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the Dirac Equation
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By

Laura DE CARLI* and Takashi OKAJI**

Abstract

We discuss some Carleman type inequalities which lead to a strong unique continuation
property for Dirac operators with potential dominated by the Coulomb singularity.

§ 1. Introduction

Let 09,7 = 1,2,3, ft — OCQ be anticommuting matrices which satisfy the
following relations.

(1.1) a/ = a7» a,2 = /, a/a* 4- a*a/ = 0, j ¥ = k .

The Dirac equation which describes free relativistic electrons is represented by

where 7/o is given explicitly by the 4 x 4 matrix-valued differential expression

3

7/0 = —tnc V^ u,jdXj + otQmc2.
7=1

Here, c is the speed of light, m is a mass of a particle and n is the Planck's
constant.

More in general, let a/,y' = 0, . . .« be NxN symmetric matrices which
form a basis of the Clifford algebra. Namely, they satisfy (1.1). It is known
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that N is in the set DZ, where D = 2 . Throughout this paper, we only
consider the irreducible cases. Namely, we assume that

(1.2) JV

The (^-dimensional) Dirac operator with which we are concerned is

(1-3) L = -i£*jdXj,
7=1

which satisfies

L2 = -AL

Let Q be a domain of R" containing the origin. We consider two
problems for strong unique continuation property. The one concerns the
differential inequality

( 1 .4) \Lu(x) | < | V(x)u(x) | x e Q

and the other is about the differential equation

(1.5) Lu(x) + V(x)u(x) = 0 xeQ.

In both cases, the singular matrix potential V satisfies

There are many works concerning the unique continuation properties for
single elliptic equations or for elliptic diagonalizable systems. For general
elliptic systems, however, we have only few works (c.f. [5]).

We note first that a simple calculation shows that

A*I - > i f / i = 2 ,det 1- i ' ' '
if» = 3, N = 4.

The multiplicity of the characteristics becomes higher and higher as the space
dimension becomes large. This causes some difficulty in the study for the Dirac
operator by using the matrix diagonalization method. Furthermore, the
presence of a singular potential makes the problem more complicated. To
overcome these difficulties, we shall use eigenfunction expansions. The Dirac
operator has solutions corresponding to both positive energy and negative
energy. The potential V is assumed to satisfy, roughly speaking, that the
multiplication operator V transforms only a few negative states into positive
states when the absolute value of energy is high. We shall see that this
assumption ensures the strong unique continuation property. We hope that our
study throws new light on those problems for general elliptic systems.
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The plan of our paper is as follows. We first state the results for the
general space dimension in Section 2. When the space dimension is equal
to two or three, we can improve them. The precise results will be stated in
Section 3. In Sections 4-6, we shall give their proofs. In the final section,
some negative results will be presented.

§2. The General Space Dimension

Our first result is as follows. Let W be a spherically symmetric scalar
potential such that

W(x) = w(|x|)7, |*|w(|x|) e L°°(RW).

We denote the operator norm in Rn for the constant matrix V by \\V\\.

Theorem 2.1. Let n>2 and Q be a domain of Rn containing the origin.
Suppose V(x) satisfies \x\V(x) e L°°(Rn)N and

sup\x\\\V(x)-W(x)\\<l/2.
xeRn

Ifue{W^(Q)}N satisfies

Lu(x) + V(x)u = 0 in Q

and u vanishes of infinite order at the origin, then u is identically zero in Q.

Remark 2.1. O. Yamada obtained in a paper in preparation this result
when V = W and n = 3.

Here and in what follows, we say that u e L^OC(Q) vanishes of infinite order at
XQ e Q if

-t L./VM2 ,lim/T' \u(x)rdx = 0
R~^Q J{|x-*0|<*}

for every ^ > 0.
Next, we consider the differential inequality.

Theorem 2.2. Let n>2. Let u E{W^(Q}}N be a solution of the dif-
ferential inequality

(2.1) \Lu(x}\ < — u(x)\ xeQ,
x

where C is a positive constant strictly less than 1/2. Then, u is identically zero if
it vanishes of infinite order at some point of Q.

Corollary 2.3. Suppose that there exist positive constants e and C such that
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\Lu(x)\ <

Then, the same conclusion as in Theorem 2.2 holds.

Remark 2.2. V. Vogelsang ([13]) obtained the same result as in Corollary
2.3 when the space dimension is three.

There is also a related results by D. Jerison ([6]) who showed that the
differential inequality for the Dirac operator

\Lu\<\V(x)u\

has the unique continuation property from an open set provided that Lu(x) e

and \\V(x)\\ eLa(Q] with a > .

There are a lot of works on the unique continuation properties for the
Laplacean or of a single elliptic equation. In fact, it is known that the dif-
ferential inequality

where C\ and €2 are positive constants, has the SUCP in W^c if Ci < —, ([1],
2

[3], [7], [8], [4], [9], [10]). Moreover, we have counterexamples to SUCP when
n = 2 and C2 > 1, ([2]), and in the higher dimensional case, except for n = 3, if
€2 is sufficiently large ([15]).

In view of the relation AIu = —LLu, we can translate the negative results
for the Laplacean to the cases for the Dirac operator. Especially, when n = 2,
there is a counterexample which shows that the best constant C appearing in
Theorem 2.2 should be less than one. See the section 7 for the detail.

Furthermore, our Theorem 2.2 shows that we can take ||K(x)|| eL/"'c°
0(^),

which is the best possible choice in the scale of the Lp spaces. We shall prove
this fact at the end of Section 7 using an adaptation of a famous counter-
example of D. Jerison and C. Kenig ([7]).

§3. Low Dimensional Cases

When the space dimension is equal to two or three, we have more precise
results. We begin with two dimensional case.

We define Pauli matrices, which are 2 x 2 , by

1
0
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The two dimensional Dirac operator is given by

(3.2) P=-i{<ridxl+a28X2}'

The potential we consider is a two by two matrix having the following
form.

(33) KM(3'3j KW

Set

V,j(x) = \x\Vt j(x).

Let r(R+ x S""1) denote the set of all trigonometric polynomials like

Y.Fk(r}eike, FkeL™(R+).
\k\<rn

Let Jf denote the closure of the subset T in L°°(R+ x S"~').

Theorem 3.1. Suppose that each of Vjk(x) is bounded in R2,

(3.4) x V j j e t f , 7=1 ,2 ,

and

(3.5) sup jc| | Vtj(x) \<l- if i + j is odd.

Then, if u e \W^C (£2)} satisfies Pu -h Vu = 0 and vanishes of infinite order at
the origin, u is identically zero.

Corollary 3.2. In place of the condition (3.4), we assume that each of Vjj
(j = 1,2) is continuous in a neighborhood of the origin. Then, the same con-
clusion as in Theorem 3.1 holds.

We note that Theorem 3.1 does not follow from the result for the
Laplacian because the potential is not regular sufficiently.

Next, we turn to the three dimensional case. When n = 3, (1.2) implies
AT = 4. A basis of the Clifford algebra is given by

0 \ /O-/> a '=U
Define the Dirac operator D by

3

D = -i^ccjdXj.
k=l

We consider a 4x4 matrix potential V(x) with (z ,y) component Vy(x).
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We define two subsets A and Z of {1,2, 3,4} 2 by

(3.6) /f = {( l , l ) , ( l ,3) , (3 , l ) , (3 ,3)},

£ = {(ij): (iJ)tA and (i - I,; - 1) M}-

Let Q be a domain of R3 containing the origin. Let W be a 4 x 4 matrix
whose components Wy are spherically symmetric and, moreover, they satisfy

Wv(\x\) = Wt+ij+i(\x\) for (iJ)eA

and

(3.7) W^(W)eL»(R3) , V(i,y)

with

»V = 0, if ( i , j ) eS.

Theorem 3.3. Suppose V is a 4 x 4 matrix satisfying

(3.8) sup

+ V(x)u = 0 w C

vanishes of infinite order at the origin, then u is identically zero in Q.

§4. The Proofs of Theorems 2.1 and 2.2

First of all, we recall the fundamental facts about the properties of the
Dirac operator (c.f. [6]). Let n>2. We shall use the polar coordinates:

r=|x | , co = x/\x, and _y = logr.

Set Pj = —iuj. Pj is a skew symmetric matrix. In these coordinates (y,co) e
R x S""1, the Dirac operator can be written as follows.

where

and

j~i e f\ \
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Note that A is a unitary matrix and A* = —A. A calculation shows that

(4.1) -AI=(AL)*AL

= {(-dy - n)I - G}e-2y(dyl - G)

= e~2y{(-dy + 2 - «)/ - G}(dyl - G).

Since

where A is the Laplace-Beltrami operator on the unit sphere S""1, we have

We know that the eigenvalues of —A are k(k + n — 2), k = 0,1,2,
Therefore, it turns out that the eigenvalues of G are a subset of Z. In
particular, when n = 2, the spectrum of G is equal to Z. When « > 3, it
coincides with the set Z\{—1, — 2 , . . . ,2 — n}. Let ^ be the vector space of
harmonic Cm-valued polynomials of degree k, and let J^^ be its restriction on
S"~l. J^k is the eigenspace of —AI that corresponds to the eigenvalue
k(k 4-71 — 2). In particular, if Ek = ker(G — fc), then Ek ® E2-n-k = ^k-
Moreover, E-\ = •- = Ei-n — {0} when n > 3.

Now, we establish a crucial relation between A and G.

Lemma 4.1.

v4G= (1 -n-G)A.

Proof. A simple calculation shows that

A(co)G - GA(co) = 2AG + (n - 1)4.

This implies the conclusion.

Let us define B = G + ^—. Then,

L = «rJu{dv+^^-5l and AB =-BA.

The set of all the eigenvalues of B is equal to the set Z — — (N0 H —) U

f NO H —J, where NO = {0,1,2,3,...}. Let FX be the eigenspaces of B

corresponding to the eigenvalue /I for AeZ. Then, in view of A*A =/, we
see that A is a bijection from FX to F^x for any A eZ\ Let {w^yj^g^ be the
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orthonormal basis of L^S""1^ such that

Here, fa is equal to the dimension of F^. Let 77;. be the- projection on the
subspace F^ of L2(Sl)N. For an integer J, define

Summing up, we can conclude that if ueL2(Rn)N and

then

(4.2) L« = c-> £ £ (/_,,,)' +

where the prime stands for the derivative in y = log r.
Thus, it holds

Lu = e-y d 4-

If weC^CR11^})^ and (L+ F(x))w = r"1^, then (4.2) gives

(4.3)

for 1 e 27. We will show that the equation of (4.3) corresponding to k has
a better estimate for the negative A than for the positive /I (Lemma 4.3). To
utilize this fact, we divide those equations corresponding to the negative A's by
a large positive constant M which will be determined later. This simple trick
leads to the condition on the potential V which concerns the interaction of the
projection operator II f with the multiplication by V.

Lemma 4.2, Let J — 0. Our assumption on the potential implies that there
exists a positive constant CQ such that

(4.4) \\n+ x\V(x)u\\ < s

with s < 1/2.

Proof. In view of the facts that

\\n+rv(x)u\\ <
and
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the conclusion is an immediate consequence of the condition (3.8).
We require the following Carleman estimate.

Lemma 4.3. For any real y, any f ( y ) e C£°(R) and a real constant JJL, we
have

that

> r
J-oo

Proof. Let v — e~yyf. Then, the desired identity follows from the facts

f
J— OO

and that

We divide each of the equations (4.3) with A < 0 by a sufficiently large
positive number M which will be determined later. An application of this
lemma to the new system obtained from (4.3), together with Lemma 4.2 with
^ — ̂ A = (n— l)/2 — A e Z implies that there exist some 0 < e < 1/2 and
positive constants C), 7 = 0,1,2 such that

(4.5)

and

(4-6) IF E

C2||770-W||2 + \\g\\2}dy.
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Here, we have used the inequality

(a + b)2 <da2+-^--b2 fora,b>0, 6>l.
o — 1

Note that if A < 0, then |y + ^| > y for any y > 1. On the other hand, if
A > 0, then \y 4- /^ > 1/2 for any y e N 4- 1/2 since ju^ e Z. Therefore, taking
both M > 0 and y e N-h 1/2 to be large enough, we can conclude that

(4.7) ( _ _ £ 2 _ c 2 / M ^

i1/2

)l/2 f ^ f

EEI / -^ / -^ i

Now, we are in a position to prove Theorem 2.1. Choose (p e CCO(R) such
that

(4.8) 0 < <p(f) < 1

f l , i f ^ > - l
v(y) = <

\0, i f j < - 3 .

Define /eC°°(R) by

X(y) = 1 if ^ < -3 and = 0 if y > -2.

Let u e W^(Q)N be a solution to Lu+ Vu = Q and assume that it vanishes
of infinite order at the origin. Set

Uj(y,a>) =

Here, we take J? to be a large positive number such that the support of
Uj (\og\x\, co) is a compact set of Q. The standard limiting argument implies
that the Carleman inequality (4.7) is still valid for Uj. Applying the inequality
(4.7) to Uj, we see that there exists a positive constant y0 such that for any
y > 7 0 in N+l /2 ,

L-2wiJ/x^«)i2^®

<cf r fyfe - 2 ^
J -3; J

P*]'
J—00 J

+ C j ,_
-00
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Let j —» oo. Then, from the hypothesis that u vanishes of infinite order at the
origin, we see that for any fixed y > 1

(4.9) lim [ f e-2y?\u(ey,a})\2dydco
•/~>°° Jy>-3j JS""1

< lim e6j(?+n/2} I I \u(ey,co)\2enydyda) = 0,
•/~>°° Jj;>-3/JS"-1

since there exists a positive integer f such that ^ < y 4- «/2 < / + 1 and
< {e3J}2^+2. As a result, we obtain that

\x\~2y~n\u(\x\,co)\2dx < CR x\~2y~n u(\x ,o))\2dx.
J\x\<e-*R J\x\>e~3R

Thus, it holds that

e4R("+n/2}[ dx.
\x\<e-4R

Dividing both sides of the above inequality by e
3R(y+n/2^ and letting y — » oo, we

have

u(x) =0 on |x| < e'4R.

This completes the proof of Theorem 2.1.
Now, we turn to the proof of Theorem 2.2. The analogous argument to

that in the preceding proof yields the following Carleman-type estimate.

Theorem 4.4. Let n > 2 and let r = \x\. There exists a positive number y0

such that

(4.10) l-\\r-?-lu\\L2<\\r-?Lu\\L2

holds for every u e C^°(Rw\{0})Ar and y > yQ in N or N + /2 if n is odd or even,
respectively.

Proof. Keep the same notation in the preceding section. Since

an application of Lemma 4.3 to the system (4.3) with V — 0 yields the con-
clusion of Theorem 4.4 because of
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In view of Theorem 4.4, the proof of Theorem 2.2 follows from the
standard argument.

§5. The Proof for the Two Dimensional Case

For the two dimensional case, we can obtain precise information on the
eigenfunction of the angular part of the Dirac operator. Let us introduce the

x
polar coordinates x = eyco, i.e, y = log \x\ and a> = —r = (cos#, sin0). Define

x\
an orthogonal matrix A by

0 e~
(5.1) A = *ia>i+(i2(*>2=^ei(, Q

P can be represented by

P = ~ie~y ((a\co\ + (72co2) — + f a\ h GI -z— J ).
\ oy \ o(D\ ca)2J J

Since A1 — I, the last expression is equal to

T—I2+ .cy \0 —i

where we have used the relation

8 d \ _ / / 0\a
d(D2 dcoij \0 —i)dO'

In what follows, we denote

\
and

The equation Pu + F(x)w = 0 reduces to

d
-iA[—I+G]u+ Vu^Q.

Here,

V(y, 8} = ey V(ey cos 0, ey sin 8}.

For each positive integer k, define the subspaces E^- of L2(Sl) by

and E7, -
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It is easily verified that E^ is the eigenspace of G— 1/2 corresponding to the
eigenvalue ±(k— 1/2). Moreover,

(Cle-0-ikO

\c2e
ike

We shall use the following notation.

Let Qk be the projection on the subspace spanned by e~ihe of L2(S1).
Define

When the space dimension is two, the condition (4.4) can be translated as
follows. We assume that the potential V satisfies that there exist a nonnegative
integer / and two positive constants e, e' and a positive constant C such that

1/2,

(5.2) \\Q$V+QTMu\\ < B\\Q-j^u\\ + C\\Q+J+lu\\

and

(5.3) \\Q+jViQ^u\\ <ef\\Q++l\ +C\\Q-J+lu\\

\\Q~jV2Q- J+lu\\ < B'\\Q-j^u\\

where the norm stands for the standard operator norm in L2(S" !).
First of all, we prove the following result.

Theorem 5.1. Suppose the conditions (5.2) and (5.3) hold. Then, if Pu +
Vu = 0 and u vanishes of infinite order at the origin, then, u is identically zero.

Now, we proceed to prove this theorem. We shall decompose u(y, 0) into
the sum of Fourier series. Recalling that L2(S1} = @^_aoCe~ik0, we can
write

(5.4)

where
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It follows that

(5.5) - iA{dy+Bde}u(y, 6)+V(y)u(y, 9)

Here, (f)k stands for the k-th Fourier coefficient of

Set g = t(g+,g~). Therefore, Pu+ Vu = e~yg implies

(5.6) £X-i(a, -k- \)u-k^(y) + (V+(y)u+}k(y) + (F^X^WK*9 = 9+

fceZ

l)u++l(y} + (V.(y)uJ)k(y) + (V2(y)u~)k(y)}e-
ike = g~.

Let / be a large positive number for which the condition (5.2) and (5.3) hold.
We divide each of the above summations into two parts:

(5.7) £ -i(dy -k- \}u-k+l(y}e-ike = -Q+(V+(y)u+ +

k _ \ u - e ™ = - V u + +

and

(5.8) Y. -i(Sy + k+\)u++l(y)e-ik0 = ~Q+j(V^(y}u. + V2(y)U- -
k>~J

k>J

Applying Lemma 4.3 to each left hand side of this system, we get

f°° 1
(5.9) £ e-2yy\(dy-k-l}u-k+l\

2dy>-\\e^Q^+lu-\\\

POO

(5.10) £
A;>_/J-0

(5'U) E ~2yy 2 - 2 - ™
£>-jr

and finally
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(5.12)

for any f ( y ) e CQ°(R) if y eN + | is greater than J + 1. Let M be another
positive large constant which will be determined later. By virtue of (5.7) and
(5.8), we get

he-»Q;+lu-\\ < \\&(V+u+ + K,«- -g+)\\,

and

\\\e-jyQ~J+^\\ < \\Q-_j(V2u
+ + V-u- - g~)\\.

Our assumption implies that

(5.13) \\Q^(V+u++Vlu--g+)\\<E,\\QlJ+lu
+\\ + Cl\\Q

+_J+

and

(5.14) \\Qlj(V2u
+ + V^u- - g~)\\ < e2\\Q-_J+lu

+\\ + C,\\Q+_J+lu

with

£ l + £ 2 < 1/2, dl+$2< 1/2.

Here, we have used the fact that

and etc..
Taking M to be large enough, we have

(5.15) \\Q^(V+u++VlU--g+)\\<e,{\\QlJ+}u
+ + \\Q+_J+lu

+\\
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with

fii + 82 + £3 < 1/2, Si + 62 + S3 < 1/2.

Therefore, we can conclude

Lemma 5.2. There exists a positive constant C such that if U e
{C0-(R

2\{0})}2, then

\\x\-2v\PU+ VU\2dx>cl\x\-2y'2\U\2dx

for any large y e N + 1.

The standard argument leads to the conclusion of Theorem 5.1.
Now, we are in a position to prove Theorem 3.1. What we have to prove

is the following result.

Lemma 5.3,, Suppose that W(x) e Jf defined in § 3. For any positive
number s, there exist a positive integer J and a constant C such that

\\Q+W(x)Q-_J+lu\\ < s\QlJ+lu | + C\\Q+_J+lu\\

and

\\Q-jW(x)Q$+lu\\ < 8\\Q5+lu\\ + C\\Qj+lu\\

for all ueL2(R2).

Proof. Let s > 0 be given. One can find a trigonometric polynomial WN

such that

(5.16) RN(ey,6)=W(ey,0)-WN,

W* = E fkW*-™
\k\<N

and

H^vll/^CMxS1) ^ £/2-

It holds that

\\Q+jW(x}Q-J+lu\\ < ^||e:/+1n|| + \\Q+jWNQ-_J+lu\\.
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If we take / > 27V, we get

QtWNQ-_J+lu = 0.

This completes the proof of Theorem 3.1.

§6. The Proof for the Three Dimensional Case

We borrow some facts concerning eigenfimctions for the three dimensional
Dirac operator from B. Thaller's book (§4.6.4). In what follows, /? stands for
the 4x4 matrix

With the same notation as in Section 4, the orthonormal basis {^w+}mez \m\<\k\
of each eigenspace Ek corresponding to the eigenvalue k e Z of the operator
/?(G+1) is described as follows. For each nonnegative integer k, define

and

for /* = -*-!,-

Then, it holds

(6.1)

Here,

( ,.+ ym \ / ..- ym \
P'k,mIk \ A i m ^k,mIk-\ \
v+ ym+l aild ^- = „- yw+l

~V^,m r^ / \V^,i»i rjt-l /

with nonnegative constants ju^m and v£m whose explicit forms are given by

(6.2) ^m

Y™(co) are the spherical harmonics of order /: which form a complete ortho-
normal set in L2(S2): Using the polar coordinates (r, 9, (p) such that the ^3 axis
corresponds to (p = 0, they are given by

' " ' " ' 0 5 ' f° r ̂  -
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where

(_i\m dm+^ _
1 J^-\ml^ _ _ ( Jl \\k anrl y-m __ / i N ^ v r a
l-X ) m+k(X ~LJ and Yk - ( - I ) Yk

for \m\ <k and define Y™ = 0 if m\ > k. Moreover, it holds that

and

-
These last expressions imply that the multiplication by

operates invariantly on the sum of the two eigenspaces corresponding to two
eigenvalues having the same absolute value.

We split each of ue (L2(R x S2))4 and Lu = h into two component,

and h = ( , _
\h

where each of u±(y, •) belongs to (L2(S2))2 and can be represented as the
partial wave expansion:

oo n
f£. c\ +f \ \~^ V^ f s+(6.5) u^(y,CQ)=y > (/Jr

f rt< f «4 nifl

oo n
_ ^—A ^—^ . _i_

^ ' / ^ / ^ V"w,wi
n=Q m=—n

Then,

and the analogous formula for u~~ holds.
Since

Lu = -ie~yA(dy -h 1 - (G -h l))w =

(6.1) and (6.4) imply that

n,m

and

h+
0
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Denote by 77+ a projection onto the subspaces E+ spanned by
Mmt-K-i and define nn similarly. Set

= f77+ i f £ > 0
k \n if fc < o

and

for an integer /.
Split V into the 2x2 blocks as follows:

Let Lu+ VU — Q. Then, we have

h+ = - V+u+ - KIM- + g+ and A- = - V2u
+ - K_w~ + gr.

The assumption (3.7) on the potential enables us to prove the following result.

Proposition 6.1. There exists a positive large integer J such that

(6.6) \\P$V+u+\\ < B\\P~jU+\\ + CIIP+XH

\\P}V-u~\\ < ellPl^M-ll + C\\P+jU-\\

\\P^VlU~\\<e' '\\P~_ jU-\\

with

e + e' < 1/2.

If we admit this proposition, the conclusion of Theorem 3.3 is easily
verified by the analogous argument to the one in the two dimensional case.

We turn to the proof of Proposition 6.1. We claim that for a 2 x 2
diagonal matrix T — diag|Ti, 7^] whose components are spherically symmetric
and 7} belong to L°°(S2), we can easily verify the following result.

Lemma 6.2. For any positive integer J, it holds

(6-7) \\PjTP-_j\\ < C\\P+j\\

with a positive constant C.

From this and our assumption on K, it follows that

(6.8) \\P$\x\ V(X}P-JU\\ < B\\P-_jU\\

with £ < 1/2.
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§7o The Negative Results

Theorem 7.1. Suppose that n — 2. There exist a positive constant C > I
and a (nontrivial) smooth function u vanishing of infinite order at the origin of
R2 such that

\Lu(x)\ < — \u(x)\ in R2.

Proof of Theorem 7.1. As mentioned in the section 2, we will show that
our result cannot be greatly improved.

First of all, we recall the result due to S. Alinhac and M. S. Baouendi.
Let £ be an arbitrarily small positive number. They constructed in [2] a
nontrivial function UQ(X) e C°°(R2) which vanishes of infinite order at the origin
of R2 and a(x) e C°°(R2\{0}) satisfies

(7.1)

where

and 1 +£ > \a(x)\ > 1 in a neighborhood of the origin.
Using the polar coordinates x= (x\,X2) = (rcosd,rsmd) and setting y =

logr, we have

AuQ = e~2y(B2
y + dl)uQ = e~2yL+L-UQ = e~2yL^L+u0,

where L+ = dy ± idg. The equation (7.1) implies

-UQ -h a(ey cos 9, ey sin 6} + UQ = 0

and

L_L+ UQ + a(ey cos 9, ey sin 9} + UQ = 0.

On the other hand, the calculation in §5 shows that

0 e~i9L

y*L+ o
Define V(y,0) by

a(eycos9,eysm9) ( -e~ie e~i(

2ie~y I -e10 ei6
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Then, it is easily verified that

0 e-ieL. W L_MO \ _
e»L+ 0 ;U+«J W

In addition, we see that as the multiplication operator on C2

\\eyV(y,0)\\ = |fl(£?*cos0,^sin0)|.

Returning to the original coordinates (x\,X2), we obtain a desired function u =

Finally, we shall give another counterexample which shows that the result
of Theorem 2.2 is optimal in the scale of the Lorentz spaces Lp*q to which

||K(jc)|| of (1.4) belongs. Let n = 3, U = l(u(x), 0,0,0), and L = Pl-~^

d d
P2 -- \-Pi- — , where

/I 0 0 0 \
0 1 0 0
0 0 - 1 0
Q o o -ij

/O 0 1 0 \
0 0 0 - 1
1 0 0 0
Q -i o o J

/O 0 0 1\
0 0 1 0
0 1 0 0

\l 0 0 Q

Then,

Let

M(x)

Then, u(x) vanishes of infinite order at the origin of R3, and one can check that

LU(X) = (1 +e)e-

Set

1*1
Then,

\LU(x)\ = W(x)\U(x)\

and one can see that W(x) $ /^(R3). In fact, a measurable function f ( x ) on
R" belongs to Lj^°(R3) if and only if for any compact set K of R"
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saps\{xeK]\f(x)\>s}\l/I'<+ao,
s>Q

where \E\ denotes the (Lebesgue) measure of E. (c.f. [12], p. 132).
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