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Determinant Formula for Solutions of
the Quantum Knizhnik-Zamolodchikov

Equation Associated with Uq(sln) at \q\ = 1

By

Tetsuji MIWA*, Yoshihiro TAKEYAMA*° and Vitaly TARASOV**

Abstract

We construct the hypergeometric solutions for the quantized Knizhnik-Zamolodchikov equation
with values in a tensor product of vector representations of Uq(sln) at \q\ = 1 and give an explicit
formula for the corresponding determinant in terms of the double sine function.

Introduction

In this paper we study the hypergeometric solutions of the quantized
Knizhnik-Zamolodchikov (qKZ) equation with values in a tensor product of
vector representations of Uq(sln), see Section 1 for the precise formulation of the
problem. It is known that the qKZ equation respects the weight decomposition
of the tensor product. For each weight subspace we construct a fundamental
matrix solution of the qKZ equation and explicitly calculate the corresponding
determinant, see Theorem 3.1.

Formal integral representations for solutions of the qKZ equation in the sln

case, both in the rational and trigonometric situation, were constructed in [TV1].
Though to write down the phase function explicitly in the trigonometric sit-
uation it had been assumed in [TV1] that the multiplicative step p of the qKZ
equation is inside the unit circle: 0 < \p\ < 1, all the construction in [TV1] used
only difference equations for the phase function and after obvious modifications
remained valid for an arbitrary step p / 0,1. However, the problem of in-
tegrating the formal integral representations suitably and getting in this way
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actual solutions of the qKZ equation is much more analytically involved; one
can see this looking at the sh case.

In the last four years the hypergeometric solutions of the qKZ equation in
the s/2 case were studied quite well. The generic situation was considered in
[TV2] (the rational case) and in [TV3] (the trigonometric case for 0 < \p\ < 1).
The construction was generalized to the trigonometric case for \p\ = 1 in [MT1]
and to the elliptic case of the quantized Knizhnik-Zamolodchikov-Bernard
(qKZB) equation in [FTV1], [FTV2].

If some of the representations are finite-dimensional, the situation is no
more generic. Rather detailed study of this case has been done in [MV1]; see
also [S], [JKMQ], [NPT], [Tl] for some important particular cases.

Less is known for the case of n > 2. Some integral formulae for solutions
of the qKZ equation were obtained in [S], [KQ], [N], [MT2], but in all the
considered cases solutions takes values in a tensor product of vector repre-
sentations. Recently Varchenko and the third author have managed to extend
the construction of [TV2], [TVS] to the higher rank case and get solutions taking
values in a tensor product of arbitrary highest weight representations [TV4].
Let us also mention a paper [M], where integral formulae for solutions of
another type of the qKZ equation were suggested.

In this paper we evaluate a determinant of a certain matrix whose entries
are given by multidimensional integrals of ^-hypergeometric type. In the case
of ordinary multidimensional hypergeometric integrals a problem of evaluating
similar determinants appears, say, in studying arrangements of hyperplanes, and
several results have been obtained in this direction, see for instance [VI], [L],
[LS], [DT], [MTV], [MV2]. In some particular cases these determinant for-
mulae have another meaning; namely they imply that under certain assumptions
the hypergeometric solutions of the differential Knizhnik-Zamolodchikov
equation form a basis of solutions [SV], [V2]. There are similar determinant
formulae for solutions of the qKZ equation in the sh case. They have been
obtained for the rational case in [TV2], [Tl], and for the trigonometric case in
[TV3] for 0 < \p\ < 1 and in [MT1] for \p\ = l. It turns out that there is a
nice connection of constructions given in [TV3] and [MT1], which in particularly
allows to derive the determinant formula for \p\ — 1 from the determinant
formula for 0 < \p\ < 1. This subject will be addressed elsewhere [T2].

The paper is organized as follows. The first section contains preliminaries
and precise definitions on the qKZ equation. In Section 2 we construct the
hypergeometric pairing and give integral formulae for solutions of the qKZ
equation. The main result of the paper is formulated in Section 3, see Theorem
3.1. We show that both the left hand side and the right hand side of formula
(3.2) satisfy the same system of difference equations and have to be propor-
tional. To compute the proportionality coefficient we study suitable asymp-
totics of the hypergeometric solutions. We see that the proportionality
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coefficient splits into a product of contributions of each tensor factor, which are
calculated in Section 5. In the last Section we complete the proof of Theorem
3.1. A short Appendix contains the necessary information of the double sine
function for the convenience of the reader.
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§ 1. The Quantized Knizhnik-Zamolodchikov Equation

Consider the vector representation V of sln:

V=@Cvj.
7=0

Let £ i , . . . , e w be the fundamental weights of sln. We consider the basis vectors
uo, . . • , vn-\ as weight vectors with respect to the Cartan subalgebra of sln with
weights £! , . . . ,£„ , respectively.

n

Fix a complex number p and a weight ju = 5^/^-e/, (//y- e R,y' = 1, . . . , « ) .
7=1

Consider a diagonal matrix

D(fl) = diag(e2ni^,...,e2nivn)

and a matrix R^(ft) eEnd(F(x) V) with the following entries: R(p}(P)j = 1,

for j ^ k,

-

( 1 2 ^(1.2) pn __A _

sh-(j8 -- sh- h8 --
p \ n J p \ n

for j < k, and R(p](^n = 0, otherwise. We have

«-i
fiVj (g)

7,^=0
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Fix a complex number A and define the qKZ operators K^ , . . . K^ acting
in the tensor product V®N:

(1.3)

In this paper we consider the qKZ equation for a function /(/?l5 . . . ,/?#) taking
values in V®N , which is the following system of difference equations:

(1.4)

We also consider the mirror qKZ equation for a similar function

(1.5) g(plt. . .pm-pi, ...0N) =

The qKZ operators respects the sln weight decomposition of the tensor pro-
duct. Therefore, one can consider solutions of the qKZ and mirror qKZ
equations taking values in a weight subspace (V®N}^ for any given weight £.

In this paper for any given weight £, such that (V®N)^ is nontrivial we will
construct a function F^, . . . ,/J^) taking values in (V®N)^ ® (V®N)^ which
solves the qKZ equation (1.4) in the first tensor factor and solves the mirror
qKZ equation (1.5) in the second tensor factor. Also we will compute the
determinant det ^(/?i, . . . ,/?#).

The matrix R^(/3) is the .R-matrix associated with the tensor product of
the evaluation vector representations of Uq(sln) for

g =

Similarly, RW(fi) is associated with Uqr(sln) for

All over this paper we assume that p and 1 are real positive. Thus, under our
assumptions we have that

However, it is clear from the consideration that all our construction remain
valid if p and A have small enough imaginary parts of arbitrary sign.
Therefore, q and q' can deviate from the unit circle and vary in a narrow
annulus.

In addition to the reality and positivity of p and /I we assume that both of
them and their ratio are not rational. Sometimes we take p and A to be
sufficiently large.
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§2. Integral Formulae for Solutions

For non-negative integers v i , . . . , vn_i satisfying

(2.1) N = v0 ^ vi ^ • • • ^ vw_i ^ VB = 0,

we denote by ^Vll...,vM_! the set of all TV-tuples / = (/i,. . . ,/#) e (Z^o)^ such
that

(2.2) #{r;/r^7-} = vy.

For /=( / i , . . . ,/jv) e ^Vi,...,vn_13 we set

(2-3) rf = {r\Jr>j}

and define integers r^m, (Q ̂  j ^n — 1,1 ^m ^Vj) as follows:

(2.4) J/= {,-/„...,;•/„,}, / • / , < • . . <r/v/

We have, in particular, rj^m—m.
Now we set

(2.5) Wj ({fy^};/?!,... ,/3N) = Skewn_i o • • • o Skewi,

=n

TJ sh m _ ,._, m, +

r <r
'^

n Tl 7T/

f
 Sh-^-^-l^--

1*1' * \

0,«^0-i,™'

The notation in the above formulae is as follows. The operator Skew/ is the
skew-symmetrization with respect to the variables {yy- m}m=i v :

(2.7)
ffe^

The integer m*(/,y',ra) is uniquely determined by the condition
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and y0iW = 0m. We abbreviate (fy. „};£,, . . . ,^) to H
the dependence on the abbreviated variables is irrelavant.

Set

(2.9)

In the following, we define a pairing between

(2.10) WM e ̂ Vni ( /?„.. . ,/?„) and

We use

(2.11) ^=
—IX --

where S^x) = S2(x|p,A) is the double sine function with periods p and
For J,J'e3?v^.,.tVnl, we set

(2.12)

Here the function K is defined by

(2.13)

x nl n It rf*,.. - yy-i.-.') n
7=1 i m=\m'—\ l^m<m'

where /^0 = 0. We say the variable y^m belongs to the point r/ im. Then, Jr is
the number of integral variables which belong to the point r.

The contour Q for yy- m, (m = 1, . . . , v/) is a deformation of the real line
(—00,00) such that the poles at

(2.14) yj_^m, -
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are above Cy and the poles at

(2.15) yy._ l iW/ + ™

are below Cy, where y0 m = /3w.
These conditions are not compatible if all the poles really exist. Pinching

of the integration contours by poles occurs for each triple of variables yj m} ,
yj,m2,yj-i m. However, we can improve the definition (2.12) as follows. We
have that

where a = (a\,..., an-\)
 e SVl x • • • x S^ , sgn cr = Y[ (sSn °>)

7=1

A partial integrand ^/'^^'({^m}) ^oes not ^ave poles at some points (2.14)
and (2.15) because of the zeros of gy ({y/i(T(w)};j8i, • • • ,PN)- So, given / and a

there is a choice of integration contours Cj°' satisfying the required conditions
for the actual poles of Fjj>^a'({yj m}) for arbitrary J',a'. Similarly, given /'
and a' there is a choice of integration contours C),(yi(7') satisfying the required
conditions for the actual poles of /^/'^^({y/,™}) for arbitrary /, cr. Finally,
one can easily check that the integrals of the term Fjj>,a, a1 ({?/, m}} over the
contours CJ and over the contours C^(j ' iCT/) are equal.

In this paper we assume that p an A are large positive. Then, as we will
see in the next section, there is a region of the parameters / / ! , . . . , / /„ where the
integral (2.12) is absolutely convergent (see (4.5)).

Consider the vector representation V of sln:

(2.16) V = ®Cvj.
7=0

Theorem 2.1. For J e JfVli.. i V n _ 1 } we set

(2.17) fj=

_/} w a solution to (1.4).
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Proof. For / = (/i, . . . ,/AT) e ^Vl,...)V|,_1, we set ̂ J^JN = ̂  • In the same
way as the proof of Lemma 1 and Lemma 3 in [MT2], we can show the
following formulae:

(2.18) wK..>A+l i / t,... i /wGff,, . - . ,Pk+l,h, • • • ,/W

(2.19)

where w^ e J%w
 v ( j 8 1 ? . . . ,PN) and the left hand side of (2.19) is understood

as the analytic continuation of the integral. It is easy to prove Theorem 2.1
from (2.18) and (2.19). Q

We note that the weight of the solution ij/j is given by

n

(2.20) y^A/£7> where A/ = v/_i — y/.
7=1

Now we set

(2.21) ^(A> • • • I^N) = y~] I(wj iWj^Vj ® Vj, ,

where

«
(2.22) f = 1^M--

7=1

Then W^ is the fundamental matrix solution mentioned in Section 1.

§3c Determinant Formula for the Solutions

In the following sections we calculate the determinant

The result is as follows.
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Theorem 3.1.

(3.2)

2n\
--

nj

TT J FT
11 1 11

N-l

j=\

n

VyVy_l + V - 3Vy) ,

7=1

Note that

(3.3) /if 1 I\ / Ai An I Ar J \ AI, . . . , A r / _ i , A r /+i , . . . , A r _i , A r +i , . . . , A w ,A r /+A r

is a positive integer.
First, we determine the dependence on /?1 , . . . , /? j v of D^. ..^n. From

Theorem 2.1, we find that

(34} D^(3-4)

(35) , . . . , . - , = d
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Here det^lv..^n A^ stands for the determinant of the operator which is a
n

restriction of the operator Km to the weight subspace of the weight ^ 4/fiy-
7=1

Using formulae (1.1) and (1.2), we have

n -i
Now we set

In ( n ( N -

-a E , -

Then by using (6.3) we can check that E^^^n(P\^ • • • ̂ N) satisfies (3.4) and
(3.5). Therefore, we have

Proposition 3.2.

(3-8) D, ..... ̂ (fa,. . . ,pN} = ci^d*!,. . . ,vn;p, A)^,,..., ,,„(/?„ . . . ,?„),

where Qj,...,,i;i(^b • • • ̂ /^/^ ^) ^ a constant independent of /?1? . . . ,f}N.

In order to determine Q I?...,^(//I, . . . ,//w;/?,A), we consider the asymptotics
of D£ as

(3.9)

This is in the next section.
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§4, Asyinptotics of the Solutions

First, we consider the asymptotics of A^,...^,,-
We denote the set of variables

(4.1) 7j,m (Q^j^n-l-l^m^Vj)

by y. Fix a set of permutations a = (a\,..., an-\)\ °j £ SVj (1 ^ j ^ n — 1).
We use CTQ = id. We denote

(4-2) yM(m) (0 ̂  j ^ n - 1; 1 ̂  m ̂  v,-)

by yff.
Consider

(4-3) ^>,/',a(y) = ^(y)flf/(y)^'(y f f),
where /£(y) is given by (2.13).

In the following, we use the abbreviation /^ = fa — fa.

Proposition 4.L Suppose that fa < • • • < fa and jj m's are all real If 1 is
sufficiently large, then there exist positive constants e, C, K independent of the
variables ft and y such that the following estimate holds.

(4.4) |F/,7>| < Cexp -K Y^ \7j,m ~ 7j-l,m'(JJ,m)\

if

(4.5) —y (//;-+i — JUj) > £, —^(^n ~ P-l) < m-

Proof. Throughout the proof, we set r7-im = rfm. We define new variables y
by

(4.6) yj,m = 7j,m+Prl.,,-

Note that y0<m — 0. From (6.2), we have

\
•*—^

exp —
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(4-7) \<P(7j,m ~ yj-\,m')\ < const- e

Yj.m ~ Yj,m')\ < const- e-'

Iff/001 < const. II { II e~(*/')&"~'i'-
I^/XH—1 I l^wz^v,

x FT e(n/p}\yj m-lfj-\,m>+Prj,mrj-i,mi\

x
1<mn</("//')ft'""?''"'+/6>"0'm'l|'^ ^ j )

(4.8) \ g j , ( y a ) \ ^ const, f]

x J TT £-(^AX^M-^-l,Vl(m*(/^^^

^ ^ «s. J

Therefore, we have

(4.9) |/v,/'iff(y)| ^ const.

n
/<«-
m^

TT



QUANTUM KZ EQUATION 883

Here

(4.10) f( jc)=x+ x.

We apply -\A + B\^\A\- \B\ to the second line of (4.9), and \A + B\ <
\A| + \B\ to the third line. Then, we use

(4.11)

(4.12)

We ignore the last line of (4.9). After all these steps, it is enough to show

47t2

The left hand side is not larger than

(4.14) ^

where

(4.15) K = 2-^

and

(4.16) 7max(^7^) = max{/;ryilB e
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Choose e, K so that

(4.17) ne + —-~ — < -ic,
/?/L p

(4.18) £-4>*-pA

This is possible if

2K 2n
4.19 -T<— •/?A p

Then, the estimate (4.13) follows from (4.10) and (4.5). Q

For / e ^Vl,...,vn_13 we set

The following is an obvious consequence of Proposition 4.1.

Corollary 4.2, ITze integral (2.13) w absolutely convergent The conver-
gence is uniform in the variables ft if we multiply Pj to the integrand.

Define a partial order in Jfv,v.. iVM:

(4.21) / ^ /' if and only if Jr + • • • + JN ^ J'r + • - • 4- J'N for all r.

Proposition 483. If J ^ /', then we have

(4.22) lima «...«„„ Pj ( f| fl f fym ]Fj,J',*(y) = 0.
\y=lm=HCy /

Proof. We follow the estimate in the proof of Proposition 4.1. When
we go from (4.9) to (4.13), we dropped the last line in (4.9). This time we
use that term. Namely, we can claim that (4.22) holds unless for some
(7= < J ! , . . . , c r n _ i

holds for all j and m. This is clear because

(4.24) f (jc + y)= 2(x + y) if y > -x.

We show that (4.23) implies / ^ J'. This will complete the proof.
First we prove

(4-25) 'MM<r/» f o r a l l w

by induction on j. The case 7 = 0 is obvious. Suppose that (4.25) is true for
j — 1 . Then we have
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Therefore, (4.25) is true for all j. It follows from (4.25) that

(4.27) ^m^j'm for all 7, /n.

Finally, we prove / ^ /'. This is clear because

(4.28) /r + • • • + JN = #{(y,m);r/m > r.}

The proof of Proposition 4.3 is over. D

This proposition shows that in the asymptotic limit the matrix (I(wf , wjf ))j j,
is triangular.

We have also

Proposition 4.4.

(4.29) lim^...^^ ( H If [ dyjtm)Fj,j,ff(y) = 0
\ y= lw=l j ^ /

unless GJ — id /br a// 7.

/ Suppose that

for all 7, m. From the proof of Proposition 4.3 we have

(4-31) 0>,(«) ^ r/». for all 7, m.

This implies that 0) = id for all j. Q

Define

(4.32) v/;+ = # {5 e ̂ /- r < s}, v/'r~ - # {5 e J^7; r > s}.

From (6.2), we have

Proposition 4.5.

(4.33) Inn,, «...«pHPj

= 2-*.- "«-. exp + (v,., - 1) - v,(v, - 1)}
n

r=l
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where

f dy;. ,A,) = n £
7=1 Jc; W y=

(4.34)

(4.35)

/« the above formula of 6#, y0 = 0 0#£/ £/ze contour Cj for y}- is a deformation of
the real line (—00,00) such that the poles at

(4.36) Vj^-

(4.37) y^ H ---

are below Cj.

This proposition shows that in the asymptotic limit the diagonal element
I(WJP\W$) reduces to the one point functions Gjt (l^r^N).

Now we consider the asymptotics of Z>AI,..., 4 /^i,. ..,4- Hereafter we use
the notation ~ as follows:

(4.38) /(/?!,..., ^)-g(/?1,...,^)^lini#I*^^^
l9(f>lT-'lf>N) J

From (6.1), we have

(4.39) ^,..,^,...,^)
\A/A \y=i \ ^ 1 > - . .

7i2f 4n2

-
\A/A \y=i

x exp
^

We note that

y = l - l , - - - , ~ ' - - - ' « / / m = l

Hence we find
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(4.41) ^

From Propositions 4.3, 4.4, and 4.5, we see that

(4-42)

d e t ( P j I ( w ( f \ w ( j ) ) ) j t j , e y ~ JJ (the right hand side of (4.33)).

Therefore, we get

Proposition 4.6.

(4-43) Cil ,>!,... ,/tn;p,X) = 2~d'- "»-'< •<•

>< n
JE*VII ,,„_, r=l

f. Note that

(4.44)

We get the term

(4-45)

by using the following formulae:

H-1 1 / "

(4.46) ^{vj(vj-i - 1) - v;(v, - 1)} = - AT2 - 5]
j=i 2 V y=i

§5. Proof of Theorem 3.1

First, we find an explicit formula for Gfc( / / i , . . .,/*„). We set

/ * . r \A ( _ ~

"; /;=i
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where y0
 = 0- Then we have

(5.2) Gk(^...^n] = Hk([ik+l -//I

The integral (5.1) is absolutely convergent if

(5.3) \^Xj\<^ + ~, C/

By changing the integration variables yy to

(5.4) uj = yj-yj_l, (j =

we can see that

k

(5.5) flik(xi,...,^)

where

(5.6) H(x) = f
J

In the above formula, the contour C is a deformation of the real line (—00,00)
such that the poles at

(5.7) -f

are above C and the poles at

(,8) f
are below C.

The explicit formula for the function H is obtained in [MT1].

Proposition 5A.

n si(x+{

(5.9) H(x) = yP
2n

n J ZV 2 n

From (5.2), (5.5) and (5.9), we get

Proposition 5.2,

(5.10)
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Now it remains to calculate

(5-11)

We set

(5.12) M/^+ = #{r;/r = 7 , f c < r } , M/j^T = #{r; Jr = j,k > r}.

Note that

n n

(5.13) ]Tjr = ]T(y" - l)Ay, for all / e ̂ Vl,...,vn_r
r=l 7=1

From (4.33) and (5.10), we have

(5.14) n

n n n
, ,, . fc' • • - i / t + i = r

where DJ
r, r k is given by

(5.15) D^k = ^ e(M
fi=±

for k satisfying J^ + l =r.
Now we rewrite

(5 16) TT TT
1

Let us consider the following set

(5.17) #•<''• '>=
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where [J means a disjoint union. For a e Z, we set

(5.18) mult(r/'r)(«) = #{te^r'^;t = a}.

Then we have

(5.19) (5.16) =

We can show

mult ( r ' ' r )(a)-mult ( r ' ' r )(fl+l)

0, otherwise.

This completes the proof. D

Appendix

Here we summarize the property of the double sine function Si(x) —
S2(x\coi,cQ2) following [JM].

We assume that Recoi>0 , Reo)2 > 0. S2(x\co\,co2) is a meromorpic
function of x and symmetric with respect to co 1,0*2- Its zeros and poles are
given by

zeros at x = coiZ^o -ho^Z^o, poles at x = co\Z^\

Its asymptotic behavior is as follows (note that we corrected a sign in the
formula (6.1) cited from [JM]):

/^^ « / x •/ X2 COI+CD2 1 fo}\ CD2 ^
6.1 logS2W= ±7« - --- ^ - -^ + T^ — + — + 3

\2cOiC02 2CD\C02 U\0}2 C0\

(x — > oo, ±Imjc > 0).

This implies that

(6.2)

+ x)S2(a — x) = ±ni - x + 0(l), (x — »• oo, +Imx > 0).
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The following formulae hold:

(6.3) ^ .
2 sm —

CD2

(6.4)
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