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The Meromorphic Solutions of
the Bruschi-Calogero Equation

By

Nariya KAWAZUMI* and Youichi SHIBUKAWA"

Abstract

We give all the meromorphic functions defined near the origin 0 e C satisfying a
functional equation investigated by Bruschi and Calogero [1], [2].

§ 0. Introduction

It is an important problem to find a Lax pair L and M whose
equations of motion are equivalent to the Lax equation [10], [11], [12].
In order to prove their complete integrability it is convenient to use a
Lax representation.

The systems of Calogero-Sutherland type, which describe
one-dimensional n-particle dynamics, are defined by the following
Hamiltonian

where the potential U has the form
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n
2U(qlt . . . , qn) = g

j < k

Lax pairs for the system above were originated by Calogero [3] and
Moser [7] , and are given by the matrices

Mjk =
i*i

Substituting these matrices in the Lax equation V— 1 L = [M, L] and
requiring that this equation is equivalent to the Hamiltonian equations,
we get a certain functional equation for the functions x(F) and z(£).
This functional equation has been solved in a series of papers including
[4], [9]. The solutions are expressed in terms of elliptic functions,
trigonometric functions or rational functions.

Later, Ruijsenaars and Schneider [15] have introduced a class of
integrable dynamical systems characterized by the equations of motion

n

(0.1) QJ = XI qjq*v(Qj-Qk)> QJ = 0;(0, ;' = 1, 2, . . . , n.
k=i
k*j

Bruschi and Calogero [1] discovered a representation of the equations of
motion of the system (0.1) in the Lax form

L= [L,M],

where L and M are the n X n matrices,

Ljk = dM+d-d
n

Mjk = 6jk £
m = \
m^j

Here the function a (x) is a solution of the following functional equation
of addition type

(0.2) oGOa'GO-a'GOaCy) = (a(x+y)-a(x)a(y)) 0?GO-7?(30),

which we call the Bruschi-Calogero equation. The function v(x) is given
by
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fGO =—

Bruschi and Calogero [1], [2] have investigated general analytic
solutions of this functional equation (0.2). They have obtained some
solutions a expressed by elliptic functions in the most general case, and
they had some trigonometric and rational solutions by degenerating the
periods of the elliptic functions.

The main purpose of the present paper is to solve the functional
equation (0.2) in the most rigorous way. More precisely, we shall give
all meromorphic solutions of the functional equation (0.2) defined near
the origin 0 e C.

Theorem 0.1. Let a and r/ be holomorphic functions defined on a
punctured disk {x €E C ; 0 < I x \ < r} for some r > 0. // they satisfy the
functional equation (0.2), then they are equal to one of the following
functions.

(0-i)
a GO =0 or epx, rj: arbitrary, (p e C)

(0-ii)
= Cep\ r\\ constant, (C, p <E C, C =£ 0, 1)

(IJ n( ,»• T -r- ^\n(~l v -L- y <£ ^)

a GO = &
_ px

; rlf r2)'

; rl9 rz) — Af(A2+//; r1? r2)

(p, ft, v, A e C, A, rlf r2 e C\{0},
Im Tg/T! > 0, ^,

U, p, a, 6, c, A e C, A ̂  0,
& (a-c) ^ 0, a ^ 0 or 6 7^ c, c ^ 0 or a ^ 6)
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x x pxax-i-o x x o
a GO = epx — — -, 77 GO = —, — — r

cx + b x(px + b)

Go, a, b, c, A e C, b (a-c) * 0)

Here a(jx\ rlf rz) fs JAe Wefersfross segrafl function, and £(x\ rlf r2) £/z#
Weierstrass zeta function. All the solutions except for the case (0-i) extend
themselves to meromorphic functions defined on the whole plane C .

It should be remarked that a meromorphic function defined near the
origin 0 EE C is holomorphic on a sufficiently small punctured disk.
Hence our result covers all the meromorphic solutions defined near the
origin 0 e C .

The methods we use in this paper are quite different from those of
Bruschi and Calogero [1], [2].

The outline to get all meromorphic solutions is as follows. First, we
shall show that the solution 77 is the logarithmic derivative of some
meromorphic function <p, and that the set of zeroes of <p is a discrete
subgroup of C . As is known, such a subgroup is isomorphic to Z 2, Z or
{0} . If this subgroup is isomorphic to Z 2, we find out that 77 and a are
expressed in terms of elliptic functions by a standard argument. In other
two cases, the key tool to obtaining the explicit form of the solution a is
the great Picard theorem. (See, for example, [5].) As a result, we shall
show that a is expressed in terms of trigonometric functions or rational
functions.

After the first draft of this paper was completed, we were informed
that Ochiai, Oshima and Sekiguchi [8], [13] have studied all the
completely integrable systems with the invariance under the action of
the Weyl groups. In their papers, they solved the functional differential
equations of the potential function. We should note that these functional
differential equations are of addition type also.

Acknowledgement

The authors would like to express their gratitude to Professor
Toshio Oshima and the referee for several valuable comments. They
owe, in particular, a suggestion about the defining domains of solutions
to Professor Oshima. The first author would like to thank Professor
Yukio Matsumoto for helpful discussions.



SOLUTIONS OF BRUSCHI-CALOGERO EQUATION 89

§ 1. Equivalence of Two Functional Equations

In this section we prove that the equation (0.2) and the functional
equation

(1.1) aG& + 30— aGOa(30 = 0>GO<p600Gc + 30

for meromorphic functions a, <p and 0 are equivalent to each other
(Proposition 1.3). As is easily shown, if we use a coordinate system (s, 0
on the plane C 2 given by

«*
the equation (1.1) is equivalent to

(1.3)

Moreover we show that almost all holomorphic solutions of the equation
(0.2) defined on a small punctured disk extend themselves to
meromorphic functions defined near the origin 0 e C (Lemma 1.2).

The exponential function a GO = Cepx for any C and p e C is a
solution of both of the equations (0.2) and (1.1). If C = 0 or 1, then one
of <p and 0 is 0, and the other one and 77 may be chosen arbitrarily. On
the other hand, if C =£ 0, 1, then 77 GO = A, a constant function,
#>GO — C{e

Ax for some non-zero constant Clt and 0GO =
(C-C^C^e^'^*. These exponential solutions will often disturb our
train of demonstrations. So, throughout this paper, we call them obvious
solutions to discriminate them from other non-trivial solutions.

Lemma 1.1. Let a = a GO be a holomorphic function defined on a
punctured disk [x ^ C ; 0 < I x \ < r] for some r > 0. Suppose a satisfies
one of the equations

(1) aGOa'(30-a'(*)a(30 =0,

(2) a extends itself to a holomorphic function defined near 0 e C , and
aGOa(;y) = 0,

(3) a(* + jO-a(*)a(30 = 0,

where x, y and x+y run over the defining domain. Then there exist C and
p^C such that a GO =
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Proof. When a = 0, the lemma is trivial. So we may assume a =£ 0.
The equation (3) implies (2). In fact, choose a point x in the punctured
disk {0 < \x\ < r}. Then lim^o a(y} = lim^o a(x+y}/a(x} = 1. So we
have a(0) = 1 =£ °o. Thus we obtain (2).

The equation (2) implies (1). If we substitute x = t and y = s — t into
(2), then we have a(0)a(s)-a(0a(s-0 =0. Differentiate it by the
variable t Then we have a(0a'(s — f)—a'(£)a(s — t) = 0, which is
equivalent to (1).

From the equation (1) we have a(.y)/a(y) = a'(x)/aOO for any %
and y in the defining domain. In other words, a'la is a constant function.
Hence there exist C and p e C such that a GO = Cep*. D

Next we prove that the solutions have no essential singularities at 0
e C.

Lemma 1.2. Let a = a GO #^d 77 = 77 GO be holomorphic functions
defined on a punctured disk {x e C ; 0 < x \ < r} for some r > 0. Suppose
the pair (a, 77) is a non-obvious solution of the functional equation (0.2).
Then the functions a and rj extend themselves to meromorphic functions
defined near the origin 0 EE C.

Proof. Since (a, 77) is not obvious, we have 77 G0~ 77(3;) =£ 0, and
a(jt + ;y)—aGOaKy) ^ 0, as functions in (x, y). (See Lemma 1.1.) Fix an
arbitrary point tQ in the punctured disk. Then (0.2) implies

a (s) = a (to)a(s -*0)-

for any 5, 0 < ls| < r — | £ 0 | . The right-hand side extends itself to a
meromorphic function near s = 0. Hence a (s) is meromorphic at s = 0.

Fix a point ;y0 in the punctured disk. From (0.2) again, we have

a GO ax (3/0)—a7 GO a (3/0)
77 GO = 77(3/0) H 7~^r—vl—7~^—7—S~~

for any x, 0 < I x < r— yQ\. The right-hand side is meromorphic at x =
0, and so is the function 77GO. D

Thus, in what follows, we may assume that the solutions are
meromorphic functions defined near the origin 0 e C.

Now we can prove the equivalence of the two equations (0.2) and
(1.1).

Proposition 1,3. The two functional equations (0.2) and (1.1) for
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meromorphic functions defined on the whole plane C (or defined near the
origin 0 e C ) are equivalent to each other. More precisely, we have

(1) // (a, <p, 0) is a non-obvious solution of the equation (1.1), the pair
(a, 77) given by 77(3;) = <p'GO/<pGO satisfies the equation (0.2).

(2) // two non-obvious solutions (alf <plt 0^ and (a2, <p2, 02) °/ ^e

equation (1.1) satisfy al = a2 and <p((x)/<pl(x') = ^200/<P200, then we
have <p2

 = CVi and 02 ~ C'~20i for some non-zero constant C' Ei C.
(3) For any non-obvious solution (a, 77) of the equation (0.2), £&gre

exist meromorphic functions <p and 0, such that rj (x) = <p'(x)/<pGO and £&£
£n£/e (a, <p, 0) satisfies the equation (1.1).
/n o£/z0r words, if the multiplicative group C — {0} acts on the set of
non-obvious solutions of the equation (1.1) by C'(a, <p, 0) : =
(a, CVf C'~20X C' £ C — {0}, #zgn £/ze orfezY space is naturally isomorphic
to the set of all non-obvious solutions of the equation (0.2).

Proof. In view of Lemma 1.1, for any non-obvious solution a, we
have a(x+y}— aGOaCy) ^ 0 and aGOa'Cy)— ax(j)a(3;) 7^ 0. Hence, if
(a, <p, 0) is a non-obvious solution of (1.1), then we have <p ̂  0 and 0 =£
0. Especially the logarithmic derivative <p'/<p is a well-defined
meromorphic function.

(1) Differentiating the equation (1.3) by the variable t, we obtain
(1) immediately.

(2) Suppose <Pi(*)/<Pi(*) = ^GO/^C*)- Then
= 0, which proves (2).

(3) Let (a, 97) be a non-obvious solution of (0.2). Using the
coordinate system (1.2), we obtain

(1.4)

Lemma 1.4. ord^, 77 = — 1 and Resp 77 e z /or any po/e p ^ C of the
function 77.

Proof of Lemma 1.4. Let A e C be a pole of the function 77. Choose
a generic s0 e C. Then the singular part of 77(6 —77(s0 —() at £= A
coincides with that of 77(0- On the other hand, the equation (1.4) implies
that the function 77(0 — T?(SO— 0 is equal to the logarithmic derivative of
the function a(s0)— a(0a(s0 — 0- Thus the order of /KO at the point A is
— 1, and its residue is equal to the order of a(s0)— a(t)a(sQ — 0 at the
point £ = A. This means the residue is an integer, as was to be shown. D

Now suppose a and 77 are meromorphic functions defined on the
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whole plane C. Then Lemma 1.4 means that the differential equation

has a local meromorphic solution <p near any point of the whole plane C .
Since the plane C is simply connected, such local meromorphic solutions
extend themselves to the global solution <p defined on the whole C . Then
the equation (1.4) implies

A
dt log

so that there exists a meromorphic function 0(s) defined on the whole
plane C such that a(s)— a(f)a(s — 0 = <p(fi<p(s — 0$(s) for any s and t
£E C. Substituting (1.2) into this equation, we find out (a, <p, 0) is a
non-obvious solution of (1.1). As for local solutions, the situation is
simpler.

This completes the proof of Proposition 1.3. D

Remark 1.5. As is easily deduced from (1.4), if two non-obvious
solutions (alf T^) and (a2> %) °f the equation (0.2) satisfy at = az, then
the difference 7?2 — T?! is a constant function. This, together with
Proposition 1.3, enables us to consider a single function a as a
non-obvious solution of the equations (0.2) and (1.1) instead of a pair
(a, 77) and a triple (a, <p, 0).

§ 2o Behavior of Solutions Near the Origin

In what follows, we confine ourselves to non-obvious meromorphic
solutions a, 77, <p and 0 of the functional equations (0.2) and (1.1). We
remark TJ(X) — ri(y) =£ 0 and <p ̂  0, since a is not obvious. We consider
local solutions, i.e., solutions defined near the origin, and global solutions,
i.e., solutions defined on the whole plane C , simultaneously.

Lemma 2.1.
(1) Let p £E C be a point in the defining domain of solutions a, 77, <p

and (p. Then p is a pole of the function (p, if and only if p is a pole of the
function a.

(2) Ifp^Cisa pole of (p, then the orders of a and <p at p are equal to
each other, i.e., ordp <p = ordp a. Especially we have (a/<p) (p) =£ 0, °o.

(3) A point p e C is a zero of the function <p, if and only if the
equation a(s} = a(/>)a(s— />) holds for all s in the defining domain of a.
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Proof. Choose a generic s0
 e C such that all of a(s0—p), a(s0),

0(so~~p) and 0(s0) are neither 0 nor oo. Then we have

(2.1) ord /,(a(s0)—a(0«(s0—0) = ord/)(0(00(s0-0) = ordp 0,

since (a(s0)— a(0«(s0—0)0(0~10(s0— O"1 = 0(s0) ^ 0, oo, and 0(s0—/>)
*0, oo.

Now suppose 0(p) = oo. Then a(s0) — a(p)a(s0—/>) = oo. We have
a(/0 = 0° , since a(s0—p), a(s0) =£ 0, °° . Moreover ordp(0) =
ord / J(a(s0)—a(0a(s0—0) = ord/,(a(0«(s0—0) — ordp a. Conversely
suppose a(p) = oo. Then a(s0)-a(p)a(s0-p) = oo, So that <p(p) = oo by
(2.1).

Finally suppose <p(p) = 0. Then (2.1) implies a(s0)— a(p)a(s0—p) =
0 for generic s0. Hence a(s) = a(p)a(s— /)) for all s in the defining
domain of a. Conversely we assume a(s) = a(p^a(s—p^) for all s in the
defining domain. Then (2.1) implies <p(p) = 0.

This completes the proof of Lemma 2.1. D

Our main purpose in this section is to prove the following.

Lemma 2.2. Let a, 77, 0 and 0 be non-obvious meromorphic solutions
of (0.2) and (1.1) defined near the origin 0 e C. T/i^n tc>£ /zat>e 0(0) = 0,
a(0) - 1,0^0) *

(2.2)

Proof. We begin by proving that <p and a are holomorphic near the
origin 0 <= C .

Assume 0(0) = °°= Then a(0) = °° and (a/0) (0) =£ 0, °° from
Lemma 2.1. The equation (1.3) implies

(0 C«

We obtain 0(s) = - (a/0) (0) (a/0) (s) as f -> 0. Hence we have

(0) (a/*)

so that 0(0~10(-0~1 = 0 as s -> 0. This means 0"1 = 0, and so
contradicts the fact 0 is holomorphic on a sufficiently small punctured
disk centered at the origin. Therefore we find out 0(0) ̂  oo. From
Lemma 2.1 we have a(0) =£ °°.
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Thus <p and a are holomorphic near the origin. Especially we may
substitute x = 0 into the derivatives a'(jt) and <p\x}. Differentiate the
equation (1.3) by the variable t, and substitute t = 0 into it. Then we
obtain

(2.3) a(0)a'(s) -a'(0)a(s) = 0(s) (p'(O)p(s) -p(OV(s)).

Next, in order to prove <p(ff) = 0, assume <p(ff) =£ 0. Substituting t =
0 into the equation (1.3), we obtain

This, together with the equation (2.3), implies

«(0)-^4-a'(0) = (l-a(O))
a(s)

Hence we have

and so

= a-a(o))

= a(0) a

- a(0)

Here recall r\ {x} — 77(3;) =£ 0, since a is not obvious. Therefore we have
a(0)a(jt+3;) = a(x)a(y). This means a is obvious from Lemma 1.1, and
contradicts our assumption.

Therefore we obtain <p(0) = 0. From Lemma 2.1 (3) we have
a(s)— a(0)a(s) = 0. Hence a(0) = 1. Now the formula (2.3) turns out to
be
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Since a is not obvious, we have <p'(0) =£ 0. Hence we have 0(s) =
(a'(s)/a(s) — a'(0)/a(0))a(s)/V(0)<p(s), as was to be shown. D

The formula (2.2) means

0 a'(s)-a'(0)a(s)(2.4)

which plays an important role throughout this paper.
As a consequence of the relation (2.2), we obtain

Proposition 2.3. Any non-obvious meromorphic solutions of the
equations (0.2) and (1.1) defined near the origin extend themselves to those
defined on the whole plane C.

Proof. Let a, 77, q> and 0 be non-obvious meromorphic solutions of
the equations (0.2) and (1.1) defined on a disk {x e C; \x\ < r} for
some r > 0. From (0.2) we have

= aGOa(y)+- ,
7700-7700

which implies a extends itself to [x £E C; |x| < 2r}. From the equation
(1.1)

and the equation (2.2)

0 and #> extend themselves to {jc EE C ; |jc| < 2r}. Recall 77 is equal to
<p'/<p. Such extensions satisfy the functional equations by means of the
permanence of functional relations.

Consequently these solutions extend themselves to {x e C ; \x\ <
2nr] for all n > 1, and so to the whole plane C . This completes the proof.

D

§ 3. Discrete Subgroups

In view of Proposition 2.3 we may confine ourselves to non-obvious
meromorphic solutions defined on the whole plane C.

We denote the zeroes of <p, the poles of <p and the zeroes of a by A+,
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A_ and Aa, respectively. Clearly these subsets A+, A_ and Aa are all
discrete subsets in the plane C . In this section we study these discrete
subsets.

By Lemma 2.1 (3) we have

(3.1) A+ = {u e C;a( f+«) = a(w)a(0, V^e C}.

Since 0(0) = 0, we have A+ =£ 0. One can deduce easily the following
lemma from the identification (3.1).

Lemma 3.1. The discrete subset A+ is a subgroup of the additive
group C . Moreover the restriction of a to A+ gives a homomorphism of A +

into the multiplicative group C \ {0} . Especially a(u} ^ 0 for any u e A+.

As is known, any discrete subgroup A+ of the additive group C is
given by one of the following.

(1) There exist ^ and r2 e C \{0} such that Im r2/rl > 0 and A+ =
Z TI + Z r2. In what follows, we call such a case non-degenerate.

(2) There exists A0 e C\{0} such that A+ = ZA0. We will consider
this case in § 6.

(3) A+ = {0}. We will consider this case in § 5.
(See, for example, Pontryagin [14] ch. 3, § 19, example 33.) In short, we
obtain

A+ = Z2, Z or {0}.

In the succeeding sections, in the case where this subgroup is isomorphic
to Z 2, we prove that a and TJ are expressed in terms of elliptic functions
by a standard argument. In other two cases, we shall show that a and rj
are expressed in terms of trigonometric functions or rational functions.

Next we study the discrete subsets A_ and Aa.

Lemma 3.2. If p £ A__, namely, p is a pole of <p and a, then

<p(p-i)<p(i) = -</(0)Resp <p ^ 0,

and ordp <p = ordp a = — 1.

Proof. Choose a generic t0 G C such that all of 0 (£<>). (P^P~tG),
a(£0) and a{p — t^) are neither 0 nor <». From the equation (2.4) we have
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-a'(0) .
a(s)

The left-hand side turns out to be <p'(0)/(<p(£0)<pG> —10)) =£ 0, oo as s
Hence

1 / ' f \ \

- 0, oo,

so that ordp <p = ord/)(a/(s)/a(s)— a'(0)). Since ordp <p < 0, s = p is a
pole of a /(s)/a(s)— o/CO). Hence we have ordpCa'^/aCs)— ax(0)) =
ordp(a/(s)/a(s)) = — 1. Thus we obtain ord^ a = ordp cp = — I. (See
Lemma 2.1 (2).)

Now <p(s) = (s-^ryCs) and a/(s)a(s)"1-a/(0) = (s-^'^Cs) for
some holomorphic functions / and 0 defined near p. Then fi(.p) =

Ca'/a) = — l , f ( p ) = Res^, <p, and so

r /rn, rlim — y-x-l — 7-: — a (0) ) = lim
*-»/» ^

<p'(.Q
Therefore we have

— 7-: — a = f . = — - .
\ a(s) / S-+P f ( s ) Resp <p

This means <p'(.Q)/(<p(tQ)<p(p — t^ = —l/Resp<p for any generic tQ.

for any t EE C. Since a is not obvious, we have <p ̂  0 and so — <//(()) Resp <^
^ 0. This completes the proof. D

Corollary 3.30 A_ is invariant under the translation by A+ and
#(A_/A+) < 1.

Proof. Letp £ A_ and u EE A+ be given. Recall a(w) ^ 0, °°. Then
we havea(^) + w) = a(p)a(w) = oo, so thatp+w e A_. This means A_ is
a A+ -invariant subset.

Now, for any pl and p2 ^ A_, lim f^^2 <p(pi — f)<p(f) = — ̂ x(0)ResPi cp
^ 0, oo. By means of lim^^ <p(fi = oo? we have lim^^ <p(pi — 0 = 0, and
so Pi~p2 e A+. This means #(A_/A+) < 1, as was to be shown. D

Lemma 3.4. Let q e C be a zero of a, i.e., q e Aa. T/zew K;

(1) a'G?) ^ 0 ia, ord.a = 1.
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- = ^
'

Moreover Aa is invariant under the translation by A+ and tf(Aa/A+) < 1.

Proof. Since A + f lA a = 0, we have <p(q) =£ 0. From the equation
(2.4) we have

Since a/p =£ 0, we obtain (2) and a\q) =£ 0, so that ordg a = 1.
Now let q e Aa and u ^ A + be given. Then we have a

a(g)a(w) = 0, so that g-Hw GE Aa. This means Aa is a A +-in variant subset.
Finally, for any q{ and q2 £ Aa,

Since a(q^)/<p(.q^) = 0, we have (a/V) (#1 — <?2)
 = °°- It follows from

Lemma 2.1 (2) that ql — q2^K_. Thus we obtain cp(ql — #2)
 = 0, i.e.,

ql — q2^A+. This means $(Aa/A+) < L This completes the proof of
Lemma 3.4. D

§ 40 Non-Degenerate Case

In this section we consider the case A + = Z 2 i.e. the doubly-periodic
case. The function a la admits periodicity with respect to the discrete
subgroup A+.

Lemma 40le

(1) The set of poles of the function a/a is Aa U A_. All poles of a7 a
are simple, and Resp a/a = ordp a forp e Aa U A_.

(2) (a7a) U+/>) = (a/a} (z), p e A+, z e C.
(3) Res^aVa = 1, ^ e Aa.
(4) Res / ,a

/ /a=-l , p e A_.

Proo/.
(1) We note that A_ is the set of the poles of a by Lemma 2.1 (1).

By means of this, we obtain the result easily.
(2) By (3.1), we get
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:(tt)a(0 (We C, Vu e A+).

Then a'(t+u) = a ( u ) a ( f ) . From the two equations above,

(3) By Lemma 3.4 (1), if p e A", then ordpa = I. Hence Resp(a'/a)
= 1 forpe A*.

(4) From Lemma 3.2, we have ordp a = ordp(p = — 1 for p EE A_.
Thus Res/a'/a) = - 1 for p e A_. D

From A+ = Z2, there exist rlf r2 and A e C\{0} such that Im TZ/T{ >
O a n d A + = Z(r1/A)+ Z(r2/A).

Lemma 4.2. There exist IJL and v^ C such that —///A, — y/A £
A+, A_ - (-

Proo/. Suppose A_ = 0 and Aa = 0. Then the elliptic function a /a
has no poles. Such an elliptic function is merely a constant, which
contradicts that a is non-obvious.

Next we suppose that A _ = 0 and Aa =£ 0 or that A _ =£ 0 and Aa = 0.
From Lemma 4.1 (1), the set of the poles of a /a is Aa or A_,
respectively. By virtue of Corollary 3.3 and Lemma 3.4 (2), in a
fundamental period-parallelogram for the elliptic function a /a, the
number of poles of the function a /a is one and the pole is simple. There
is no such an elliptic function [16 p.432], [6 p. 157].

Hence there exist n and v e C such that —///A e A_ and — v/A e
Aa. Because A_ and Aa are invariant under the translation by A+,
S(A_/A+) < 1, and #(Aa/A+) < 1, we obtain A_ = (-/ / /A)+A+ and Aa

We note that A_ ^ A+ because of the definition of A_ and A+, and
that Aa ¥= A+ by Lemma 3.1. Hence -///A, —v/X $ A+. Q

We can summarize the conclusion of the function (a/a) (z) just
obtained as follows:

(1) The function (a'/a) (2) is doubly-periodic with periods rJX
r2/A.

(2) The set of poles of a/a is ( ( -zVA)+A+) U ((-^/A)+A+), and
all poles are simple.

/QN r, // ' ( - lV>0+A+ >(3) // J1'a / a ^ j
[-1,



100 NARIYA KAWAZUMI AND YOUICHI SHIBUKAWA

The Weierstrass sigma function o(z) = p(z\ rlf r2) is defined by

aOr, rlf r2) = 2 J] {(l-^)exp(^+}(-^)2)}.
a, = mIT,+m8r2

 W 0) 2 0)
(m,, mz) e Z2\{(0, 0)}

; rlf r2)

Theorem 4.3.

a (2) = expGos)—7—^—— N . , No\y\ rlf T2)o(Az-f-jLt', rlt r2)

for some p £ C.

Proof. By [16 p.449], [6 p.177],

T! ^? ^ ... . UL ?} ?9

for some constant p e C . Here TCs) = f U; rlf r2) is the Weierstrass zeta
function

«*; rlf r2) - -+ ^ (-i-+—+-^).
^ W = m^+m2r2 * ~ ̂  ^ ^

(m,, m2)(E zz\{(0, 0)}

With the aid of the formulas r(Az; Ar l5 Ar2) = A"1^; rlf r2) (see9 for
example, [6 p. 184]) and to) = a'UVaU),

; TJ, r2)

Thus

From a(0) = 1, C = a(//)/a(y). Therefore we obtain

This completes the proof of Theorem 4.3.

Proposition 404.

D
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for some constant A e C.

Proof. By the theorem above

= eps

= eps-

X

We use the three term equation of a below.

o(x + y) a(x — 3;) aU + w} o(z — w}

-h o(x + 2) CT(JC — 2) a(i6> + 3;) a(w — 3;)

- 0.

By a( — j) = — aGO,

From the equation (1.4), we have

77(0 - AfUfi rlf T2)

thereby completing the proof of Proposition 4.4.

Lemma 4.5.

where A is in Proposition 4.4, and 5 £ C.
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Proof. By r(z) = (d/dz)log a(z),

77(2) = ^4 +— log a(/U) — — log

—dz

From 77(2) = (d/dz}log <pUX

log <p(z) -

Thus

We have completed the proof of Lemma 4.5. D

Lemma 4.6.

Proo/. In the proof of Proposition 4.4, we obtain

On the other hand,

From 0(s) = (a(s)— a (0 a (s — 0)7(^(0 ̂ (s — 0), we get the desired
result D

§ 5. Degenerate Case, I

Now we consider the most degenerate case A+ = {0}. The main
result of this section is
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Theorem 5.1. 7/A+ = {0},then

r \ pxax + ba 00 = epx - — -
ex + b

for some p, a, b and c e C with b(a-c^) =£ 0.

Conversely we deduce the following from some straightforward
computation.

Proposition 5.2. The function a 00 = epx(ax + b} (ac + ft)"1 given in
Theorem 5.1 satisfies the equation (0.2):

'Cy)— a'00a(30 = (a(x+:y)— aGOaCy)) (77 (jc)— 77 (3;)).

7/00 z's gzve/z fey

77 GO = — T-^T- T
x(cjc + fe

for an arbitrary constant A £ C .

Because of TI(X) = (p'OO/VOOX we have

for an arbitrary constant B £ C . Furthermore 000 is given by

Now we will prove Theorem 5.1.

Proof of Theorem 5.1. Choose a generic point s e C such that a(s)
°° and 0(s) ^ 0, oo. Consider the meromorphic function of t

defined on the whole plane C. From the equation (1.3)

£ 0 oou, »

we have As(0 = a(s), if and only if <p(f) = 0 or <p(s — t} = 0. The latter
condition is equivalent to t = 0 or s because of A+ = {0}. Moreover the
function hs(f) = a(t)a(s — £) has at most two zeroes and at most two
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poles on C from Corollary 3.3 and Lemma 3.4 (2). Therefore the
meromorphic function hs defined on the whole plane C has three
exceptional values 0, °° and a(s) for such a generic s. In view of the
great Picard theorem (see, for example, [5]), the function hs extends
itself to a meromorphic function defined on the whole Riemann sphere
C U {oo}.

Recall $Aa <1 and #A_ < 1. In other words, we have Aa = 0 or {v0}
and A_ = 0 or {//0} for some i/Q and #0 G C. So we have four possibilities:

(#Aa, #A_) = (0, 0), (1, 0), (0, 1) and (1, 1).

Introduce a linear fraction SCO by

SGO := 1, x — % and -,
x-fiQ x-^

respectively. Then we have a GO/SGO = edM for some entire function g.
In fact, Lemmas 3.2 and 3.4 imply or&^a = I and ord^a = — 1,
respectively. For a generic s, e?™+t*s~'> = hs(i)/S(i)S(s-i) is also a
meromorphic function of t on the whole C U {°°}, and furthermore it
has no poles and no zeroes on C. Therefore we have ^(0+ff(s~° = c(s) for
some constant c(s) depending only on s. Differentiating it by the
variable t, we obtain g'(f) —g\s — f) = 0 for any t £ C and a generic s.

Consequently the derivative g' is constant, so that a GO = Ce^SGO
for some C and p G C. Since a is not obvious, we have S =£ 1. Recall a(0)
= 1 from Lemma 2.2. It follows that a GO =epx(ax + b) (cx + b)~l for
some a, b and c e C with b(a — c) ^ 0. This completes the proof of
Theorem 5.1. D

§ 60 Degenerate Case, II

Finally we consider the singly-periodic case A+ = Z.

Theorem 60L // A+ = Z,

/or some p, A, a, & and c e C i{;zY/i A ̂  0, b(a—c) ^ Q,a ^ 0 or b 3= c, and
c ^ 0 or a ^ b.

Proof. Fix a generator A0 £ A+. There exists some p G C such that
= 1, since a(A0) ^ 0, oo. (See Lemmas 2.1 (1) and 3.1.) Remark
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that ep'xa(x) is also a solution of the equation (0.2). So we may replace
a GO with /'a GO. Then, from (3.1), a (A7) = 1 for all A' e A+, so that

(6.1) aGc + A') - a GO

for any x £ C and any A' e A+.
Choose a generic point s e C such that a(s) ± °° and 0(s) =£ 0, °°.

Consider the meromorphic function of £

defined on the whole plane C. From the equation (1.3)

a(s)-/is(0 _

we have hs(f) = a(s), if and only if <p(0 = 0 or <p(s — fi = 0. The latter
condition is equivalent to £ ̂  A+ or t ^ s + A+.

From (6.1) there exists a meromorphic function ks = &s(f) defined
on Cx :=C\{0} such that

From what we have already shown, &s(f) = «(s), if and only if f = 1 or
e2n^Ys/^ corollary 3.3 and Lemma 3.4 (2) imply that ks has at most two
zeroes and at most two poles on C x . Therefore the meromorphic
function ks defined on Cx has three exceptional values 0, °° and a(s) for
such a generic s. In view of the great Picard theorem (see, for example,
[5]), the function ks extends itself to a meromorphic function defined on
the whole Riemann sphere C U {00} .

Recall SAVA+ < 1 and #A_/A + < 1. In other words, we have Aa = 0
or ^0+^+ and A_ = 0 or y0+A+ for some v0 and #0 e C. So we have
four possibilities:

(#A_/A+ , #Afl/A+) - (0, 0), (0, 1), (1, 0) and (1, 1).

Set c := e
2n^/h and c" := ̂ y We introduce a linear fraction

by

, , ,
F-c

respectively. Then there exists some holomorphic function g defined on
the whole plane C such that
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a GO = e^s

from Lemmas 3.2 and 3.4.
Set fs := e

2n^s/^ for s (E C. Then, for a generic point s, the function
fesdrVSCiOSCF"1^) is a meromorphic function defined on the whole
C U { °° } , and has no poles and no zeroes on C x . Therefore
fes(f)/S(f)S(f '^ = &(s)fn°° for some function 6(s) and some integer
n(s) e Z . From the definition of ks,

Differentiating it by the variable t, we obtain

ff/(0-ff/(s-0-2^V=Tn(s)/A0 = 0.

Differentiating it by the variable t again, we get

for any s and t e C . Hence 0"(0 = 0 and

a GO - e^

for some C and p e C . Since a is not obvious, we have S =£ 1. Recall a(0)
= 1 from Lemma 2.2, Define A : = A0/ W~ 1 . Then we obtain

for some a, 6 and c e C with b(a—c) ^ 0.
If a = 0 and 6 = c, or if c = 0 and a = b, then a is obvious. This

completes the proof of Theorem 6.1. D

By some straightforward computation, we obtain

Lemma 6.20

, , ^aU) = ep

satisfies the equation (0.2)
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aGOa'Cy)—a'GOa(:v) = (aGc+y)—aGOaCy)) OK*)—77(30),

where
O-j- l 2JC/A 0-)-l 2x/AZA e ZA ce

for an arbitrary constant A £ C.

Lemma 6.3.

pGO = eAx+B
 2 /A ,
c(e —1) + 6

where the constant A is in the lemma above and B is an arbitrary constant.

Proof. It is trivial because of 77 GO = (d/dx)log ^GO. C

Lemma 6.4.

000 = e~
Ax~2B

Proo/. From 0(s) = (a(s)-a(0a(s-0)/(^(0^(s-0), we get the
desired result. D

The solutions stated above are expressed in terms of the hyperbolic
sine function.

Suppose a ^ 0, b and c ^ 0, b. Then there exist // and v e C such
that

Then we get

(6.2) - e

_ px sinh// sinh (A 1s + iO
— ^ — isinh z^ sinh (A x
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These solutions are obtained in [1],
On the other hand, let a = 0 and c =£ b, or let a = b and c ^ 0. There

exists// €E C such that b = c(l — e~2^, and, as a result,

sinh(A x

Next let c = 0 and a =£ 6, or let 6 = c and 0 =£ 0. There exist v
such that 6 = a(l — e~2lO, and, as a result,

- y . . .
smh v

These two solutions are the limits of the solution (6.2) as e±2v and e±2fl

tend to 0, respectively.
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