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Introduction

We consider the following mixed problem in the domain (0, T) x Q:

(0.1) P [ v ( t , x ) ] = f ( t , x \ ) ,

(0.2) v = 0 on (0, T) x dQ,

(0.3) v = 0, vt = 0 at t = 0,

where Q = {x e Rn; |jc| < 1},

n n

P[v] = vn -
/=!

all the coefficients of P are real valued and a(t, \x\) > 0 for all (t, x) e [0, T] x Q.
In order to obtain the spherically symmetric solution of (0.1)-(0.3), P is reduced
to the following operator for r e (0, 1) = 7, r = (x\ H ----- h jc^) 1/2 and V(t, \x\] =
v(t,x).

-(xibi(t,x}-(n^^^

where a ( t , r ) , b$(t,r), c(t,r) are in ^°°([0, T] x I). We impose the assumption
on Pr\
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(A-i) r~l(£"=lXibi(t,x) — ( n — l ) a ( t , \ x \ ) ) is a radial function in x and
belongs to #°°([0, T] x I) as a function in (f,r) .

(0.1)-(0.3) is reduced to the following problem:

(O.I)7 P ,[K(f , r)]=/(f , r ) in (0, 7*) x 7,

(0.2)' K r ( f , 0 ) = K ( f , l ) = 0 ,

(0.3)' F(0,r) = 0, F,(0,r)=0.

Therefore in order to obtain the solution of (0.1) '-(0.3)' it is enough to solve the
following mixed problem:

(0.4) L r[i*(r,r)]=/(f,r) in (0, T) x /,

(0.5) « r ( / , 0 )= i i ( f , l ) = 0,

(0.6) w(0,r) = 0,

where Lr[u] = utt - (a(t, r)ur(t, r))r -f b(t, r)ur + b0(t, r)ut 4- c(t, r)u and 6(r, r) e
^°°([0, r] x I). We further impose the following assumptions.

(A-ii) (Oleinik [14]) For a positive constant t$ < T it holds that

(0.7) atb2(t, r) < Az(f, r) + at(t, r),

where a > (2p + 6)~ (/> being an integer >0), A is some constant if 0 < t < t$,
and a and A are some positive constants if t$ < t < T.

(A-iii) 1) fl(r,0)=flr(/,0) = 0.
2) There exists an extension function a(t, r) e ^2([0, T] x /?) such that

5 > 0 and 5(r, r) = a(t, r] in [0, T] x I.
(A-iv) It holds that dj

tf(t, r) = 0 at t = 0, j = 0, 1, . . . , p and d;'/(f, r) - 0,
i = 0, . . . , s — I on r = 0 for an even number s.

Remark 1. If bj(t,x)=Q, / = 0, . . . , w , (A-i) is satisfied because of
(A-iii)-l). An example of the case where a(t,r) and bt(t,x) ^0, / = ! , . . . , «
satisfy (A-i), (A-ii) and (A-iii) will be discussed in the last section in details.

Remark 2. If (A-ii) and (A-iii)- 1) are satisfied, the assumption (A-iv) is
seemed to be natural in the following sence. It is well known that the mixed
problem for Lr with the Dirichlet condition is reduced to the following type of
problem by the usual argument, if initial data, boundary data and the forcing
term are sufficiently smooth in [0, T],I and [0, T] x 7 respectively and ap-
propriate compatibility conditions are satisfied (cf. [5], [7], [14]).

( M ) u = 0 on (0, T) x 57,
u = 0, ut = 0 at t = 0,
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where F0(z, r) is sufficiently smooth in [0, T] x 7 and satisfies the former part
of (A-iv). Then we can find an appropriate function U(t,r) so that Lr[u— U]
= FQ(t,r)-Lr[U}=Fi(t,r) satisfies (A-iv) and u - U satisfies (0.5) and (0.6).
This argument will be discussed in Appendix in details.

We give simple examples of the equation (0.1).

i) % - x\2kt2lAv(t, x) + d(\x\)\x\k~ltl-lxtvXt, (t,x) e (0, T) x fl,
1=1

d(r)e#°°(7), fce;V = {l,2,...}, / E Z+ = {0, 1, . . .},

where especially we put tl~l = 1 for / = 0 in the third term. Ebihara-
Kawashima-Levine [2] obtained the spherically symmetric solution of the mixed
problem for vtt — \x\2kAv + v\"v = 0 for a > 0. This type of equation is the
wave operator describing a model of wave phenomenon, on or through
inhomogenous medium, especially which is extremely dense near the center
(x = 0) and then the speed of the wave vanishes near the center.

Also a(t, x\) further admits the following degeneracy on the boundary.

ii) a(t, x\) = \x\2kt2l(\x\ - 1)2*(1 - \x\ + f)2*, (*,*) e (0, 7) x Si

for keN, /c, / and 0 e Z+.

i) is reduced to the following equation:

i)' Vtt - r2kt2lVrr + ( r k t l ~ l d ( r ) - (n - \)r2k~lt2l}Vr.

Also examples of Lr corresponding to ii) are given as follows.

ii)' a(t,r) =r2kt2l(r- l)2/c(l - r + t)2e , b(t,r] = rktl~l(r - l ) K ( \ - r+ i)e

where especially we put tl~l = 1 for / = 0 in b(t,r).

O. A. Oleinik [14] considered the Cauchy problem to weakly hyperbolic
equation of second order admitting general degeneracy in (t,x) e [0, T] x Rn\

n n

(0.8) vn - J^(Aij(t,x)vXi}Xj + J] JJ/(f,xK + B*(t,x)vt + C(t,x)v = F(t,x),
ij=i 1=1

assuming that the following inequalities hold

2

(0.9) at Bf(t, x)h < A
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for any £ e Rn where all the coefficients of (0.8) are sufficiently smooth and
bounded. Note that (0.7) is the special case of (0.9). Then she proved that
there exists the smooth solution. Her result was extended to the equation of
higher order by MenikofT [10] and Ohya [11].

The well-posedness of the mixed problem for regularly hyperbolic equations
of second order was proved by Ikawa [3], [4]. But nothing is known about the
mixed problem corresponding to Oleinik's result except for the simple degeneracy
case. In fact, Kimura [5] restricted degeneracy of (0.8) to the case where Ay
and BI degenerate in t only of polynomial order (cf. Chi Min-you [1]) and
impose the null Dirichlet boundary condition in a bounded domain in Rn

with compact smooth boundary. Then she proved the well-posedness of the
problem (cf. [7]). The mixed problems of a weakly hyperbolic equations of
second order with other kind of degeneracy was studied by [8] and [9]. On the
other hand, Krasnov [6] and Oleinik [12] showed the existence theorems and
uniqueness theorems in the sense of a generalized solution to the mixed problem
for weakly hyperbolic equations under some conditions on the coefficients and
data.

Our purpose is to obtain the smooth spherically symmetric solution of the
mixed problem (0.1)-(0.3) corresponding to the Cauchy problem considered in
Oleinik [14]. Let us introduce some notations:

(A '0) / (T)= h(t,r)g(t,r)drdt, (h,g}I(t) = h(t,r)g(t,r)dr,
^ ' J o J / J /

rr V2

iwi/Vo* ,
Uo )

d d d
dt' ' <9r' x' dxi'

where a = ( a i , . . . , aw) is a multi-index. Let A/, j = 1 ,2 , . . . , be eigen values of
—<32 with the null Dirichlet condition such that 0 < A\ < fa < • • • and corre-
sponding eigen functions 9\(r},(p2(r}i We define a functional space

f oo oo 1

K<*>(/) = \ v(r) = ]T gig>i(r); Y] X]kg\ < oo, r E I \.



WEAKLY HYPERBOLIC MIXED PROBLEM 857

It is well known that F^(/) c Hl(I)nHk(I) and that the following inequality
holds. For some positive constants c/, /= 1,2 and v(r) e V^k\I] it holds that

(o.io)

Theorem 1. Let f ( t , r ] be in f}s^ C"'([0, 71];
number s. Assume that (A-ii)-(A-iv) hold. Then there eixists a unique solution
u(t,r)e(}l=QC\[Q,T}\V^(I}) of the problem (0.4)-(0.6) and satisfies the
following estimate for some constant M > 0 and r e [0, T]:

(0.11) ||«||7,,(T) < M(||/||/(r);o,,, + ll/llL-2W+ max
U < 0" < ?Q

Replacing &(f , r ) by J]f=1 r-^x/M^*) - (w - l)a(r,r)) in (0.7) and going
back to the original problem through (0.1)'-(0.3)', we have the following result.

Theorem 2. Let f ( t , r ) e [}*^+P C'([0, T]; K^*1-''>(/)) for any even
number s. Assume that (A-i), (A-iii), (A-iv) and (A-ii) replaced by
YJt=ir~l(xibi(t,x)-(n-\}a(t,r)) instead of b(t,r) in (0.7) hold. Then there
exists a solution v(t,x) e C^QO, T] x Q) of (0.1)-(0.3).

Remark 3. (A-iii)-l) is required to prove (0.5) in Theorem 1 and to show
the regularity of the solution in Theorem 2. However even if (A-iii)-1) is not
satisfied, the proof of Theorem 1 guarantees the existence of a smooth solution
satisfying the mixed problem (0.4), (0.6) and u(t,Q) =u(t,l) =0.

Now let us explain our argument. In Oleinik [14] the energy estimate
played an essential role. If we try to derive the energy estimate for (0.8), (0.2)
and (0.3) in (0, T} x Q following to her method in the usual Sobolev space,
integrating by parts we have many remainder terms of inner products defined on
the boundary. They are in very complicated forms and so harmful to deriving
the energy inequality of higher order. Hence crutial point in our problem lies
in treatment with them. In the first step, to simplify the form of them we
restrict our attention to seeking the spherically symmetric solution of (0.4)-
(0.6). For this purpose P is reduced to Pr by r=(x\-\ \-x%)1/2. Since
r~l(52?=\ Xibj(t,x) — (n— \)a(t, |x|)) may be regarded as a radial function under
the assumption (A-i), it is enough to consider Lr instead of Pr.

In the second step, we introduce the functional space F^(J) spanned by
eigen functions of — d?

2 satisfying null Dirichlet boundary condition. It holds
that d?<pj(r)=Q at r = 0 ,1, / = 0 , 1 , . . . J E N. By the use of this property
most of such simplified remainder terms become harmless and we obtain the
desired estimate. Consequently our main purpose in this paper will be carried
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out through (0.1) '-(0.3)' by seeking the spherically symmetric solution of (0.4)-
(0.6) by Galerkin's method. The energy inequality of (0.4)-(0.6) plays an
important role and it is derived according to Oleinik [14].

This paper is organized as follows. In the first section, we derive the basic
energy inequality for (0.4) -(0.6). In section 2, in the first subsection we obtain
the energy inequality of higher order with respect to r. Most crutial point in
this paper lies here. Next, using it, we have the energy inequality of higher
order with respect to (r, r). By this estimate we obtain the existence of smooth
solution of (0.4)-(0.6). Finally, from this result the existence of solution of the
original problem (0.1)-(0.3) follows. We also give an example of a(t, x\) and
bi(t,x)^Q, / = ! , . . . , « , satisfying (A-i)-(A-iii).

§1. Basic Energy Inequality

1.1. Construction of Solution

/(f,r) is written in the form of ESo/XOPiM where ft(t) = (/(r,r),<^(r))7.
Put fj(t,r) = ELofMvM and set «/M = Eio0//(OftM for /= 1,2, . . . .
Then we construct uj(t,r) so that 11^(1, r) satisfies the problem (0.4)-(0.6). For
this purpose, we consider (Lr\uj\, q>j) j = (//, #>/)/• The left hand side of this
equality is written in the form:

(Lr[uj\, <pj)f = d2
tgjj(f) + Pjj(t- #/!, . . . , gjj, dtgj\ , . . . , dtgjj),

where Pjj is a linear operator in gj\ , . . . , gjj, dtgj\ , . . . and dtgjj. We determine
gjj(t)> J= I , - - - , / so that gjj(t) satisfies the following problem:

jj = o, gjjt = Q at t = 0,7 = l , . . . , / .

This problem is reduced to the following ordinary differential system in gjj and
GJJ = dtgj/, j = 1 , . . . ,/:

S,Gj,(t)

It is well known that there is a smooth solution in [0, T] of this problem. In
fact coefficients of PJJ are sufficiently smooth in t. Since fj(t) e C*+1+J([0, T]),
we have g j j ( t ) e C^+3+*([0, r]).
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1.2. Basic Energy Inequality for 0 < t < tQ

For simplicity, put uj(t,r) = u(t,r) and put fj(t,r] = f ( t , r ) again through
this section and next section. Then we have

(Lr[u],u}j = (f,u)j,

In this subsection our desired estimate will be derived by the manner due to
Oleinik [14]. We have the following basic energy estimate of u.

Lemma 1. It holds that for 0 < T < tQ < T we have for a constant M\

(1-0) IHI/2oW < Mi omaxo \\f\\i,Mp+,(v),

supposed that (A-ii) and (A-iv) hold.

Proof. Denote w(t,x) = J/w(cr, x)da for Q<t<r according to Oleinik
[14]. It is easily seen that it holds for 9 > 0

(1.1) (LM,^w)/(T) = (/,^M;)/(T).

First we have

(«„, weft)/(T) = -(u,,wdeet)I(r) + (u,,ueet)I(r)

= (U, -u9eet + W02ee')I(r} + (ut, ue9')^.

On the other hand it holds

(«„ uetit)I(l)

Therefore we have

(1.2) («„, wee')I(T} = - | ( , / W , ( l ) )

Next we estimate the elliptic part.

((a(t,r}Ur)r,weet}I(T] = -(aur,wre
et}f(r}

= [(awr, Wre^}^ - (awr,dt(wre
et))I(T} -

Therefore we have

/i ^(1.3)
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Lower order terms of Lr[u] are estimated as follows.

(1.4) (AoC.rH.^'V) = (u,ee>b0(t,r)u-(b0(t,r)e
et)tW)I(T).

(1.5) (b(t,r)ur,wee<)I(r) = -(br(t,r)u,

~ l e ' - 2(M, t~ luee')f(r) + - (atb2(t, r)wr, wre

Finally we estimate the right hand side of (1.1). By integrating by parts we
have

where wp+\(t, x) = ^ wp(a,x)da and WQ = weet. Then we have

.2
2 ^ 1 1 1 dtj+j+ j f. . . ULp< r • •[[Jtp+l Jtl JtQ

:1>**
*}>,,<)

Jo

2 /PT \2

u(t, x)dt
o

Hence we have

f \wp+l
 2dt < T2p+4e2G* [" u2dt < T2p+5eWT IT rlu2c

Jt Jo JO

Therefore we obtain for a constant 6 > 0

i / x. flfx i . ^/ _i «/x e °T ?

Put 0 = A, for T< ^o and set XT) = (M^~ IM^^)/(T)- Then taking account of
(A-ii) we have

T/(T) < (a-1 4- 2S)y(r) + M3^(r) + M4r
2^6 max 0

0<o-<r0
 ljp ' '

Term by term multiplying by T~^l-^e-^^

(1.6) J(T) < r^+2*eM

This completes Lemma 1.
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§2. Energy Inequality of Higher Order

In this section we derive the energy inequality of higher order for Lr[u],
provided that (A-ii), (A-iii)-2) and (A-iv) hold.

2.1. Energy Inequality of Higher Order in r-Derivatives for 0 < t < t$

In this subsection, we derive the energy estimate to r-derivatives of u of
higher order. For this purpose we prepare the following two lemmas.

Lemma 2.1. For k — 0 ,1 ,2 , . . . , we have

\ ^ f \\A2k..\\2 , ||;>2AH-2 i|2 \

Proof. Since d*ku = 0 at r = 0, 1, we have

By Cauchy-Schwarz's inequality we have the desired result. M

Lemma 2.2. Suppose that g(r) > 0, r e R and g(r) e &2(R). Then we have

(2.1) (drg(r)}2 <2{sup\grr\}g(r), r e R.
reR

Proof. The proof is done according to Oleinik [13, Lemma 4]. Suppose
that (2.1) is not satisfied at a point r0 e R, i.e., g2(rQ) > 2{suprER\grr\}g(rQ).

Consider a point r0 = ro — 2 — -~. By Taylor's formula for a point r between
#r(/o)

TO and ro we have

f~ \ ( \ ~>y(ru"> ( \ , i#2(ro) /-N9(r0] = .(ro) - 2^*M + 2^-} 9rr(r) = -

In view of the hypotheses 1 - 2 ,,r° \ grr(r) > 0 holds. If g(rQ) > 0, then it
9r(rO)

holds gf(ro) < 0, which contradicts g(r) > 0. In case g(r$) = 0, 0, (ro) > 0 holds,
which contradicts g(r) > 0 in a neighborhood of r0. Hence we proved that
(2.1) holds for r E R. •

Lemma 2.1 implies that to carry out our aim in this subsection it is enough
to derive the inequality for derivatives of even order of u with respect to r. Put
yv(T) = ( B v

r u , e 0 l t r l d r U ) I ( r } . We have the following result.

Lemma 2.3. There exists a constant M$ and a positive constant 9\ such that
we have for v < s and T e [0, £Q]

(2.2) yv(r) < M
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Proof. Recall that s is any even number. Suppose that the following
inequality holds for v < s — 2 for a constant Ev.

(2.3) yv(r) < Evr
2"+6 £ m^ \\d"r f\\lp+^p+, (a).

In the same way as derived (1.2) we have for a positive constant 9\

(ds
rutt, d

s
rwe^)I(T} = \ (ds

ru, 3
/(T)

Estimating the elliptic part we have

Cv(8
v
rads-vur, ee>'ds

rwr)I(T) =1 + 11,
v<s

where Cv is a constant. Then we have in the same way as derived (1.3)

I = -~ ((0ia + fl,)S>r, drX**")/(t) - ^ «wr, 5>r)7(0).

In the case of v = 1 in 77, we have

considering that s is an even number

Here as well as below we denote by Aj the integrals which can be estimated
in the following way: \Aj\ < Nj Y^v<sT(^ru^rl^rue0lt}i(T) ^or some constants
Nj > 0. By Lemma 2.2 and (A-iii)-2) we have
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On the other hand

= 8t— ^ r—J-
Jo ^

Hence we have

Now let us estimate the case of v > 2 in II

Combining above these inequalities we have

On the other hand we have

in the same way as derived (1.5)

< |r(62(r,r)a>r,e
e"ax)/(T) + (2a)-1(5>,r'e9"a;M)/(T) + \AS\

Other lower order terms are estimated as follows.

Finally, choosing 0] sufficiently large we have by using Lemma 2.1 and (2.3) for
a positive constant C

T)/(T) < (a'1 + 2S)y,(r) + Crys(r) + M6r
2"+6 V max \

v<s ~a~ °

Thus we have in the same way as derived (1.6)
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(2.4) ys(r) < A
V<S "^"^'u

Considering into Lemma 2.1 we see that (2.2) holds. •

2,2. Energy Inequality of Higher Order for 0 < t < %

In this subsection, we derive the energy estimate of higher order derivatives
of u(t, r) in t and r.

Lemma 2.4. There exists a constant Mg > 0 such that it holds for i E [0, to\

Proof. In the case of v < s — 1, we have for a positive constant 62

(dv
rutt,e~ 2t^.Ut)i^ --

Next we have

= - ((-62a

On the other hand we have

+ M9

v>A:

Taking Lemma 2.3 into account and choosing 62 sufficiently large we have

(2.6)

max (
\ ~ ° ~ ° V 5 V<J-

In order to estimate the derivatives of the form: d^.d^+2u, p > 0, v + p <s — 2,
we apply the operator 3^'flf to the equation (0.4) and we obtain

(2.7) dr
vd?+2« = dv

rd
p
t(Lr[u] - d*u).
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Since in the right hand side of (2.7) derivatives of u are in the form: dffiu,
i + j<s, j </?+! , by using (2.7) we arrive at (2.5). •

2.3. Energy Inequality of Higher Order for 0 < t < T

We may obtain the desired estimate for re [to, T] in a similar way as in
the above. But the estimate for (b(t,r}ur,weet)j,^ should be derived as in the
following.

)«r, ™>'')/(T) = -(ir(f,r)n, w*)/(T) - (b(t,r}u,wre
dt)I(T]

< Mu(u, eetu)I(T} + (tb2(t, r)wr, wre
et)I(to}

where oc\ is a constant and ai < at for t > tQ and /(JO,T) = (*O,T) x /.
Set z = (u,ue0t)j^ for t$ <r < T. By using the estimate (1.6) for j;(fo)

(u,t~lueet)j^ we have for sufficiently large 9 and T > to

< M13(z(r) + (f

Therefore we have

Using the estimate (2.2), in the same way we estimate (dv
ru,dv

ru)(i] for v<
s in case T > tQ. The derivatives of the form dv

rdt, v < s — 1 and dv
rd^+2, p > 0,

v + p < s — 2 for T > t o are estimated in the same way as for r < tQ. Then we
have the following result.

Lemma 2.5. We have for some constant MI 6 > 0 and 0 < T < T

7V2(T) + max
U <. (T <. t Q

§3. The Proof of Theorems

3.1. The Proof of Theorems

First we discuss the convergence of formal series {//}/Li-

Lemma 3.1. It holds that
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p+l+s
i) f j & r ) -> f ( t , r ) strongly in f| C"'([0, T]; K*+I-"-'(/)) as / - oo,

/=o
ii) /y(r,r) -> /(r,r) strongly in Hs~l((Q, T) x I) as / -> oo.

i) Taking (0.10) into account, it holds that for re [0,^1

= E
i+j<p+ l+s 1=1

E
+s 1=1

Since max0< r<r H / l l / + i + ^ O < +°°> we have

' - 0 as / - GO.

ii) Considering into the proof of i) we have by Lebesgue's convergence
theorem

Hence we proved ii). •

Proof of Theorem 1. For any /i,/2 e N with J\ > /2, from Lemma 2.5 it
follows that uJl — uj2 satisfies

(3.1) \\uj.~ uj2\\Is(i}:

U S O" S: 1 0

Lemma 3.1 yields that the right hand side of (3.1) tends to zero as /i,/2 — > oo.
Hence there exists a limiting function u(t,r) such that

i// -> u strongly in f) C''([0, 7*]; KJ-''(/)) as / -^ oo.
7=0

Since /} -> / in L2((0, T) x /), for any w(f, *) e ®((0, T) x /) we have

-^ (L r[w],w) (0>r )x / - (/,w)(0ir)x/ as /-^ oo.

It is easily seen that

(3.2) «(/,r) =0 on r = 0, 1.
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From (A-ii) and (A-iii)-l) b(t,Q) = 0 follows for t e [0, T}. Put Vj(t) = 3/M(f,0),
7 = 0,1,2, ____ Suppose that Vj = 0, j = 0, 1 , . . . , k — I for s — 1 > k. Since
(3//)(f,0) = 0, i = 0, 1, ... ,s - 1, differentiating the both sides of (0.4) in r of
order k, we have for te [0, r], taking (A-iii)-l) into account,

-o,
_ = vkt = 0 at t = 0.

Then we have Vk(t) = 0. Therefore we obtain

(3.3) dl
ru = 0, i = 0 , 1 , . . . , s — I on r = 0.

Also the estimate (3.1) implies that (0.11) holds for u ( t , r ) . Thus the function
u(t, r) is the desired solution of (0.4)-(0.6). H

The proof of Theorem 2. By Theorem 1 we obtain the solution V(t, r) of
(0.1)'-(0.3)' in P|*=0C<([0, r]; KJ-''(/)) n Cs~l([0, T] x 7). Repeating the same
procedure from (3.2) to (3.3) we have

(3.4) 3/3/ V(t, r) = 0, i + j<s-l on r = 0.

Also (3.4) implies that for the solution V(t,r) of (0.1)'-(0.3)' the derivatives of
V(t, \x\) in x up to the order s - I are continuous at x = 0. In fact, we have

r - t , X

\OL\<S-\ i+j<s-2

by Ohya [11, Lemma 14.1]

< C max \ ( d s - l V } ( t , r ) \ < +00.
0<r< l

Similarly we have max^^ £|a|+;^-i \d{D$V(t, \x\)\ < +00. Therefore V(t, \x\]
is our desired solution (0.1)-(0.3). M

3.2. Example of a(t,\x\) and A/(r,Jc)

Recall that in Theorem 2 (A-ii) is assumed to hold for X)/-Li
r~l(xjbj(t,x} — (n — \)a(t, r)) instead of b(t,r) in (0.7). In this subsection we
give an example of bj(t,x) and a(t,r) satisfying (A-i), (A-iii)-l) and (0.7) re-
placed by ^=lr'l(xibi(t,x) -(n- l}a(t,r}} instead of b ( t , r ) .

Assume that a(t,r) = r2rj(t,r] for a function //(?,r)(>0) e *°°([0, T] x 7),
which satisfies (A-iii)-l). Let £(f,r) belong to *°°([0, T] x 7). Define
&,(f, x) = xtf/r, i = l , . . . , n . Then we have ££=1 6/(r, x)^, = j8(r, r)3r.
Therefore (A-i) is satisfied and /V is written in the form:
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Pr(V] = Vtt - (a(t, r) Vr)r + (fi(t, r) - r(n - l)n(t, r)) Vr + b0(t, r) Vt + c(t, r) V.

For a constant A' > 0 we see that a(t,r) satisfies (r~l (n — l)a}2 < A' a. We
assume that a(t,r) and /?(f,r) satisfy

(3.5) 2afj82 < (A-2A')a + at

where a>(2 /? + 6)~1 (/? being an integer >0), ^4 — 2^4' is some constant if
0 < t < /o, and a and A — 2A1 are some positive constant if t > t$. It is easily
seen that a(t, x\) and bj(t,x) defined in above are our desired ones.

Appendix

Considering into (A-ii) and (A-iii)-l) we may assume that a(t,r) and b(t,r)
are denoted by r2A(t,r) and rB(t,r) respectively for A ( t , r ) and B(t,r) e
^°°([0, T] x I). Then we have the following result:

Proposition. Assume that F0(f,r) e #°°([0, T] x 7) owrf r/zar (d\F^)(Q,r) =
0, / = 0, . . . , I for a positive integer / > 2. For any positive integer k < 1/2, there
exists a smooth function U(t,r) such that for F\(t, r) = Fo(r, r) — Lr[U]

/ Note that

Lr - d2
t - r2A(t, r}d2

r - r2Ar(t, r)dr + r(B(t, r) - 2A(t, r))5r + ^o(r, r)ar + c(r, r).

Define operators L^1 and L^ iZ , / = 0, . . . , & as in the following.

c(r , r )+ (*(*,/•)-:

L,M = d2 4- bQ(t, r)dt + c(t, r) - i(i - l)A(t, r) + i(B(t, r) - 2A(t, r)), i > 2,

r''+1I,2'''[.] = Lr[r{.} - r'L^'H, i > 0.

Then we consider the Cauchy problem of the following ordinary differential
equation for i = 0, . . . , & :

L^'lw^r)] = (5/F0)(r,0) - zL2'1'"1^/-!],

'/ = w/f = 0 at r = 0,

where L2'~l = 0. We see that there exists a unique smooth solution w/(r , r)
of (Li) (see Kubo [8, Proposition 1.1]). It is seen that (d/w/)(0,r) = 0,
7 = 0 , . . . , / + 2 — 2/. Put U(t, r) = ]^*_0 w7-(r, r)p(r)rj/jl for a non-negative
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function p(r) e ^°°(7) satisfying p(r) = 1 near r — 0 and p(r) = 0 near r = 1.
Then we have near r = 0

, 0) -

7=0 J'

Therefore we have FI(r, r) = O(rk+l) and (5;'Fi)(0, r) = 0, j = 0 , . . . , / - 2k hold.
Hence the proof is complete. M

Let u be a smooth solution of (M) in Remark 2. Proposition implies that
Lr[u—U]=F\ holds. Since it holds that Lr[u]\r=Q = L^°[u]\r=Q, considering
into (LO) on r = 0, from the uniqueness of the solution of (LO) restricted on
r = 0 M>o(f ,0) = w(f ,0) follows. Since it holds Lr[u—U]=F\, repeating the
procedure from (3.2) to (3.3) for u — U, we have dj(u — U) = 0, j = 0 , . . . , k on
r = 0. Thus we see that u— U satisfies (0.5) and (0.6).
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