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Abstract

In this paper, we study the homological algebra of the category 7c of locally convex
topological vector spaces from the point of view of derived categories. We start by
showing that 7c is a quasi-abelian category in which products and direct sums are exact.
This allows us to derive projective and inductive limit functors and to clarify their
homological properties. In particular, we obtain strictness and acyclicity criteria. Next, we
establish that the category formed by the separated objects of 3 c is quasi-abelian and has
the same derived category as *Jc. Since complete objects of 7c do not form a quasi-abelian
category, we are lead to introduce the notion of cohomological completeness and to study
the derived completion functor. Our main result in this context is an equivalence between
the subcategory of Z)(Tc) formed by cohomologically complete complexes and the derived
category of the category of pro-Banach spaces. We show also that, under suitable
assumptions, we can reduce the computation of Ext's in 7c to their computation in 'Ban
by means of derived projective limits. We conclude the paper by studying derived duality
functors.
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§ Oo Introduction

Our aim in this paper is to study the category Tc of locally convex
topological vector spaces from an homological point of view using
derived categories. It is well-known that the category Tc is not abelian.
Hence, we may not use the classical techniques of homological algebra.
We however prove that Tc is quasi-abelian. This allows us to construct
the derived category of Tc as explained in [8, 11]. In this framework,
we study the usual functors of functional analysis such as projective and
inductive limit, homomorphism, separation, completion and duality
functors. A first study of the homological algebra of these functors was
done by Palamodov in [7]. Here, by working in derived categories and
using the language of pro-objects, we are able to state these results in a
more natural way as well as to clarify their proves. This approach also
allows us to generalize some of the results to a non countable situation
(see e.g. Theorem 4.3.16). Since any complete space is a projective limit
of Banach spaces, it is natural to hope to reduce many homological
properties of the category Tc to the corresponding properties of the
category *Ban of Banach spaces by means of derived projective limit
functors. For this reduction, we need both general properties of derived
projective limit functors in quasi-abelian categories (see [9]) and more
specific properties for the category of topological abelian groups (see
[10]).

To fix our notations and make our text more self-contained, we
devote the first section to a review of the results on the homological
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algebra of quasi-abelian categories which are used in the rest of the
paper.

In the first part of Section 2, we recall the definition of the category
Tc of locally convex topological vector spaces. Using the results
obtained in [10] for the category 7Ab of topological abelian groups, we
show that Tc is quasi-abelian. After recalling the fact that the category
Tc has enough injective objects but not enough projective objects, we
end with a criterion for checking that a null-sequence of Tc is costrictly
exact. In the second part, thanks to the exactness of products and direct
sums in Tc, we deduce, from the general results of [9] that projective
and inductive limit functors are derivable in Tc and that their derived
functors are computable by Roos complexes. Then, using results
established in [10], we show that if X is a projective system of Tc
indexed by a filtering ordered set, the differential dk of its Roos complex
is strict for k > 1 and that d° is strict if and only if X satisfies the
condition SC (i.e. if and only if for any i e / and any absolutely convex
neighborhood of zero U in Xit there is j > i such that

for any k > f). As a corollary, we get that a projective system of Tc
indexed by a filtering ordered set is lim-acyclic in Tc if and only if it is
lim -acyclic in the category of vector spaces and satisfies the condition
SC. In particular, if the index set / has a cofinal countable subset and if
the spaces X{ are Frechet, the condition SC is necessary and sufficient for
the lim-acyclicity of the projective system X. Note that, in the case of
Banach spaces, the condition SC corresponds to the classical topological
Mittag-Leffler condition. We conclude by proving that

RHom^CE,^) - R lim lim RHom^CE/,, fl,)
qt=Qp^P

where P and Q are the (not necessarily countable) systems of
semi-norms of E and F.

Section 3 is devoted to a cohomological study of the notion of
separation. First, we consider the full subcategory ^fc of Tc formed by
separated spaces. We prove that *7c is quasi-abelian and that the left
derived functor of the separation functor

Sep: Tc-^'Tc

is an equivalence of categories. We end by establishing a few properties
of the separation and zero closure functors
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Sep : Tc-» Tc and Zcl : Tc-^ Tc

which will be useful in the next section.
We start Section 4 by considering the category Tc of complete

spaces. Since the quotient of a complete space by a closed subspace is
not necessarily complete, this category is not quasi-abelian. Hence, we
cannot define a derived category of complete locally convex topological
vector spaces in a straightforward manner. We show that a way to turn
this difficulty is to replace this non-existent derived category by the full
subcategory D^c ( Tc) of D + ( T c ) formed by cohomologically complete
complexes, i.e. the objects E' of D + ( Tc) such that RCplCE') — E\ where
Cpl : Tc -> Tc is the completion functor. Then, we prove an equivalence
between the right derived functors of the completion and separation
functors. We also give necessary and sufficient conditions, in terms of
the derived functor of Zcl, for an object of Tc to be separated, complete
or cohomologically complete. Next, we introduce the functor S : T c ->
yroCBan) and L : Tro(San) -> Tc and we relate them by an adjunction
formula. After having established that the functor S is exact, we show
that the functor RCpl : D+ ( Tc) -> D+ ( Tc) is canonically isomorphic to
RL o S and we prove that the functors RL : D+ ( 7ro( "Ban)) -> D^c ( Tc)
and S : D* ( Tc) -> D+ ( CPro(23an)) are quasi-inverse equivalences of
categories. As a corollary, we get a formula reducing the computation of
RHom in Tc to that for RHom in 'Ban by means of derived project! ve
limits. In the last part of this section, after a short study of the
quasi-abelian category Jr of Frechet spaces, we get as a corollary of
what has been obtained above that the functor RL : D+ ( ?roN ( San)) ->
D + ( Jr) is an equivalence of categories.

Section 5 is devoted to the study of duality functors. First, we recall
some of the properties of the standard duality functor for Banach spaces
D : Ban-* ( 23an)op. Next, we introduce the inductive dual functor Dt :
Tc-- Tcop. We prove that Dj is left exact and we study its right derived
functor. For any object X of Tc a°p, where 5 is a small filtering category,
we obtain the formula

RDjCR Jim X(0) - L lirnCRDiQO) (0
i e a t ea

and we show that it is possible to compute RD{ by means of the exact
functor

3Yo(D) :

As a corollary, we get that RDjQO - RD^RCplQO) - RDjCX). Finally,
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we show that RD{ is canonically isomorphic to the right derived functor
of the strong dual functor.

To conclude this introduction, it is a pleasure to thank J.-P.
Schneiders for the helpful discussions we had during the preparation of
this paper.

§ 1. Quasi-Abelian Homologieal Algebra

To help the reader and to fix our notations, we recall as in [10] a
few basic facts concerning the homological algebra of quasi-abelian
categories. We refer to [11] for more details (see also [8]).

§ 1.1. Derivation of Quasi-Abelian Categories

Definition 1.1.1. Let A be an additive category with kernels and
cokernels and let /: A -» B be a morphism of A. Recall that ker / (resp.
coker /, im /, coim /) denotes the kernel (resp. the cokernel, the image,
the coimage) of /.

We say that / is strict if the canonical morphism

coim/-> im/
is an isomorphism.

Definition 1.1.2. A category £ is quasi-abelian if it is an additive
category with kernels and cokernels and

(i) if in a cartesian square

f is a strict epimorphism, then /' is a strict epimorphism,
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(ii) if in a cocartesian square

X - >Y

f is a strict monomorphism, then f' is a strict monomorphism.

In the rest of the section, £ will denote a quasi-abelian category.
Recall that C( £ ) is the category of complexes of £ and that K( £ )

is the category whose objects are the objects of C( £ ) and whose
morphisms are the morphisms of C( £ ) modulo homotopy. It is
well-known that Jf(£ ) is a triangulated category.

Definition 1.1.3. (i) A sequence

of £ such that g o f = 0 is strictly exact if / is strict and if the canonical
morphism im/-> ker g is an isomorphism.

(ii) A complex X' of £ is strictly exact in degree k if the sequence

is strictly exact

(iii) A complex of £ is strictly exact if it is strictly exact in every
degree.

Proposition 1.1.4. The full subcategory N( £ ) of K ( £ ) /orwed by the
strictly exact complexes of £ is a null system.

Definition 1.1.5. We define the derived category D( £ ) of £ as the
localization

#(£)/#(£).

A morphism of #( £ ) which has a strictly exact mapping cone is
called a strict quasi-isomorphism.
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Definition 1.1.6. We denote by Z>*°( £ ) (resp. D~\ £ )) the full
subcategory of £>(£) formed by the complexes which are strictly exact
in each strictly positive (resp. strictly negative) degree.

Proposition 1.1.7. The pair(D~\ £ ), Z)*°( £ )) is a t-structure on
/?(£). We call it the left t-structure of D( £ ).

Definition 1.1.8. We denote £!K( £ ) the heart of the left t-structure

We call it the left heart of D( £ ) and we denote

the associated cohomological functors.

Proposition 1.1.9. The functor

i: £ -* J C : K ( £ )

c/z associates to any object E of £ #10 complex

where E is in degree 0 is fully faithful.

Remark 1.1.10. Lex X' be an object of £ JC( £). By an abuse of
notations, we will write

X' e £

if JT is isomorphic to /(£") for some object E of £ .

Proposition 1.1.11. Let X' be an object of D( £ ). Then,

(i) Lfl"*CX") = 0 if and only if X' is strictly exact in degree k,

(ii) LHk(X'} e £ if and only if dk
x~~l is strict.

Remark 1.1.12. If we replace the notion of strictly exact sequence
by the dual notion of costrictly exact sequence, we obtain a second
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t-structure on £>(£ ). We call it the right t-structure of D( £ ). We denote
by iR *H ( £ ) its heart and by ##n the corresponding cohomological
functors.

§ 1.2. Derivation of Quasi- Abelian Functors

Let F : £ -* J be an additive functor between quasi-abelian
categories.

Definition 1.2.1. The functor F is left exact (resp. exact) if it
transforms any strictly exact sequence

of £ into the strictly exact sequence

0 - FGBO -» FOB) - F(£") (resp. 0 -» F(£0 -* FOB) -> F(£7/) -» 0) .

Definition 10202B Denote as usual

Q£ :JT + ( £ ) - > D + ( £ ) , Q5 :^"(J)-D

the canonical functors. Assume we are given a triangulated functor

and a morphism

Then, (G, ^) is a ng&£ derived functor of F if for any other such pair
(G\ #'), there is a unique morphism

making the diagram
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commutative. The functor F is right derivable if it has a right derived
functor. One denotes RF a canonical choice of a derived functor of F.

Definition 1.2.3, Let F be a right derivable functor. An object / of
£ is called F-acyclic if F(f) - RF(T).

Definition 1.2.4. A full subcategory 3 of £ is F-injective if

(i) for any object E of £ , there is an object / of 3 and a strict
monomorphism E-*I,

(ii) in any strictly exact sequence 0 -> Ef -> £ -> E" -*- 0 of £ where
£' and £ are objects of 3 , then E" is an object of 3 and the sequence

0 -> W) - F(£) - F(£") - 0

is strictly exact in 3".

Proposition 1.2.5. // 3 is an F-injective subcategory of £, then for any
object X' of C + ( £ ), #ierg z's a s^nc^ quasi-isomorphism

u

f, /or any &, /* is an 0&/gc£ o/ 3 and w^ : Xk -> /* zs a
monomorphism. (In such a case, we call I' an F-injective resolution of X'^)

Proposition 1.2.6. Assume £ has an F-injective subcategory J
Then, the functor F '• £ -> J /zas a ng/^ derived functor

and for any F-injective resolution /" o/JT we have a canonical isomorphism
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in D + ( 30. In particular, the objects of J are F-acyclic.

Definition L2e70

(i) An object / of £ is called injective if the functor

Hom£0,/) : £op '-> Ab
is exact

(ii) The category £ has enough injective objects if for any object E of
£ , there is a strict monomorphism E-^I where / is an injective object of
£ .

Proposition 1.2.8. // £ has enough injective objects, then the full
subcategory 3 of £ formed by injective objects is an F-injective subcategory
for any additive functor F : £ -* 5. In particular, any such functor F is
right derivable and any object X' of C+ ( £ ) has a resolution I' with
injective components.

Remark 1.2.9. Although we will not state them explicitly here, we
have of course dual results for left derivable functors. As usual, in the
dual vocabulary, the word "injective" is replaced by the word
"projective".

§ 2, Homological Algebra for Locally Convex Spaces

§ 2.1. The Category Tc and its Derived Category

Recall that a topological C -vector space E is a C -vector space
endowed with a topology having the property that both the scalar
multiplication

° : CXE-+E

and the addition

4-

are continuous. A topological C -vector space is locally convex if 0 has a
basis of absolutely convex neighborhoods. It is well known that the
topology of a locally convex vector space is always given by a system of
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semi-norms (i.e. a set P of semi-norms on E such that for any p, p' in P
there is£" such thatp" > sup(p, p'}). This system of semi-norms may be
chosen to be the set of gauge semi-norms associated to a basis of
absolutely convex neighborhoods of 0. Conversely, if P is a system of
semi-norms on E, then the set (bp(r) : p e P, r > 0} where bp(r) = {e e
E:p(e) < r} forms a basis of absolutely convex neighborhoods of 0 on
E.

Definition 2.1.1. We denote by 7c the category whose objects are
the locally convex topological vector spaces and whose morphisms are
the continuous linear maps between locally convex topological vector
spaces.

Definition 2.1.2. (i) Let E be an object of 7c and let H be a
subspace of E. The locally convex topology on H associated to the
system of semi-norms {plff: p e P} where P is a system of semi-norms of
E is called the induced topology. If V is a basis of absolutely convex
neighborhoods of 0 on E, then the set { V H H : V ^ V] forms a basis of
absolutely convex neighborhoods of 0 on H.

(ii) Let E be an object of Tc and let H be a subspace of E. For any
semi-norm p of E, we denote by p the semi-norm of E/H defined by

p(x) = inf p(e^)

where q : E -*> E/H is the canonical epimorphism. The locally convex
topology on E/H associated to the system of semi-norms {p : p €E P}
where P is a system of semi-norms of E is called the quotient topology. If
V is a basis of absolutely convex neighborhoods of 0 on E, then the set
{g(VO : V e V] defines a basis of absolutely convex neighborhoods of 0
on E/H.

Proposition 2.1.3. Any family {Ea}a(EA of objects of 7c has a
product. This product is obtained by endowing the C -vector space

with the locally convex topology associated to the family of semi-norms

{SUP^OTT^, ..., PN°7zaN) :alt ..., aN e A, P1 e Pai, ...,pN^PaN}

where na\ IlaeA Ea-> Ea is the canonical projection and Pa is a system of
semi-norms of Ea. A basis of absolutely convex neighborhoods of 0 in
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Ha e A
 Ea is given by the subsets of the form Ua^A Wa, where each Wa is an

absolutely convex neighborhood of zero in Ea, the set {a : Wa =£ Ea} being
finite.

Remark 2.1 A. Hereafter, 04 > denotes as usual the absolutely convex
hull of a subset A of a C -vector space E.

Proposition 2,1.5. Any family [Ea}aeA of objects of 7c has a direct
sum. This direct sum is obtained by endowing the C-vector space

0 Ea = {(Oae^ : ea e EO> ea ̂  0 for finitely many a}
a^A

with the locally convex topology associated to the family of semi-norms

where #a : 0a e ^ Ea -> Ea is the canonical projection and Pa is a system of
semi-norms on Ea. A basis of absolutely convex neighborhoods of 0 in
®a^A Ea is given by the subsets of the form < U a e ^ cja(W£)> where each Wa

is an absolutely convex neighborhood of zero in Ea and aa:Ea^ ®a(=AEa is
the canonical embedding.

Proposition 2.1 .6. Let(X^)iEiI be a family of 7 c. For any normed
space X, we have

Horned] X* X) = 0 Hom^CX* X).
i e / » e /

Proof. Work e.g. as in [6, Chap. IV, § 22, 5. (2) (p. 284)]. D

Remark 2.1.7. Note that the preceding result does not hold if the
norm of X is replaced by a semi-norm.

Proposition 20L80 The category Tc is an additive category with
kernels and cokernels. More precisely, if f : E -* F is a morphism of Tc,
then'.

(i) the subspace /"'(O) of E endowed with the induced topology
together with the canonical monomorphism f~l(jS) -> E form a kernel of f ;

(ii) the quotient space F/f(E) endowed with the quotient topology
together with the canonical epimorphism q : F -> F//CE1) form a cokernel of
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(iii) the image of f is the subspace /(£) of F endowed with the induced
topology;

(iv) the coimage of f is the quotient space E//-1(0) endowed with the
quotient topology.

Corollary 2.1.9. Let f : E -> F be a morphism of 7c. The following
conditions are equivalent:

(i) / is strict,

(ii) f is relatively open (ie. for any neighborhood of zero V in E, there
is a neighborhood of zero V' in F such that /(F) D /(£") H F'),

(iii) for any semi-norm p of E, there is a semi-norm q of F and C > 0
such that

inf pOt + e) < C0 (/(*)) Vx e E.
e e ker /

Hereafter, we will use freely the properties of the category TAb of
topological abelian groups established in [10].

Lemma 2.1.10. Denote by 0 : Te-^ 7 A b the canonical functor.
(i) The functor (p is kernel and cokernel preserving.
(ii) A morphism f ; E -> F of Tc is an isomorphism in 7c if and only

if $(f) is an isomorphism in 7Ab.
(iii) A morphism f : E -» F is strict in 7c if and only if (p (f) is strict in

7 Ab.
(iv) A sequence E -» F -> G of 7cis strictly exact in 7 c if and only if

it's image by <l> is strictly exact in JAb.

Proposition 2.1.11. The category 7 c is quasi-abelian.

Proof. We know that Tc is additive and has kernels and cokernels.



32 FABIENNE PROSMANS

(i) Consider a cartesian square

where / is a strict epimorphism. Since this square is cartesian in
fAb, /is a strict epimorphism in TAb and the category TAb is

quasi-abelian, it follows that /' is a strict epimorphism in 7 A b.
Therefore, /' is a strict epimorphism of Tc.

(ii) Using the same kind of arguments, in the cocartesian square,

E >F

where / is a strict monomorphism, /' is also a strict monomorphism. D

Proposition 20L120 (i) Any vector space E endowed with the weakest
locally convex topology is an injective object of 7c.

(ii) Let M be an arbitrary non-empty set. The Banach space l°° (M) of
all bounded maps of M into C, with the norm

11/HrcM) = sup{I/On) I: 01 e Afl

is an injective object of Tc.
(iii) For any object X of 7c with P as system of semi-norms, there is a

strict monomorphism

where

W*= f1 (x^X-.p(x) = 0}

is endowed with the weakest topology and 6P(1)° denotes the polar of bp(l}
in X'. Hence, the category Tc has enough injective objects.

(iv) The category Tc has not enough projective objects.

Proof. For (i), (ii), (iii), see [7]. For (iv), see[4], D
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Proposition 2.1.13. A sequence E -*> F -> G is costrictly exact in 7c if
and only if

(a) it is algebraically exact;

(b) the sequence

HomTc(G, r(/))^HomTc(F, /°°(/)) -> HomTc(£, /°°(/))

is gjtflctf /or any s#£ /.

Proo/. Applying [11, Proposition 1.3.23] and using Proposition
2.1.12, we know that the sequence E -^>F-> G is costrictly exact in Tc if
and only if the sequence

HomTc(G, /)

is exact for any injective object/ of Tc of the form

/~a*)
fee /:

where V is endowed with the weakest topology. Since

Hom^a, H 50 ̂  II HomTcU, ^)
i e / i e /

we see that £" -> F -> G is costrictly exact if and only if the sequences

HomTc(G, r(7))->HomTc(F, /°° (/))-> Horn ^(J

and

HomTc(G, F)->HomTc(^ F) -> Horn ,-,(£>

are exact for any set / and any vector space V. Denote V the category of
C -vector spaces. Since any object of V is injective and since

QC, F),

the conclusion follows easily. D
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§ 2.2. Derived Limits of Locally Convex Spaces

Proposition 2.2.1. The category T c is complete and cocomplete.
More precisely, let F: 3 -> Tc be a functor from a small category J to the
category 7c. Denote by Ar( J) the set of morphisms of j, and, for any
morphism a G Ar( 3 X denote org(a) (resp. ext(a)) the origin (resp. the
extremity} of a.

(i) Consider the morphism

/: [I ^(0^ [I Kext(a))
i e Ob( a ) a e Ar( D )

defined by setting

^ V «ext(a)

7ra: Kext(a))->F(ext(a))
a e Ar( 3 ) i e Ob( 3 )

are ^/ie canonical projections. Denote

x:ker/-> [I ^(0
i e Ob( 3 )

^/ze canonical monomorphism. Then, ker / together with the morphisms

q{ = n{ o jc : ker / -> F(0

/onn a projective limit of F in 7c. We denote it by lim F(0.
xe D

(ii) Consider the morphism

f: 0 F(org(a))-> 0 F(0
a ^ A r ( a ) i e O b ( a )

defined by setting

f° oa = aorg(a)-aext(a) o F(a) Va e Ar( a )

aa : F(org(a)) - © F(org(a)) and a,- : F(0 -> © F(0
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are the canonical embeddings. Denote

x: 0 F(f)-*coker/
i e Ob( a )

Jftg canonical morphism. Then, coker / together with the morphisms

r{ — x o cr. : F(0 -> coker /

an inductive limit of F in Tc. We denote it by lim F(Q.

Proposition 2.2.2. Products and direct sums are exact in Tc. In
particular, for any small category 1 , the functor

Km: TcD°P-^Tc
ie a

is ng/z£ derivable and for any object X of Tc a°P, we

where R' ( 3 , X) is the positive Roos complex associated to X in [9].
Similarly, for any small category 3 , the functor

lim : Tc3 ->Tc
ie a

z's te/f derivable and for any object X of Tc 3 , we have

Llirn X(0 - /?.( 5,X)
»e a

where R. ( 3 , X) z's £/z# negative Roos complex associated to X in [9] .

Proof. The exactness of products and direct sums follows at once
from Propositions 2.1.3 and 2.1.5. The existence and structure of derived
limits is then a consequence of [9, Propositions 3.3.3 and 3.3.4] . D

Lemma 2.2.3. Let 3 be a small category. For any Banach space B
and any object X of Tc a°P, we have the isomorphism

HomCR'C a , JO, B)-R.(3 op, HomQC

Proof. For any Banach space B and any k > 0, we have
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,*), *))-* = n
P e z

/ D^^ n Y^ Q >\\K { J , Aj, zjy.

So,

!- Hom,c(
a, ak

® Hom(Z, 5)
a\ ak

is * >ik

Rk(l°
p, Hom(X, 5))

where the second isomorphism follows from Proposition 2.1.6. The
conclusion follows. D

Proposition 2.2.4. Let 3 be a small filtering category. Consider a
Banach space B and an object X of 7c a°P such that R Km X(f) e Db( Tc).
Then, we have the isomorphism l e a

RHom(R Urn X(fX 5) = lim.(RHom(X,
i e a i e 0

Proo/. We know that R Jim X(i) - J?'( 3 , X). By "devissage", it is
ie a

sufficient to prove the result when B is an injective Banach space. In this
case, we have successively

RHom(R lim X(i), B} = Hom(/?'( a , X), 5)

- LlirnHom(Z,
i e a

~ Hm.Horn(X, 5) (f) (**)



DERIVED CATEGORIES FOR FUNCT. ANAL. 37

where the isomorphism (*) follows from Lemma 2.2.3. The isomorphism
(**) follows from the fact that the functor lim : Ab^ -> Ab is exact.

Definition 2.2.5. Let 3 be a small filtering category. By a result of
Deligne(see [1, Proposition 8.1.6]), there is a cofinal functor

where / is a small filtering ordered set. Since any non empty set of
cardinal numbers has a minimum, we may assume that / has the
smallest possible cardinality. This cardinality will be called the cofinality
of 3 . We denote it by cf ( 3 ).

Notation 2.2.6. For any k e N , we denote by cok the
infinite cardinal number. For example, co0 is the cardinality of N, a)l is
the smallest cardinal number which is strictly greater than co0, and so on.

Proposition 2.2.70 Assume 0 is a small filtering category such that
cf ( J ) < a)k for some k < co0. Then, for any functor X : 3 op -*• Tc we have

LH\R Hm £(0) =0 Vn >
ie 3

Similarly, for any functor

X : 0 -> Tc

= 0

Proof. This follows from [9, Theorem 5.2.4] . D

Definition 2.2.8. Let / be a filtering ordered set. We say that a
projective system X of Tc7°P satisfies condition SC if for any i e / and
any absolutely convex neighborhood [7 of zero in Xi9 there is / > i such
that

C g.(lim XJ + U Vk> j.
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Proposition 2,2.9, Let I be a filtering ordered set and let X be an
object of Tc7°P. Then:

(a) we have

LH^RlunXi) e Tc
ie/

if and only if X satisfies condition SC.
In particular, the differential d#-(/,x) of the Roos complex of X is strict if

and only if X satisfies condition SC.
(b) we have

LHk(R lim XJ e Tc Vfe > 2.
ie/

In particular, the differential d#-(/, JD °f ^e R°os complex of X is strict for k
> 1.

Proof. This follows directly from [10, Theorems 4.3 and 4.4] and
from Lemma 2.1.10. D

Corollary 202.100 Let O : 7c ^ V be the functor which associates to
any object X of 7c, the vector space X. Let I be a filtering ordered set. If X

rOp

is an object of Tc , then the following conditions are equivalent:

(i) lim X{ - R lim Xt,
i e / t e /

(ii) lim OCX,-) - R lim OC-X",-) and X satisfies condition SC
i e / i e /

Proo/. This follows from [10, Corollary 4.5]. D

Proposition 2.2,1 L Lg^ / &e a filtering ordered set with a countable
rOp

cofinal subset. Let X be an object of Tc such that for any i £ /, Xt is a
Frechet space. Then, X is lim-acyclic if and only if for any i £ / and any

ie /

neighborhood of zero U in X{, there is j > i such that

Proof. This follows from [10, Theorem 5.6]. D

Corollary 2e2012e Let I be a filtering ordered set with a countable



DERIVED CATEGORIES FOR FUNCT. ANAL. 39

rOp

cofinal subset. Let E be an object of 7c such that for any i EE /, E{ is a
Banach space. Then, E is Inn-acyclic if and only if for any i e /, there is
j>i such that x'e/

Definition 2.2.13. Let E be an object of 7c with P as system of
semi-norms. For any p EE P, we denote Ep the semi-normed space
obtained by endowing E with the semi-norm p.

Proposition 2.2.14. Let E be an object of Tc with P as system of
semi-norms. We have the isomorphism

E - R Urn Ep

Proof. Recall that

Moreover, if we forget the topologies, we have E = Ep and in D+ ( V ), we
have successively

RHm(D(£p) - RlimE-E- lim
p<=P

where the second isomorphism follows from [9, Corollary 7.3.7 and
Proposition 7.3.9]. Through the isomorphism (*), the canonical
morphism qp : lim Ep -» Ep becomes the identity map E -» Ep. Hence, it is

clear that condition SC is satisfied and by Corollary 2.2.10, we get lim Ep

Lemma 2.2.15. Let E be an object of 7c with P as system of
semi-norms. For any semi-normed space X, we have the isomorphism

Horn^(5, JO - lim Horn 7c(Ep, JO.

Proof. We know that for any /G lim Horn ̂ Ep, X} there is a
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semi-norm p of P and fp e HomTc(Fp, X) such that / = rp(fp). Then, we
define the morphism

u : lim Horn ^CE,, X) -* Horn ̂ (F, X)
/ > G P

by setting u(f) = fp° ep where ep : E -> Ep is the identity map. One checks
easily that this definition is meaningful and that u is bijective. D

Proposition 2020160 Let E, F be objects of 7c with P and Q as systems
of semi-norms. We have the canonical isomorphism

RHomTc(F, F) - R Km lim RHom7c(Ep, Fg).

Proof. Using Proposition 2.2.14 and [9, Proposition 3.6.3], we get
successively

RHomTc(F, F) - RHomTc(F, R HmFj - R Jim RHomTc(F, Fj.
q^Q q^Q

Let Iq be a resolution of Fq by injective semi-normed spaces. We have

RHomTc(F, Fg) = HomTc(F, /,).

Moreover, for any k e Z , we have

Hom^CE, //) - lim Horn 7c(Ep, //).

Therefore,

RHomTcCE, F9) - HomTc(F, /') - lim Horn

The conclusion follows. D

Proposition 22,17. Let J be a small filtering category and let E be
an object of 7c7. Then, E is lim-acyclic if and only if for any set J

Hom(F, /

is lim-acyclic.
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Proof. By [9, Proposition 3.6.3] , for any set /, we have

RHom(L lirn £(0, /"(D) - R Hm(RHom(£, Z°°(/))) (£).
i e a i e a

Since Z°°(/) is an injective object of Tc, we obtain

Hom(L lirn E(0, /"(/)) - R Urn (Horn CE, /"(/))) (0-
i e D » e a

First, assume that £" is lim-acyclic. For any set /, we get
ze o

R Jim (Horn CE, /°°C/))) (0 - Hom(lim.£(0,
tea i e D

-Jim Horn (£, /°°(/)) (i).
te a

Hence, Horn (£, /°°(/)) is lim-acyclic.
ie 3

Conversely, assume that for any set /, HomGE1, /°°(/)) is lim -acyclic.
Then, if fe ̂ 0, x'e:}

H (Rjlirn HomCE, /°°(/)) (0) = 0.
ie a

Moreover,

RHmHom(£, /°°C/)) (0 ^^ ' ( a
fe a

= HornO?.(3op,£).

where the last isomorphism follows from [9, Lemma 3.6.2] . Therefore, if

= 0,

i.e. the complex

Hom(d2, /°°C/))

is exact in degree k =£ 0.
If, for any i e 3 , we forget the topology of £(0, then

In this case, since the functor
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lirn : Ab3 -* Ab
te 3

is exact,

lirn 5(0 - Ll imE(i) -P.O°P,£).
»e a ie a

So, the complex /?.( 3 op, j?) is algebraically exact in degree k > 1. Hence,
Proposition 2.1.13 shows that, for k > 1, the differential

is strict It follows that E is lim -acyclic.
ie 3

§ 3B Separation Functors

§3.1. The Category Tc

Remark 3.1.1. Let E be an object of Tc with P as system of
semi-norms. Recall that E is separated if

n ^ = < o }
V neighborhood

of zero

or equivalently if the vanishing of p(e) for any p e P implies e = 0.
Recall also that a generalized sequence (#a)a e ̂  of £ is a family (xa)a e A

of £ indexed by a filtering ordered set A Such a sequence converges to
a limit z in £ if for any € > 0 and any p e P, there is a0 ^ ^4 such that

p(%a — x) < e fora > a0.

Clearly, a converging sequence GOae^ has a unique limit if £ is
separated,.

Definition 38L20 We denote by 7c the full subcategory of Tc
formed by separated spaces.

We have the following well-known facts:

Proposition 3.1.3. (i) Let (£,-),•£/ be a family of ^Jc. Then, the
locally convex spaces ®t e 7 E{ and II,- e / £z- are separated. In particular, they
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form the direct sum and direct product of the family CEf.)f- e l in 'Tc.
(ii) Let E be an object of Tc and let F be a vector subspace of E. Then,

E/F is separated if and only if F is closed.

Proposition 3.1.4. Let f : E -> F be a morphism of Tc.

(i) The kernel of f is the subspace /-1(0) of E endowed with the
induced topology.

(ii) The cokernel of f is the quotient space F/f(E} endowed with the
quotient topology.

(iii) The image of f is the subspace /(£") of F endowed with the induced
topology.

(iv) The coimage of f is the quotient space E/f~l(&) endowed with the
quotient topology.

Corollary 3.1.5. Let f : E -> F be a morphism of Tc. Then:

(i) / is strict in Tc if and only if f is strict in Tc and has a closed
range.

(ii) / is a strict epimorphism of Tc if and only if f is a strict
epimorphism of Tc;

(iii) / is a strict monomorphism of ^Tc if and only if f is a strict
monomorphism of Tc and has a closed range.

Lemma 3.1.6. A sequence

of Tc is strictly exact if and only if it is strictly exact in Tc.

Proof, (a) Assume that the sequence is strictly exact in Tc. We
know that (E, f) is a kernel of gjn Tc. Moreover, we have G — coker /
- F//CE). Since / is strict in Tc, /(£) is closed and G - F//(£). It
follows that (G, #) is a cokernel of /in Tc.

(b) Conversely, assume that the sequence is strictly exact in Tc. On
one hand, (E, f) is a kernel of g in Tc. On the other hand, in Tc, we
have
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/(£) ^ im(/) = ker(<?) = (T'CO).

Since G is separated, g "*(()) is closed. Hence, /(£") is closed. Therefore,
(G, g) is a cokernel of /in Ta D

^ Lemma 3.1.7. Le£ / : E -> F and g : F -* G be two morphisms of
T c. If gof is a strict monomorphism of 7 c, then f is a strict

monomorphism of 7c.

Proof. By Corollary 3.1.5, gof is a strict monomorphism of Ta
Then, we know that / is a strict monomorphism of Tc. So, we only have
to prove that / has a closed range. Consider y £/(£"). There is a
generalized sequence (jca)a e ^ of E such that

in F. It follows that

in G and that #(3;) e (^°/) (£"). Since gofis strict in Tc, go/ has a
closed range. Hence, there is x ^ E such that #(;y) = (gof) (*).
Therefore,

Since go/ is a strict monomorphism, gof ; E -> g o f ( E ) is an
isomorphism. Then, (xa)a^A -* x in E. Since / is continuous, (f(xa)\^A

-»/(jc) in F and since F is separated, y = f(x). Thus, we have obtained
C /(£"). The other inclusion being obvious, the conclusion follows.

Proposition 3.1,8,, The category 7c is quasi-abelian.

Proof. We know that Tc is additive and that any morphism of 7 c
has a kernel and a cokernel.

Consider the cartesian square
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of Tc where / is a strict epimorphism. By Corollary 3.1.5, / is a strict
epimorphism of Tc. It follows that u is a strict epimorphism of Tc and
hence of Tc.

Finally, consider the cocartesian square

(*)g

E >F

of Tc where / is a strict monomorphism. Since

(0 -]

Lemma 3.1.7 shows that i _ f } : E -* G ® F is a strict monomorphism of

Tc. The square (*) being cocartesian, the sequence

,-// (K t;)
0 >E > G 0 F >T >0 (**)

is strictly exact in Tc and hence in Tc (see Lemma 3.1.6). It follows
that the square (*) is cocartesian in Tc and that u is a strict
monomorphism of Tc. To conclude, let us prove that u has a closed
range. The morphisms g and v induce a strict quasi-isomorphism
between the complexes

Q-*E^F-*Q and O^G^T^O

since the mapping cone of
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Q ^ / ^
i

•
0 - >G - >T - *0

U

is the strictly exact complex (**). Taking the cohomology and using the
fact that /and u are strict monomorphisms, we get coker(/) — coker(w)
in Tc. Since /(£) is closed, coker(/) = F/f(E} is separated. It follows
that coker(tt) = T/w(G) is separated and w(G) is closed. D

§ 3.2. Equivalence between D( Tc) IK Tc)

Definition 3.2.1. We denote by

T : IPc -» Tc

the inclusion functor and we define the functor

'Sep : Tc -> ?c

by setting

and endowing it with the quotient topology.

Proposition 302020 For any object E of Tc and any object F of Tc,
we have the isomorphism

Hom?c(Sep(£), F) ^ HomTc(£, T(F)).

Proof. This well-known isomorphism follows from the fact that if
/: E^F is continuous andF separated, then/^CO) is a closed subset of
E containing 0 and hence {0}E.

Remark 3.2.3. Hereafter, c° denotes as usual the Banach space of
complex sequences which converge to zero, endowed with the norm
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Lemma 3.2.4. Denote by C ~ the space C endowed with the weakest
topology. Then, there is a strictly exact sequence in 7c of the form

where S0 and S{ are separated.

Proof. Consider the subspace S0 of c° formed by sequences (xn\ G N

such that nxn is constant for n » 0 and the subspace Sl of S0 formed by
sequences GO* e N null for n > > 0. Since c° is a normed space, so are S0

and Si-
(a) Let us show that St is dense in c°. Consider jc = (xn)ne N EE c°

and € > 0. There is n0 e N such that \xn\ < € for n > w0. Define y =
Wn <= N e si by setting

_ pcn if n < nQ
n [0 if n > nQ

Since Hy —*||co = sup n > n o |x n | < 6, Sj is dense in c°.
(b) It follows from (a) that Sj is dense in S0. Hence, the quotient

topology on SQ/SJ is the weakest one. Let us show that S0/Sl - C as
C-vector spaces. Remark that the sequence (l/n)B6= N belongs to SoXS^
Consider a sequence x = (#„)„<= N of S0. There is nQ e N and c e C such
that wxw = c for w > w0. It follows that xn = c/n for n > w0. If y is the
sequence of Sl defined by

_ \xn — c/n if n < n0
n [0 if n > nQ

then, x = c(l/w)ne N+y. Therefore, the class of (l/n)ne N in SQ/SJ forms a
basis of this vector space.

(c) By (b), SQ/SJ is isomorphic to C . The sequence

0-Si-So-So/Sj-O

being clearly strictly exact, the conclusion follows. D

Proposition 3.2.5. For any object E of Tc, there is a strictly exact
sequence in 7c of the form

where S0 and Sl are separated.



48 FABIENNE PROSMANS

Proof. We know that E — E/N ® N where N is the closure of zero
in E. Since in this formula N is endowed with the weakest topology, we
have N — ® & € E 5 C where B denotes a basis of N as a C -vector space.
By Lemma 3.2.4, there is a strictly exact sequence in Tc

where S'Q and S( are separated. Since the sequence

is strictly exact and since direct sums are exact in Tc, the conclusion
follows easily. D

Lemma 3.2.6. The category 'Tc is Sep-projective.

Proof. This follows directly from Proposition 3.2.5 and Lemma
3.1.6. D

Proposition 3.2.7. (1) The functor T : "TC -> Tc is kernel
preserving and exact. ^

(2) The functor Sep : 7 c -» T c is cokernel preserving but not exact
and it gives rise to a left derived functor

(3) The functor LSep : D(Tc) ->Z)('Tc) is a quasi-inverse of I :
D( Tc) -> D( Tc). In particular,

Proof. (1) Since the kernel ̂ of a morphism of ^7c is the kernel of
this morphismjn Tc, the functor I is kernel preserving. Moreover, by
Lemma 3.1.6, I is exact. ^

(2) By the adjunction formula of Proposition 3.2.2, Sep is cokernel
preserving. It is not exact. As a matter of fact, let E be a non closed
subspace of the separated space F. The inclusion morphism i : E -> F is a
strict monomorphism of Tc. But i= Sep(0 : E -* F is not a strict
monomorphism of Tc since i has not a closed range. By Lemma 3.2.6,
Sep is left derivable.

(3) On one hand, for any object S of D( Tc), we have
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LSepoT(S) - LSep(T(S)) = 'SepCKS)) = S

where the second equality follows from the fact that the components of
the complex I (S) are separated. On the other hand, any object E of
D( Tc) is quasi-isomorphic to a complex S with separated components.
Therefore, we have

LSepOS) = l3ep(S) and TO LSep(E) -To'Sep(S) - S - K

§ 3.3. The Functors Zcl and Sep

Definition 3.3.1. We define the functors

Zcl : Tc -> TC and Sep : 7 c -> Tc

by setting

ZclGE) = 16P and Sep(£) = £/Zcl(£)

where {0}E is endowed with the weakest topology. Of course, we have

Sep = I o Sep.

Proposition 3.3.2. The functor Sep : Tc -> Tc has a left derived
functor

which is equivalent to the identity functor.

Proof. Since I is exact, one has LSep = I o L Sep and the
conclusion follows from Proposition 3.2.7. D

Proposition 3.3.3. For any object E of 7c, we have a distinguished
triangle

RZclCE) -> E -> RSepCE) ^ .

Proof. This follows directly from the fact that Tc has enough
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injective objects and that for any object E of Tc, the sequence

0 - Zcl(£) -> E - SepCE) - 0

is strictly exact

Proposition 3,3.4. Denote

(•)" : V- Tc

£/ze functor which associates to any vector space V the object of Tc obtained
by endowing V with the weakest topology. Then, for any object E of 7c, we
have

ZclCE) - (Hom(cT,£)r.

In particular, Zcl : Tc -> Tc is a kernel preserving functor and, for any
object E of 7c, we have the isomorphism

RZcl(£) - (RHom(C~,-E))~.

Proof. Let E be an object of 7 a The first part follow^ from the
fact if / : C ~ -> E is a morphism of Tc, then /"'("{(JF) =) {0} c = C ~
and

HomTc(Cr,£) ^ Homv(C, Zcl(£)) = Zcl(£).

As for the second part, it follows from the fact that the functor Horn Tc

( C ~ f - ) : Tc-^ V is kernel preserving and that the functor (•)" : V -*
Tc is exact D

Proposition 3,3.5. For any family (E^ e 7 o/ Tc, t{;e have

Sep([] ^) - I

Proof. By definition of the functor Zcl, we clearly have

ZcKfl £,-) - H
/ i e 7

of Tc. Then, using the strictly exact sequences
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0 -» ZclCE,) -> E{ - Sep(£t.) -* 0

we deduce easily from the first part that

SepCfl £,) = [] Sep(£,.).
i e / i e / D

§ 4. Completion Functors

§4.1. The Category Tc

Definition 4.1.1 Let E1 be an object of Tc with P as system of
semi-norms. A generalized sequence GO a e ^ of £" is a Cauchy sequence if
for any 6 > 0 and any p €E P, there is a0 EE .A such that

X*a-*a') < 6 fora, a' > a0.

An object E of Tc is complete if it is separated and if any Cauchy
sequence of E converges in E.

We denote by 3c the full subcategory of Tc formed by complete
spaces.

Remark 4.1.2. Recall that to any object E of Tc is associated a
complete object E and a canonical morphism iE : E -> E characterized by
the fact that any morphism f : E -* F with F complete may be uniquely
factored through iE. Moreover, iE is a strict morphism whose image is
dense in E and whose kernel is the closure of zero in E.

As is well-known [3, TG II, § 3, n° 7], the completion of an object of
Tc may also be characterized as follows:

Proposition 4.1.3. Let j : E -> F be a morphism of Tc. If F is
complete, / "*(()) = {0}E, j is strict and j(E) is dense in F, then for any
morphism g : E -> G with G complete, there is a unique morphism f : F -> G
making the diagram



52 FABIENNE PROSMANS

commutative,

Definition 4.1 A We denote by

I : Tc-> T c

the inclusion functor and we define the functor

Cpl: Tc -* Tc

by setting CplCE1) = E where is E is the complete separated space
associated to E,

It follows from the definition of the completion of an object of Tc
that:

/\
Proposition 4.1,5, For any object E of Tc and any object F of 7c, we

have the isomorphism

Horn<$c(CplCE), F) - Hom7c(E, T(F)).

For any object F of Tc, the canonical morphism Cplof(F) -» F is an
isomorphism and for any object E of Tc, the canonical morphism iE : E ->
I o CplCE) is strict in Tc. Moreover, its image is dense and its kernel is the
closure of zero in E. In particular, if E is separated, iE is a strict
monomorphism.

Proposition 4.1.6. (a) Any closed subspace of an object of Tc is
complete.

(b) If E is an object of ^c and if F is a closed subspace of E, then the
quotient space E/F is not necessarily complete. (However, E/F is a Frechet
space if E is a Frechet space).

(c) // (£,-),-e/ is a family of Tc, then the locally convex spaces © ie / Et

and IIf-e/ Ef are complete. In particular, they form the direct sum and direct
product of the family (£,-),• e / in for.

Proof. (a) is clear.
(b) See for example [5, Problem 20D].
(c) See for example [6, Chap. I, § 5, 7. (2) (p. 37) and Chap. IV, § 18,

5.(3) (p. 212)]. D
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Proposition 4.1.7. // (£,•),•£=/ is a family of Tc, we have

ue £3 = e TCE,), Ten £,-) = n
ie/ ie/ ie/ i<=i

and if CE,.),- ^/is a family of Tc, we have

Cpl(0 £,.) ^
,-e/

Proof. This follows from Proposition 4.1.6 thanks to Proposition
4.1.3. D

Proposition 4.1.8. Let f : E -> F be a morphism of Tc.
(i) T/ze kernel of f is the subspace /"^O) of E endowed with the

induced topology.
(ii) The cokernel of f is the space F//(£) where F/f(E) is endowed

with the quotient topology. _
(iii) The image of f is the subspace /(£") of F endowed with the induced

topology. ^^
(iv) The coimage of f is the space E/f~l(ff) where E/f~l(ff) is

endowed with the quotient topology.

Proposition 4.1.9. Let f: E ->F be a morphism of ^c. Then, f is strict
in T"c if and only iff is strict in 7c.

Proof. First, assume that / is strict in Tc. Hence, the canonical
morphism

is an isomorphism. Consider the commutative diagram of Tc

where i and 0 are the canonical morphisms and j the inclusion
morphism. Since E is separated and /"^(O) is closed, E/f~l(& is
separated. Then, by Proposition 4.1.5, i is a strict monomorphism of Tc.
Therefore, j o 0 = <p o i is a strict monomorphism of Tc. It follows that 0
is a strict monomorphism. Since 0 is clearly an epimorphism, 0 is an
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isomorphism of Tc. Hence,/is strict in Tc.
Conversely, assume that / is strict in T c, i.e. 0 is an isomorphism.

Since /(£) and /(£") are endowed with the topology induced by that of
F, j is a strict monomorphism. It follows that j o 0 is _a strict
monomorphism. Moreover, the image of j o 0 is dense and since /(F) is a
closed subspace of the complete space F, /(F) is also complete. Then, by
Proposition 4.1.3, there is a unique morphism

making the diagram

commutative. One checks easily that <p and <p' are inverse one of each
other. The conclusion follows. D

Proposition 401.1(L Let f : E -> F be a morphism of Tc. Then,

(i) / is a monomorphism (resp. strict monomorphism) of 7c if and
only if f is a monomorphism (resp. strict monomorphism) of Tc;

(ii) fis an epimorphism (resp. strict epimorphism) of Tc if and only if
/(F) is dense in F (resp. /(F) is dense in F and f is strict in Tc).

Proof. This follows directly from Proposition 4.1.8 and Proposition
4.1.9. D

Remark 4.1.11. (i) If / : F-^F is a strict monomorphism of T c,
then /(F) is closed. As a matter of fact, if / is a strict monomorphism, the
canonical morphism /:£"-> /(F) is an isomorphism. In particular, /(F)

(ii) If / : £ " - > F is a strict epimorphism of Tc, then / is not
necessarily an epimorphism of Tc. As a matter of fact, let E be an object
of ^and N a closed subspace of E such^that E/N is not complete. Set F
= E/N. If q : E -> £/AT and i : E/N -> E/A/" are the canonical morphisms,
set/ = f o q : E -> F. Since /(£") is dense in F, by Proposition 4.1.10, / is
an epimorphism of Tc. Hence,
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im(/) = F in tc. (*)

The subspace N being closed, E/N is separated and by Proposition 4.1.5,
i is injective. It follows that

^-1(0) =N

and that

coim(/) - E/N - F in Tc. (**)

By (*) and (**), / is strict in Tc. But, since E/N is not complete,
/(£") =£ F. So, /is not an epimorphism of Tc.

Proposition 4.1.12. // u : E -> F i s a strict monomorphism of Tc,
then, u : E -* F is a strict monomorphism of Tc and, hence, of Tc.

Proof. See e.g. [3, TG II, p. 26, cor. 1] D

•^ //s,
Proposition 4.1.13. The functor I : Tc-* 7 c is kernel preserving, but

not exact The functor Cpl : TC -* Tc is cokernel preserving and exact, but
not kernel preserving.

Proof. The fact that I (resp. Cpl) is kernel (resp. cokernel)
preserving follows from the adjunction formula between I and Cpl.

Let us show that I is not exact. If E is an object of Tc and F a
closed subspace of E such that E/F is not complete, the sequence

is strictly exact in Tc but not in Tc (see Remark 4.1.11).
Now, let us prove that Cpl is exact. Consider a strictly exact

sequence

of Tc. ̂ Since wj E^F is a strict monomorphism of Tc, by Proposition
4.1.12, u : E -* F is a strict monomorphism. It follows that u is the kernel
of its cokernel. Moreover, since Cpl is cokernel preserving, v is the
cokernel of u. Therefore, the sequence
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is strictly exact in Jc.
Finally, let us show that Cpl is not kernel preserving. Consider a

vector space V ^ 0 and denote by F + (resp. 7~) the object V of 7c
endowed with the strongest (resp. weakest) locally convex topology.
Then, the identity map <p:V+ -> V~ is continuous and we have
ker(<p) = 0. Since V~ = 0, we have ker(^) = K .^Moreover, since V^ is
separated, by Proposition 4.1.5, iv+:V+-+ V + is injective and
iv+(V+) * 0. It follows that

= F D iV+(O ^ 0,

and Cpl is not kernel preserving. D

Proposition 40L140 The category 7c is not quasi-abelian.

Proof. Let F be a closedjsubspace of an object E of Tc such^ that
E/F is not complete. Set G = E/F. If q : E -> E/F and i : E/F -> E/F are
the canonical morphisms, set / = i o q \ E -*• G. By Remark 4.1.11, / is a
strict epimorphism of 7c and /(F) =£ G. Fix * e GVGO- Consider the
continuous linear map m : C -* G defined by m (c) = cjc f or c e C. Let
us show that the commutative square

(*)

->rr
o

is cartesian in t?c. Consider e ^ E and c G C such that

(/ -m)Q=/(*)-m(c)=0.

Hence, /(e) = cj. If c ^ 0, then % = f(e/c). Since x e G\f(E\ we get a
contradiction. It follows that c = 0 and/(e) = 0. Since by Remark 4.1.11,
/-1(0) = F we get e e F. Therefore, we have successively

(/ -m)"1 (0) = {(e, c): e e F, c = 0} - F

and the square (*) is cartesian. Since {0} is not dense in C, by
Proposition 4.1.10, 0 : F-> C is not a strict epimorphism of Tc. Hence,
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the conclusion. D

§ 4.2. The Functor Cpl and Cohomological Completeness

Definition 4.2.1. We define the functor

Cpl: Tc -> Tc

by setting

Cpl = To Cpl.

Proposition 4.2.2. The functor Cpl is left exact and has a right derived
functor

RCpl: D+(Tc)-^ £> + (Tc).

Proof. By Proposition 4.1.13, the functor I is kerne| preserving and
the functor Cpl is exact. Then, the functor Cpl = I o Cpl is left exact.
Since Tc has enough injective objects, Cpl is right derivable. D

Definition 4.2.3. An object E' of D + ( T c ) is cohomologically
complete if

RCplCE') -E'

in D+( Tc). We denote by D+ ( Tc) the full subcategory of D+ ( Tc)
formed by cohomologically complete complexes.

Proposition 4.2.4. The category D^c ( T c) is a triangulated sub-
category of the derived category D + ( Tc).

Proof. Consider a distinguished triangle E' -* E -> E" ->of D^
( Tc) such that E' and E are cohomologically complete. Since the functor
RCpl is triangulated, the triangle

RCplCE') -> RCplCE) -> RCplCE") ^

is distinguished in D+ ( Tc). Moreover, we have the morphism of
distinguished triangles
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E' >E > E" —

RCplGEO > RCplCE) > RCplCE") ——

The complexes E and E1' being cohomologically complete, we have

RCplCE) - E and RCplCE') - E'.

If follows that RCplCE") - E" and that E" is cohomologically complete.
The conclusion follows easily. D

Proposition 4.2.5. For any object E' ofD + ( 7c\ the object RCplCE') is
cohomologically complete. In particular, RCpl induces a functor

which is a left quasi-inverse of the inclusion functor

Proof. We know that E' is quasi-isomorphic to a complex /' such
that each Ik is of the type

KX n pjk
h 6= Jk

where Vk is a vector space endowed with the weakest topology and FJk is
an injective Banach space. Since Cpl(/*) — HJk^JkFJk1 Cpl(/*) is an
injective object of Tc which is complete. Therefore,

RCpl(RCplCE)) ^ RCpKCpK/")) ^ CpKCpK/')) ^ Cpl(/') ^ RCpl (5).

Hence, the conclusion. D

Proposition 402860 T/z^ product of cohomologically complete spaces is
a cohomologically complete space.

Proof. Let (£";-);-e/be a family of cohomologically complete spaces.
For any j e /, let // be an injective resolution of Ej in Tc. Since products
are exact in Tc and since the product of injective objects in an injective
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object, Tljejlj is an injective resolution of Ujf=jEj. It follows that

J) = cpKii //) - n CPU//) - n RCPK^O = n ^
ye / ye / ye / ye / ye /

where the second isomorphism follows from Proposition 4.1.7. D

Proposition 4.2.7. // E is a cohomologically complete object of Tc,
then E is complete.

Proof. Since E — RCplCE) and since Cpl is left exact, we have

E = Lff°CE) = L#°(RCpl(E)) ^ CplCE).

Remark 4.2.8. Complete objects of T c are not always
cohomologically complete. For example consider a complete space E and
a closed subspace F of E such that the quotient space E/F in not
complete. Then, the sequence

is strictly exact and gives rise to the distinguished triangle

Assume that E and F are cohomologically complete. By Proposition 4.2.4,
E/F is cohomologically complete and then complete. Hence, a
contradiction.

Proposition 4.2.9. For any object E of Tc, we have a canonical
isomorphism

RSepCE) - RCplCE).

In particular,

L#°(RSep(E)) = CplGE).

Proof. Let E be an object of Tc and let /" be an injective resolution
of E. For any n, we may assume that
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/»= vnx n Bjn
Jn^Jn

where Vn is an object of Tc with the weakest topology and BJn is an
injective Banach space for any jn e /„. Then, we have successively

CplCT) ^Cpl(Fw)x H CplCB^ I]
Jn^Jn Jn^Jn

and

SepC/11) ^Sep(Fw)x fl SepC^O = fl #
/„ e y, ;„ e y,

If follows that

RCplCB) - Cpl(/') - Sep(/-) - RSepCE).
D

Proposition 4.2.10. Le^ E be an object of Tc.

(i) E is separated <=> ZclCE) - 0.

(ii) E is complete <=> ZcKE1) - 0 and LHl(RZcl(E^ - 0.

(iii) E is cohomologically complete <=> RZcKE1) — 0.

Proof. (i) is clear.
(ii) By Proposition 3.3.3 and Proposition 4.2.9, we have the distin-

guished triangle

RZcl(£) - E -* RCpl(£) ^ (*)

Since the functors Zcl and Cpl are left exact, we have the long exact
sequence

0 - > ZclCE) - >E - > CplCE)

So, Cpl(£) - E if and only if Zcl(E) - 0 and LF^RZcK^)) - 0. The
conclusion follows.

(iii) By definition, E is cohomologically complete if and only if E —
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RCplCE). Since the triangle (*) is distinguished, E is cohomologically
complete if and only if RZclCE) — 0.

Corollary 4.2.11. Let E be an object of Tc. Then,

(i) E is separated <=> Hom( C~, E) — 0.

(ii) E is complete <=> Hom( C~f E) - 0 and Ext*( C ~, E) - 0.

(iii) E is cohomologically complete <=^> RHom( C~, E) — 0.

Proof. (i) follows from Proposition 4.2.10 and Proposition 3.3.4.
(ii) By Proposition 4.2.10, E is complete if and only if

ZclCB) - 0 and LH\RZcl(E^ - 0.

We have Zcl(£) - (Hom(C~,£))~ and

- [^(RHonKC -,

where the first isomorphism follows from the fact that any morphism
between objects of Tc with the weakest topology is strict. Hence, the
conclusion.

(iii) follows from Proposition 4.2.10. D

§ 4.3. Equivalence between D^c ( Tc) and D^( 9ro ( 'Ban) )

Definition 4.3.1. The category of Banach spaces is the full
subcategory of 7c whose objects are the Banach spaces. We denote it by
'Ban.

One can show that the category 'Ban is a quasi-abelian category
with enough injective objects. Moreover, the space /*(/) of summable
sequences of C indexed by / is projective and 'Ban has enough
projective objects. For more details, see [8].

Hereafter, we consider the category Vro( 'Ban) of pro-objects of
'Ban. Recall that the objects of Vrot'Ban^ are functors

E: rp-> <Ban

where 3 is a small filtering category and that if
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E: rp-> Van, F: 3°p^ Ban

are two such functors, then

HomTro(23fln)(£,F) = Jim Urn Hom3flM(£(0, F(jDX
; e a i e 3

For further details on pro-objects, we refer the reader to classical sources
(such as [1, 2]) and to [9] for the main results in the context of
quasi-abelian categories. Following the standard usage and to avoid
confusions, we will denote

the functor E : 3 op ^ ^>an considered as an object of (Pro('Ban\
Similarly, we denote "X" the pro-object associated to the Banach space X.
In other words, we set

"JT - " lim " C(Q
fe o

where 3 is a one point category anc C : 3 op -> 'Ban is the constant
functor with value X

Applying the results of [9] , we get:

Proposition 4.3.2, The category 9ro(eBan^) is a complete quasi-
abelian category with exact filtering protective limits.

Proposition 4.3.3. A sequence

of 9ro( Baw) is costrictly exact if and only if the sequence

, TO)")

is exact for any set I

Proof. Work as in Proposition 2.1.13.



DERIVED CATEGORIES FOR FUNCT. ANAL. 63

Proposition 4.3.4. For any object E of Tc, the functor

S'CE) : Van -> Ab

defined by setting

is pro-represented by " lim " Ep , where P is the system of semi-norms of E.

Proof. Let E be an object of Tc with P as system of semi-norms.
For any Banach space X, we get successively

S'CE)OO - HomTc(£, X> - lim Horn Tc(Ep, X)

- lim Horn 3an(£p, X) - HomTro(;Bfln)(" Jim " £ "X")
p e p p e p

where the second isomorphism follows from Lemma 2.2.15. D

Definition 4.3.5. Let

S : Tc-^ <$ro{f&ari)

be the functor characterized by the isomorphism

where X is in 'Ban and £" in Tc.

Remark 4.3.6. For any object E of Tc with P as system of semi-
norms, we have

SCE) - " lim " E

In particular, if E is a semi-normed space, then

SCE) ^ "£".

Proposition 4.3.7. For any object E of Tc, we have
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Proof. Let E be an object of Tc with P as system of semi-norms.
For any Banach space X, we have successively

,"X") ^ HomTcCE, X) ^

^Homyro(Bflw)(S(£),"X").
a

Proposition 4.3.8. // (£,•),• e / is a small family of Tc, then

sc []£,•)- HSU?,).
« e / i e /

Proo/. For any Banach space X, we have

Horn ̂ (^)(S(I1 ̂ )/'^") - HomTc(Il £**) = 0
i e / i e / i e /

where the second isomorphism follows from Proposition 2.1.6. D

Proposition 4.3.9. If

X-^Y-^Z

is a costrictly exact sequence of Tc, then the sequence

son -> s(y) - scz)

zs costrictly exact in yro(*Ban). In particular, the functor S is exact and
cokernel preserving.

Proof. Let X -» Y -> Z be a costrictly exact sequence of T c. By
Proposition 2.1.13, the sequence

HomTC(Z,

is exact. Since for any object X of Tc,

, TOT),
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the conclusion follows from Proposition 4.3.3. D

Definition 4.3.10. Let

L: VroCBan) -> Tc

be the composite functor

Tro(/ ^-> Tc

where / : "Ban -> Tc is the canonical embedding. In other words, for any
functor X : 3 op -> Ban, we set

j e a i e a

where the projective limit is taken in Tc.

Proposition 4.3.11. For any object E of Tc and any object X of
3Yo(23an), we have the adjunction formula :

HomTc(£, LOO) - HomTro(25fln)(S(£), X).

7n particular, L preserves projective limits and S preserves inductive limits.

Proof. Let E be an object of Tc and let X : 3 op -> £an be an object
of 'Prot'Ban). Then, we get successively

Hom.JC(£, LOO) -Hm HomTc(£:, X(0)
ie D

= Urn Horn yro(Ban)(S(£), "X(0")
«e 7

- Homa.ro(.BaB)(S(£), X).
D

Lemma 4.3.12. For any object E of Tc twY/z P as system of
semi-norms, we have

L(SCE)) - lim Ep - E.

Proof. The first isomorphism follows from the definitions. As for
the second one, we refer to [6, Chap. IV, § 19, 9.(1) (p. 231)]. D
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Proposition 4.3,13, The functor

is canonically isomorphic to

RLoS.

Proof. By Lemma 4.3.12, Cpl - L o S and by Proposition 4.3.9, the
functor S is exact, so we have to prove that

#(LoS) - RLoRS.

The objects of an injective resolution in Tc may be assumed to be
of the form Ex Tli^IFi, where E is an object of 7c with the weakest
topology and Ft is an injective Banach space for any i e /. We have

.
i e / i e / z e /

Since by [9, Proposition 7.3.9], UiGI
uF" is L-acyclic, S(£X U i G I F ^ ) is

also L-acyclic and the conclusion follows. D

Corollary 403014. For any object E of Tc, we have

^ RCpl(Sep(£)) = RCpl(Cpl(£)).

Proof. This follows from Proposition 4.3.13 and Proposition 4.3.7
keeping in mind that CplCE) - Cpl(SepCE)). D

Corollary 4.3.15. Let E be an object of Tc with P as system of
semi-norms. Then, the following conditions are equivalent.

(i) E is cohomologically complete ;

(ii) RLoSCE) ^£;

(iii) R lim E - E.

Proof. The equivalence between (i) and (ii) follows from Proposi-
tion 4.3.13.

The fact that (ii) is equivalent to (iii) follows from the isomor-
phisms
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RLoSCE) -RL("]im"£) - R lim E
pep r- j

Theorem 4.3. 1 6* The functor

is an equivalence of categories.

Proof. The functors S : Tc -> 9ro( "Ban) being exact, it gives rise
to a functor

First, by Corollary 4.3.15, for any object E' of D*c( Tc), we have

RLoS(£") - E'.

Next, consider a complex X'

of Z)+( 3>ro( 'Ban)). We know that X' has an injective resolution by
objects of the type nie a "^" where each /x- is an injective object of 'Ban.
Since we have

SCL n T)) - sc n v - n T
x e a tea t e 3

we get SoRL(X') - X" in D + ( tPro('Ban)\ Therefore, for any X' e Z) +

((Pro (San)), we have

(RLoS)CRL(X')) - RL(SoRL(X')) - RLQT)

and RL(X') e /?«( Tc). The conclusion follows. D

Corollary 4.3.17. Let E and F be two objects of Tc and let P and Q
be their respective systems of semi-norms. If F is cohomologically complete,
then

RHom 7c(E, F) - R lim lim RHom 3flw(iL FJ.
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Proof. By Proposition 2.2.14, we know that E — R lim Ep and since

F is cohomologically complete, by Corollary 4.3.15 F — R lim Fq. Then,
we have successively q e Q

RHomTc(£, F) - RHom(R Jim Bp, R lim Fq)
9e Q

- RJim RHom(R Jim£p, F) (*)
ge Q

- R Jim lim RHomTcGE,f FJ (**)
q^Qp^P * q

- R lim lim RHom^CJL FJ

where the isomorphism (*) follows from [9, Proposition 3.6.3] and the
isomorphism (**) from Proposition 2.2.4. D

§ 4.4. Equivalence between D + ( yr) and D + ( Vro^

Definition 40401B The category of Frechet spaces is the full additive
subcategory of 7c whose objects are the Frechet spaces. We denote it by
Jr.

Proposition 4.4.2. Let f :E -*F be a morphism of Jr.

(i) The kernel of f is the subspace /"*(()) of E endowed with the
induced topology.

(ii) The cokernel of f is the quotient space F//(£") endowed with the
quotient topology.

(iii) The image of f is the subspace /(£") of F endowed with the induced
topology.

(iv) The coimage of f is the quotient space E/f~l(ff) endowed with the
quotient topology.

Corollary 4.4.3. Let f : E -* F be a morphism of Jr. The following
conditions are equivalent:

(i) / is strict in 3r,
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(ii) / is relatively open,

(iii) /(£) is closed.

In particular, a morphism of 3r is strict if and only if it is strict as a
morphism of 7c.

Proof. It is sufficient to work as for 7c keeping in mind the closed
graph theorem. D

Corollary 4.4.4. Let f : E -> F be a morphism of Jr. Then, f is a
strict monomorphism (resp. epimorphism) of Jr if and only if f is a strict
monomorphism (resp. epimorphism) of Tc.

Proposition 4.4.5. The category Jr is quasi-abelian.

Proof. We know that 3r is additive and that any morphism of fr
has a kernel and a cokernel.

Consider the cartesian square

of 9> where / is a strict epimorphism. By Corollary 4.4.4, / is a strict
epimorphism of Tc and since Tc is quasi-abelian, it follows that u is a
strict epimorphism in Tc and also in 5r.

Finally, consider the cocartesian square

(*)

of S"r where f is a strict monomorphism. Denote a the morphism

: E -* G 0 F.
,-f,

Recall that

T - coker(a) - (G 0 F)/a(E).
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By Corollary 4.4.4, / is a strict monomorphism in Tc. Then, / is injective
and for any semi-norm pE of E, there is a semi-norm pF of F such that

for some C > 0. It follows that a is injective and that

pE(e) < C

where pG is an arbitrary semi-norm of G and pG@F(x, y) =
sup(pF(j), £G(;y)). Hence, a is a strict monomorphism and its image is
closed. Consequently,

cokera - (G 0 F) /a(£)

and the cokernel of a in Jr coincides with the cokernel of a in Ta
Then, the square (*) is cocartesian in Ta By Corollary 4.4.4, / is a strict
monomorphism of Tc and since Tc is quasi-abelian, it follows that u is a
strict monomorphism in Tc and also in 9r. D

Proposition 464860 T/ze category Jr /zas enough injective objects,

Proof. This follows from Proposition 2.1.12 using the fact that
countable products of Banach spaces are Frechet spaces. D

Proposition 4.4B7a Frechet spaces are cohomologically complete.

Proof. Let F be a Frechet space. By Proposition 4.4.6, F has an
injective resolution / " i n Jr such that /* is also an injective object of
TCL Therefore,

RCpl(F) - CplCO -I' -F.
D

Definition 4.4.8. A small category 3 is called countable if the set
of objects of J is countable and if the set of morphisms between two
arbitrary objects of 5 is also countable.

Definition 40409e Let C be an arbitrary category. A countable
pro-object of C is a functor X : 3 op -» 6 from some countable filtering
category 3 to C . The category of countable pro-objects of C is denoted
by
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Remark 4.4.10. Working as in [1], one can check easily that for
any filtering countable category J , there is a countable filtering ordered
set / and a cofinal functor

0:7^ 3.

Thanks to [10, Lemma 5.1], one may even assume that 7= N. In
particular, for any countable pro-object X of a category C , we may find
a functor

X' : N -> 6

such that

X = " lim " X.
w e N

Proposition 4.4.11. // £ is a quasi-abelian category then 3YoN( £ ) is
a quasi-abelian category.

Proof. Work as in [9, Proposition 7.1.5] D

Lemma 4.4.12. For any object X : J op -> 'Ban of Tro

L(X) - Hm X(Q
ie a

is a Frechet space. In particular, we may consider the functor

L: 3VoN(£an) -> Jr.

Corollary 4.4e 1 3. The functor

L: 9roN(San) -^ 2>

is ng/z^ derivable and its derived functor

is an equivalence of categories.

Proof. Since "Ban has enough injective objects, TroN(!Baw) has
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enough injective objects and L : Vro^CSan} -> Jr is right derivable.
The functor S : Jr-* !ProN( 'Ban) being exact, it gives rise to a functor

S : D +

Consider a complex F '

of D+ ( Jr). For any n > — k, since Fn is cohomologically complete, we
have

RLoSCF") ^ F n ^ L o S ( F w ) ,

where the last isomorphism follows from Lemma 4.3.12. Hence, S(F') is
a L-acyclic resolution of SCF") and we have

RLoSCF') - LoS(F') - F\

Hence, the complexes of D+ ( Jr) are cohomologically complete. As in
the proof of Theorem 4.3.16, one checks that the functor

is an equivalence of categories and its quasi-inverse is given by

S:D + Orr)^D + (yroN(Saw)).
D

§ 5B Duality Functors

§ 5. 1. The Inductive Dual

Remark 5.1.1. Let us recall that if E is a semi-normed space, then
the dual of E, denoted here by D(£), is a Banach space. If p is the
semi-norm of E, then the norm of DCE1) is defined by

Hr||D(i:) = sup |r(*)|
/>(*) ^ i

for any r<ED(£).
Recall that if E is a semi-normed space, we have the isomorphism of
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Banach spaces DCE) — DOE). In particular, if E is an object of Tc with
the weakest topology, then D(E) — 0.

Recall also that the duality functor

D:

is exact. As a matter of fact, consider a strictly exact sequence

of Banach spaces. Since C = /°°({0}) is an injective object of "Ban, the
sequence

0 - D(G) — D(F) — D(£) - 0

is an exact sequence of vector spaces. Since the images of D(/) and
are closed, the Banach homomorphism theorem shows that D(/) and
D(e) are strict.

Let X be an object of 7c. Recall that a set of continuous linear
functionals

E= { f i l i a l , fi'.X-* C}

is equicontinuous if for any 6 > 0, there is an absolutely convex
neighborhood of zero V in X such that

It is equivalent to ask that there is an absolutely convex neighborhood
of zero V in X such that E C V° or that E° is a neighborhood of zero in
X. In particular, the polar of any semi-ball of X is equicontinuous.

Definition 5.1.2. We denote by

the inductive dual functor, which associates to any object X of Tc the
dual space X' endowed with the inductive topology. In this topology, a
basis of neighborhoods of zero is formed by the absolutely convex
subsets of X' which absorb any equicontinuous set.
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Lemma 5.1.3. If X is a semi-normed space, then DjCX") — DQQ.

Proof. Recall that if p is the semi-norm of X, then a basis of
neighborhoods of zero in DQO is given by {6p(r)°: r > 0} . The
conclusion follows easily. D

Proposition 5.1.4. Let E be an object of Tc and let P be its system of
semi-norms. Then, we have

- lim p - .
p e p p e p

Proof. By Lemma 5.1.3, it is sufficient to show that lim Dj
. Consider the continuous linear map

p e p

defined by

u o rp = Dfcp) V£ G P

where ep : E -» Ep is the continuous identity map. This map u is clearly
bijective.

To conclude, it is sufficient to show that u~l is continuous. Consider
a subset U of D{(E) such that u~{ ([/) is a neighborhood of zero in
lim DjCEp. Let us show that U is a neighborhood of zero in DjCE).
p e p

Consider a semi-ball &p(l) of £ Denote (6p(l))^/ (resp. (fep(D)^) the
polar of 6^(1) in £"' (resp. £"p. Since

r^Cii^CC/)) - (z^or,)-1 (£/) - (D^^))-1 (17)

is a neighborhood of zero in DiGEp, (D^))""1 (t/) absorbs (
Hence, there is C > 0 such that

It follows that

Therefore, U absorbs the polar of any semi-ball of E and U is a
neighborhood of zero in
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The last isomorphism follows from Remark 5.1.1. D

Proposition 5.L5. For any family (^Xa)a^A of objects of 7c, we have

Proof. Denote

/: 0 DiQO - D,( I] Xa)

the canonical morphism of Tc induced by the morphisms

where

pa : [I Xa -> Xa
a^A

is the canonical projection. It is well-known (see e.g. [6, Chap. IV, § 22,
5. (2) (p. 284)] that /is a bijection. Hence, it is sufficient to prove that it is
open.

Consider a closed neighborhood of zero U in ®a^A DjOQ. Then,

U °,
a<=A

where each Ua is a closed absolutely convex neighborhood of zero in
DjQQ and oa : DjQQ -> 0ae^Di(Xa) is the canonical embedding.
Consider an equicontinuous set E of (lla^A XaY. There is an absolutely
convex neighborhood of zero V in Ha<=A Xa such that

We may assume that

v= n v.
a e A

where each Va is a closed absolutely convex neighborhood of zero in Xa

and the set

{a 6= A : Va * Xa]
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is finite. Since Ua is a neighborhood of zero in DjOQ, there is Ca > 0
such that

v: c caua.
If Va — Xa, then I£° = X° = 0 and we may assume Ca = 0. Then, setting
C = supa(E,,Ca) we get

E C ( n Var C /(( U aa(oV) C C/(( U C7a(t/a)\) C C/CCO
« e ^ \ \ f f < E , 4 / / \ \ a e ^ / /

where the second inclusion follows from e. g. [6, Chap. IV, § 22, 5.(l)(p.
283)]. Hence, /([/) is a neighborhood of zero in D{(Ua^A Xfl). D

Proposition 5X6. T/ze functor D^. 7c-+ T cop is left exact.

Proof. Consider a strictly exact sequence

of 7c. We know that the sequence

is algebraically exact and that the maps D^g) and D{(f) are continuous.
Therefore, it is sufficient to show that Dj(/) is strict, i.e. DjC/) is
relatively open.

Let V be a neighborhood of zero in Df(7) and E be an
equicontinuous subset of X'. We have to show that D{(f) (F) absorbs E.
Letpx be a continuous semi-norm of X such that E C 6^(1)°. Since / is a
strict monomorphism, there is a continuous semi-norm pY on Y such that

Let rx^bPx(iy. We have r^(jc) I < px(x) and the Hahn-Banach
theorem shows that there is TY £= Y' such that

and TY°f= TX-

It follows that 6^(1)° C Di(/) (6^(1)°). Since &,y(l)° is an equi-
continuous subset of Y', there is C > 0 such that bpy(iy C CV. It follows
that
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bPx(lY C D,(/) (6py(l)°) C CD,(/) (F).

Hence, the conclusion. D

Remark 5.1.7. Let 3 be a small category and let £ be an additive
category with exact products. Recall that in [9] , we defined a functor

such that

IKS) (0 = [I SO')
ay-»;

and we established that
(a) for any object E of £D°P , there is a strict monomorphism of the

form£->n(S) with S in £0bO),

(b) any object of the form n(S) with S in £0b( D) is lim-acyclic,
ie a

(c) if S is an object of £0b(D) with S(0 injective for any z GE 3 , then
II(S) is injective in £D°P.

We also established dual results when II is replaced by its dual
counterpart II.

Proposition 5.1.8. Let 3 be a small category. For any object X of
7cyOP, we have

RDiCRJim X(0) - L IhnCRDiOO) (i).
i e a j e a

Proof. We know that X has an injective resolution in Tc D of the
form

0 - IKS0) -> IKS1) - -

where for / > 0, S1 is an injective object of Tc°b(:j).
On one hand, since for / > 0,

limlKSO (0 ^ H s'CO and D^ [] S'(0) ^ 0 DsC
i e a ,- e 0 i G a f e a

and since a product of injective objects is an injective object,
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RDj(R lim Z(Q) is given by the complex
te 3

- - 0 D.CS'CO) -> 0 D,(S°(0) ->o.
! e a ; e 3

On the other hand, by Proposition 5.1.5, one can check easily that
for / > 0

Danes')) = IICD.CS')).

Then, L lim (RDj(JQ) (z) is given by the complex
t e a

S1)) (0 -> HmUCDiCS0)) (0 -*0.
ie a

Since for / > 0, we have

iCS')) (0 ^ 0 DjCSO (0 ^ 0 DiCS'CO),
i e a teg

the conclusion follows.

Proposition 5.1.9. // X is a semi-nonned space, then

Proof. We know that X has an injective resolution of the form

O-/0-/1--

such that for / > 0, /' = ElxFl where E1 is an object of Tc with the
weakest topology and Fl is an injective Banach space. Since for / > 0, /'
is semi-normed, we have D^/O - D(/0. Moreover, since C = i°°({0}) is
an injective object of Tc, the complex

- -» DC/1) -^ D(/°) -> DU) - 0

is algebraically exact. Then, the image of any morphism of this complex
is closed and by the Banach homomorphism theorem, the complex is
strictly exact. Therefore,

- DOT).
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Corollary 5.1.10. // (Xa)ae^ is a family of semi-normed spaces, then

RD,C n *.) - Di( n *„)•
a^A a&A

Proof. Since direct products and direct sums are exact in Tc, we
may apply Proposition 5.1.8 and we have

RD,( H *.) ^
ae^ a^A

The conclusion follows from Proposition 5.1.9 and Proposition 5.1.5.
n

Proposition 5.1.11. For any object X' o/D + ( Tc), u;e have

for any object E of Tc.

Proof. Consider an object X' of D+ ( Tc). We know that X' has an
injective resolution by objects of the type

where E is an object of 7c with the weakest topology and Fa is an
injective Banach space. For such an object, we have

Cpl(7) - H Fa and D^J) - D{( [] Fa).

Since a product of injective objects is injective, we get

n
Remark 5.1.12. Recall that since the functor D: 'Ban -> ( 'Ban^ is

exact, it induces an exact functor

OYo(D) :
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For any small filtering category 3 and any functor X: 3op -» 'Ban, we
have

3Vo(D)("lim "Z(0) = "lim f fDCY(f)).
t e a t e a

Proposition 5.1.13. The diagram

I11
- ZT(Tcop) ^ Or(Tc))op

is commutative.

Proof, Consider an object X' of D +( Tc). We know that X' has an
injective resolution by objects of the type

= EX

where E is an object of 7 c with the weakest topology and Fa is an
injective Banach space. On one hand, we have

^ 0 DOT).
ae^l ae^ ae>l

On the other hand, we have

SCO - S(£)x f] S(Fa) = f] "^a"-
aeyl ae^

Therefore, we get successively

0)fo(D)(SC/)) - rro(D)( I] "^a") - VrotDK lim fl "^;")
a e ̂  ye a'/U) j e y

- " lim "D( H F*)

^ " lim " 0 D(FO ̂  0 "D(Fa)".
y^T/U) ;ey a^A

Since

0 "D(Fa)"
ae^l

is L-acyclic (see [9, Proposition 7.3.9]) and since
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L( © "DCFT) = 0 L("D(F")") = 0 D(Fa),
a^A a^A a^A

the conclusion follows. D

Corollary 5.1.14. The diagram

~

RL LL

is commutative.

Proof. This follows directly from Theorem 4.3.16 and Proposition
5.1.13. D

§ 5.2. Relations with the Strong Dual

Definition 5.2.1. We denote by

Db: Tc -> Tcop

the strong dual functor which associates to any object X of Tc the dual
space X' endowed with the strong topology. In this topology, a basis of
neighborhoods of zero is formed by the polar of the bounded subsets of
X. The system of semi-norms is thus given by

\PB: B bounded subset of -X"}

where pB is defined by

PB(T) = sup I r(*) | V T e DbQD.
x $=~B

Proposition 5.2.2. The inductive topology is stronger than the strong
topology.

Proof. Consider a bounded subset B of an object X of 7c and let E
be an equicontinuous set. There is an absolutely convex neighborhood of
zero V in X such that E C V°. Since B is bounded, there is C > 0 such
that B C CV. It follows that E C CB° and that B° is a neighborhood of
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zero in DjGO. D

Proposition 5,2,3. If X is a semi-normed space, then D(X) —
DbOO.

Proof. This is clear since semi-balls are bounded in X. D

Proposition 5*2 A* The functors

and

are canonically isomorphic.

Proof. Let X be an object of D + ('Jc). We know that X has an
injective resolution by objects of the type I = Ex Ha<=AFa where E is an
object of 7c with the weakest topology and Fa is an injective Banach
space for any a ^ A. We have

) 0 DiCF") = 0 D(F").

Moreover,

Db(7) = DbC£)© 0 DbCT) - &

where the first isomorphism follows from [6, Chap. IV, § 22, 5. (4) (p.
287)]. Therefore, RD.OO ^ RDb(X).
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