Publ. RIMS, Kyoto Univ.
36 (2000), 19-83

Derived Categories for Functional Analysis

By
Fabienne Prosmans™

Abstract

In this paper, we study the homological algebra of the category T¢ of locally convex
topological vector spaces from the point of view of derived categories. We start by
showing that T ¢ is a quasi-abelian category in which products and direct sums are exact.
This allows us to derive projective and inductive limit functors and to clarify their
homological properties. In particular, we obtain strictness and acyclicity criteria. Next, we
establish that the category formed by the separated objects of T ¢ is quasi-abelian and has
the same derived category as T¢. Since complete objects of T¢ do not form a quasi-abelian
category, we are lead to introduce the notion of cohomological completeness and to study
the derived completion functor. Our main result in this context is an equivalence between
the subcategory of D(J¢) formed by cohomologically complete complexes and the derived
category of the category of pro-Banach spaces. We show also that, under suitable
assumptions, we can reduce the computation of Ext's in Tc¢ to their computation in Ban
by means of derived projective limits. We conclude the paper by studying derived duality
functors.
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8§ 0. Introduction

Our aim in this paper is to study the category Jc of locally convex
topological vector spaces from an homological point of view using
derived categories. It is well-known that the category Tc¢ is not abelian.
Hence, we may not use the classical techniques of homological algebra.
We however prove that T¢ is quasi-abelian. This allows us to construct
the derived category of Tc¢ as explained in [8, 11]. In this framework,
we study the usual functors of functional analysis such as projective and
inductive limit, homomorphism, separation, completion and duality
functors. A first study of the homological algebra of these functors was
done by Palamodov in [7]. Here, by working in derived categories and
using the language of pro-objects, we are able to state these results in a
more natural way as well as to clarify their proves. This approach also
allows us to generalize some of the results to a non countable situation
(see e.g. Theorem 4.3.16). Since any complete space is a projective limit
of Banach spaces, it is natural to hope to reduce many homological
properties of the category T c¢ to the corresponding properties of the
category Ban of Banach spaces by means of derived projective limit
functors. For this reduction, we need both general properties of derived
projective limit functors in quasi-abelian categories (see [9]) and more
specific properties for the category of topological abelian groups (see
[10]).

To fix our notations and make our text more self-contained, we
devote the first section to a review of the results on the homological
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algebra of quasi-abelian categories which are used in the rest of the
paper.

In the first part of Section 2, we recall the definition of the category
Tc¢ of locally convex topological vector spaces. Using the results
obtained in [10] for the category TA b of topological abelian groups, we
show that T c is quasi-abelian. After recalling the fact that the category
T ¢ has enough injective objects but not enough projective objects, we
end with a criterion for checking that a null-sequence of T ¢ is costrictly
exact. In the second part, thanks to the exactness of products and direct
sums in T¢, we deduce, from the general results of [9] that projective
and inductive limit functors are derivable in Tc¢ and that their derived
functors are computable by Roos complexes. Then, using results
established in [10], we show that if X is a projective system of Tc
indexed by a filtering ordered set, the differential d* of its Roos complex
is strict for £ > 1 and that d° is strict if and only if X satisfies the
condition SC (i.e. if and only if for any ¢ € I and any absolutely convex
neighborhood of zero U in X, there is j > 7 such that

%X C ¢(lim X)+U
ie]

for any k& > j). As a corollary, we get that a projective system of Tc¢
indexed by a filtering ordered set is lim-acyclic in Tc if and only if it is
lim-acyclic in the category of vector spaces and satisfies the condition
SC. In particular, if the index set I has a cofinal countable subset and if
the spaces X; are Fréchet, the condition SC is necessary and sufficient for
the lim-acyclicity of the projective system X. Note that, in the case of
Banach spaces, the condition SC corresponds to the classical topological
Mittag-Leffler condition. We conclude by proving that

RHom . .(E, F) = R lim lim RHom 4 .(E,, F,)
gEQPEP
where P and @ are the (not necessarily countable) systems of
semi-norms of E and F.

Section 3 is devoted to a cohomological study of the notion of
separation. First, we consider the full subcategory Tc¢ of Tc¢ formed by
separated spaces. We prove that T is quasi-abelian and that the left
derived functor of the separation functor

/§ep: Tc—Tc

is an equivalence of categories. We end by establishing a few properties
of the separation and zero closure functors
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Sep: Tc— TJc¢ and Zcl: Tc— Jc

which will be useful in the next section.

We start Section 4 by considering the category Tc of complete
spaces. Since the quotient of a complete space by a closed subspace is
not necessarily complete, this category is not quasi-abelian. Hence, we
cannot define a derived category of complete locally convex topological
vector spaces in a straightforward manner. We show that a way to turn
this difficulty is to replace this non-existent derived category by the full
subcategory D ( T¢) of D" (T ¢) formed by cohomologically complete
complexes, i.e. the objects E" of D ( T¢) such that RCpl(E") = E’, where
Cpl: Jc— Tc is the completion functor. Then, we prove an equivalence
between the right derived functors of the completion and separation
functors. We also give necessary and sufficient conditions, in terms of
the derived functor of Zcl, for an object of Tc¢ to be separated, complete
or cohomologically complete. Next, we introduce the functor S : J¢ —
Pro(Ban) and L : Pro(Ban) — Tc¢ and we relate them by an adjunction
formula. After having established that the functor S is exact, we show
that the functor RCpl : D* (T¢) — D" ( T¢) is canonically isomorphic to
RL o S and we prove that the functors RL : D (Pro(Ban)) - D_.( Tc)
and S : DS ( T¢) = D" ( Pro( Ban)) are quasi-inverse equivalences of
categories. As a corollary, we get a formula reducing the computation of
RHom in Tc¢ to that for RHom in Ban by means of derived projective
limits. In the last part of this section, after a short study of the
quasi-abelian category Fr of Fréchet spaces, we get as a corollary of
what has been obtained above that the functor RL : D" (Proy ( Ban)) —
D*(F7) is an equivalence of categories.

Section 5 is devoted to the study of duality functors. First, we recall
some of the properties of the standard duality functor for Banach spaces
D : Ban — (Ban)™. Next, we introduce the inductive dual functor D; :
Tc— Tc® We prove that D; is left exact and we study its right derived
functor. For any object X of T¢ %, where J is a small filtering category,
we obtain the formula

RD(R lim X()) = L lim (RD;(X)) (i)

i€ J
and we show that it is possible to compute RD; by means of the exact
functor

Pro(D) : Pro(Ban) — (Ind(Ban)).

As a corollary, we get that RD,(X) = RD,(RCpl(X)) = RDi()AO. Finally,
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we show that RD; is canonically isomorphic to the right derived functor
of the strong dual functor.

To conclude this introduction, it is a pleasure to thank J.-P.
Schneiders for the helpful discussions we had during the preparation of
this paper.

8 1. Quasi-Abelian Homological Algebra

To help the reader and to fix our notations, we recall as in [10] a
few basic facts concerning the homological algebra of quasi-abelian
categories. We refer to [11] for more details (see also [8]).

§1.1. Derivation of Quasi-Abelian Categories

Definition 1.1.1. Let A be an additive category with kernels and
cokernels and let f: A — B be a morphism of A. Recall that ker f (resp.
coker f, im f, coim f) denotes the kernel (resp. the cokernel, the image,
the coimage) of f.

We say that f is strict if the canonical morphism

coim f—im f
is an isomorphism.

Definition 1.1.2. A category & is quasi-abelian if it is an additive
category with kernels and cokernels and

(i) if in a cartesian square

f
X—Y

I
! |
X'T’Y'

f is a strict epimorphism, then f’ is a strict epimorphism,
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(ii) if in a cocartesian square
;! ’
X——Y
]
|
X — Y
f is a strict monomorphism, then f’ is a strict monomorphism.

In the rest of the section, £ will denote a quasi-abelian category.

Recall that C(¢&) is the category of complexes of € and that K(€&)
is the category whose objects are the objects of C( € ) and whose
morphisms are the morphisms of C( & ) modulo homotopy. It is
well-known that K(&) is a triangulated category.

Definition 1.1.8. (i) A sequence
5
E>F>¢G

of € such that go f = 0 is strictly exact if f is strict and if the canonical
morphism im f — ker g is an isomorphism.

(i) A complex X' of & is strictly exact in degree k if the sequence
Xk ™ x* a* Xk
is strictly exact.

(iii) A complex of & is strictly exact if it is strictly exact in every
degree.

Proposition 1.1.4. The full subcategory N(€) of K( &) formed by the
strictly exact complexes of & is a null system.

Definition 1.1.5. We define the derived category D( €) of € as the
localization

K(&)/N(E).
of K(&) by N(&).

A morphism of K( €) which has a strictly exact mapping cone is
called a strict quasi-isomorphism.
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Definition 1.1.6. We denote by D=°( £) (resp. D=°( € )) the full
subcategory of D(€ ) formed by the complexes which are strictly exact
in each strictly positive (resp. strictly negative) degree.

Proposition 1.1.7. The pair(D=°( &), D>°(&)) is a tstructure on
D(&). We call it the left t-structure of D( £).

Definition 1.1.8. We denote LH( &) the heart of the left t-structure
(D=°(&),D>°(eN.
We call it the left heart of D( &) and we denote
LH*:D(&) - LH(E)
the associated cohomological functors.
Proposition 1.1.9. The functor
It &€—>0H(E)
which associates to any object E of & the complex
0—-E—0
where E is in degree 0 is fully faithful.

Remark 1.1.10. Lex X be an object of LH( &). By an abuse of
notations, we will write

X et
if X' is isomorphic to I(E) for some object E of €£.
Proposition 1.1.11. Let X be an object of D(E&). Then,
(1) LH*(X') = 0if and only if X is strictly exact in degree k,
(i) LH*(X") € & if and only if d5 ' is strict.

Remark 1.1.12. If we replace the notion of strictly exact sequence
by the dual notion of costrictly exact sequence, we obtain a second



26 FABIENNE PROSMANS

t-structure on D(€ ). We call it the right t-structure of D(E ). We denote
by RH (&) its heart and by RH" the corresponding cohomological
functors.

§1.2. Derivation of Quasi-Abelian Functors

Let F : € — F be an additive functor between quasi-abelian
categories.

Definition 1.2.1. The functor F is left exact (resp. exact) if it
transforms any strictly exact sequence

0—>E -E—E"—0
of ¢ into the strictly exact sequence

0—F(E") = F(E)—F(E") (resp.0—F(E") —F(E)—F(E")—0).

Definition 1.2.2. Denote as usual
Qe :K'(&€)—=D"(&), Qs :K(F)—=D"(F)
the canonical functors. Assume we are given a triangulated functor
G:D (&)—=>D"(9)
and a morphism
9: Q50K (F) > Gog,.

Then, (G, g) is a right derived functor of F if for any other such pair
(G’, g"), there is a unique morphism

h:G—G’

making the diagram
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GoQ,
Q0K (F) i“‘i’a

G'oQ,

commutative. The functor F is right derivable if it has a right derived
functor. One denotes RF a canonical choice of a derived functor of F.

Definition 1.2.3. Let F be a right derivable functor. An object I of
¢ is called F-acyclic if F(I) = RF().

Definition 1.2.4. A full subcategory J of € is F-injective if

(i) for any object E of &, there is an object 7 of J and a strict
monomorphism E — I,

(ii) in any strictly exact sequence 0 - E'—E — E” — 0 of & where
E’ and E are objects of J, then E” is an object of 7 and the sequence

0—>F(E)—>FE) —-FE")—=0
is strictly exact in JF.

Proposition 1.2.5. If J is an F-injective subcategory of &, then for any
object X' of C* (&), there is a strict quasi-isomorphism

u X —>I

such that, for any k, I* is an object of 7 and u* : X*—1* is a strict
monomorphism. (In such a case, we call I' an F-injective resolution of X'.)

Proposition 1.2.6. Assume & has an F-injective subcategory 7.
Then, the functor F: & — F has a right derived functor

RF:D*(&)—=D'(9F),
and for any F-injective resolution I of X we have a canonical isomorphism

RF(X) = F(I")



28 FABIENNE PROSMANS

in DY (F). In particular, the objects of I are F-acyclic.
Definition 1.2.7.
(i) An object I of & is called injective if the functor

Home(e, D) : £€°— Ab
is exact.

(ii) The category & has enough injective objects if for any object E of
&, there is a strict monomorphism E — I where [ is an injective object of
.

Proposition 1.2.8. If & has enough injective objects, then the full
subcategory J of & formed by injective objects is an F-injective subcategory
for any additive functor F: & — F. In particular, any such functor F is
right derivable and any object X of C*( &) has a resolution I with
injective components.

Remark 1.2.9. Although we will not state them explicitly here, we
have of course dual results for left derivable functors. As usual, in the
dual vocabulary, the word *“injective” is replaced by the word
“projective”.

§2. Homological Algebra for Locally Convex Spaces
§2.1. The Category TJc and its Derived Category

Recall that a topological C -vector space E is a C-vector space
endowed with a topology having the property that both the scalar
multiplication

«: CXE—E
and the addition
+ :EXE—E
are continuous. A topological C-vector space is locally convex if 0 has a

basis of absolutely convex neighborhoods. It is well known that the
topology of a locally convex vector space is always given by a system of
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semi-norms (i.e. a set P of semi-norms on E such that for any p, p’ in P
there is p” such that p” > sup{p, p’}). This system of semi-norms may be
chosen to be the set of gauge semi-norms associated to a basis of
absolutely convex neighborhoods of 0. Conversely, if P is a system of
semi-norms on E, then the set {b,(r):p € P,r > 0} where b,(r) = {e €
E:p(e) < r} forms a basis of absolutely convex neighborhoods of 0 on
E.

Definition 2.1.1. We denote by Tc¢ the category whose objects are
the locally convex topological vector spaces and whose morphisms are
the continuous linear maps between locally convex topological vector
spaces.

Definition 2.1.2. (i) Let E be an object of Tc¢ and let H be a
subspace of E. The locally convex topology on H associated to the
system of semi-norms {p: p € P} where P is a system of semi-norms of
E is called the induced topology. If V is a basis of absolutely convex
neighborhoods of 0 on E, then the set {VNH:V & V} forms a basis of
absolutely convex neighborhoods of 0 on H.

(i) Let E be an object of T¢ and let H be a subspace of E. For any
semi-norm p of E, we denote by p the semi-norm of E/H defined by

px) = inf ple)
esqg (%)

where ¢ : E — E/H is the canonical epimorphism. The locally convex
topology on E/H associated to the system of semi-norms {# : p € P}
where P is a system of semi-norms of E is called the quotient topology. If
V is a basis of absolutely convex neighborhoods of 0 on E, then the set
{g(V) : V € V} defines a basis of absolutely convex neighborhoods of 0
on E/H.

Proposition 2.1.3. Any family {E},c, of objects of Tc has a
product. This product is obtained by endowing the C-vector space

H Ea = {(ea)aEA:ea € Ea}

a€EA
with the locally convex topology associated to the family of semi-norms

{SUP(pl © ﬂali eeey pNO 7[‘11*1) :alr LEXT) aN S Av pl = Palv ceey pN = PaN}

where n,: 1, 4, E,— E, is the canonical projection and P, is a system of
semi-norms of E,. A basis of absolutely convex neighborhoods of 0 in
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II,c . E,is given by the subsets of the form 1, , W,, where each W, is an
absolutely convex neighborhood of zero in E,, the set {a: W, # E,} being
finite.

Remark 2.1.4. Hereafter, (A) denotes as usual the absolutely convex
hull of a subset A of a C -vector space E.

Proposition 2.1.5. Any family {E}, < 4, of objects of Tc¢ has a direct
sum. This direct sum is obtained by endowing the C-vector space

D E,={(eyca:e, €EE, e, # 0 for finitely many a}

a€A

with the locally convex topology associated to the family of semi-norms

{Z cp,0myic, >0, p, € P}

a€A

where ,: ®, , E,—> E, is the canonical projection and P, is a system of
semi-norms on E, A basis of absolutely convex neighborhoods of 0 in
®,c4 E, is given by the subsets of the form {U,c 4 0,(W,)) where each W,
is an absolutely convex neighborhood of zero in E, and 0,:E, —~ @, 4, E, is
the canonical embedding.

Proposition 2.1.6. Let(X,);; be a family of Tc. For any normed
space X, we have

Hom .,([| X, X) = @ Hom, (X, X).
iel

i€l

Proof. Work e.g. as in [6, Chap. IV, § 22, 5.(2) (p. 284)]. ]

Remark 2.1.7. Note that the preceding result does not hold if the
norm of X is replaced by a semi-norm.

Proposition 2.1.8. The category Tc is an additive category with
kernels and cokernels. More precisely, if f : E — F is a morphism of 7Tc,
then:

(1) the subspace f~'(0) of E endowed with the induced topology
together with the canonical monomorphism f “1(0) — E form a kernel of f;

(ii) the quotient space F/f(E) endowed with the quotient topology
together with the canonical epimorphism q : F — F/f(E) form a cokernel of
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f

(iii) the image of f is the subspace f(E) of F endowed with the induced
topology;

(iv) the coimage of f is the quotient space E/f '(0) endowed with the
quotient topology.

Corollary 2.1.9. Let f: E— F be a morphism of Tc. The following
conditions are equivalent.

(1) fis strict,

(ii) fis relatively open (i.e. for any neighborhood of zero V in E, there
is a neighborhood of zero V' in F such that f(V) D f(E)NV'),

(iii) for any semi-norm p of E, there is a semi-norm q of F and C > 0
such that

inffp(x—l—e) < Cq(f(x)) Vx EE.

e € ker

Hereafter, we will use freely the properties of the category TAb of
topological abelian groups established in [10].

Lemma 2.1.10. Denote by ¢ : Tc— T A b the canonical functor.

(1) The functor ¢ is kernel and cokernel preserving.

(i) A morphism f : E — F of Tc is an isomorphism in Tc if and only
if ¢(f) is an isomorphism in T Ab.

(iii) A morphism f : E — F is strict in Tc if and only if ¢ (f) is strict in
TAD.

(iv) A sequence E— F — G of Tcis strictly exact in T ¢ if and only if
it’s image by ¢ is strictly exact in TADb.

Proposition 2.1.11. The category T c is quasi-abelian.

Proof. We know that Tc is additive and has kernels and cokernels.
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(i) Consider a cartesian square

E_f_,F

|

T—7—>G
f

where f is a strict epimorphism. Since this square is cartesian in
TAb, fis a strict epimorphism in TAb and the category T AbD is
quasi-abelian, it follows that f’ is a strict epimorphism in T A b.
Therefore, f’ is a strict epimorphism of Tc.

(ii) Using the same kind of arguments, in the cocartesian square,

G__L__,T

]

E —_f_—)F
where f is a strict monomorphism, f’ is also a strict monomorphism. [

Proposition 2.1.12. (i) Any vector space E endowed with the weakest
locally convex topology is an injective object of Tc.

(ii) Let M be an arbitrary non-empty set. The Banach space |~ (M) of
all bounded maps of M into C, with the norm

A l=n = sup{lf(m) |: m € M}

is an injective object of Tc.
(iii) For any object X of T c with P as system of semi-norms, there is a
strict monomorphism

X— 0% [[ 170,17
pEP
where
0= [ x€e X:px) =0}
pEP

is endowed with the weakest topology and b,(1)° denotes the polar of b,(1)
in X'. Hence, the category Tc has enough injective objects.
(iv) The category Tc has not enough projective objects.

Proof. For (i), (i), (iii), see [7]. For (iv), see[4]. ]
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Proposition 2.1.13. A sequence E — F — G is costrictly exact in Tc if
and only if

(a) it is algebraically exact;
(b) the sequence

Hom ,,(G, 1”(I)) = Hom 4,(F, [”(D)) - Hom ,.(E, I*(]D)

is exact for any set I.

Proof. Applying [11, Proposition 1.3.23] and using Proposition
2.1.12, we know that the sequence E — F — G is costrictly exact in Tc¢ if
and only if the sequence

Hom 4.(G, J) = Hom 4 (F, J) — Hom ,.(E, ])

is exact for any injective object J of Tc¢ of the form

vx [[ 1"

kEK

where V is endowed with the weakest topology. Since

Hom .. (X, || ¥) = [] Hom +,(X, ¥)
iel iel
we see that E — F — G is costrictly exact if and only if the sequences
Hom 4,(G, {”(I)) = Hom 4, (F, [(I)) = Hom ,.(E, [7(]))
and

Hom ,,(G, V) = Hom ,.(F, V) — Hom ,.(E, V)

are exact for any set I and any vector space V. Denote V the category of
C-vector spaces. Since any object of V is injective and since

Hom ,,(X, V) = Homy (X, V),

the conclusion follows easily. ]
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§2.2. Derived Limits of Locally Convex Spaces

Proposition 2.2.1. The category T ¢ is complete and cocomplete.
More precisely, let F: J — Tc be a functor from a small category J to the
category Tc. Denote by Ar( J) the set of morphisms of 97, and, for any
morphism a € Ar( J), denote org(a) (resp. ext(a)) the origin (resp. the
extremity) of a.

(1) Consider the morphism

f: [l F@—- ][] Flext(a))

i€ 0b(7) a < Ar(3)

defined by setting
T, Of = ﬂext(a)_F(a) o) ”org(a) Va e Ar( J )
where

7. || Flext(a)) — Flext(a)) and m: || F@—>FQ&

a € Ar(7) iE0b(7)

are the canonical projections. Denote

x:kerf— [ F@

i€ 0b(3)

the canonical monomorphism. Then, ker f together with the morphisms
g; = m;0x:ker f— F(i)
form a projective limit of F in Tc. We denote it by lim F (7).
i€ )

(ii) Consider the morphism

f: @ F(orglw)— @ FO
ae Ar(7) i€ 0b(7)
defined by setting
fO 0, = aorg(a)_aext(a) OF(&) Va & AI'( j)

where

o,: F(org(a)) — @( )F(org(a)) and o: F)—» @ F@
a € Ar(3J

ie0b(J)
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are the canonical embeddings. Denote
x: @ F@G) —cokerf
i€ 0b(J)

the canonical morphism. Then, coker f together with the morphisms
r, = x00;: F(i) — coker f
form an inductive limit of F in Tc. We denote it by lim_F(i).
i€ ]

Proposition 2.2.2.  Products and direct sums are exact in Tc In
particular, for any small category I, the functor

. op
lim: J¢? —=7Jc¢
ie J

1s right derivable and for any object X of Tc 1% we have

Rlim X(4) = R'(7,X)

17
where R' (7, X) is the positive Roos complex associated to X in [9].
Similarly, for any small category 7, the functor
lim: T¢? > TJ¢
i€ J
is left derivable and for any object X of Tc¢ ’ we have
Llim X)) =R.(J,X)
ied
where R.(J, X) is the negative Roos complex associated to X in [9].
Proof. The exactness of products and direct sums follows at once
from Propositions 2.1.3 and 2.1.5. The existence and structure of derived

limits is then a consequence of [9, Propositions 3.3.3 and 3.3.4]. ]

Lemma 2.2.3. Let J be a small category. For any Banach space B
and any object X of Tc’ p, we have the isomorphism

Hom(R'(79,X), B) = R.(J%* Hom(X, B)).

Proof. For any Banach space B and any k& > 0, we have
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(Hom(R'(J,X), B)) * =~ ]| Hom, (R*(J,X),B"™

PE Z

=~ Hom ,,(R*( 7, X), B).
So,

(Hom(R'(7,X), B)) *=Homy,( || XGp, B)

a, a
fg—>

I
@

Hom(X, B) (iy)

=~ R,(J *®*, Hom(X, B))
=~ (R.(J3° Hom(X, B))) *

where the second isomorphism follows from Proposition 2.1.6. The
conclusion follows. ]

Proposition 2.2.4. Let J be a small filtering category. Consider a
Banach space B and an object X of Tc®* such that R lim X @) € D°( To).
Then, we have the isomorphism i€

RHom(R lim X(), B) = _lie_rrjl(RHom(X, B)) ().

ied

Proof. We know that R lim X(@) = R'(J, X). By “dévissage”, it is

i€ ]
sufficient to prove the result when B is an injective Banach space. In this
case, we have successively

RHom(R lim X (), B) =~ Hom(R'(J, X), B)
ie J
= R.(J*, Hom(X, B)) ™)
= L lim Hom(X, B) ()

= lim Hom(X, B) (D **)

i€]

_I(iz_rrjl,(RHom X, B)) (@)

R
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where the isomorphism (*) follows from Lemma 2.2.3. The isomorphism
(**) follows from the fact that the functor lim : Ab’ — Ab is exact.

i€ D

Definition 2.2.5. Let J be a small filtering category. By a result of
Deligne(see [1, Proposition 8.1.6]), there is a cofinal functor

O:I—> 7

where [ is a small filtering ordered set. Since any non empty set of
cardinal numbers has a minimum, we may assume that I has the
smallest possible cardinality. This cardinality will be called the cofinality
of J.We denote it by cf( 7).

Notation 2.26. For any k € N, we denote by w, the (+1)-th
infinite cardinal number. For example, w, is the cardinality of N, w, is

the smallest cardinal number which is strictly greater than w,, and so on.

Proposition 2.2.7. Assume J is a small filtering category such that
cf(J) < w, for some k < w,. Then, for any functor X : J°° — T c we have

LH'"RImE(@)) =0 Vn=k+l

1EJ
Similarly, for any functor
X:93—-=1T¢c
we have
RH"(L1lm X)) =0 Vn2>k+l1.
i€ g
Proof. This follows from [9, Theorem 5.2.4]. O

Definition 2.2.8. Let I be a filtering ordered set. We say that a
projective system X of ¢’ ® satisfies condition SC if for any i € [ and
any absolutely convex neighborhood U of zero in X, there is j > 7 such
that

%;,,(Xp) C q(lim X)+U VR =]
ie]
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Proposition 2.2.9. Let I be a filtering ordered set and let X be an
object of Tc¢'". Then:
(a) we have

LH'(Rlim X)) € Tc
iel

if and only if X satisfies condition SC.

In particular, the differential dy. x, of the Roos complex of X is strict if
and only if X satisfies condition SC.

(b) we have

LH*(RlimX) € T¢  Vk>2
ie]

In particular, the differential dﬁ-u » Of the Roos complex of X is strict for k
> 1.

Proof. This follows directly from [10, Theorems 4.3 and 4.4] and
from Lemma 2.1.10. ]

Corollary 2.2.10. Let ®: Tc¢c— V be the functor which associates to
any object X of Tc, the vector space X. Let I be a filtering ordered set. If X
is an object of Tc' " then the following conditions are equivalent:

(D limX; =Rlim X,
ie] ie]
(D) lim ®(X) = Rlim ®(X,) and X satisfies condition SC.

iE] i€

Proof. This follows from [10, Corollary 4.5]. ]
Proposition 2.2.11. Let I be a filtering ordered set with a countable

cofinal subset. Let X be an object of T¢!” such that forany i€ 1, X;is a
Fréchet space. Then, X is lim-acyclic if and only if for any i € I and any
ie]

neighborhood of zero U in X;, there is j > i such that

% ;(X) C Utx,,,(X,) vk >j.

Proof. This follows from [10, Theorem 5.6]. ]

Corollary 2.2.12. Let I be a filtering ordered set with a countable
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cofinal subset. Let E be an object of T ¢ such that forany i€ 1, E; is a
Banach space. Then, E is l__irg-acyclic if and only if for any i € I, there is
j > i such that rel

e, (E) = e, (E) VE=].

Definition 2.2.13. Let E be an object of ¢ with P as system of

semi-norms. For any p € P, we denote E, the semi-normed space
obtained by endowing E with the semi-norm p.

Proposition 2.2.14. Let E be an object of Tc with P as system of
semi-norms. We have the isomorphism

E=RlimE,
PEP
in D”(Tc).
Proof. Recall that
E = lim E,. ™)
pPEP

Moreover, if we forget the topologies, we have E = E, and in DT (V), we
have successively

Rlim ®(E,) =~ Rlim E = E = lim ®(E,),
PEP pPEP pEP
where the second isomorphism follows from [9, Corollary 7.3.7 and
Proposition 7.3.9]. Through the isomorphism (*), the canonical
morphism g, : lim E, = E, becomes the identity map E — E,. Hence, it is
PEP

clear that condition SC is satisfied and by Corollary 2.2.10, we get lim E,
=R lim E,. per
pPEP
Lemma 2.2.15. Let E be an object of Tc with P as system of
semi-norms. For any semi-normed space X, we have the isomorphism

Hom . (E, X) = lim Hom 4,(E,, X).

pPEP

Proof. We know that for any f€ lim Hom,(E, X) there is a
pPEP
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semi-norm p of P and f, € Hom ,.(E,, X) such that f = 7,(f,). Then, we
define the morphism

u :lim Hom .(E,, X) — Hom 4.(E, X)
pEP

by setting u(f) = f,0e, where e,: E — E, is the identity map. One checks
easily that this definition is meaningful and that « is bijective. ]

Proposition 2.2.16. Let E, F be objects of Tc with P and @ as systems
of semi-norms. We have the canonical isomorphism

RHom 4 (E, F) = R lim lim RHom 4 (E,, F,).

gEQPEP

Proof. Using Proposition 2.2.14 and [9, Proposition 3.6.3], we get
successively

RHom ,.(E, F) = RHom 4.(E, R(}ie_rré F) = quie_rré RHom 4 (E, F,).
Let I, be a resolution of F, by injective semi-normed spaces. We have
RHom . (E, F,) = Hom 4 (E, ).
Moreover, for any k € Z, we have

Hom 4(E, I}) = lim Hom 4.(E,, I).

PEP

Therefore,

RHom . (E, F,) =~ Hom 4. (E, I,) = lim Hom . (E,, I,)

pEP

= lim RHom 4.(E,, F).

pEP

The conclusion follows. O

Proposition 2.2.17. Let J be a small filtering category and let E be
an object of Tc”. Then, E is lim-acyclic if and only if for any set |

i€y

Hom(E, () : I®— Ab

is lim-acyclic.
i€ J
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Proof. By [9, Proposition 3.6.3], for any set J, we have
RHom(L ilie_rrle(i), =(N) = Rilie_mj(RHom(E, =N @.
Since [”(J) is an injective object of Tc, we obtain
Hom(L illerrle(i), =) = Rilie_ng(Hom(E, =N .

First, assume that E is lim-acyclic. For any set J, we get
i€

R;lieﬂj(Hom(E, =N () = Hom(ilie_rr;,E(i), =
S ilie_rr;Hom(E, =) ).
Hence, Hom(E, [”())) is 1iE_rr;-acyclic.
Conversely, assume that for any set J, Hom(E, {™())) is lim-acyclic.

Then, if & # 0, 1€

Hk(Ril_iEr%Hom(E, =) ) = 0.
Moreover,
Riliegj Hom(E, I”())) (i) = R'(J, Hom(E, I"()))
= Hom(R.(3 ™ E). I”(]))

where the last isomorphism follows from [9, Lemma 3.6.2]. Therefore, if
k#*0,

H*(Hom(R.(J %, E), I”(D)) = 0,

i.e. the complex

Hom(dy, 1°()))
-

0—Hom(R,(I% E), I”(])

o o om(dy (D)
Hom(R,(J %, E), 1())) =t P ..

is exact in degree & # 0.
If, for any i € J, we forget the topology of E(7), then E € Ob(Ab?).
In this case, since the functor
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lim : Ab’ — Ab

i€g

is exact,

lim E() = L lim E()) = R.(7*, E).

i€y i€ 7

So, the complex R.(J *, E) is algebraically exact in degree 2 > 1. Hence,
Proposition 2.1.13 shows that, for £ > 1, the differential

d,:R,(J°,E) >R, (1 E)
is strict. It follows that E is lim-acyclic. UJ

i€ ]

§3. Separation Functors
§3.1. The Category Tc

Remark 3.1.1. Let E be an object of Tc¢ with P as system of
semi-norms. Recall that E is separated if

N v=1{0
V neighborhood
of zero

or equivalently if the vanishing of p(e) for any p € P implies e = 0.
Recall also that a generalized sequence (x,),e 4, of E is a family (x,),c 4
of E indexed by a filtering ordered set A. Such a sequence converges to
a limit x in £ if for any € > 0 and any p € P, there is ¢, € A such that

p(x,—x) <e fora=>a,

Clearly, a converging sequence (x,),c, has a unique limit if E is
separated,.

Definition 3.1.2. We denote by Tc the full subcategory of Tc
formed by separated spaces.

We have the following well-known facts:

Proposition 3.1.3. (i) Let (E);c, be a family of Tc. Then, the
locally convex spaces @, <, E; and I1; <, E; are separated. In particular, they
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form the direct sum and direct product of the family (E),c,in Tc.
(ii) Let E be an object of Tc and let F be a vector subspace of E. Then,
E/F is separated if and only if F is closed.

Proposition 3.1.4. Let f : E— F be a morphism of Te.

(1) The kernel of f is the subspace f~'(0) of E endowed with the
induced topology.

(ii) The cokernel of f is the quotient space F/f(E) endowed with the
quotient topology.

(iii) The image of f is the subspace f(E) of F endowed with the induced
topology.

(iv) The coimage of f is the quotient space E/f ' (0) endowed with the
quotient topology.

Corollary 3.1.5. Let f: E — F be a morphism of ‘Tc. Then:

(i) f is strict in Te if and only if f is strict in Tc and has a closed
range.

(i) f is a strict epimorphism of Te if and only if f is a strict
epimorphism of Tc;

(iii) f is a strict monomorphism of Tc if and only if f is a strict
monomorphism of T c and has a closed range.

Lemma 3.1.6. A sequence
0>ELF5G6—0
of Teis strictly exact if and only if it is strictly exact in Tc.

Proof. (a) Assume that the sequence is strictly exact in Te. We
know that (E, f) is a kernel of g in Tc. Moreover, we have G = coker f
= F/f(E). Since f is strict in J¢ f(E) is closed and G = F/f(E). It
follows that (G, g) is a cokernel of fin Tc

(b) Conversely, assume that the sequence is strictly exact in JT¢. On
one hand, (£, f) is a kernel of g in Tc. On the other hand, in T¢ we
have
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f(E) = im(f) = ker(g) = g '(0).

Since G is separated, g_l(Og\ is closed. Hence, f(E) is closed. Therefore,
(G, g) is a cokernel of fin Tc O

__ Lemma 3.1.7. Let f:E—>F and g : F — G be two morphisms of
Tec. If gof is a strict monomorphism of Tc then f is a strict
monomorphism of Tc.

Proof. By Corollary 3.1.5, go f is a strict monomorphism of TJc
Then, we know that f is a strict monomorphism of Tc¢. So, we only have
to prove that f has a closed range. Consider y € f(E). There is a
generalized sequence (x,), < 4, of E such that

F(%))eca—>y

in F. It follows that
(@o ) x)eea— 90

in G and that g(y) € (go f) (E). Since go f is strict in T¢ gof has a
closed range. Hence, there is x € E such that g(y) = (gof) (x).
Therefore,

(@of) (x))gea—>(gof) (x) in G.

Since gof is a strict monomorphism, gof : E — gof(E) is an
isomorphism. Then, (x,),c, — x in E. Since f is continuous, (f(x,)), c 4
— f(x) in F and since F is separated, y = f(x). Thus, we have obtained
f(E) C f(E). The other inclusion being obvious, the conclusion follows.

L]
Proposition 3.1.8.  The category Tc is quasi-abelian.
Proof. We know that ?C is additive and that any morphism of Te

has a kernel and a cokernel.
Consider the cartesian square
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E—1-F
T
of T¢ where f is a strict epimorphism. By Corollary 3.1.5, f is a strict

epimorphism of Tc It follows that u is a strict epimorphism of 7Tc¢ and
hence of Jc

Finally, consider the cocartesian square

G—2 T

i

E——F
f

of Tc¢ where f is a strict monomorphism. Since
g
( Jol ” f f.

Lemma 3.1.7 shows that < g f> :E— G ® F is a strict monomorphism of

Tc. The square (*) being cocartesian, the sequence

(%)
—f (v v)

0 E Ger T 0 **)

is strictly exact in ‘Tc and hence in Tc (see Lemma 3.1.6). It follows
that the square (*) is cocartesian in Tc¢ and that » is a strict
monomorphism of Tc¢ To conclude, let us prove that # has a closed

range. The morphisms g and v induce a strict quasi-isomorphism
between the complexes

0>EL>F>0 and 0-G5T-0

since the mapping cone of
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I

T 0

f

E
|
|

G

0

u

is the strictly exact complex (**). Taking the cohomology and using the
fact that f and u are strict monomorphisms, we get coker(f) = coker(u)
in Tc Since f(E) is closed, coker(f) = F/f(E) is separated. It follows
that coker(u) = T/u(G) is separated and u(G) is closed. ]
§3.2. Equivalence between D(T¢) and D( ?c)
Definition 3.2.1. We denote by
T:Tec— Tc

the inclusion functor and we define the functor

/§ep : Te— Te
by setting

‘Sep(E) = E/{0}"

and endowing it with the quotient topology.

Proposition 3.2.2.  For any object E of Tc and any object F of "fc,
we have the isomorphism

Homs,(Sep(E), F) = Homy(E, T (F).
Proof. This well-known isomorphism follows from the fact that if
f: E—Fis continuous and F separated, then f ~1(0) is a closed subset of

E containing 0 and hence {0}°.

Remark 3.2.3.  Hereafter, ¢ denotes as usual the Banach space of
complex sequences which converge to zero, endowed with the norm

1 )nenllo = suplx,|.
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Lemma 3.2.4. Denote by C~ the space C endowed with the weakest
topology. Then, there is a strictly exact sequence in Tc of the form

0—-S5,—-S,—-C —=0
where S, and S, are separated.

Proof. Consider the subspace S, of ¢ formed by sequences (x,),c x
such that nx, is constant for n > > 0 and the subspace S, of S, formed by
sequences (x,), x null for z > > 0. Since ¢’ is a normed space, so are So
and S;.

(a) Let us show that S, is dense in ¢°. Consider x = (x,),c x € ¢’
and € > 0. There is n, € N such that |x,| < € for n > n, Define y =
(Vne n € S, by setting

_{x,, if n < m,
=0 ifn > n,

Since lly—xll.o = sup, 5, |x,| <€ S, is dense in c".

(b) It follows from (a) that S; is dense in S, Hence, the quotient
topology on S,/S, is the weakest one. Let us show that S,/S, = Cas
C-vector spaces. Remark that the sequence (1/n),c y belongs to S)\S,.
Consider a sequence x = (x,), y Of S;. There is n, & N and ¢ € C such
that nx, = ¢ for n > n,. It follows that x, = ¢/n for n > n, If y is the
sequence of S, defined by

_Jx,—c/n if n <,
Y=o if n > n,

then, x = ¢(1/n),c n+¥. Therefore, the class of (l/n),, e yin Sy/S,; forms a
basis of this vector space.
(¢) By (1), S,/S, is isomorphic to C ~. The sequence
0—>S,—>S,— Sy/S, — 0

being clearly strictly exact, the conclusion follows. O

Proposition 3.2.5. For any object E of Tc, there is a strictly exact
sequence in T ¢ of the form

0—>S,->S,~E—0

where S, and S, are separated.
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Proof. We know that E = E/N @ N where N is the closure of zero
in E. Since in this formula N is endowed with the weakest topology, we
have N = &,. 5, C where B denotes a basis of N as a C -vector space.
By Lemma 3.2.4, there is a strictly exact sequence in Tc¢

0—->S—=S,—-C —0
where S; and S| are separated. Since the sequence
0—0—E/N=>E/N—0

is strictly exact and since direct sums are exact in T ¢, the conclusion
follows easily. U

Lemma 3.2.6. The category Teis Eepprojective.

Proof. This follows directly from Proposition 3.2.5 and Lemma
3.1.6. L]

Proposition 3.2.7. (1) The functor T - Te - Tc is kernel
preserving and exact. _

(2) The functor Sep: T¢c— T¢ is cokernel preserving but not exact
and it gives rise to a left derived functor

L/S\ep :D(T¢) = D(To).

’£3) The functor Lgep : D(T¢) = D(T¢) is a quasi-inverse of T
D(Tc¢) = D(Tc). In particular,

D(T¢) = D(To).

Proof. (1) Since the kernel of a morphism of Tc is the kernel of
this morphism in 7J¢, the functor I is kernel preserving. Moreover, by
Lemma 3.1.6, I is exact. .

(2) By the adjunction formula of Proposition 3.2.2, Sep is cokernel
preserving. It is not exact. As a matter of fact, let £ be a non closed
subspace of the separated space F. The inclusion morphism i1:E—~>Fisa
strict monomorphig\n of Jc¢. But i = Sep({) : E— F is not a strict
monomorphism of Tc¢ since 7 has not a closed range. By Lemma 3.2.6,
Sep is left derivable.

(3) On one hand, for any object S of D(T¢), we have
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L'Sepo 1(S) = L'Sep(T(S)) = Sep(1(S)) =S
where the second equality follows from the fact that the components of
the complex 1 (S) are separated. On the other hand, any object E of
D( Tc¢) is quasi-isomorphic to a complex S with separated components.
Therefore, we have

L/é\ep(E) = /é\ep(S) and To Lgep(E) ~To /S\ep(S) ~S=F

0

§ 3.3. The Functors Zcl and Sep
Definition 3.3.1. We define the functors
Zcl: Tc— Jc and Sep: Jc— Tc
by setting
Zcl(E) = {0}* and  Sep(E) = E/Zcl(E)
where {0}” is endowed with the weakest topology. Of course, we have
Sep = To ’STep.

Proposition 3.3.2.  The functor Sep : Tc— Tc has a left derived
functor

LSep:D (Jc)—=D (Jc)
which is equivalent to the identity funcitor.

Proof. Since T is exact, one has LSep = To L/S\ep and the
conclusion follows from Proposition 3.2.7. ]

Proposition 3.3.3.  For any object E of Tc, we have a distinguished
triangle

+1
RZcl(E) - E — RSep(E) — .

Proof. This follows directly from the fact that 7c¢ has enough
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injective objects and that for any object E of T¢, the sequence
0 — Zcl(E) = E— Sep(E) = 0
is strictly exact.
Proposition 3.3.4. Denote
() :v—Tc

the functor which associates to any vector space V the object of Tc obtained
by endowing V with the weakest topology. Then, for any object E of Tc, we
have

Zcl(E) = (Hom(C ,E))".

In particular, Zcl : Tc — Tc is a kernel preserving functor and, for any
object E of Tc, we have the isomorphism

RZcl(E) = (RHom(C , E))".
Proof. Let E be an object of Jc¢. The first part follows from the

fact if f: C~ — E is a morphism of T¢, then f '({0}%) D {0} ¢ = C~
and

Hom s, (C ", E) = Hom,, (C, Zcl(E)) = Zcl(E).

As for the second part, it follows from the fact that the functor Hom o,
(C7,s) : J¢c— V is kernel preserving and that the functor (+)” : Vv —
Tc is exact. O

Proposition 3.3.5.  For any family (E)); <, of Tc, we have

zad(J] E) = [] zal(E)  and  Sep(]] E) = [] Sep(E).

ie] iel i€l i€l

Proof. By definition of the functor Zcl, we clearly have

zel([[ E) = [] Zal(E)

ie] iel

of Tc Then, using the strictly exact sequences
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0 — Zcl(E,) — E; — Sep(E) — 0
we deduce easily from the first part that

Sep(H E) = H Sep(E)).
ie] i€l D

§84. Completion Functors
§4.1. The Category Tc

Definition 4.1.1 Let E be an object of T¢ with P as system of
semi-norms. A generalized sequence (x,),c 4, of E is a Cauchy sequence if
for any € > 0 and any p € P, there is a; € A such that

px,—x,) < € fora, a’ = a,

An object E of Tc is complete if it is separated and if any Cauchy
sequence of E converges in E.

We denote by T¢ the full subcategory of 7Tc¢ formed by complete
spaces.

Remark 412,  Recall that to any object E of Tc is associated a
complete object E and a canonical morphism i : E — E characterized by
the fact that any morphism f : E — F with F complete may be uniquely
factored through i;. Moreover, iz is a strict morphism whose image is
dense in E and whose kernel is the closure of zero in E.

As is well-known [3, TG II, § 3, n° 7], the completion of an object of
Tc¢ may also be characterized as follows:

Proposition 4.1.3. Let j : E— F be a morphism of Tc. If F is
complete, 772(0) = {0}~ j is strict and j(E) is dense in F, then for any
morphism g : E — G with G complete, there is a unique morphism f: F — G
making the diagram

i

E——F

\!f
v
G
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commutative,
Definition 4.1.4. We denote by
1: Tc— Tc
the inclusion functor and we define the functor
apl I ‘/‘T\c

by setting apl(E) —E where is E is the complete separated space
associated to E.

It follows from the definition of the completion of an object of Tc¢
that:

Proposition 4.1.5. For any object E of T c and any object F of /‘fc, we
have the isomorphism

Hom 4,(Cpl(E), F) = Hom ,,(E, 1(F)).

For any object F of /‘J'\c, the canonical morphism aplof(F) — F is an
éson}\omhism and for any object E of Tc, the canonical morphism iz : E —
1 0 Cpl(E) is strict in Tc. Moreover, its image is dense and its kernel is the
closure of zero in E. In particular, if E is separated, ip is a strict
monomorphism.

Proposition 4.1.6. (a) Any closed subspace of an object of Te is
complete.

(b) If E is an object of Tc and if F is a closed subspace of E, then the
quotient space E/F is not necessarily complete. (However, E/F is a Fréchet
space if E is a Fréchet space). N

(©) If (ED;c,is a family of Tc, then the locally convex spaces ®;, E;
and 11, ,; E; are complete. In particular, they form the direct sum and direct
product of the family (E);c,in Tc.

Proof. (a) is clear.

(b) See for example [5, Problem 20D].

(c) See for example [6, Chap. I, §5, 7.(2) (p.37) and Chap.IV, §18,
5.(3) (p.212)]. Ul
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Proposition 4.1.7. If (E), <, is a family of Tc, we have

(D E) = @IT(Ei), 1l Ey = [] 1(ED

ie] iel iel

and if (E));e,1s a family of Tc, we have

Cpl( DE =D Cpl(E),  Col(]] E) = [] Col(E).

i€l ie]

Proof. This follows from Proposition 4.1.6 thanks to Proposition
4.1.3. ]

Proposition 4.1.8. Let f: E — F be a morphism of Te.

(i) The kernel of f is the subspace f'(0) of E endowed with the
induced topology. /\

(ii) The cokernel of f is the space F/f(E) where F/f(E) is endowed
with the quotient topology. o

(iii) The image of f is the subspace f(E) of F endowed with the induced
topology. P

(iv) The coimage of f is the space E/f '(0) where E/f'(0) is
endowed with the quotient topology.

‘Proposition 4.1.9. Let f: E — F be a morphism of ?c. Then, f is strict
in Tc if and only if f is strict in Tc.

Proof. First, assume that f is strict in /ﬂ)c. Hence, the canonical
morphism

9:E/f71(0) = f(B)
is an isomorphism. Consider the commutative diagram of TJc¢

E/f(0) —— fB)

A
i j

E/f710) — — f&)

where ¢ and ¢ are the canonical morphisms and j the inclusion
morphism. Since E is separated and £ '(0) is closed, E/f'(0) is
separated. Then, by Proposition 4.1.5, 7 is a strict monomorphism of Tc.
Therefore, j© ¢ = ¢ 01 is a strict monomorphism of Tc¢ It follows that ¢
is a strict monomorphism. Since ¢ is clearly an epimorphism, ¢ is an
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isomorphism of Jc. Hence, f is strict in Tc.

Conversely, assume that f is strict in T¢ ie. ¢ is an isomorphism.
Since f(E) and f(E) are endowed with the topology induced by that of
F, j is a strict monomorphism. It follows that jo¢ is a strict
monomorphism. Moreover, the image of j © ¢ is dense and since f(E) is a
closed subspace of the complete space F, f(E) is also complete. Then, by
Proposition 4.1.3, there is a unique morphism

o' FCB) — E/f 1(0)

making the diagram

E/f7'(0) (B

o

E/f/"\’ ()

commutative. One checks easily that ¢ and ¢’ are inverse one of each
other. The conclusion follows. O

Proposition 4.1.108. Let f : E — F be a morphism of /‘fc. Then,

(i) f is a monomorphism (resp. strict monomorphism) of Te if and
only if f is a monomorphism (resp. strict monomorphism) of Jc;

(ii) fis an epimorphism (resp. strict epimorphism) of Te if and only if
f(E) is dense in F (resp. f(E) is dense in F and f is strict in Tc).

Proof. This follows directly from Proposition 4.1.8 and Proposition
4.1.9. ]

Remark 4.1.11. (i) Iff:E—Fis a strict monomorphism of (.'Fc,
then f(E) is closed. As a matter of fact, if f is a strict monomorphism, the
canonical morphism f : E e@ is an isomorphism. In particular, f(E)
= f(E).

(i) If f: E— F is a strict epimorphism of ‘.Tc then f is not
necessarlly an epimorphism of Tc¢ As a matter of fact, let £ be an object
of ‘J’c and N a closed subspace of £ such that E/N is not complete. Set F
= E/N.If g:E—E/Nandi:E/N — E/N are the canonical morphisms,
set f=1i0¢q:E—F. Since f(E) is dense in F, by Proposition 4.1.10, f is
an epimorphism of Te. Hence,
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. A
im(f) =F in Tc ™

The subspace N being closed, E/N is separated and by Proposition 4.1.5,
1 is injective. It follows that

IO =Go (0 =¢'GT'0) =¢ ') =N
and that
coim(f) = E//7V ~F in Tc **)

By (*) and (**), f is strict in Te But, since E/N is not complete,
f(E) # F. So, f is not an epimorphism of Tc.

Proposition 4.1.12. If u: E—F is a strict monomomhzsm of Tg¢
then, u : E — Fis a strict monomorphism of Tc and, hence, of Te.

Proof. Seeeg. [3, TGI], p. 26, cor. 1] O

Proposition 4.1.13. The functnr 1: Tc — Tc is kernel preserving, but
not exact. The functor Cpl Tc— Tcis cokernel preserving and exact, but
not kernel preserving.

Proof. The fact that 1 (resp. apl) is kernel (resp. cokernel)
preserving follows from the adjunction formula between 1 and Cpl

Let us show that 1 is not exact. If E is an object of ‘J'c and F a
closed subspace of E such that E/F is not complete, the sequence

0—>F—>E-—>E/F—0

is strictly exact in Tc but not in Jc (see Remark 4.1.11).

Now, let us prove that Cpl is exact. Consider a strictly exact
sequence

0>ES>F5>G—0

of Tc Slnce u:E—~Fisa strict monomorphism of T¢, by Proposition
4112, u: E — Fis a strict monornozphlsm It follows that u is the kernel
of its cokernel. Moreover, since Cpl is cokernel preserving, v is the
cokernel of u. Therefore, the sequence
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0—>E>F>G—~>0

is strictly exact in Te. R

Finally, let us show that Cpl is not kernel preserving. Consider a
vector space V # 0 and denote by V *(resp. V) the object V of Tc
endowed with the strongest (resp weakest) locally convex topology.
Then, the identity map ¢: vVt > v~ s contmuous and we have
ker(¢) = 0. Since Vo= = (0, we have ker(<p) =7 Moreover since V*
separated, by Proposition 4.1.5, 7,+: vVt - V is injective and
iy+(V™) # 0. It follows that

ker(p) = V' D iy+(VT) #0,
and epl is not kernel preserving. J

Proposition 4.1.14. The category Te is not quasi-abelian.

Proof. Let F be a closed | subspace of an object E of Te suc/h\ that
E/F is not complete. Set G = E/F. If g : E—~E/F and i : E/F — E/F are
the canonical morphisn/l\s, set f=10¢qg:E— G. By Remark 4.1.11, f is a
strict epimorphism of Tc and f(E) # G. Fix x € G\f(E). Consider the

continuous linear map m : C — G defined by m(c) = c¢x for c € C. Let
us show that the commutative square

f
E—G

o

F=—c
is cartesian in Tc Consider ¢ € E and ¢ € C such that
¢ =m ()= 1@-m@ =0
Hence, f(e) = cx. If ¢ # 0, then x = f(e/c). Since x € G\f(E), we get a
contradiction. It follows that ¢ = 0 and f(e) = 0. Since by Remark 4.1.11,
771(0) = F we get e € F. Therefore, we have successively

f —m) ') ={(e,c):eEF, c=0 =

and the square (*) is cartesian. Since {0} is not dense /1{1 C, by
Proposition 4.1.10, 0 : F — C is not a strict epimorphism of Tc¢ Hence,
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the conclusion. Ol

84.2. The Functor Cpl and Cohomological Completeness
Definition 4.2.1. We define the functor
Cpl: Jc— Tc
by setting
Cpl = ToCpl.

Proposition 4.2.2. The functor Cpl is left exact and has a right derived
Sfunctor

RCpl: D" (T¢) = D (To).
Proof. By Proposition 4.1.13, the functor Tis kernel preserving and
the functor Cpl is exact. Then, the functor Cpl = 1 0Cpl is left exact.

Since Tc¢ has enough injective objects, Cpl is right derivable. O

Definition 4.2.3. An object E° of D" ( T¢) is cohomologically
complete if

RCpl(E") = E’

in D" ( T¢). We denote by D} ( T¢) the full subcategory of D ( T¢)
formed by cohomologically complete complexes.

Proposition 4.2.4. The category D, ( Tc) is a triangulated sub-
category of the derived category D" ( T¢).

Proof. Consider a distinguished triangle E’ — E — E” L of D”
(T¢) such that E' and E are cohomologically complete. Since the functor
RCpl is triangulated, the triangle

RCpl(E") = RCpl(E) - RCpl(E”) =

is distinguished in D' ( T¢). Moreover, we have the morphism of
distinguished triangles
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+1

E’ E E”

| | |

RCpl(E") —— RCpl(E) —— RCpl(E”)

The complexes E and E’ being cohomologically complete, we have
RCplI(E) = E and RCpl(E) = E'.

If follows that RCpl(E”) = E”and that E” is cohomologically complete.
The conclusion follows easily. UJ

Proposition 4.2.5. For any object E  of D" ( T¢), the object RCpl(E") is
cohomologically complete. In particular, RCpl induces a functor

RCpl: D" (T¢) > DL(Tc)
which is a left quasi-inverse of the inclusion functor
D, (Tc)—=>D"(To).

Proof. We know that E" is quasi-isomorphic to a complex I  such
that each I* is of the type

vx I F,
jh € ]k
where V, is a vector space endowed with the weakest topology and F;, is

an injective Banach space. Since Cpl(/*) = I, ¢, F, ColU ®) is an
injective object of T¢ which is complete. Therefore,

RCpI(RCpI(E)) = RCpl(Cpl(Z)) = Cpl(CplI)) = CplU") = RCpl(E).
Hence, the conclusion. [l

Proposition 4.2.6.  The product of cohomologically complete spaces is
a cohomologically complete space.

Proof. Let (E));c, be a family of cohomologically complete spaces.
For any j € J, let I be an injective resolution of E; in Jc¢. Since products
are exact in Jc¢ and since the product of injective objects in an injective
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object, IT; < ; ;' is an injective resolution of II; ¢ ; E;. It follows that

repl([] Ep = cpi([] 1) = I[ coi) = [[ RCpI(E) = ] E;

i€l Ji€J ieJ ASY i€eJ

where the second isomorphism follows from Proposition 4.1.7. O

Proposition 4.2.7. If E is a cohomologically complete object of Tc,
then E is complete.

Proof. Since E = RCpl(E) and since Cpl is left exact, we have

E = LH°(E) = LH(RCpl(E)) = Cpl(E).
]

Remark 4.28. Complete objects of T ¢ are not always
cohomologically complete. For example consider a complete space E and
a closed subspace F of E such that the quotient space E/F in not
complete. Then, the sequence

0—->F—-E—-E/F—0
is strictly exact and gives rise to the distinguished triangle
+1
F—-E—E/F—
Assume that E and F are cohomologically complete. By Proposition 4.2.4,
E/F is cohomologically complete and then complete. Hence, a

contradiction.

Proposition 4.2.9. For any object E of Tc, we have a canonical
isomorphism

RSep(E) = RCpl(E).
In particular,
LH°(RSep(E)) = Cpl(E).

Proof. Let E be an object of Tc¢ and let I” be an injective resolution
of E. For any n, we may assume that
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r=v'x J[ g
Jn€ R

where V" is an object of T¢ with the weakest topology and B™ is an
injective Banach space for any j, € J,. Then, we have successively

Cpl(") = Cpl(VHx [] Cpi(B™) = [[ B™

W€ €

N

and

Sep(I™ = Sep(V") X [[ Sep(B") = [[ B™
W€, W

If follows that

RCpI(E) = Cpl") = Sep(I") = RSep(E).

Proposition 4.2.10. Let E be an object of Tc.

(i) Eis separated < Zcl(E) = 0.

(ii) E is complete <> Zcl(E) =~ 0 and LH'(RZcI(E)) = 0.
(iii) E is cohomologically complete <= RZcl(E) = 0.
Proof. (1) is clear.

(i) By Proposition 3.3.3 and Proposition 4.2.9, we have the distin-
guished triangle

RZcl(E) — E — RCpl(E) > *

Since the functors Zcl and Cpl are left exact, we have the long exact

sequence
Zcl(E) E Cpl(E) ?
L LH'(RZcI(E)) 0

So, Cpl(E) = E if and only if Zcl(E) = 0 and LH'(RZcl(E)) = 0. The

conclusion follows.
(iii) By definition, E is cohomologically complete if and only if £ =
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RCpl(E). Since the triangle (*) is distinguished, E is cohomologically
complete if and only if RZcl(E) = 0.

Corollary 4.2.11. Let E be an object of Tc. Then,

(i) E is separated < Hom(C ,E) = 0.

(ii) E is complete < Hom(C ,E) = 0 and Ext'(C ™, E) = 0.
(iii) E is cohomologically complete <= RHom(C , E) = 0.

Proof. (i) follows from Proposition 4.2.10 and Proposition 3.3.4.
(i) By Proposition 4.2.10, E is complete if and only if

Zcl(E) =0 and LH'(RZc(E)) = 0.
We have Zcl(E) = (Hom(C , E))” and
LH'(RZcl(E)) = [H'(RHom(C ~, E))]” = Ext'(C ,E)~

where the first isomorphism follows from the fact that any morphism
between objects of ¢ with the weakest topology is strict. Hence, the
conclusion.

(iii) follows from Proposition 4.2.10. [:I

§4.3. Equivalence between D_.( Tc) and D ( Pro( Ban))

Definition 4.3.1. The category of Banach spaces is the full
subcategory of T¢ whose objects are the Banach spaces. We denote it by
Ban.

One can show that the category Ban is a quasi-abelian category
with enough injective objects. Moreover, the space {'(Z) of summable
sequences of C indexed by [ is projective and Ban has enough
projective objects. For more details, see [8].

Hereafter, we consider the category Pro( Ban) of pro-objects of
‘Ban. Recall that the objects of Pro(Ban) are functors

E: 17— Ban

where J is a small filtering category and that if
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E: 3°°— Ban, F: 3 — Ban
are two such functors, then

Hom Tm(Ban)(E’ F) =.li_rn_.lm.Homﬁan(E(i)v F(]))

jeEdie’d

For further details on pro-objects, we refer the reader to classical sources
(such as [1, 2]) and to [9] for the main results in the context of
quasi-abelian categories. Following the standard usage and to avoid
confusions, we will denote

um ” E(Z-)

iEJ

the functor E : 7°° — 3Ban considered as an object of Pro( Ban).
Similarly, we denote “X” the pro-object associated to the Banach space X.
In other words, we set

an — “._liﬂ ” C(z)
ie

where J is a one point category anc C : J® — Ban is the constant
functor with value X.
Applying the results of [9], we get:

Proposition 4.3.2. The category Pro( Ban) is a complete quasi-
abelian category with exact filtering projective limits.

Proposition 4.3.3. A sequence
E->F->G
of Pro(Ban) is costrictly exact if and only if the sequence
Hom s, (pem (G, “I7()™) = HOom g5 gy (F, “17(D7)
— Hom g, (gam (B, “I7(D™)
is exact for any set I

Proof. Work as in Proposition 2.1.13. ]
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Proposition 4.3.4. For any object E of Tc, the functor
S'(E) : Ban— Ab
defined by setting
S’(E)(X) = Hom 4,(E, X)
is pro-represented by “ lim ” Ep, where P is the system of semi-norms of E.

PEP

Proof. Let E be an object of JTc¢ with P as system of semi-norms.
For any Banach space X, we get successively

S'(E) (X) = Hom 4.(E, X) = lim Hom ,.(E,, X)

PEP
= ll& Hom Ban (Ep’ X) = Hom Pro( Ban) (“ .h_m " Ep’ “X")
PEP pEP
where the second isomorphism follows from Lemma 2.2.15. U

Definition 4.3.5. Let
S: J¢c— Pro(Ban)
be the functor characterized by the isomorphism
Hom g,y (pem (S(E), “X”) = Hom . (E, X)
where X is in Ban and E in TJc.

Remark 4.3.6. For any object E of J¢ with P as system of semi-
norms, we have

S(E) = *lim " B,

PEP
In particular, if E is a semi-normed space, then
S(E) = “E".

Proposition 4.3.7.  For any object E of Tc, we have

S(E) = S(E).
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Proof. Let E be an object of T¢ with P as system of semi-norms.
For any Banach space X, we have successively

Hom g,5(an) (S(E),“X™) = Hom 'J’c(E’ X) = Hom .IC(E, X)

= HOmM gyp(pan (S(E), “X™.

U
Proposition 4.3.8.  If (E);c,is a small family of Tc, then
s(I] E) = [] s&y.
€1 Y
Proof. For any Banach space X, we have
HOm 5,550 (S (il;[I E),“X") = Hom «n(il;ll E,X) = iEEB] Hom 4.(E,, X)
=~ iGEBI Hom 5,,(5an (S(ED, “X™)
= Hom ,p(5an) (il;[l S(ED,“X")
where the second isomorphism follows from Proposition 2.1.6. ]

Proposition 4.3.9. If
X—>Y—>Z
is a costrictly exact sequence of Tc, then the sequence
SX) - S(Y) - S

is costrictly exact in Pro( Ban). In particular, the functor S is exact and
cokernel preserving.

Proof. Let X — Y — Z be a costrictly exact sequence of Tc¢ By
Proposition 2.1.13, the sequence

Hom .. (Z, I”(D)) — Hom (Y, [”(D)) — Hom (X, I”(D)
is exact. Since for any object X of Tk,

Hom ;(X, {"(D)) = Hom g,,(gan (S(X), “I7(D7),
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the conclusion follows from Proposition 4.3.3. O
Definition 4.3.10. Let
L: Pro(Ban) — Jc
be the composite functor

Pro(l)

Pro(Ban) Pro( Tc) LN Tc

where I : Ban — Tc is the canonical embedding. In other words, for any
functor X : J°° — Ban, we set

L(*lim ” X(2)) = lim X(4)
i€ J i€Eg

where the projective limit is taken in Jec.

Proposition 4.3.11. For any object E of Tc and any object X of
Pro(‘Ban), we have the adjunction formula :

Hom 'J'C(E, L(X)) = Hom ?m(fga,,)(s(E), X).
In particular, L preserves projective limits and S preserves inductive limits.

Proof. Let E be an object of ¢ and let X : 7°° — Ban be an object
of Pro(Ban). Then, we get successively

Hom ;. (E, L(X)) = lim Hom ,.(E, X (1))
i€ 3]
= lim Hom g,5(34,») (S(E), “X(@™)
i€ 1

=~ Hom me(Ban)(S(E)y X)
[]

Lemma 4.3.12. For any object E of Tc with P as system of
semi-norms, we have

L(S(E)) = lim E, = E.
pPEP

Proof. The first isomorphism follows from the definitions. As for
the second one, we refer to [6, Chap. IV, §19, 9.(1) (p. 231)]. O
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Proposition 4.3.13. The functor
RCpl : D*(Tc) = D" ( Tc)
is canonically isomorphic to
RLoS.

Proof. By Lemma 4.3.12, Cpl = L © S and by Proposition 4.3.9, the
functor S is exact, so we have to prove that

R(LoS) =RLoRS.
The objects of an injective resolution in 7¢ may be assumed to be

of the form EX I, ., F;, where E is an object of Tc¢ with the weakest
topology and F; is an injective Banach space for any i € 1. We have

SEx ] F) =s@®x [[ s = [[

ie] iel iel
Since by [9, Proposition 7.3.9], II;<,“F;" is L-acyclic, S(EX II;¢, F) is
also L-acyclic and the conclusion follows. U]

Corollary 4.3.14. For any object E of Tc, we have
RCpl(E) = RCpl(Sep(E)) = RCpl(Cpl(E)).

Proof. This follows from Proposition 4.3.13 and Proposition 4.3.7
keeping in mind that Cpl(E) = Cpl(Sep(E)). O

Corollary 4.3.15. Let E be an object of Tc with P as system of
semi-norms. Then, the following conditions are equivalent.

(i) E is cohomologically complete ;
(ii) RLoS(E) =E;
(i) Rlim E, = E.
pEP
Proof. The equivalence between (i) and (ii) follows from Proposi-
tion 4.3.13.

The fact that (ii) is equivalent to (iii) follows from the isomor-
phisms
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RLoS(E) = RL(“lim " E,) = R lim E,.
pEP pEP D

Theorem 4.3.16. The functor
RL : D" (Pro(Ban)) =D (Tc)
is an equivalence of categories.

Proof. The functors S: Tc¢— Pro( Ban) being exact, it gives rise
to a functor

S:D_.(Tc) = D" (Pro( Ban)).
First, by Corollary 4.3.15, for any object £ of D;( Tc¢), we have
RLoS(E’) = E".
Next, consider a complex X~
0= X F*-sXx ..
of D*( Pro( Ban)). We know that X  has an injective resolution by

objects of the type II;c , “I” where each I; is an injective object of Ban.
Since we have

s Il =sll p=1 %

S i€ i€ ]

we get SORL(X) = X in D" ( Pro(Ban)). Therefore, for any X € D*
(Pro(Ban)), we have
(RLoS)(RL(X)) = RL(SoRL(X")) = RL(X")
and RL(X") € D} (T¢). The conclusion follows. ]
Corollary 4.3.17. Let E and F be two objects of Tc and let P and @

be their respective systems of semi-norms. If F is cohomologically complete,
then

RHom 4,(E, F) = R lim lim RHom 4,,(E,, F,).

gEQPEP
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Proof. By Proposition 2.2.14, we know that E = R lim E, and since
pPEP

F is cohomologically complete, by Corollary 4.3.15 F = Rﬁqu. Then,
we have successively 9€Q

RHom 4, (E, F) = RHom(R lim E,, R lim F,)

pPEP q€EQ
= R lim RHom(R lim E,, F,) *
a€Q PEP
= R lim lim RHom . (E,, f‘q) **)
gEQPEP

= R lim lim RHom,,(E,, F,)

qE EP

a»
where the isomorphism (*) follows from [9, Proposition 3.6.3] and the
isomorphism (**) from Proposition 2.2.4. ]

§4.4. Equivalence between D' ( 57) and D*( Proy (Ban))
Definition 4.4.1. The category of Fréchet spaces is the full additive

subcategory of J¢ whose objects are the Fréchet spaces. We denote it by
Fr.

Proposition 4.4.2. Let f: E' — F be a morphism of Fr.

(1) The kernel of f is the subspace f~'(0) of E endowed with the
induced topology.

(ii) The cokernel of f is the quotient space F/f(E) endowed with the
quotient topology.

(iii) The image of f is the subspace f(E) of F endowed with the induced
topology.

(iv) The coimage of f is the quotient space E/f'(0) endowed with the
quotient topology.

Corollary 4.4.3. Let f: E — F be a morphism of Fr. The following
conditions are equivalent :

(i) fisstrictin Fr,
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(ii) fis relatively open,
(iii) f(E) is closed.

In particular, a morphism of Fr is strict if and only if it is strict as a
morphism of Tc.

Proof. 1t is sufficient to work as for Te keeping in mind the closed
graph theorem. L]

Corollary 4.44. Let f: E— F be a morphism of Fr. Then, fis a
strict monomorphism (resp. epimorphism) of Fr if and only if f is a strict
monomorphism (resp. epimorphism) of Tc.

Proposition 4.4.5. The category Fr is quasi-abelian.

Proof. We know that Fr is additive and that any morphism of Fr
has a kernel and a cokernel.
Consider the cartesian square

f
E——F
!

v g

T—G
u
of Fr where f is a strict epimorphism. By Corollary 4.4.4, f is a strict
epimorphism of J¢ and since Tc¢ is quasi-abelian, it follows that « is a

strict epimorphism in Tc¢ and also in 7.
Finally, consider the cocartesian square

G———T

7

E —f“’F
of Fr where f is a strict monomorphism. Denote ¢ the morphism

g
E—-G®F.
(%)
Recall that

T = coker(a) = (G ® F)/a(E).
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By Corollary 4.44, f is a strict monomorphism in Jc¢. Then, f is injective
and for any semi-norm p of E, there is a semi-norm p, of F such that

pr(e) < Cpp(fle)) Ve€EE
for some C > 0. It follows that a is injective and that
pr(e) < Csup(p(—f(e)), ps(g(e))) < Cpgorlale))

where p; is an arbitrary semi-norm of G and pgep(x, ¥v) =
sup(pr(x), pe(»)). Hence, a is a strict monomorphism and its image is
closed. Consequently,

coker a = (G ® F)/a(E)

and the cokernel of a in Fr coincides with the cokernel of @ in Tec
Then, the square (*) is cocartesian in Tc¢. By Corollary 4.4.4, f is a strict
monomorphism of T¢ and since Tc¢ is quasi-abelian, it follows that « is a
strict monomorphism in Jc¢ and also in Fr. ]

Proposition 4.4.6. The category Fr has enough injective objects.

Proof. This follows from Proposition 2.1.12 using the fact that
countable products of Banach spaces are Fréchet spaces. O

Proposition 4.4.7.  Fréchet spaces are cohomologically complete.

Proof. Let F be a Fréchet space. By Proposition 4.4.6, F has an
injective resolution /" in F7 such that I* is also an injective object of
T c. Therefore,

RCpl(F) = CplI") =1 = F.
L

Definition 4.4.8. A small category 7 is called countable if the set
of objects of J is countable and if the set of morphisms between two
arbitrary objects of J is also countable.

Definition 4.4.9. Let € be an arbitrary category. A countable
pro-object of @ is a functor X : J® — € from some countable filtering
category J to €. The category of countable pro-objects of € is denoted
by
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Prox(€C).
Remark 4.4.10. Working as in [1], one can check easily that for

any filtering countable category J, there is a countable filtering ordered
set I and a cofinal functor

O: 71— 4.
Thanks to [10, Lemma 5.1], one may even assume that /= N. In
particular, for any countable pro-object X of a category €, we may find
a functor
X :N—=>@
such that
X ="1lim " X,.
n&Ee N

Proposition 4.4.11. If & is a quasi-abelian category then Prox( &) is
a quasi-abelian category.

Proof. Work as in [9, Proposition 7.1.5] ]
Lemma 4.4.12. For any object X : 7% — Ban of Prox(Ban),
LX) = lim X(4)
i€
is a Fréchet space. In particular, we may consider the functor
L: Prox(Ban) = Fr.
Corollary 4.4.13. The functor
L: Pron(Ban) = Fr
1S right derivable and its derived functor
RL:D"(Prox(Ban)) - D (Fr)

1S an equivalence of categories.

Proof. Since Ban has enough injective objects, Proy( Ban) has
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enough injective objects and L : Proy(Ban) — Fr is right derivable.
The functor S: Fr — Proy(Ban) being exact, it gives rise to a functor

S:DT(Fr) > D" (Proxn(Ban)).
Consider a complex F
0_)};\—k_)}(-!—k‘ihl__>F1—k+2__> e

of D" (Fr). For any n > —k, since F" is cohomologically complete, we
have

RLoS(F™) =~ F" = Lo S(F"),

where the last isomorphism follows from Lemma 4.3.12. Hence, S(F) is
a L-acyclic resolution of S(#") and we have

RLoS(F’) =LoS(F) =F".

Hence, the complexes of D" ( ¥7) are cohomologically complete. As in
the proof of Theorem 4.3.16, one checks that the functor

RL: D" (Prox(Ban)) - D (Fr)
is an equivalence of categories and its quasi-inverse is given by

S:D"(Fr) > D (Prox(Ban)).

§ 5. Duality Functors
85.1. The Inductive Dual

Remark 5.1.1. Let us recall that if £ is a semi-normed space, then
the dual of E, denoted here by D(E), is a Banach space. If p is the
semi-norm of E, then the norm of D(E) is defined by

T = Su X
Il = sup, |2(2)|

for any r €D(E).
Recall that if E is a semi-normed space, we have the isomorphism of
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Banach spaces D(E) = D(E). In particular, if E is an object of J¢ with
the weakest topology, then D(E) = 0.
Recall also that the duality functor

D: Ban — (Ban)®
is exact. As a matter of fact, consider a strictly exact sequence
e f
0—=E—-F—-=G—0

of Banach spaces. Since C = {7 ({0}) is an injective object of Ban, the
sequence

D(e)

0— D) -2 D) 2% DE) -0

is an exact sequence of vector spaces. Since the images of D(f) and D(e)
are closed, the Banach homomorphism theorem shows that D(f) and
D(e) are strict.

Let X be an object of Tc Recall that a set of continuous linear
functionals

E={f:i€l f:X— C)

is equicontinuous if for any € >0, there is an absolutely convex
neighborhood of zero V in X such that

FAC) I Yy EV, VieE L

It is equivalent to ask that there is an absolutely convex neighborhood
of zero V in X such that E C V° or that E° is a neighborhood of zero in
X. In particular, the polar of any semi-ball of X is equicontinuous.

Definition 5.1.2. We denote by
D;: TJc— Tc*®

the inductive dual functor, which associates to any object X of Tc¢ the
dual space X’ endowed with the inductive topology. In this topology, a
basis of neighborhoods of zero is formed by the absolutely convex
subsets of X’ which absorb any equicontinuous set.
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Lemma 5.1.3. If X is a semi-normed space, then D,(X) = D(X).

Proof. Recall that if p is the semi-norm of X, then a basis of
neighborhoods of zero in D(X) is given by {b,(n)°:7 >0}. The
conclusion follows easily. L]

Proposition 5.1.4. Let E be an object of Tc and let P be its system of
semi-norms. Then, we have

Dy(E) = lim D(E,) = limD(E,).
pEP pEP

Proof. By Lemma 5.1.3, it is sufficient to show that lim D;(E,) =
D,(E). Consider the continuous linear map »EP

u:lim D;(E,) — D;(E)
pEP

defined by
uor, = D(e,) VpEP

where e, : E — E, is the continuous identity map. This map « is clearly
bijective.

To conclude, it is sufficient to show that #~' is continuous. Consider
a subset U of D,(E) such that ™' () is a neighborhood of zero in
lim D;(E,). Let us show that U is a neighborhood of zero in D;(E).

pPEP

Consider a semi-ball b,(1) of E. Denote (b,(1))3 (resp. (b,(1))g;) the
polar of b,(1) in E’ (resp. E,). Since

n W W) = wor)™ (1D = (Die,)) ™! (V)

is a neighborhood of zero in D,(E,), (Di(e,))™" (U) absorbs (b,(1))z
Hence, there is C > 0 such that

(6,(1))z; € C(Di(e,)) ™" (W),
It follows that
(0,(1))z = (Dile,)) ((b,(1))gp C C(Di(e,)) [(DieN' (D] C CU.

Therefore, U absorbs the polar of any semi-ball of £ and U is a
neighborhood of zero in D,(E).
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The last isomorphism follows from Remark 5.1.1. ]
Proposition 5.1.5. For any family (X,),c 4 of objects of Tc, we have
Di( H Xa) = GB Di(Xa)‘
aEA a€A
Proof. Denote
f: @ Dix) ~ Dl x,)
aEe

aEA

the canonical morphism of Tc¢ induced by the morphisms
D,(p,): D(X,) — Di(a[EIA X,)
where
ot I X~ X,
« €4

is the canonical projection. It is well-known (see e.g. [6, Chap. IV, § 22,
5.(2) (p. 284)]that f is a bijection. Hence, it is sufficient to prove that it is
open.

Consider a closed neighborhood of zero U in ®, ¢ , D;(X,). Then,

UD< U aa(Ua)>

aE€EA

where each U, is a closed absolutely convex neighborhood of zero in
D,(X,) and o, : Di(X,) — ®,c,D;(X,) is the canonical embedding.
Consider an equicontinuous set E of (IT,< 4, X,)". There is an absolutely
convex neighborhood of zero V in I1,c 4 X, such that

ECV®
We may assume that
v=1[ v
a€A

where each V, is a closed absolutely convex neighborhood of zero in X,
and the set

faeA:V,# X}
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is finite. Since U, is a neighborhood of zero in D;(X,), there is C, > 0
such that
Vo c CU,.

a

If V, = X,, then V° = X, = 0 and we may assume C, = 0. Then, setting
C = sup, ¢ 4C,, we get

:
Ec (]] Va>°Cf<< U oa<va°>>>c Cf<< U .U )c cr()

a€A a€EA aE€EA

where the second inclusion follows from e. g. [6, Chap. IV, § 22, 5.(1) (p.
283)]. Hence, f(U) is a neighborhood of zero in D;(II, ¢ 4 X,). ]

Proposition 5.1.8.  The functor D;: Tc — T c* is left exact.
Proof. Consider a strictly exact sequence
s
0>X>Y>Z—0

of T¢. We know that the sequence

D,(N

D,(2) —2>D,(¥) 22> D,(X) - 0
is algebraically exact and that the maps D;(g) and D;(f) are continuous.
Therefore, it is sufficient to show that D;(f) is strict, ie. D;(f) is
relatively open.

Let V be a neighborhood of zero in D{(Y) and E be an
equicontinuous subset of X’. We have to show that D,(f) (V) absorbs E.
Let px be a continuous semi-norm of X such that £ C bpx(l)°. Since fis a
strict monomorphism, there is a continuous semi-norm p, on Y such that

px(x) < py(f(2)) Vx € X.

Let 74 € b, (1)°. We have |zy(x)| <py(x) and the Hahn-Banach
theorem shows that there is 7, € Y’ such that

ley(M | < py(y) and T,0f =14
It follows that b, (1)°C D;(f) (b,,(1)°). Since b,,(1)° is an equi-

continuous subset of Y, there is C > 0 such that b,,(1)° C CV. It follows
that
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b, (1)° C D;(f) (b,, (1)) C CD,(H (V).

Hence, the conclusion. O

Remark 5.1.7. Let J be a small category and let € be an additive
category with exact products. Recall that in [9], we defined a functor

H: £0b(3)__) SJOP
such that

) @ = [[ s®
i
and we established that
(a) for any object E of &’ " there is a strict monomorphism of the
form E — [1(S) with S in £°°¢?,

(b) any object of the form II(S) with S in £°*? is lim-acyclic,
i€g

(¢) if S is an object of £°°?’ with S(i) injective for any i € 7, then

T1(S) is injective in €°°.

We also established dual results when II is replaced by its dual

counterpart 11

Proposition 5.1.8. Let 7 be a small category. For any object X of
7 ¢, we have

RD;(R lim X(9)) = L lim (RD;(X)) (5).

i€ i€ g

Proof. We know that X has an injective resolution in T¢?% of the
form

0—II(S% - II(S") — ---

where for I > 0, S' is an injective object of T ¢,

On one hand, since for [ > 0,

limlI(s) @) = [ $')  and  D(]] $'@) = G D(S'@)

A= i€ 3 i€ 7

and since a product of injective objects is an injective object,



78 FABIENNE PROSMANS

RD;(R lim X () is given by the complex

iE g

- = P D(S'(D) - D Di(S"(D) 0.
i€ g

i€

On the other hand, by Proposition 5.1.5, one can check easily that
for 1>0

D,II(SH) = 1(D,(SH).
Then, L lim (RD;(X)) (7) is given by the complex
i€ g

-+ = imII(D;(SD) (&) — lim

i€Eg i€

limII(D,(S") (1) —= 0.
i€ J
Since for [ > 0, we have
1imII(D;(SY) () = @ Dy(SH () = P D(S'K)),
ie7 i€ 9 i€ ]
the conclusion follows. O

Proposition 5.1.9. If X is a semi-normed space, then RD;(X) =
D(X).

Proof. We know that X has an injective resolution of the form
0—->1"=1"—> -

such that for { > 0, I' = E'XF' where E' is an object of T¢ with the
weakest topology and F' is an injective Banach space. Since for [ > 0, I*
is semi-normed, we have D;(I') = D(I*). Moreover, since C = [~({0}) is
an injective object of T¢, the complex

-+ —=>DUY —->DU") —->DX) -0
is algebraically exact. Then, the image of any morphism of this complex
is closed and by the Banach homomorphism theorem, the complex is

strictly exact. Therefore,

RD,(X) = D(X).
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Corollary 5.1.10. If (X,),c 4 is a family of semi-normed spaces, then

RD,( [[ x) =D,([] xD.

a€A a€EA

Proof. Since direct products and direct sums are exact in J¢, we
may apply Proposition 5.1.8 and we have

RD,( [[ X) = @ RDi(X,).

a€EA a€A

The conclusion follows from Proposition 5.1.9 and Proposition 5.1.5.

0
Proposition 5.1.11. For any object X of D" (7T¢), we have
RD;(RCpI(X ")) = RD,(X ).
Hence,
RD;(E) = RD;(Sep(E)) = RD;(Cpl(E))
for any object E of Tc.

Proof. Consider an object X  of D* ( T¢). We know that X has an
injective resolution by objects of the type

I=EX [] F*
aEA

where E is an object of Tc¢ with the weakest topology and F® is an
injective Banach space. For such an object, we have

CplD = [[ F* and D, =D/(]] F.

aEA a€A

Since a product of injective objects is injective, we get

RD;(RCpl(D) = RD;(D).
U

Remark 5.1.12. Recall that since the functor D: Ban — ( Ban)® is
exact, it induces an exact functor

Pro(D) : Pro (Ban) = Pro (Ban®™) =(Ind(Ban))>.
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For any small filtering category J and any functor X: I — Ban, we
have

Pro(D) (* lim "X (1)) = *1lim "D(X(0)).

1€ J i€ J

Proposition 5.1.13. The diagram

D*(Pro(Ban)) —— >D*((9 nd(Ban))® = (D~ ( Ind(Ban)))*
S LL
D" (T¢) - D7 (Tc®) =D (T

is commutative.

Proof. Consider an object X~ of D" ( T¢). We know that X has an
injective resolution by objects of the type

I=EX [| F*
a€EA

where E is an object of Tc¢ with the weakest topology and F“® is an
injective Banach space. On one hand, we have

D‘(I) = D1(E)® @ Di(Fa) ~ D(E)@ @ D(Fa) ~ @ D(Fa)
acd a€A a€A
On the other hand, we have
S =SEX [] sF® = [] “F.
a€A aEA

Therefore, we get successively

Pro(D)(SMD) = Pro)( [[ “F*) = Pro(D)( lim [] “F™
€A JeP(A) jeg
= lim "D([] F)
J€ PLA) jE]J
=" lim " @ DF) = @ “DF".
JEP ) jE] a€4
Since
@ “DF*)”
a€EA

is L-acyclic (see [9, Proposition 7.3.9]) and since
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L( @ “D(F?”) = @ LCDEFD) = @ DF,

a€ A ac A

the conclusion follows. O

Corollary 5.1.14. The diagram

Pro(D)

D (Pro(Ban)) ——— (D (I nd(Ban)))*®

RL LL

D (T¢) D (Te)™

is commutative.

Proof. This follows directly from Theorem 4.3.16 and Proposition
5.1.13. O
§5.2. Relations with the Strong Dual

Definition 5.2.1. We denote by
Dy: Tc— Tc*
the strong dual functor which associates to any object X of Jc¢ the dual
space X’ endowed with the strong topology. In this topology, a basis of
neighborhoods of zero is formed by the polar of the bounded subsets of
X. The system of semi-norms is thus given by
{p5: B bounded subset of X}
where pjy is defined by

pp(0) = flélgl‘l‘(x) | Ve D(X).

Proposition 5.2.2. The inductive topology is stronger than the strong
topology.

Proof. Consider a bounded subset B of an object X of Tc¢ and let E
be an equicontinuous set. There is an absolutely convex neighborhood of
zero V in X such that E C V°. Since B is bounded, there is C > 0 such
that B C CV. It follows that E C CB° and that B° is a neighborhood of
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zero in D,(X). L]

R

Proposition 5.2.3. If X is a semi-normed space, then D(X)
D,(XD.

Proof. This is clear since semi-balls are bounded in X. L]
Proposition 5.2.4. The functors
RD;:D*(Tc)—>D (Tc)®

and
RD,:D"(T¢) > D (To)™,

are canonically isomorphic.

Proof. Let X be an object of D" (T¢). We know that X has an
injective resolution by objects of the type I = EX II, , F* where E is an
object of Tc¢ with the weakest topology and F* is an injective Banach
space for any a € A. We have

D,() =D(E)® D D(FM) = B DEF.

aEA aEA

Moreover,

D,() =D, (E)® @ D,(F*) = @ DF?
aEA aEA
where the first isomorphism follows from [6, Chap. IV, § 22, 5.(4) (p.
287)]. Therefore, RD;(X) = RD,(X).
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