00, 8)® 8,

and since

(00,0) = (00, 8)

as representations of the coset, our assumption is not satisfied. In §4.4 of [X4]
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we checked C2 is satisfied, which implies that KWC is true. However, since

(11, 4) = (00,0)

and (10,4) eexp, KWH implies that

^1 1,1 0^4,4 ^0-

But a direct calculation using (9) of §2.1 gives

00,10

and

which shows that

1 1,1 0^4,4

since 500j ̂  0 > 0. In fact this was discovered when we verified C2 in this example.
Note that all diagonal inclusions of type A satisfies the assumption of Th.

3.3 by 2.7.12 of [KW]. To give a slightly different example, let us consider

the following inclusions

SU(2)llk c= SU(2)8k x SU(2)3k c SU(3)2k x SU(2)3h c SU(6)k

with k e N, where the first inclusion is diagonal, the second inclusion comes from
the conformal inclusion SU(2)4 c SU(3)l , and the third inclusion comes from
the conformal inclusion SU(3)2 x St/(2)3 c SU(6) (cf. [X3]).

By (2) of Prop. 3.1 and (2) of Cor. 3.1 of [X4], the inclusion SU(2)lik c

SU(6)k is cofinite and verifies the assumptions at the beginning of this section.
Note if (1, a) >(!,!), then AaeZ by definition. Here l<aeZ<HA:+l and
A«=mV2- So if Hfc + 2 is prime, then (l ,a)X(l , l) iff a=l, and it follows
that the conditions of Th. 2.3 are satisfied. So the conclusions of Th. 2.3
hold for the inclusion

if 1 Ik + 2 is prime, and by Dirichlet's theorem, there are infinitely many such fc's.
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§3,2. A property of C20

Proposition 3.4. If Hl c H 2 (resp. H2 <= Gk) verifies C2 or is a conformal
inclusion, and assume Hl cz Gk is not a conformal inclusion to avoid trivality,
then HI c: Gk verifies C2.

Proof. For simplicity we will use nx, ny, nz to denote the irreducible
representations of LH1 , LH2 and LG respectively, and J2/, $, *6 to denote
the vacuum sector of cosets H^ c= H2 , H2 C G, H^a G respectively. Note
we have natural inclusions j/(/)® J*(/) c ^(/), corresponding to the natural
inclusions

where / is a proper open interval of S1. From the decompositions:

y ~ Z ^.y)® ^(y.*)® ̂ x - Z ̂ .x)® ^
y

we conclude that

(y,x)

which is understood as the decomposition of representation n(z>x} of C when
restricted to A®B c: C. By local equivalence (cf. P. 502 of [W])5 the minimal
index of

: n(ZtX)(C(I))

is the same as that of

(/ is a proper interval of the circle), which by Haag duality (cf. Prop. 1.1 of
[GL]) and Th. 5.5 of [LI] is given by

Here when H 2 <= G (resp. H± c H2) is a conformal inclusion, <f(z>;y) (resp. d(ytX))
is defined to be the multiplicity of irreducible representation y (resp. x) which
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appears in z (resp. y) when restricting to LH2 (resp. LHJ. Otherwise rf(Zjy)

(resp. d(y>x)) is the statistical dimension (cf. §2.1) of sector (z,y) (resp. (y,x)).
By Cor. 2.2 of [L3], the statistical dimension of the inclusion:

n(ZtX)(A(I)®B(I)) c= n(ZiX)(C(I)) c= 7r(z,x)(C(/'))' c= n(z^(A(I')®B(r))' (I1 is the com-
plement of / in S1 as defined on P. 14 of [GL]) is

On the other hand, by Th. 5.5 of [LI], the statistical dimension of the above
inclusion is also given by:

and so:

Therefore

The proof now follows from the assumptions and

which follows from Th. B of [KW]. Q.E.D.

Let us give one application of the above proposition. Consider the
superconformal coset models (cf. [Gep], [LVW] or [NS]):

G(m,n,k}:=
SU(m)n+k x SU(n)m+k x C/(l)mn(m+n)(m+n+k)

In our setting, when 2mn > 2, the inclusion is given by H a G with
H=SU(m)n+k x SU(n)m+k x t/(l)mn(m+n)(m+n+k) and G = SU(m + n)k x Spi^Imri}, .
The inclusion H a G is constructed by the composition of two inclusions:
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H c SU(m)n x SU(m)k x SU(n)m x SU(n)k

X kv)mn(m + «)(m + «) X UWmn(m + n)(k) \ '

and

(SU(m)n x SU(n)m x U(l)mn(m+n)(m+n)) x (SU(m)k x SU(n)k

x U(l)mn(m+nm) c Spin(2mn\ x SU(m + n)k. (2)

The tangent space of the Grassmanian

SU(m + n)

SU(m)xSU(n)xU(l)

at the point corresponding to the identity of SU(m + n) is isomorphic to Cm®C",
which is a fundamental representation of Spin(2mn). The natural action of
SU(m) x SU(n) x U(l) on the tangent space gives the conformal inclusion (cf.
§4.2 of [KW])

SU(m)n x SU(n)m x U(l)mn(m+n)(m+n) a Spi^Imn), .

The inclusion

SU(m)k x SU(n)k x U(l)mn(m+nm c: SU(m + n)k

comes from the conformal inclusion (cf. Prop. 4.2 of [KW])

SUfyn), x SVWt x U(l)mn(m+n, c: SU^ + n), .

The inclusion in (1) is diagonal, and the SU part of the inclusion verifies
C2 by (4) of Th. 4.3 in [X4]. For the U(l) part, we consider the following
inclusions:

U(l)2axU(l)2bc,SU(2)axSU(2)b,

and

U(l)2a+2b c SU(2)a+b c= SU(2)a x SU(2)b,

with a:=^mn(m + n)2, b:=^mn(m + n)k. It follows from (3) of Cor. 3.1 of [X4]
and the proof of (1) of Prop. 3.1 that

is cofinite, and since all the endomorphisms involved are automorphisms as
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in the paragraph after lemma 3.2 of [X4], C2 is immediately verified in this case.
It follows from Prop. 3.1 and Th. 4.2 of [X4], [W] and [B] that G(m9n9k)

coset verifies Conj. 1 of [X4], and so is indeed a "rational" conformal field theory.
By Proposition 3.2, we see that when k=l and mn>\, the above coset

verifies C2.
The fixed point resolution problems for G(m9n,k) are discussed

in [Gep], [LVW] (also cf. [NS]). It will be interesting to work out this
problem along the lines of §2.
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