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Conjugacy of Z2-subshifts and Textile Systems

By

Hiroshi AsoH

Abstract

It will be shown that any topological conjugacy of Z2-subshifts is factorized into a
finite number of bipartite codes, and that in particular when textile shifts which are
Z2-subshifts arising from textile systems introduced by Nasu are taken each bipartite code
appearing in this factorization is given by a bipartite graph code of textile shifts which is
defined in terms of textile systems. The latter result extends the Williams result on strong
shift equivalence of Z'-topological Markov shifts to a Z2-shift case.

§ 1. Introduction

It is known that any conjugacy of topological Markov shifts is
described by Williams strong shift equivalence [8], which is an
equivalence relation of their adjacency matrices. Topological Markov
shifts are defined on the set of one dimensional lattice points. On the
other hand, on the set of two dimensional lattice points, notions of shift
space and shift of finite type (SFT) are analogously defined and called a
Z2-shift space and a Z2-SFT respectively. However, a notion of a two
dimensional topological Markov shift is not available. So, it is natural to
ask what a two dimensional analogue of a topological Markov shift is.
One idea is to consider the class of textile shifts UT arising from textile
systems T introduced by Nasu [5].

A textile system T consists of graph homomorphisms p and q of a
graph T into a graph G. The textile shift UT is the set of all (a:1-fy),-ij-ez

satisfying/>(jtf iy) = q(xi+lj) and tr(xitj) = sr(xlj+l) for all i,j e Z where
sr and tr mean the source and target maps of the graph T. Every textile

Communicated by Y. Takahashi, June 1, 1998. Revised March 2, 1999.
1991 Mathematics Subject Classification: 58F03.

* Graduate School of Mathematics, Kyusyu University, Ropponmatsu, Chuo-ku,
Fukuoka, 810-8560, Japan.



2 HIROSHI Aso

shift is a Z2-SFT and any Z2-SFT is conjugate with a textile shift
(Theorem 4.1). These are known in one dimensional case if a topological
Markov shift and a Z^SFT are taken instead of a textile shift and a
Z2-SFT. Speaking about strong shift equivalence of topological Markov
shifts, a natural question about what is available as a conjugacy
invariant of textile shifts, comes up. In this paper we will discuss about
conjugacy of textile shifts. We indeed obtain a textile shift analogue of
the Williams strong shift equivalence (Theorem 3.1). For this, the
notions of a bipartite textile system, a bipartite graph code (Definition
3.3) and a bipartite relation (Definition 3.4) are introduced. We remark
that a bipartite graph code of textile shifts does correspond to one-step
strong shift equivalence by Williams. As a matter of fact, we will obtain

Main theorem (Theorem 3d):
Let T = (p, g), Tf = (p', <?') be textile systems. Suppose UT and UT> are

conjugate under a conjugacy <f>. Then, T and T' are bipartitely related and <j>
is a composition of the corresponding bipartite graph codes and the symbolic
conjugacies arising from essentially identical isomorphisms.

The content of this paper is as follows: In Section 2, bipartite code of
two dimensional shift spaces is defined and it is shown that any
conjugacy of two dimentional shift spaces is factorized into a finite
number of bipartite codes (Theorem 2.1). In Section 3, the notions of an
essential textile system, a bipartite textile system, a bipartite graph code
and a bipartite relation are defined, and the main theorem stated above
is obtained in Theorem 3.1. In Section 4, every Z2-SFT is shown to be
conjugate with some textile shift (Theorem 4.1). In order to understand
Theorem 4.1, we will show in Example 4.1 that the three dots model is
conjugate with some textile shift.

After writing up the first version of the manuscript, the author was
informed by A. Johnson and K. Mardden [1] that they also had a similar
result of our main theorem in terms of a decomposition of a conjugacy
by a finite number of state splitting codes.

The author would like to thank his supervisor Professor Hamachi
for leading his attention to this subject and for his encouragement and a
helpful discussion with him.

The author also would like to thank the referee for his valuable
comments, which are very helpful for improving Theorem 3.1 in terms
of textile systems.
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§ 2. Conjugacy of Z2-subshifts

Let A be a finite alphabet. For integers m, n > 1, each element in the
product space A[lm]xll'n] is called a block over yl of size mXn. Consider
the space Az* = {(*,• >;-)f Jez e Z2 1 jcfj e A}. Let F be a collection of
blocks. We define the subset XF = {% £ Az \ any block in F does not
appear in x}. On XF, a Z2 -action o = o(ij\j^z2 is defined by
[a(z,;)*]m,w = xm+itn+j which is called a shift mapping. We call the pair
(XF, a) a Z2-shift space (sometimes simply denoted by Xp). When F is a
finite collection, XF is said to be a Z2-shift of finite type (Z2-SFT).

In this section, we introduce a notion of a bipartite code of
Z2-subshifts and prove that any conjugacy of Z2-subshifts is factorized
into a finite number of bipartite codes (Definition 2.2, Theorem 2.1). This
is a generalization of the bipartite factorization theorem of Z1 -shifts by
Nasu [4].

Let X be a Z2 -shift space. Throughout this paper, we denote the
alphabet of X by A GO and the set of all m x n blocks appearing in an
element in X by Bmn(X\ Let B be a finite alphabet. We call any map
/:5m>nQO ->fi a block map. Let p, q, r, s be non-negative integers
with p + q = m-1, r+s = n-1. We set Y = {y = (y^ijez^ B^ \ there

exists an x^X such that yu = /(r[f--A ,-+ff]x[/-r. ,-+S])K where *c/ulX[m,w]
= C^-.;)(.-./)e[A.ax[«.»]. Then the set 7 is a Z2-shift space. By f^q'r's\ we
denote a mapping X-» F defined by f£p'Q'r's\x) = y where yu

= f(x{i-pti+gw-r.j+s})>i>i^Z. We call flp'Q'r's) a sliding block code of
vertical memory p, vertical anticipation q, horizontal memory r and
horizontal anticipation s (briefly called a (p,g,r,s)-type sliding block
code). If p = q = r = s = 0, we call /J0'0'0>0) a 1 -block sliding block code
and simply denote it by /«,. A bijective sliding block code is called a
conjugacy. When a 1 -block sliding block code has an inverse which is
also a 1 -block sliding block code, it is called a symbolic conjugacy.

Definition 2.1. Let X be a Z2-shift space.
( 1 ) The mapping pf (resp. pb) : X -> (5lf 2

/or j = G^yX-jez ^ X, zs ca//ed ^ forward (resp. backward) 2-higher
block code of X. The image pf(X} — pb(X} is called the horizontal 2-higher
block sytem of X.

(2) The mapping pu (resp. p^'.X^ (B2, { (X) )z' defined by
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/or x = OcfJ)UGEZ e X, is called the upward (resp. downward} 2-higher
block code of X. The image pu(X} = pd(X} is called the vertical 2-higher
block system of X.

Next we introduce a bipartite code. Let P{ (i = 1, 2) be finite sets. We

write a point in P1XP2 by ab or sometimes where a e Plf 6 e P2.

Definition 2.2* Le£ / : Jl (X) -> P! x P2 6e a 1-1
(1) The forward (resp. backward} bipartite code induced by I is a map

lf (resp. lby. X -> (PgXpj)2' defined by

forx = (xitj)ijf=z e X> where /(*,,,) =

(2) T/ze upward (resp. downward) bipartite code induced by I is a map
lu (resp. ld):X-» (PgXP^2 defined by

(resp.

/or j = (^

We remark that a bipartite code is a conjugacy and that a higher
block code is a bipartite code and that the inverse of a higher block code
is also a bipartite code.

Lemma 2.1. Let <j> = A2>0>0l0 ) = h^'.X-^ Y be a conjugacy and let
0"1 = k^'q'r's\ Let 1:A(X)-*A(Y)XA(X) be a 1-1 map defined by
l(d) = h(a)a (resp. I (a) = a/z(a)), a £E A(X). Suppose s ^ 0 (resp.
r =£ 0). T/ZOT ^/zere msf Woc& maps H: A ( l f ( X ) ) -> ^4 (pf( 7) ) and
^:^+,+i1r+s+i(p /(F))->^a /(X)) such that (Hj~l = KLp'q'r's~^ (resp.
(^Toc)"1 = K^'q'r~l's^ and such that the following commutative diagram
holds:

X —^ lf(X}
*\ \H-

Y
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Proof. We suppose f ( a ) = h(a)a, a e -AGO- From our assumption,
for (*t. A-, ,= 7 ̂  X and

C ^Tr ^ ••• /?(r ^M^-X'p + q+l \' ri'^-A'p + q + l, r+s + 1^

= =
h(xLl) -

1, r+s + 1

for ! • e
^1,1 "" -^1,r+s+1

Note that //GO = {[jcz- ;-/z(jI- ;>1)] l-yez l(%)z-,yez}- We define a block map
by H ( x i j h ( x i j + l ) ^ ) = h(xtj)h(ixij+1\ for

). Then, H^ is a conjugacy. Define a block map

by

, r+s+1' \

1
^) — h(xlr^s)h(xlr+s+l)

= xg+l r+lh(xq^ r+2). Then, H^o KLp'q'r's^ = id, K^Q'r's~^ o^ - «. So,
//J1 = ^^>9'r's~1}. The other case is similarly done and the proof is
omitted. Q.E.D.

In Lemma 2.1, if we define a map I by l(a) = , ^, (resp. K<z)
It ( ^ V^x

= ) and use a upward (resp. downward) higher block code and

a bipartite code, we get the conjugacy K^ g'r's) (resp. /sT<?'*~1'r's)).

Theorem 2.1, Any conjugacy of Z2 -shift spaces is factorized into a
finite number of bipartite codes.

Proof. Let 0 : X -> F be a conjugacy. If necessary, by taking a higher
block system, we may and do assume <t> — h^ where </>~l = k(£Q'r's\ If s ^
0, then by applying Lemma 2.1, we have a commutative diagram in
Lemma 2.1. When s = 0, do the same things for the other parameters.
Repeat this argument, then after a finite number of steps, we have a
commutative diagram:
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X > Xl > X2 "- > Xn

* I I uo- i w- i w-
Y > y > y2 ... > y

^ ft p. n

where A/s are bipartite codes andp/s are higher block codes and Cffn)°° is
a symbolic conjugacy. Finally note that h^ = p^1 o ••• op~l o (H^^ °An o
••• °A! and thatp^1 are bipartite codes. Thus h^ is factorized into a finite
number of bipartite codes as above. Q.E.D.

§ 3o Coejugaey of Textile Shifts

In this section, we see a conjugacy of textile shifts (see [5]). For
this, we introduce a notion of essentially identical isomorphism, bipartite
textile systems and a bipartite graph code of textile shifts. As a matter
of fact, a bipartite graph code of textile shifts corresponds to a one-step
strong shift equivalence for Z^topological Markov shifts considered by
R. F. Williams [8] and is a central ingredient for the proof of the main
Theorem.

Here, let us recall a directed graph and a textile system (see [3],
[5]). Let G = (V(G\ E(G)) be a directed graph, where V(G), E(G) are
the vertex set and the edge set. Let SG and tG:E(G) -> F(G) are the
source map and the target map. For a graph G, we denote the shift space
X(G) = {0 -X- e z | r z eEE(G) , *G(7}) =SG(TJ+ I)}. We call it a graph shift
[3]. If SG and tG are onto, we say that G is nondegenerate. We define a
2-higher block graph and a bipartite graph. Let 52(G) = {ab \ tG(a)
= SG(« a,&e£G}. Let G[2] denote the graph with £(G[2]) = B2(G\
F"(G[2]) = £(G) such that the source and target maps are defined by
sG[2](fl&) = a and tcm(ab) = b for ab e £(G[2]). We call it the 2-higher
block graph of G.

Next, a directed graph G is called a bipartite graph, if F(G) is
decomposed into disjoint sets Vl and V2 and if for any edge a EE £"(G),
sc(a) e T£(G) implies *G(a) e JJ(G) z,y = 1,2, i =£ j. We set E{

= {a e £(G) sG(a) e 1^(G)} i - 1, 2, £12 = {ab e 52(G) I a e £lf 6 e
£2}, £21 = {&a e 52(G) 1 & e £2, a e EJ. Now we denote the bipartite
graph G by (VJ(G), ^(G), F2(G), £2(G)) and we define the graphs Gtj (i, j
= 1, 2, i =5^ y) by Gy = (T^(G), £"y) where the source and target maps are
defined by SG (a&) = sG(a) and tGi (a&) = ^G(6) (ab B £^).

For directed graphs F and G, a graph homomorphism h : T -> G is a
pair of maps hE:E(T) ^>E(G) and hv: F(F) -^ F(G) such that sG(hE(a}}
= hv(sr(a)) and tG(hE(d)} = hv(tr(a)) for all edges a e £(F). We call
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hE the edge map of h and hv the vertex map of h. If both hE and hv are
bijective, h is called a graph isomorphism and we say that G and Gf are
graph isomorphic.

Let F and G be directed graphs and p and q : F -* G be graph
homomorphisms. If the mapping a ^ £"(F) -> (p(a), <?(a), sr(a), £r(<2)) is
injective, the pair of graph homomorphisms T = (p, q) is called a textile
system and this condition is called the condition of a textile system. A
textile system T induces a Z2 -shift space f/T defined by C7T =
{(^•;-)fi/ezUt-J-e£:(r),^r(jz-;-) = srGcx-;V1) and />(*,-,,-) = q ( x i + l t j ) } . Then it
is aZ2-SFT. We call it a textile shift and denote it by (C7T,a) or simply
by UT. By (p(a\ <?(aX sr(a), £r(a)), we mean the tile for a GE F and call a
tile a. Each # e C7T is considered to be a configuration consisting of tiles
xitj such that tf^+i is next to xitj to right (fr (#,•,,) — sr(^-,y+i)) and such
that xi+ltj is next to xitj to the top (p(ixitj) = <?(jcf y+1)).

A textile system T = (p, g) induces the 2-higher block sytem T[2] =
(£[2],g[2]) which is a textile system defined by p[2] and g[2]: FC2] -> G[2],

£C23(a&) = />(*)/>(&) and g[2](a&) = 0(a)g(6), a&€E£(F [ 2 ] ) . Also, it
induces the dual textile system T* = (/>',00, which is a textile system
defined as follows. Let Ff and G' be the graph defined by £(F*) = £(F),
F(F') = £(G), v = PE> ^ = fe, £(GO = F(r), F(GO = F(G), sc« = /> V f

': T* -* G* be the graph homomorphisms defined by
PE Sr>Pv ^c> £" r» 7 G-

In the definition of a textile system, the graphs F, G, Ff and G? are
not assumed to be nondegenerate. We say that a textile system T is
standard if all the graphs of T and T* are nondegenerate (that is, F and
G are nondegenerate and the vertex and edge maps of p, q are onto). For
a textile system T, we can always construct a standard textile system
which provides the same textile shift as UT (see [5]). So, all textile
systems considered in the paper are always assumed to be standard. We
say that a tile a is essential if a £ Bll (C7T) and denote by £((F)0 the set
of all essential tiles. If E(T\ is not empty, by restricting the graph F to
the subset £(F)0 of £(F), we have the subgraph F0, that is, £(F0) = £(F)0,
F(F0) = sr(£

1(F0)),sro = sr, £ro = tr on £(r0). Then F0 is nondegenerate.
Also, by restricting the graph homomorphisms p and q to the graph F0 ,
denoting the restrictions by pQ and q0 respectively, and letting G0 =^0(F0),
we have a standard textile system T0 = (p0, <?0).

Definition 3.1. We call T0 the essential part of T and if F = F0, then
T is called an essential textile system.

It is known in [7] that F0 is undecidable. In the next example, we
show an example of a standard textile system T with no essential tile,



8 HIROSHI Aso

that is, UT = 0. The existence of such a textile system is pointed out by
Nasu [5].

Example 3.1. Consider the following matrices - A ( F ) and A(G)
which present graphs F and G.

0 0 / 3 0 * / « * . * , 0u J J r, ^(G) = o o
6 0 0 0

 0 0 0
.0 0 5 OJ Le U U

We define the graph homomorphisms p and q by />(a) = a,
6, £(r) = c, p(5) = d, />(e) = ^ g(a) = a, <?03) = d, #(7) = <
<?(e) = e. Now F and G are nondegenerate and />CE(D) =
-B(G). We show that f/T is empty. This is because, otherwise let x e UT

then either a@ or r5 appears on the block *0t0 jc0,i ^0,2 ̂ 0,3- Meanwhile a0
(resp. rd>) can not admit a block wy e S2(G) such that />(a) = w and

/)(j8) = v (resp. />(r) = u and />(<5) = f), which contradicts p(x0tl) =
gGcu) with ^ l t l- jc l i f+1 e 52(D.

Definition 3020 L^^ T = (p,g) and Tx = (p', gO &e textite systems and
f = (/E> fv)'- F -* F7 and g = (gE, 9v) '• &~* G' be graph homomorphisms.
We say that the pair (f, g) is a textile homomorphism of T onto T' if the
following conditions are fulfilled',

(1) p ' ° f E = gE°pand q'°fE = gE
0Q-

(2) All these maps fE, gE, fv and gv are surjective.
If those maps are all injective, then we call (f, #) a textile isomorphism,

A l-block sliding block code x e I/T-> x e UT> is induced from a textile
homomorphism (f, g), by setting, x'u = fE(xitJ). We denote it by /«, instead of
(Js)^ and call it a l-block code induced by a textile homomorphism (f, g\
For textile systems S and S\ if there exists a textile isomorphism (f, g}
between S0 and SQ, we say that S and S' are essentially identical and
denote S ~ S', and that (f, g} is an essentially identical isomorphism of S
and S'.

We are ready to define a bipartite textile system and a bipartite
graph code.

Definition 3.3. Let F and G be bipartite graphs and p and q be graph
homomorphisms from F into G, We suppose the following three conditions
(bipartite textile condition)',

(1) The restrictions p{ and q{ of p and q to £x-(F)t = 1,2 satisfy ^(
C £.(G) and
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(2) Both the mappings

a 6E £,.(r) - (/>,.(«), ft(a), sr(a), f r(a)) f (i - 1,2)

are injective.
(3) So #i £/ie mappings

, sr(a), £rQ3))

a), srQ3), *r(a))

are injective.
In this case, we say that the textile system T = (p,q) is a bipartite

textile system and denote the textile systems (Pi®p2, Qi^Q?) and
(P2®pl9 g2®0i) by T12 and T21. Here />! ® />2(o£) = /^(a)/^), q/8 e
£12(D, p2®pi($a) = p2(ff)Pi(a), ^a e £21(D. T/ie outers ^! 0 g2 and
q2®Qi are similarly understood. We note that UTk = {(r;.i/7}iy+1)I-i/ez I r
= OiAjez GE f/Tand sr(f}iy) e F(r^)} (fe - 12, 21).

conjugacy <f>f (resp. 0fr): C/Ti2~^ f/Tzi defined by

(resp. 0&((

zs ca/fed £/ze forward (resp. backward) bipartite graph code induced by the
bipartite textile system T. We note that the inverse of a forward (resp.
backward} bipartite graph code is a backward (resp. forward) bipartite
graph code.

If the dual textile system T* = (p*, #0 of a textile system T is a
bipartite textile system, the conjugacy <pu (resp. 0d): £/((T*)i2)* -* ^((r*)21)*

 is

analogously defined. We call it the upward (resp. downward) bipartite
graph code. We note that the inverse of a upward (resp. downward)
bipartite graph code is a downward (resp. upward) bipartite graph code.

Definition 3.4. Textile systems T and T' are 1-step bipartitely
related T^T' if there exists a bipartite textile system S such that T~ S12

and T' ~ S21 or T* ~ S12 and T'* ~ S21. Moreover, T and T' are n-step
bipartitely related if there are n — \ textile systems St(i — 1, 2, ••- , n — 1)
satisfying T^Sl ---- ^Sn_1-^T/. T and T' are n-step bipartitely related for
some n > 1, we say they are bipartitely related.

As a warm-up for proving Theorem 3.1, we show
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Lemma 3.1. For any textile system T, T and T[2] are l-step bipartitely
related.

Proof. We set E^D = (sr(a)a I a e £(T)}, £2(D - ECO,
F(D andl^CD = {sr(a)a I a e £(O}. We define a source map s and a
target map £ by letting s(sr(a)a) = sr(a), Ksr(a)a) = sr(a)a for
sr(a)a e ^(r) and s(a) = sr(a)a, f(a) = *r(aX for a e £2(r). Thus we
have a bipartite graph (VJ(D, ^(D, F2(D, £2(r)). Similarly G induces
a bipartite graph (VJ(G), 5/G), F2(G), £2(G)). The graph homo-
morphisms p : T -> G is extended to a graph homomorphisms between
the bipartite graphs;

/>! : sr(a)a e ^(D ->
P2: a e £2(D ->

Similarly so does q. Then it is easily seen that these pv, p2, ql and gz

satisfy the bipartite textile condition. By letting S be the bipartite textile
system defined by plt p2, Qi and q2, we have S12 ~ T and S2l ~ T[2].

Q.E.D.

In Lemma 3.1, if we consider the dual textile system T*9 we get
T~ ((T*)[2])*.

As seen in Theorem 2.1, bipartite code is a fundamental tool for
conjugacy of Z2-shifts. If a conjugacy of textile shifts is concerned, then
the corresponding bipartite codes come up as bipartite graph codes as
shown in the following. We are going to establish a textile shift
analogue of Lemma 2.1.

Proposition 3eL Let T = (p, q\ T' = (p', <?') be textile systems and
suppose that there exists a conjugacy h^ = ^(J2'0'0'0): C/T-> UT* whose inverse
C^oo)"1 is of (p, q, r, s)-type, where p > 0, q>Q, r>0, s>0. Then there exist a
textile system T{ and a conjugacy H^ = H®'0'0'®: UTi^ U(((T'*}mY}m
satisfying the following properties:

(1) ((T*)C2])* ~ T! (l-step bipartite relation)
(2) The following commutative diagram holds up to essentially identical

isomorphisms

where the inverse (H^ 1 is of (p, q, r, s—l}-type.
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Proof. We begin with the proof of Lemma 2.1 for U((T^mY and
C/((T'*)C2])* instead of X and Y. The reason why we do not start from UT

(and [7T0 is that we must construct bipartite textile system S so that

((T*) [2])*-S21

and that the inverse of the conjugacy from U((T^mY to U((T>^mY which is
naturally induced from h^ is of the^same type as (/Zoo)"1.

Firstly_we construct graphs F and G and graph homomorphisms
p, q:T-*G. Set

5r(0) P

and define

/a\ sr(a)
s<J = sr(/»'

We also set

F(G) = {sr(a) | a EE Bltl(C7T)},

and define

SG(«) — 5r(a), ^C«) — ̂ r(°

Likewise Fx and Gx are defined. Since the 2-higher block system
((T*)[23)* was taken atjthe ^beginning instead of T, the following graph
homomorphisms p, q : F -> G can be defined:

Corresponding_to the _!_-! mapping / in Lemma 2.1, we consider the
injection k : £(F) -^ E(r') x£(f) defined by

a

where the right hand side means the pair of , . e £"(rO and ̂  e jE(r).
P

In order to define an equivalence relation of edges of F and G, we

rename in 1-1 fashion each edge a of F and each edge a of G, by "
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and /z(a)a respectively.
Secondary we will construct a bipartite textile system S = (j5, q}

satisfying ((T*)[2])* ~ S21. Edges and are said to be

equivalent if r,^ = ^x and f ^ = ,,. We note that such an
sr03) sr(5) ACS) A (5)

equivalence relation is considered in [6]. The equivalence class of

•^ u Sr(a)*(a) T1Tiswnttenby^^.Weset

? S ^>(f/4 ^ = £(f)' ^ = F(f)' and F* =

We define a bipartite graph f with F(f) = ^U V2 and

r /sr(a)/z(o)\
When

sr(a) J /sr(a)ft(a)\ sr(a)fc(a) a ^_ _ ., ,
,„*, and ^P ,n\, sn-\

 = ^ o ^ r ^ 0 ^ • For o e-^2. the source andsrOS) rVsr(^)/i(^)/ srC8)A(/8) /8

r -.,target vertices are SF = and = Edges

and A(r)r of G are said to be equivalent if sr(a) = sr(r) and h(d)
= A(r). The equivalence class of A(a)_a is written by sr(a)A(a). We set
£[ = (sr(a)/z(a) I a e £(G)}, £2

7 - £(G), ^x = ^CD and V2' = E{. We
define a bipartite graph G with F(G) = ^ 'U^7 and E(G) = E(UE'2.
When sr(a)A(a) e E{, the source and target vertices are Sc(sr(a)A(aO)
= sr(a) and ^g(sr(a)/i(a)) = sr(a)/i(a). For an edge a ^ E'2, the source
and target vertices are sg(a) = sr(a)A(a) and ^(a)_= ^r(a). Figure 1
describes the above construction of the graphs f and G.

Figure 1
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We define graph homomorphisms p and q : T -> G by p[

and

= a and q\ n] — P, n ^ E2. As usual, we let (p)£f (<?)f be the restrictions
\p/ P

of j> and q to Ei9i = 1, 2. Then, we easily see that these (p)it (q)it i =
1, 2 satisfy the bipartite textile condition. Thus we have the bipartite
textile system S = (p, <?).

Thirdly we show an interesting fact that ((T*)C2])*J^ S12. For this
we consider the graph Jiomomorphisms /= (/F, f^) : (f12)0-> (F)0 and
» = (^F. fe) : (G12)0-> (G)0 defined by

r(a)

= a, sr(a)fc(a)a e £((G)0) and

- sr(a), sr(a) e F((G)0).

Then / and g give graph homomorphisms. This is because,

sr(a)

sr(a)\ _ sr(a)

So, Sr°fE = fvo Spj2 . Likewise, we have t^° fE — fv° ^r12 • Similarly, 0 is a
graph homomorphism. Moreover, / and 0 are bijective and satisfy

= a =

sr(a)/i(a)a\\

Likewise, we have gE° (g)i<8>(g)2 = q ° f E . Hence, S12 and ((T*)[2])* are
essentially identical and /„ is the 1 -block sliding block code induced by
the textile isomorphism (f,g).
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Finally we lift /ZTO : t/T-> £7T/ to a conjugacy (h^^: U((T*^

U((T'*^* by defining a block map hl: 52fl(f/r) -> 52§1(I7T0 by /z

= . x n x , for 0 e 52 ,(f/T). Then we have a commutative diagram:ft vpj p

(A,).

We note that ((/OoJ"1 is of (p, q, r, s)-type. Now we apply Lemma 2.1
for (hl)00 = (/i1)£-(UO): [7((T,)[2]r^C7((T.)[2]), instead of fc^ - ^'°'0'0):
X -> Y in the lemma. As to the mapping H in the lemma, we let

Then, we have a commutative diagram:

'

We also see from the proof of Lemma 2.1 that //oo is a conjugacy of
(0, 0, 0, 0)-type whose inverse is of (p, q, r, s— l)-type. In order to
emphasize the essentially identical relation of ((T*)C2])* and S12, in the
above diagram we write the corresponding symbolic conjugacy by /„,,
though. But for simplicity we do not write each symbolic conjugacy
appearing in the other part (say, along the line under the map /o/). We
note that <pf is corresponds to lf in Lemma 2.1. By Lemma 3.1, each
2-higher block system of textile system is 1-step bipartitely related to
the textile system. Thus, the proof of the proposition is complete.

Q.E.D.

With minor modifications in the statement, Proposition 3.1 is true
when any one of p, q, r, s is positive, because the proof is symmetric for
these parameters.

The following lemma is a special case of the main theorem but is
useful for completing the proof of the main theorem.

Lemma 3828 Let T and T' be textile systems. If UT and £7T/ are
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conjugate under a symbolic conjugacy, then ((( j*)[2])*)[2]

Proof. The set B2 2(£/T) is considered to be an edge set of a graph by

putting for e£2i2([/T), s = * , = - Thus we have a

graph Tv = (52il(f/T),52,2(C7T), s,, O- Similarly a graph G^ - (5U(C7T),
#! 2([/T), sh, O is obtained, where sh(ar) = a, th(ar) = 7- Then the

graph homomorphisms p, q : Tv^ Gh are defined by p( ] = aj and

immediately see that (((r*)[2])*)[2] ^ (£ g) and (((TX*)C2])*)[2] ^
(p', ^0. Now let 0oo : C7T-> C7T/ be a symbolic conjugacy. Then #«,
naturally induces a textile isomorphism (/", #) of the textile systems

, ,, ^ , , ^. , r jand (p, ,) by letting / = fv = ^ and

Q.E.D.

Now we are ready to prove the main theorem.

Theorem 3.1. Let T = (p, q\ Tr = (/>', gO fee fex^'te systems. Suppose
UT and UT' are conjugate under a conjugacy <j>. Then, T and T7 are
bipartitely related and (f> is a composition of the corresponding bipartite
graph codes and the symbolic conjugacies arising from essentially identical
isomorphisms.

Proof. If necessary, by taking higher block systems, we may and do
assume that 0 is a conjugacy h^, whose inverse is of (/>, q, r, s) -type for
some p, q, r, s > 0. Here we may assume that at least one of p, q, r, s is
positive. Otherwise, we can apply Lemma 3.2 to get the theorem. Then
by applying repeatedly Proposition 3.1, we have a finite number of
textile sy terns S ! , - • - , Sd, S ( , — , S'd, satisfying

(1) T- S{ ----- Sd, T' - S; ----- S^ and
(2) the following commutative diagram holds:
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IT ^_^ 77 y' 3, ... "' s 77UT uSi uSd
0 1 I H x

01 </>2 <!>'d

UT> —^ Us* -^- - —^- ^

where Foe is a symbolic conjugacy and 0,- and 0f' are corresponding
bipartite graph codes. Here, as usual we omit to write the symbolic
conjugacies arising from each essentially identical isomorphisms
appearing the line under 0£ and 0,', i = 1, °~d. Finally if we apply Lemma
3. 2 for the symbolic conjugacy H^, the proof of the theorem is complete.

Q.E.D.

§ 40 Z2-sMf ts of Finite Type

Let CXjr, a) be a Z2-SFT. It is known that any Z'-SFT is conjugate
with some Z^topological Markov shift [3], In this section, we prove that
any Z2-SFT is conjugate with some textile shift

Theorem 4,L Any Z2-SFT (XF, o) is conjugate with some textile shift.

Proof. By taking a higher block system, we may assume that F is a
set of 2 X 2 blocks. Firstly we define a graph T. The vertex and edge sets
F(D and £(D are defined by

B2 .(Xp) | 3 6lf ft2 e ^(XF)s.t2 ' $ F and
'

2 \ ^2 1
' 1 = '

,„ „ , „ ai,iai,2/ ai.l
I Lio iC^o ? \ Cip p

and ^rl ' ' 1 — ' • Next we define a graph G. The vertex and edge

sets 7(G) and E(jG) are defined by

' 5i iCXsO I 3 6lf 62, Ci e ^4(XF)s.t. !f ^ F^ andi , i j i ^ ' i j n r \ I

*A
The source and target maps of SG and tG are defined by sG(a l f la l i2) = o>\t\
and ^G (a 1,1^1,2)

 = #1,2- We define graph homomorphisms p and # : F-* G
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2 12 1 2 \2 2 2 \ -,by Pv( } = a2l,pE[ ) = a2la22,qv( '} = a l l and qE
'

! 2 for ^ e F(F), a2 ' lfl2-2 e £(F). Thus we immediately see that
a\,\ aiia\,2

the textile system T = (p, q) satisfies UT = pu op/QQ. Q.E.D.

In the next example, we will see that the 2-higher block system of
the three dots model is a textile shift.

Example 4.1. Let A = {0, 1}, and X be the SFT consisting of all
Otf ,/X-jez £= ^4Z is satisfying xitj+Xi+lj+xij+l = 0 (mod2) for all z, 7 e Z.
This model is introduced by Ledrappier [2] and called the three dots
model.

The textile system which we construct has pu o pf(X\ It is as
follows. Firstly we define a graph F. The vertex and edge set of F are
given by

fo o i il= {o' ro' i|and

31 10 11 10 11 00 Oil
30' or or io' 10' ir i i j -

The source and target maps sr and tr are defined by srf ) =

tr( j ) — j for j e E(F). Next we define the graph G. The vertex and\cdj d cd
edge set of G are given by 7(G) = {0, 1}, and £(G) -{00, 10, 01, 11}.
The source and target maps SG and tG are defined by SG (ab) = a and
tG(ab) = b for ab £ £"(G). The graph homomorphisms p and g : F -> G

= and

M, = c-
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