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Elliptic Root System and Elliptic Artin Group

By

Hiroshi YAMADA *

§ 1. Introduction

The concepts of elliptic root system, elliptic Dynkin diagram and
elliptic Weyl group were introduced by K. Saito to describe the Milnor
lattices and the flat structures of semi-universal deformations for simply
elliptic singularities [S], [SO], [SI], [S2].

Generators and relations of elliptic Weyl groups were studied in the
context of elliptic Dynkin diagrams by K. Saito and T. Takebayashi
[ST]. (This presentation of an elliptic Weyl group is a generalization of
a Coxeter system. See Theorem 2.1). In their paper, they proposed the
following problem: find generators and relations of "elliptic Lie algebras",
"elliptic Hecke algebras" and "elliptic Artin groups" (the fundamental
groups of the complements of the discriminant for simply elliptic
singularities) in terms of the elliptic Dynkin diagrams,

In [SY], applying R. Borcherd's construction of vertex algebras
[Borl], [Bor2], K. Saito and D. Yoshii constructed the elliptic Lie al-
gebras (which are isomorphic to the toroidal algebras [MEY]) for
homogeneous elliptic Dynkin diagrams. In addition, they described the
fundamental relations in terms of the generators attached to the elliptic
Dynkin diagrams. These relations are a generalization of the Serre type
relations (for other appraches cf. [BM], [Sll]).

In this article, we shall give an answer to their problem for the case
of elliptic Artin groups and elliptic Hecke algebras as an application of
the twisted Picard-Lefschetz formula due to A. B. Givental [Gi]. As for
the former groups, they have already been studied by H. van der Lek
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[L] under the name of extended Artin groups and from the view point
of a/fine Dynkin diagrams for arbitrary affine root systems (see Theorem
5.1). Here we describe these groups in term of generators associated to
the vertices of elliptic Dynkin diagrams that reflect the geometry of
vanishing cycles of simply elliptic singularities (Theorem 5.2). For this
purpose, we restrict ourselves to the 1-codimensional case (Definition
2.3) that has rich geometry such as flat structure. As for the latter
algebras, which are subalgebras of Cherednik's double affine Hecke
algebras [Cl], [C2], [C3], we can construct some irreducible finite
dimensional representations as monodromy representations (Proposition
6.1).

The present paper is organized as follows. In Sect. 2, we give a brief
review of elliptic root systems and elliptic Weyl groups. In Sect. 3, we
will explain A. B. Givental's twisted Picard-Lefschetz formula. Then we
will apply his theory to the case of simply elliptic singularites
(Proposition 3.1). In Sect 4, we will define elliptic Artin groups
(Definition 4.1) and explain the relation between elliptic Weyl goups
and elliptic Artin groups (Theorem 4.1). In Sect. 5, we will explain the
result of H. van der Lek about extended Artin groups (Theorem 5.1).
Then we shall compare the Artin groups with extended Artin groups
(Theorem 5.2). In Sect 6, we shall define elliptic Hecke algebras, and
then we shall obtain finite dimensional irreducible representations of
them (Proposition 6.1).

The author would like to express his appreciation to Kyoji Saito,
Peter Slodowy and Norio Suzuki for valuable discussions and useful
comments. He also thanks Kenji lohara and Endo Kobayashi for kind
advice.

§ 2. Root Systems and Weyl Groups

We briefly explain elliptic root systems and elliptic Weyl groups
following [SI]. Let F be a vector space over R with symmetric bilinear
form (•, •) of signature ( /+, Z0l / _ ) , where /+(resp. O is the dimension
of a maximal positive (resp. negative) definite subspace of F and Z0 is
the dimension of the radical of (°, •). For a e F such that (a, a) =£ 0 ,
we define

(a, a)"'

tya(w) := «—(w, av)a for any u e F.
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Definition 2.1. A subset R C F is called an elliptic root system, if the
following conditions are satisfied'.

(R.I) ( Z + > Z0, O = (/, 2,0).

(R. 2) Let QO?) be the Zrsubmodule of F generated by R. Then, QCR) <8>ZR
_ 7^

(R. 3) For any a e R, (a, a) =£ 0.

(B. 4) wa(R) = R.

(R. 5) (a, £v) e 1 for any a, 0 e /?.

(R. 6) # z's irreducible, i.e. if R = R{(JR2 with R{ satisfying (Rf 1) —
(/?, 5) and #! J_ #2, tfran Rl = 4>orR2 = <f>.

We call the Weyl group W(R):= (wa\a ^ R) associated with R
elliptic Weyl group of R. Also K. Saito defined an elliptic Dynkin diagram
for an elliptic root system as follows: Let G be a 1 -dimensional subspace
of rad (-, •) which is defined over Q in the sense of K. Saito (see [SI]).
Then, the image of R in F/G is an affine root system Ra. We fix a
generator a of the lattice Gfl rad(°, •)- Note that the generator a is
unique up to a choice of sign. We call (R, G) the marked elliptic root
system. For any a e Ra, put

/c(a) := inf{k e Z > 0 | a + £-a <= R}

and

a* := a + &(a) -a.

& (a) is called the counting of a. The following proposition is known.

Proposition 2.1 (K. Saito [SI]). Let (JR., G) be a marked elliptic root
system. Then we have

R = {a + m-k(a)-a\a e Ra, m e Z}.

Let rG?fl) = {a0, a^ ..., aj be a basis of Ra such that {alf..., a/}

form the simple roots of an underlying finite root system, and let

^ := Z,- = o nia» ^e ^e minimal imaginary root of Ra. The set of exponents

of (JR, G) is
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where (-, •)/? is a constant multiple of (•, 0 normalized in the way that
inf {(a, a)^ |a e R} is equal to 2. Set

rOOmo* : = to e r(/O |mfl = maximal/? <E T(Ra)}}

and

Definition 2,2, The elliptic Dynkin diagram Y(R, G)o/ the marked
elliptic root system (/?, G) is a finite graph generated by the set of vertices
T(R, G^) := T(Ra)UT(Ra)*maxand connected according to the following
conditions', for a, 13 £ T(R, G)

(1) (a, £ v ) = 0 aO

(2) (a, £v) = (av, 0) = -1

(3) (a, £v) = -£, (av, j8) - -1 /or f - 2 ,3 ,4

(4) (a, /3V) - (av, 0) - 2

Here and afterwards we shall use the convention:

and

f o r t = 2±l, 3±l and 4±l.

Definition 283e An elliptic Dynkin diagram T(R, G) is called I-
codimensional if the number of vertices of T{R^)max is equal to 1 except

(\. o*

Remark 2.1. The class of 1-codimensional elliptic Dynkin diagrams
is an important subclass of elliptic Dynkin diagrams. Indeed, this is the
only case that a flat structure has been constructed in [S2] .

From now on we shall assume that the elliptic Dynkin diagram is
1-codimensional (see Table 1).
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To state the structure theorem of elliptic Weyl groups, we explain
foldings of elliptic Dynkin diagrams due to K. Saito [SI].

Let CR, G) be a 1-codimensional marked elliptic root system in a
vector space over R, say F, with a symmetric bilinear form (-, •) and Ra

an affine root system which is the image of R in F/G. Set

Aut(R, rad(-, •)) := {/e Aut(F, (-, •)) I/O?) - R,

Then there exists the natural projection

and a section

where .AwKrQ?, G)) (resp. -AwKrCRa))). is the group of automorphisms
of the elliptic Dynkin diagram FG?, G) (resp. affine Dynkin diagram
rCRfl)). Then we have

, G))/z2

where Z2 is the group generated by the parmutation of a and a* for

Let £T be a subgroup of AwKr(/?a)) which acts on F through the
section 0. Let FH be the invariant subspace of F by H. We define two
mappings as follows:

TrH:F^FH, x

where # signifies cardinality. Then we obtain the following lemma:

Lemma 2.1 (K. Saito [SI] Section 12). There exist marked elliptic
root systems (RH, G) and (Rff9 G) in FH with the symmetric bilinear form
(-, -)|F» swc/i f/ia^ ^e se^ of vertices of TrH(T(R, G)) and TrH(T(R, G))
/orm elliptic Dynkin diagrams for (RH, G) and (/?#, G) respectively.

The above procedures which give (/?^f G) and (/?#, G) are called
folding and mean folding respectively. We list (RH, G) and (RH, G) in
the following table:
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0?. 6)
H "

2' 4)

00.0

(3, 3)

>• »

1. 3)

, (3, 1)

Z Z2

. 2)

o

The list of 1-codimensional elliptic Dynkin diagram is given in the
appendix.

Now we attach an affine root system (R, G\ to a marked elliptic
root system (R, G) as follows:

OR, G)a = if (/?, G) is obtained by folding
if (/?, G) is obtained by a mean folding

where Ra is given as before.
Next we introduce ta e W^C/?, G) for all a e r(/?a) as follows: For

a0 e TC^)^ set

*a0 -~" ra0
ra0*-

If «!,.„., a^,er(2?fl)\{a a^r f l i > f l f l j r} are arranged in the following
position:

for* = 1, 2 ,

Then we define

taj+i:= rai+lfa.ra.+it^

inductively.
Let us define the number

max{ma\a^T(Ra)}

which plays the role of the Coxeter number for the elliptic root system
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[SO], [SI], [S2], [ST].
K. Saito and T. Takebayashi [ST] gave presentations of elliptic

Weyl groups as follows:

Theorem 2.1 (K, Saito and T. Takebayashi [ST]). Let (R, G) be a
marked elliptic root system and W(R, G) the group defined by the following
generators and relations:

generators: ra a £ T(R, G)

relations:

(W.O) ra
2 = 1 <* O

(W.1.0) (rar^ = 1 a O O ft

(W.I.I) (rar^ = 1 <* O O ft

(W.2.1) (raVa.r/3)
3 = 1 || ^O/3

a

a*

(W.2.2) (rarM-)2 = 1 j ^X>^
a

a* M"^
(W.2.3) (^ra*rp3 ~ 1 and (?JfvL*r$rJfriL ~ 1 JUP

a

a*

a
(W.2.4) (rara,rp

2 = (ra,r^)2 = (r/ara,)
2 >^

x^4-

/3*

(W.3) (rarerare,r^2 = 1 awd (rar/rar^r^)2 - 1 a C( i i P 7

l i •

/3
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where the two relations in (P7.3) are equivalent in the case oft= 1.
(0 Let N(R, G) be the subgroup of W(R, G) generated by (ta\a e

FQ?, G)}. Then N(R, G) is a free abelian subgroup isomorphic to the
lattice QCCff, G)fl).

(n) Set c(R, G) := [] ra [] rara,, £ten its power
a e ra?, G)\r(#fl)mai a e rOO,»«

cO?, G)m(*'G) generates the center of W(R, G) and belongs to N(R, G). /w
particular, c(R, G)m(*'G) is expressed as

c(R,GT(R'°= H E8

a e r(/?fl)

K;/ierg ^g na are ^/ze coefficients of the generator b of the imaginary roots in
0?, G)fl.

(m) The quotient group of W(R, G) by the center (c(R, G)m(*' G)> is
isomorphic to the elliptic Weyl group W(R}\

W(R, G)/<c(/?, G)m(^'G)> = W(R\

Here the relations (W.1.0) —(PF.l.S) are well known as Coxeter
relations, and the relations (^.2.1)^(^.3) are new ones due to the
broken bonds in the diagram. Let us call them elliptic Coxeter relations
and the group W(R, G) hyperbolic extension of elliptic Weyl group of
WXK) (see [SI], [ST]).

Remark 2.2. In this article, we only treat 1-codimensional elliptic
Dynkin diagrams. In [ST], K. Saito and T. Takebayashi treated more
general elliptic root systems.

§ 38 Twisted Pieard-Lefschetz Formula

The relations of elliptic Weyl groups were obtained by studying the
monodromy representations of simply elliptic singularities. To find
generators and their relations of elliptic Artin groups attached to elliptic
Dynkin diagrams, we want to construct a certain kind of deformation of
the monodromy representations of simply elliptic singularities.
Fortunately, A. B. Givental [Gi] has already studied q-deformation of
monodromy representations of isolated hypersurface singularities using
the so-called twisted Picard-Lefschetz formula (see also F. Pham [P] and
LShimada [Sh]).

First, we explain the classical Picard-Lefschetz formula.
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Let /: (C3, 0) -> (C, 0) be a polynomial mapping such that /-1(0) has a
simply elliptic singularity (see [S]). Namely,

EG : /(*, y, z) = x* + y3 + z3 + Xxyz
E7 : f ( x , y, 2) = x* + y4 + z2 + hxyz
£8 : f ( x , y, z) = x* + y* + z2 + Aryz

where A is a modular parameter.
Since a simply elliptic singularity has a semi-universal deformation,

there exists the following commutative diagram which is called a
Hamiltonian system is [SO]:

where

ft, TT, prlt pr2: natural projections,

F^XJ y, z, tlt..., ^-i) :— Gc, y, 2, £1,..., t^lt F^x, y, z, tlt..., ^-i)),

and

0 : = prl^Fl: semi-universal deformation of /.

Here JJL = 1 + 2 and {0/}y = i is a C-basis of the Jacobi ring

C[x, y, z\/(-r-9 -z—, -r—) of/such that deg(<f>i+l) < deg(^^.
\ox ay az /

Let C^ be the critical set of 0 and Z)0 the discriminant of 0. The
discriminant Z)0 is a reduced irreducible hypersurface in S. Let tr £ T =
C^~{ be a point which is not contained in the image of the ramification
locus of 7t\D<f>. Set

Lf/ := tt'}xcc:(y~1xc = s

By choice of t't there are exactly ^ intersection points of Lt' with the
discriminant D0. We denote these points by plt..., ^. The fibre Xp =
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has a singularity which is an ordinary double point. Choose a
generic point pQ e Lt\{pi, ..., pj. Then the fibre XPQ = <t>~l(p<) is a
2-dimensional manifold and homotopically isomorphic to a bouquet of #
copies of sphere S2. Hence, the only non-trivial homology group of XPo is
the group H2(XPQ, Z) which is a free Z-module of rank i±. The negative
intersection numbers of cycles define a symmetric bilinear form ( • , • ) on
this module with signature (/, 2, 0)(// =/ + 2).

Next, we shall explain the relation between elliptic Dynkin diagrams
and vanishing cycles. Choose a simple arc /,- in L,> form pQ to p{ not
passing through the other pjm Then

XPQ C 0~1(/i) -* XPt : contraction

induces the mapping

ct:H2(X^ Z)-F2Q^, Z).

The kernel of this mapping is a Z-submodule of H2(XPQ, Z) of rank 1.
Denote a generator of Kernel (c,-) by ei9 i.e.

Kernel (c,-) = Ze,

It can be shown that if /lf ..., 1M are chosen in such a way that /,- and lj

intersect only at pQ for i ^ j, then [el9 .... ^} is a free Z-basis of
ff2(-Xp0.

 z) and ^2(^0* Z) = Q(/?). By further specialization of this
choice, the negative intersection matrix with respect to this basis yields
an elliptic Dynkin diagram (see [Eb], [Ga], [S], [SO], [Si]).

Now, we explain the classical Picard-Lefschetz formula. To each path
/,-, we associate an element 7,- e ^(L^, p0) by going along /,- from pQ to a
point near pit then turning counterclockwise in a small circle around p{

and then returning to pQ along /,-. Then {7^ ..., 7^} is a set of generators
of Ki(S\Dp PQ). The mapping

is the projection of a fibre bundle. Hence one gets a monodromy
representation

p : ̂ (SXZ),, /><,) -^ Aut(H2(XPo, Z)).

The map p has the following explicit description:
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Theorem 3.1 (Classical Picard-Lefschetz formula [P]).

p(r,-) («) = a- (a, e^e{ for any a e H2(XPQ, Z)
(* = 1, ..., fi = J + 2)

Let us turn to a twisted version of the above formula following A. B.
Givental [Gi] . Define F : Z -> C by

and

Since ^(Z) = Z, for a complex number <? e C*, we can define a
representation

n^Z} -* Aut(G}: 1 -> 0.

This representation induces a local system £g on Z. Define Zr = pr^1

(S\£>0)nZ, then ^ : Zr -* S\D0 is a fibre bundle whose fibre is a
3-dimensional complex manifold. For simplicity, we also denote by Lq

the restriction of Lq to the fibre Zr(p0) := pr\l(p^). Then we get a
monodromy representation

This monodromy representation can be regarded as a g-deformation of
the classical one as follows.

Denote the restriction of the mapping F to Zr(J?0) by

By the choice of pQ, FPQ has exactly /j, critical values. We denote these
points by Pi, ..., p'^ Choose a simple arc j( in C* going from p{ to a point
near the origin, then turning counterclockwise in a small circle around
it, and finally returning to p\ along the same way, and define a cycle
d{ e #3(Z

r(J>0), L^ by carrying the vanishing cycle e{ along j[. Then we
obtain the following:

Theorem 3.2 (A. B. Givental [Gi]). (1) ̂ 3(Z
r(p0), £f l)= ©?=iZ[0, g"1]^-

(2) Le^ F 6e tte wpper triangular matrix with diagonal elements 1
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(e,-, ey) in the (i, j)-component for i < j. Define a ft Xy -matrix Iq =
qV+*V. Then one has

(3) (

Givental's result in the above formulation is valid for all isolated
2-dimensional hypersurface singularities.

As an application in the simply elliptic case, we obtain by direct
computations with the elliptic Dynkin diagrams the following
proposition.

Proposition 3.1. Set

Then g{, ..., g^ satisfy the following relations:

(1) 0

(2) gi

(3) Let t- = g^, then g-t-g-t- = t-g-t-g-

(4) Let t- = g-t-g-t- \ then g'kt- = t-g'k

§ 4B Elliptic Weyl Group and Elliptic Artln Group

In this section, we will define elliptic Artin groups. Then we will
explain the relation between elliptic Weyl groups and elliptic Artin
groups.

Motivated by Proposition 3.1, we define the following group:
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Definition 4.1. Let (R, G) be a l-codimensional marked elliptic root
system and T(R, G) be its elliptic Dynkin diagram. Define an elliptic Artin
group A (R, G) by the following generators and their relations:

generators: ga a e T(R, G)

relations: Set ta := gag* for a <E r(#fl)max.

a

(E.2.2)

(E.2.3) g$tagpta = tagptag$ and g^tag^ga — g* g$tagp ^^Oft

(E.2.4) gptagpta = tag^tag^ = g* g^

a

(E.3) gatr = t7ga and grta = tagr
a.

where tr — g tag to and ta
 = gatagata

fort = 1,2±1, 3*1 ft

Here the relations (E. 1.0) —(E.I.3) are the same as (W.I) in Theorem 2.1
and the relations (E.2) — (E.3) are new ones due to the broken bonds in
the diagram T(R, G).

Now we consider the relation between the elliptic Artin group A (R,
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G) and the hyperbolic extension of elliptic Weyl group W(R, G). Let
A (R, G) be the quotient group of A (R, G) by the following relation:

(E.O) g2
a = 1 /or a erO?, G)

We denote by ga the element of A (R, G) corresponding to the element
ga e A(R, G) for any a e r(J?f G). Then we get the following theorem:

Theorem 4oL Let (R, G) be a l-codimensional marked elliptic root
system. The correspondence ga •-* wafor a ^T(R, G) induces an isomorph-
ism:

A(R, G) = W(R, G).

To prove this theorem, it is enough to show that the relations
(E.O) — (E.3) are equivalent to the elliptic relations (W.O)~(W.3). We
only show that the relations (E.2.1)~(E.3) are equivalent to the
relations (W.2.1) — (W.3), since the equivalence for other relations is well
known.

Lemma 4.1. Set fa:= gaga*fora e T(R^)max. Then we obtain the
following:

(1)

(2)

(3)

iaSfiiaSft = 0fl*a00ia and
(4)

Proof.
Here we prove (1) and (2). The other cases follows from similar
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computations.
For simplicity, we set a := ga, b:= g^ and ta := gag*.

Proof of (1)

)3 = 1 <^> aba*baba*baba*b = 1
*> ate*a&aa*tea*6a* - 1 (by (£.1.1))
<^> abt~lbtabtaba* = 1 (by the definition of ffl)
<^> &£flfc£fl = aa*baa*b = £flfe£fl&

Proo/o/(2)
&£G6a <=> abaa*b = baa*ba (by the definition of ffl)

o ababba*b = baa*ba (by (£.0))
o bababa*b = baa*ba (by (£.1.2))

o (a&a*&)2 - 1 (by (£.0)).

Lemma 4.2. Set tp := ^^* /or $ GE r(^?fl)mfl,c. Ttew w;e obtain the
following:

gJ7 = frga and grfa = tagr

where ta = gj^gj^1 and fr - Qj&i? for t = 1, 2± 1
f 3

±!

Proo/.
For simplicity, we set a := ga, b := g^ c := ^r, ^ :=

and ^:=

atc = tca <^> acbb*cb*b = cbb*cb*ba (by the definition of fc

<=> cabb*cb*b = cbb*cb*ba (by (£.1.0))
<^> abb*cb*b = bb*cb*ba
o babb*cb* = b*cb*bab
<* abab*cb* = b*cb*aba (by (£.1.1))

We can prove that the relation cta = tac is equivalent to the relation
(ab*abcb^2 = 1 in the same way.

From Lemma 4.1 and Lemma 4.2, we obtain Theorem 4.1.
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§ 5. Extended Artin Group and Elliptic Artin Group

In this section, we will compare the elliptic Artin group A(R, G)
with the extended Artin group A(Ra). To this purpose, first we define
the extended Artin group A (Ra) following H. van der Lek [L] .

Definition 5.1. Let Ra be a a/fine root system and Q(Ra) be its root
lattice. Set Vc: = Q(/?a)®C. The aj fine Weyl group W(Ra} and its extension

O) ix Q(RO) act on V0 Then we define the extended Artin group by

where V^ is the set of regular elements of Vc.

Remark 5.1. Note that this is the fundamental group of the
complement of the discriminant in the semi-universal deformation of a
simply elliptic singularity ([Lo], cf. also [SO], [SI], [S2]).

Let us recall the following result: Let C:= (c^Oo < ; , ; < / t>e an affine
Cartan matrix and M:= ( w f ; - ) o < f , y < ^ be the Coxeter matrix determined
by Cij as follows:

mu = 2, 3, 4, 6, oo if CijCjti = 0, 1, 2, 3, > 4, respectively.

Theorem 5.1 (H. van der Lek [L]). Let Ra be an a/fine root system
and M(Ra) the corresponding Coxeter matrix. The extended Artin group
A(Ra) associated with Ra is generated by (S0, S l f . . . f S/f T0, T l f . . . f TJ
which satisfy the following relations:

(A. 1 ) Sf- Sj S^" Sj S{ Sj— each side m{ j factors if i ^ j

(A.2) 7]T3- = TjTi

(A.3) S,2}T,r = TjT^ c3,t=-2r

(A.4) S^T^ = TjT^1 q , = - (2r+ 1)

Let us consider again an elliptic root system (R, G) of 1-codi-
mension.
We define ta^A(R, G) for all a <E r(/?fl) as follows: Assume a0 e

z. ^a0 has already been defined by

Suppose the vertices { « ( ) » • • • > a^ c r(jf?fl)\r(^?fl)mfl2. are arranged in the
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following way:

fort = 1, 2 , 3

Then we set

inductively. The following lemma is the key step in the proof of our
Theorem 5.2.

Lemma 5,L (0 Let N(R, G) be the subgroup of A(R, G) generated by
{ta\a G T(R, G)}. Then N(R, G) is a free abelian subgroup isomorphic to
the lattice Q((R, G)fl).

(ii) Let $ e F(CR, G)fl)7na:r Then one has the following formulae for
?, G)fl)\r(0?, G)fl)mfl:c:

(0) O O

a t ft t = 3 9Mgp = tj*
(1) O->-O

t = 4

(2) Q > Q t = 1, 2, 3, 4 Sctpffa = tct0

a t (3

(iii) Set c(R, G) = [] 9a H 9affa'> ^en its power c(R,
a e rue, G~)\r(Ra)max a

G)ma?>G) is an element of the center of A(R, G) and belongs to N(JR, G). In
particular, c(R, G)ma?iG) is expressed as

c(R, GT(R'G) = H C
a e T(Ra)

where the na are the coefficients of the generator b of the imaginary roots in
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Proof.
Proof of (0
Here we prove (0 in the case of t = I. We can prove the other cases

similarly to the case of t = 1.
For simplicity, we set at := ga and t{ • : = ta, i = 0, 1, ... , k.
First, we prove tQ

 and tl are commuting.

t^Q = a^Qa^^tQ (by the definition of ^)
= alt^al

= MiWo'1 (by (E. 2.1))
= Vi (by the definition of ^).

Next, we prove that az and tl satisfy the following relation:

By (£.1.1), (£.2.1) and commutativity of tQ and tl9 one obtains the
following:

— ((2 2 *2 ̂ o ^ 2 <2 jfl 2^0 ̂  1 ~~~ ̂  1 ̂ 0 a 2 ̂  1^ 2 ̂ 0 fl lfl

$ CL2 d iQ-^t^

2 o 1 0 1 ~ 0 1 0 ( l 2 < 2 1 ^ 0

-0.

Hence, we have

From this relation and the definition of t2, one has

*f2"\ ^ 2 1 2 ^1^2 1 2 1 ^ 1 2 °

Hence we have
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*i*2 = *2fr

From similar computations, we obtain

ai^ltiai^lti = tlai+1tiaiai+l for i = 2, ..., k.

By this relations and (E. 1.0), we obtain the commutativity of t{ and tj for
z, j = 0, 1, ..., k. Freeness of N(R, G) follows from the Theorem 2.1 (z)
and Theorem 4.1.

Proof of (z'z)
(0) and (2) are trivial from (E. 1.0) and the definition of ta. Here we

only prove the case of t = 2 in (1). For simplicity, we set a := ga, b := g^
andta: = ta.
Since 0 e rOOm« and a e r(/O\rQOm«x. we have the following:

6fflf6 - batbatb
ltb

= batba
= atbab (by (£.2.2))
= tatbb.

Hence we have

btatb = tatbb.

Furthermore, by the definition of ta, we have

atba = tatb.

Proof of (iif)
This part will only be relevant in Section 6. Here we only prove the

case of G2
(1'3) (see Table in appendix). The other cases follows from

similar computations.
In the case of G2

(1>3), the set of exponents is (m0, mlt ra2) = (1, 2, 3)
and the Coxeter element is

c = a0
f li^2-

By the relations of (E. 1.1) and (fz), (0) and (2) in this lemma, we have

c =
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tlt2t2glt2

= tQtlt2alt2glt2

^ 0 1 2 1 ^ 2 2 °

By the commutativity of tt and tjt we obtain

By (if) (1), we can prove that cCR, GT(R'G} is central inA(R, G).
Combining H. van der Lek's Theorem 5.1 and Lemma 5.2, we obtain

the following surjective homomorphism:

, G)

To construct the inverse homomorphism of <f>, let us define the
element S* of the extended Artin group A (G?, G)a) by

, G)fl)mfl:r.
Now we obtain the following lemma:

Lemma 5.2. Sa> Tfl> SJ, S^f and T^ /or a e r((/?f G)fl) , /S e
r(CR, G\)max satisfy the relations (£1.0) ~ (£.3) m ^ Definition 4.1 o/
^e e//i/>ftc ^Irft'n A (R, G).

Proo/.
Here we prove that S^* satisfies the relations (E.I.I), (E.1.2), (E.2.1),

(E.2.2) and (E.3). The other cases follows from similar computations.
For simplicity, we set a := Sa, Ta := Ta, b := S^ b* := S; and Tb := T$

, G)a)\r(0?, G)a)wflz. and 0 e r(Q?f G).)^.

Proo/o/(E.l.l.)
In this case, (av, /5) - (a, £v) = -1. By(A.l), (A.2) and (A.4), a, b,
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b*, Ta, and Tb satisfy the following relations:

aba = bab, TaTb = TbTa, aTha = btab = TaTb.

By these relations, we will show that a and b* satisfy the following
relation:

ab*a = b*ab*.

Now, we have

bTab = baTbaTb~
lb

= babb*ab*~lb~lb
= abab*ab*~l

On the other hand, we have

bTab = TaTh

= aTbaTb
 lTb

= abb* a.

Hence we have

abab*ab*~l = abb*a.

Therefore, we obtain

ab*a = b*ab*.

Proo/o/(E.1.2)
In this case, (av, ff) = -1 and (a, /3V) = -2. By (A.I) ~ (A.4), a,

b, b*, Ta, and Tb satisfy the following relations:

bTJb = TaTbb, aTba = TaTb, TaTb = TbTa, abab = baba.

By these relations, we will show that a and b* satisfy the following
relation:

ab*ab* = b*ab*a.

We have
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bTaTb = baTba = babb*a.

Moreover, we have

TbTab = bb*abb*ab*~lb~Lb = bb*abb*ab*.

Since bTaTb = TbTab, we obtain

fl66*fl6* = b*abb*a.

Hence we have the following relation:

aba~lab*ab* = b*abb*a. (1)

On the other hand, we have

babb*a = bTaTb = TaTbb = aTbab = abb*ab.

Since baba = abab, we have

babb*a = abb*ab

ababa~lb*a = abb*ab

aba~lb*a = b*ab.

Hence we have

aba'1 = b*abaTlb*~\ (2)

By (1) and (2), we have

b*aba~lb*~lab*ab* = b*abb*a

a~lb*~lab*ab* = b*a.

Therefore we obtain

G&*a6* = b*ab*a.

Proof of (E.2.1)
In this case, (av, ^8) = (a, £v) - -1. By (A.4),a and Tb satisfy the
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following relation:

aTba = TaTb.

By commutativity of Ta and T&, we have

aTbaTb = TaTbTb = TbTaTb = TbaTbaT~lTb = TbaTba.

Hence we obtain

aTbaTb = TbaTba.

Proof of (E.2.2)
In this case, (av, 0) = -1 and (a, £v) - -2. By (A.3) and (A.4), a,

b, Ta and Tb satisfy the following relations:

aTba = TaTb, bTaTb = TaTbb.

By these relations, we have

aTbab = TaTbb = bTaTb = baTbaTb~
lTb = baTba.

Therefore, we obtain

aTbab — baTba.

Proof of (E.3)
In this case, (av, 7) = (a, rv) = 0. By (A.3), we have aTc = Tca and

cTa = Tac where c = S7 and Tc = Tr

Combining Lemma 5.1 and Lemma 5.2, we obtain the following
theorem:

Theorem 5.2. Let (R, G) be a l-codimensional marked elliptic root
system and (R, G\ the corresponding affine root system. Then the group
A (R, G) is isomorphic to the extended Artin group A((R, G)fl).

Therefore, we obtain generators and their relations of an extended
Artin group in terms of the corresponding elliptic Dynkin diagram.

Remark 5.2. In [L], H. van der Lek studies a more general case,
where W^R^ is replaced by a Weyl group of an arbitrary Kac-Moody
algebra. To such a group, one can attach an affinization of the
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Kac-Moody Dynkin diagram [S12] as an analogue of the elliptic Dynkin
diagram. Our main result, Theorem 5.2, should go through in that
situation as well.

§ 6. Elliptic Hecke Algebra

In [Cl], [C2], [C3] I. Cherednik introduced double affine Hecke
algebras and proved Macdonald's inner product conjecture. In this
section, we shall define the elliptic Hecke algebra which can be proved
to be a subalgebra of his algebra.

Definition 6.1. Let (JR., G) be a l-codimensional marked elliptic root
system. For q ^ C*, the elliptic Hecke algebra HQ(R, G) associated with
(R, G) is the quotient of the group algebra C[A (R, G)] by the relations

CEO) (<7a + <?) (#a-D = 0 fora e T(R, G).

Remark 6.1. (1) One may treat q as an element which is purely
transcendental over C, In this case, the above elliptic Hecke algebras are
defined as algebras over C(</).

(2) An elliptic Hecke algebra may be regarded as a subalgebra of
Cherednik's double affine Hecke algebra. A double affine Hecke algebra
contains two parameters. Two parameters in an elliptic Hecke algebra
appear from the local system Lq and the m(R, G)-th power of the
Coxeter element c(R, G).

Let C(JR, G) := (c{j) be the Cartan matrix corresponding to an
elliptic Dynkin diagram TQ?, G) for a fixed ordering of vertices of
T(R, G) and T be an upper triangular matrix with diagonal elements 1
and the (z, f) -component = citj for z < j. Define // x ̂ -matrix

where p = the number of vertices of rO?, G).
On the vector space

70?, G):- eaer(* iC)Ca,

for any a e FO?, G), define the element Aa of Aut(V(R, G)) as follows:
for any/Ser(^, G),
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Aa(0):=0-Cg(R, G) t t i /?-a,

where CQ(R, G)a^ is the (a, /3)-component of C^Cft, G). Then we obtain
the following proposition by direct calculations:

Proposition 6.1. Let (R, G) be a l-codimensional marked elliptic root
system. Then one has

(1)

pq:A(R, G) >Aut(V(R, G))
pq(gj = Aa

is a finite dimensional irreducible representation of A (JR., G) over C.

(2) The above representation induces the following commutative diagram:

Hq(R, G)

In particular, one obtains a finite dimensional irreducible representation of
Hq(R, G).

Table l-codimensional elliptic Dynkin diagrams

£r
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0:4 0:3 0:2
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,(3,1)
r2 a?
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