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Operator Differentiable Functions

Dedicated with respect and affection to Shoichiro Sakai

By

Gert K. PEDERSEN*

Abstract

We study the Banach * -algebra CQP(/) of C ̂ functions /on the compact interval / such
that the corresponding Hilbert space operator function T-^/CT), for T = T* and sp(T)
c /, is Frechet differentiate. If /Gc) = / eltxf(t)dt we know that the differential is given by
the formula

where U, = exp(zYT). Functions of this type are dense in Cl
op(I), and C2(7) C C^p(7) C

C^C/), so several classical results can be deduced. In particular we show that if T e £> (<S),
where d is the generator of a one-parameter group of '-automorphisms of a C* -algebra 21
(or just a closed '-derivation in 21), then /(T) e £>(<5) for every /in Cip(7), where sp(T)c
/, and

§ 1. Introduction

If 21 is a unital C*-algebra of operators on a Hilbert space J{, and T
is a normal element in 21, then by the spectral theorem we have a
* -isomorphism /->/(T) from C(sp(T)) onto the C*-subalgebra C*(T) of
21 generated by T and 1.
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Suppose instead we fix / and vary T. For this to make sense we
assume that /is defined on some region Q in C (respectively 1), and we
let 21 ̂ (respectively 21 °) denote the set of normal elements in 21 with
spectra in Q. Then the map

defines an operator function from2ln into2ln( = 2l£). It is evident from the
Stone-Weierstrass theorem that this function is continuous, but not
obvious how to estimate the rate of convergence. For example, we might
wish to determine a constant 7 —depending on/— such that

Similarly we might wish to estimate the norms of commutators by a
constant 5:

Clearly the uniform bound II/IL of / is not particularly relevant for
these problems since it depends on the pointwise behaviour, whereas
/(T) may involve all values of / simultaneously. The best known
estimates, 7 = <5 = \\f\ (valid for real functions and self-adjoint
operators), indicate that the problem is non-trivial We shall see that
differentiability conditions on the operator function hold the key to the
problems above, and that there is a fascinating — and not widely rec-
ognized—theory of differential operators on C* -algebras associated with
the spectral operator functions.

Recall that if X and 2) are Banach spaces a function / : 3) -» 2) on a
subset 5) of X is Frechet differentiable if for each T in 5) there is a
bounded linear operator dfT in !B (X, Z))—the differential — such that

limllSir1 (/(T+S)-/(T)-d/T(S)) = 0.

If dfT depends continuously on T we say that / is continuously Frechet
differentiable. Standard references are [13] and [19].

Let now [K be the separable, infinite-dimensional Hilbert space, and
denote by ®(?Oa the set of self-adjoint operators T on 3-f with spectra
in /, where / is some interval (open or closed, bounded or unbounded -
we shall need all possibilities). We say that a function / in C(J) is
operator differentiable if the operator function
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/: £CH)7
sa - S(3O given by T - /(T)

is Frechet differentiable. If the operator function is continuously Frechet
differentiable we say that / is continuously operator differentiable. For
reasons that will become clear later (Theorem 2.7) we shall denote by
COP (7) the class (actually the Banach *-algebra) of operator differentiable
functions on /. Although the differential operator dfT is by definition in
•B(£CK) s a , S(5C)) (and actually in SCSCJOJ if/ is real) we shall
tacitly extend it to an operator in S(B(?0) by standard complex-
ification.

Remark 1.1. Since every separable C* -algebra 21 can be faithfully
represented on 'K, the definition of operator differentiability implies that
the operator function T->/(T) from2lga into 21 is Frechet differentiable
with a differential in !B(2i). Conversely, if/satisfies this condition for
every separable C*-algebra, then/ is actually Frechet differentiable on
any C*-algebra, in particular on !B(9O, because the existence and
continuity of the differential only involves a separable family of
elements.

Remark 1.2. Evidently the definition of operator differentiability is
patterned after Lowner's definition of operator monotone function [20]
and the later theory by Bendat and Sherman [5] and Davis [12] of
operator convex functions. The differential is implicit in Lowner's
treatment, and explicitly used in the version of operator monotonicity
and convexity given in [16]. There are some striking differences though:
To verify that a function is operator monotone or convex it suffices to
check this on all finite-dimensional algebras Mn. Moreover, the resulting
class of functions is highly restricted, see e.g. [16]. By contrast, operator
differentiability is a truly infinite-dimensional phenomenon, and the
class of (continuously) operator differentiable functions is pleasantly
large, cf. Theorem 3.2.

Remark 1.3. Since most of the classical Banach spaces are complex
or have natural complexifications, the concept of Frechet differenti-
ability is usually absorbed in the theory of functions of (one or several)
complex variables, cf. [19]. Thus, if we define a function / in C(Q),
Q C C , to be operator differentiable on B ( J C ) n in the obvious way
(although the definition may not be very convincing, since the linear
structure of *B (3-Qn is fragile), then necessarily / must be holomorphic
inQ.

Presumably the set BOO^ of self-adjoint operators on Hilbert space
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is the most important real Banach space whose complexification, S(IK),
is radically different from the original space. This may explain why the
theory of operator differentiability — defined for functions of a real
variable — has little connection with analytic function theory; even
though !B(IK) is a complex Banach algebra. Going one step further, the
author would maintain that C*-algebra theory is basically a real theory—
concerning the ordered vector spaces 21 sa —whereas the truly complex
operator algebras are the non self-adjoint operator algebras.

The contents of this paper is an expanded version of a lecture delivered
at the Yamanakoko Conference in January 1998 in honour of S. Sakai

§ 2o Necessary Conditions

Proposition 20l(Widom [33]). /// in C(/) is operator differentiable
then f belongs to Cl(T).

Proof. Restricting if necessary to a smaller interval we may assume
that / is-bounded. Put 21 = Cfr(7), and let T= id (regarded as a
multiplication operator) and S = 1. By assumption there is a bounded,
linear operator dfid : 21 -» 21 such that

/(id + £l) = /Gd)+d/[d(£l)+£Ref

where RE -* 0 as £ -> 0. Since /(T) = /o T for every T in C&(/)sa, this
shows that / is differentiable on / with

Q.E.D.

Proposition 2.2. If f ^ CQP(/), and S, T are commuting elements in

Proof. We may assume that S and T are elements in a unital,
commutative C* -algebra 21 = CQO. Thus, /(T) GO = /(TOO) for every x
in X, so that /(T) = /o T. By assumption we have a differential dfT in
S(a) such that

/(T+eS) GO -/(T) Oc)+ed/T(S) GO+e/?eGO,
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where Re -* 0 in 21 as e -> 0. Since/ is differentiable by Proposition 2.1 it
follows that

as desired. Q.E.D.

Proposition 2.3. ///, 0 <E C^p(7), ffteH /0 e C^O), with

Proof. As in highschool we write

(<7(T+£S)-<7(T))

as desired. Q.E.D.

Remark 2.4. Note that even though /# = #/, the formula in
Proposition 2.3 for the differential d(fg)T has a non-commutative form.
However, the identification d(Jg}T (S) = d(gf)T (S) gives us the follow-
ing commutator equation

In particular, taking ^ = id, we see that

Remark 2.5. It follows from Proposition 2.3 that CQP(/) is an algebra
of functions, and actually a * -algebra since (for S = S*)

We also see that if /e Cl
op(f) and ge C^p(/), such that g(D c /,

C^(/) with

The proof of the chain rule is a straightforward computation, valid for
composition of Frechet differentiable functions in general, cf. [13, 3.14].
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Theorem 2M* Each function f in C^CO is continuously operator
differentiate, and the norm of the differential is bounded on compact
subsets of I.

Proof. We first show that for fixed S the function T-»d/T(S) is
continuous. For this, take a C* -algebra 21 (e.g. S(5£)) and form the
C*-algebra *B= 21 ® £°° of bounded sequences from 21, together with its
closed *-subalgebra <BC = 21 ® c of convergent sequences.

If (Tn) is a sequence in2lga converging to Tw in2lsa, put T = (Tn) in
(OBfcXa and identify S with the constant sequence (S). Since / is operator
differentiable on (<BC)L there is a differential operator dfT. It is easy to
verify — using sequences (Sw) with a single non-zero term — that dfT has
the form (d/T), where each element in the sequence is the differential of
/on a» at T^Thus,

(d/rn(S)) = d/T(S) e 21 0 c,

which shows that d/Tn(S) -» d/Tco(S).
If T-* d/T was not continuous (from2lsa into 05(21)) we could find a

sequence ( TB ) converging to TTO in 21 sa, and £>0 such that
\\dfToo — dfT\\ > 6 for all n. There is then a sequence (Sn) in 2tsa with
HSJr= 1, such that

for all w. Define elements S, R and J?n in !Bsa by S = (Sfc), R = (Tj, and

(/?n)fc - T^ for 1 < k < n, (Rn\ = Tk for n < k,

Evidently, then, Rn-^ R inside 05^, so by the first part of the proof

dfRn(S) ^ dfR(S\
However,

Hd4(S)-d&(S)|| = sup || d/(^(S,)-d/Too(S,)||
k

= sup || dfT.(Sj-dfT (S,)|| > £,
A; *

a contradiction.
If / is compact, set

r = sup{||d/T|||Tea/
8a}.

There is then a sequence (Tn) —necessarily bounded — such that I|d/T|| -
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7. Regarding (TB) as an element T of 05^ we see that d/T = (d/T|i), whence

7 = lim||d/TJ| = ||d/T|| < oo.
Q.E.D.

The next result have appeared before in weaker forms, for example
as Proposition 3.4 in [16] and as Theorem 2.1 in [17].

Theorem 2.7. If f ^ C^C/), and if t - * A ( f ) is a Cl -curve from [0,1]
into S(JC)» then

= j;
Proof. It is easy to verify, cf. Remark 2.5, that the composed map

*->/G4(0) is Frechet differentiable with differential d&(0G4'(0) -
identifying BCK) with the algebra S(E, S(JC)). We subdivide the unit
interval, 0 = ^ < t2 < • • • < tn = 1, and write

n-l

where R(t^) -> 0 as ^! — f f c ->0. Since the function f-^d^flCA'CO) is
continuous by Theorem 2.6, we obtain the difference /G4(l))— /G4(0))
as the limit of a Riemann sum, and the assertion follows. Q.E.D.

Corollary 2.8. If f ^ C]^(J) for some compact interval /, and A, B e

where
r = sup{||d/T||

Proo/. Withyl(0 = «B+ (1-0-4 we have

by Theorem 2.7, and the inequality follows. Q.E.D.
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Proposition 2.9. Let I be a compact interval, and for each f in CQP(/)
define

11/11, = II/IL+ sup{||d/T|| I TGE sew)7,.}.

Then C^C/) is a Banach space in d-norm.

Proof. If (/„) e Cop (/), and /„->/ in d-norm, then /e C(/). In fact,
/<E C^C/X because II/1L < \\f\\d, cf. Proposition 2.2. For fixed elements S,
Tin 2(JC)L and 0 < £ < 1 define Dt in S(B(W) s a , SCK)) as

A - lim d/W(1_OT+,s

Then the function t -> Z), is continuous as a uniform limit of continuous
functions, cf. Theorem 2.6. By Theorem 2.7 we have

whence in the limit

It follows that

so by Lebesgue's theorem / is operator diff erentiable at T with dfT = DQ ,
i.e./ec^p(/). Q.E.D.

Proposition 2,10. // {fx \ x e X] is a family of functions in COP(/),
depending continuously on the parameter x in a compact Hausdorff space X,
and if the function x -> dfx belongs to C(X, 23(!B(2{))), then for each Borel
measure ^ on X we have that f fxdy(x) e CiP(7) with

Proof. The existence of / = J/xd/z(x) in Cl(ft and of D
in the algebra C(S (?£)«, B(2(JC))) is assured by our assumptions. To
prove that / is operator differentiable take T in B ( !K)sa and S in S ( JK)
and compute
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as 6 -> 0, by Lebesgue's dominated convergence theorem. Q.E.D.

Corollary 2.11. // /e CoP([a, 6]) and g<=C([-6, e]), tfien /or the
convolution product we have fx g GE CQP( [a + 6, b — e] )

Proposition 2.12. For each compact interval I in R the C°°-functions
in C* (/) are dense in C,L(/) with respect to the d-norm.

Proof. If I = [a, 6] and /in CQP(/) are given, together with 6 > 0, we
may as well assume that/EE Cop([<2 — 6, 6 + 6]), replacing otherwise / by
/o$, where 0 is an affine transformation of [a — 6, 6 + 6] onto [a, 6].
Because evidently /o 0 <= C^CCa-e, 6 + 6]), and ||(/o0) |/-/||d->0 as
6-^0.

Choose a positive C°° -function g with support in [—6, 6] and
integral 1. By Corollary 2.11 the convolution product fXg belongs to
cipO).

As 6-*0 the functions g form an approximate unit for L1 ( E).
Consequently ||/X0-/|L-*0, and \ \ d ( f X g ) T - d f T \ \ - + Q for each T in
SCJC)^- But that, as we have seen before, implies that \\fXg—f\\d-+Q.
Indeed, if IKfXgJ— f\\d> £ for some sequence (^n) , where supp
(#„) c: [-(5n, 5B] for each n, and 5n -> 0, then || dtfxgj^-df^ II > £ for
some sequence ( Tn ) — necessarily bounded — in 3(3<)sa. Passing to
B(j{) 0^°°, and noting that / is still operator differentiable we let
T = (Tn) in ( S(W) 0 O7

sa and have

II d(fXgn)T-dfT \\= sup || d(fXgn}T-dfT || > e,

in contradiction with our previous result. Thus, \\fXgn— /||rf-> 0, as
desired. Q.E.D.
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§ 30 Sufficient Conditions

For any interval /, let C£(7) denote the space of functions f on I
representable in the form

for some finite, signed measure y. (depending on /) for which
./I00. I f I" d I 0 I (0 < oo. Note that if /e Z /CR) then p = f, so that the
condition ( * ) means that / has moments of n'th order. Evidently,

CjSO) C Cn(7)

for each n. In the converse direction we have the following:

Proposition 3.1. // / is a closed interval and /EE Cn+1(J) such that
/(w"1"1) GE L2(/), £/ign / e C£(/X 7n particular, if I is compact we have

c*+1co c cjjox

Proo/. If / is (semi-) bounded we can extend / to a function / in
CW + 1 (R) such that ?(n+i) e L2(E). Replacing / with / we may assume
that/ = M.

We have

for 0 < k < n + \. Since /(n+1) e L2( M), it follows from the Plancherel
theorem thatjid)n+1? <E L2( R). But then (1+ | id I)"1 (id)n+1? e L'( 1),
whence (id)n? e L!( E), as desired. Q.E.D.

Theorem 3.2, (cf. [33], [17, 1.5] & [15, 2.8]) Each function f in
CJ-(E) is operator differentiate on K ; and iff(x) = /TL ettxdfi(t)9 then

for allS, Tin

/. As in [17] we use Dyson's formula (see e.g. [3]), to show that
the exponential function is operator differentiable with differential

d(exp)T(S) -
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Inserting this in the formula for / gives the desired result by Proposition
2.10. Q.E.D.

Corollary 3.3. If f ^ C^(E) such that f e Ll( E), then for any T in

\\dfT\\ < \\f\\i*

Proof. We have p. = /, and it follows from the formula in Theorem
3.2 that

\\dfT\\ <. \\S\\f\t\d\n (0 = IIS||||?||.
Q.E.D.

Remark 3.4. Combining Proposition 3.1 and Theorem 3.2 it follows
that C2(/) C COP (/) for every compact interval /. However, the estimate
in Corollary 3.3 depends crucially on the choice of the extension of the
function from / to E, cf. Remark 3.13. The relevance of the class C1

F( E)
was pointed out by Widom in one of the earliest references to the class
Cop(E), [33] (whose first edition is from 1984).

Remark 3.5. The estimate \\dfT\\ <\\ /' II l in Corollary 3.3 can often
be improved. But we see from Proposition 2.2 that \\dfT\\ > II/'(T)||, so
that this number is a lower bound. The class 2)j of operator
differentiable functions / on ]0, «>[, for which \\dfT\\ = II/'(T)||
(= ll/' I sp(T)IL) is studied in [6], [7], and [8]. It is surprisingly large,
and includes the operator monotone functions, and the holomorphic
functions with positive Taylor coefficients (such as monomials and
exponential functions), cf. [8]. However, the function f(f) = ta does not
belong to 1)l if 1 < a < J%. Counterexamples occur already with 2x2
matrices, cf . [6, Example 2.A] .

Remark 3.6. Although every operator differentiable function is
continuously operator differentiable, cf. Theorem 2.6, the variation of the
differential dfT is not necessarily uniform in the variable T. However, an
estimate of the form

\\dfT-dfs\\ <rllT-S||

is obtainable if /<= C2
F ( E ) (with 7 = f\t\2d\y\ (0). The straight-

forward computation is left to the reader. The second differential is
treated in [13], and studied in some detail for operator differentiable
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functions in [15] and [4], where convexity considerations makes it
essential See also [32] and [8] .

Theorem 3B70 Let 6 be the generator of a strongly continuous, one-
parameter family at, t e E, of "-automorphisms of a C* -algebra 21. Then
/(T) e D(5) for every T in £)(5)sa and every operator differentiate
function f on an interval containing sp(T), and

= dfT(f(W.
In particular,

< \\dfT\\ \\6(T)\\.

Proof. We know that at = exp(£<5), so that

2i|iimr1(a,(T)-T) e 21}.

If T £ 3X<5)Sa and / is operator differentiable we therefore have a
continuous curve s-*A(s) from T to a,(T) given by A(s) = as

Since T £ ^(5) this curve is actually differentiable with ̂ 4'(
tas,((5(T)). By Theorem 2.8 this implies that

Consequently /(T) e S)(5), and

<S(/(T)) = lim r10P(at(

= limj;1 dfast^ast(6(Wds = d/T(5(T)).

Q.E.D.

Corollary 3.8. // /e Cop (/) and T (E 3(^)7
sa, f/ien /or every S m

we have

iy(T)f S] - d/T([Tf S]) = [T, d/T(S)].

In particular,

Proo/. The first equality sign follows by taking <5(T) = [T, S]
(breaking if necessary S into real and imaginary parts). The second
follows from ( * ) in Remark 2.4. Q.E.D.



OPERATOR DIFFERENTIABLE FUNCTIONS 151

Remark 3.9. Theorem 3.7 is actually valid even if 5 is only a densely
defined, closed * -derivation of a. The argument goes as follows: First
show that S(/(T)) = d/T(5(T))f whenever /G CF( R) The proof can be
found in [29, 3.3.6] and uses the formula from Theorem 3.2, coupled
with the fact that eiT e 2) (5) whenever T e 2)(5)sa. After that one uses
Proposition 2.11 to approximate an arbitrary function from CQP(/) with
functions in CF( E) I /. As another application of this approach we have
the following:

Proposition 3.10. If f ^ C^(7) and Te S(^)7
sa, then for all A, B

and S in 23 (IK), where A and B commute with T, we have

dfT(ASB) = A d/T(S)5.

Proof. If /Ei CJ-(R)» then from the formula in Theorem 3.2 we see
that dfT is an average of operators of the form

S-*eixTSeiyT.

Each of these is a module operator over the commutant of T, and
therefore so is dfT.

In the general case we may assume that / is compact. There is then a
sequence (/;,) in C°°(7) converging to / in d-norm. By Proposition 3.1
these functions are in C^(7). Since dfnT-*dfT for every T, the desired
formula follows. Q.E.D.

Proposition 3.11. ///eC^C/) and g e C^C/) and /?, T are com-
muting operators in ®([K)sa and 3 (2O4» respectively, then

\.dfR,dgT~\ =0 in S(S(JC)).

Proo/ Assume first that /e CJ-(R) with /(j) = fe^dytt). Then by
Theorem 3.2 and Proposition 3.10 we have for each S in S(M) that

The general case follows by approximating / in d-norm with CF-
functions on any compact subinterval of / containing sp(T). Q.E.D.
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Proposition 3.12. C^p(/) * Cl(fi.

Proof. For 0 < a < 1 (think a = y) consider the function

/„(*) = \x\ (log(l-logUI)ra

on the interval /= [ — e~\ e~l~\. Clearly /e Cl(f), the only point in
dispute being x = 0 where ^'(0) = 0. However, Mclntosh constructs in
[21, Theorem 4] a generator 6 for an automorphism group at = exp(£d),
together with an element T in 25 (<5)sa, such that /fl(T) £ 2) (5). It
follows from Theorem 3.7 that fa & CQP(/). By translation and scaling,
the statement C'CO £ C^CO holds for any interval. Q.E.D.

Remark 3.13. In view of the preceding results one may naturally
wonder whether every operator differentiable function on an interval / is
the restriction of a function from CJ-(M). Especially so since by
Propositions 2.12 & 3.1 the space CjlCO is dense in C^CO for the d-norm
for every compact interval /.

There is at least one pitfall in the extension problem which should
be mentioned: If /e Cl

op(f) for some compact interval /, then the trivial
extension — setting / to zero outside /—may not produce an element in
C|(R)» even though/ has (other) extensions in C£(R)- For a specific
example take /GO = (1 — z2)+. On [ — 1 , 1] the function is C°°, hence
operator differentiable (because it has a C°° -extension with compact
support on K). However, as defined, the function/ does not belong to

. By calculation

?(0 = 4£~3 sin t-4t~2 cos t,

so that / e L'CR). However, (id) 7 £ Z/(M) because/' £ C0(R).

Perturbations 3.14. If {at\t& M} is a strongly continuous one
parameter group of automorphisms of a C* -algebra 21, and 6 denotes the
closed, densely defined derivation of 21 for which at = exp(£<5), then,
since for every / in COP we have

whence dfatm = atodfToa,t, it follows that the function t~^dfa^ is
differentiable. The differential quotient at zero is the (possibly
unbounded) operator on 2) (5) given by
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= <5(d/T(S))-d/T(<5(S)).

If /e C£(/) (or, more generally /<E C2
P) this implies that if T

, then a perturbation of dfT in the direction 5(T) is computable as

In particular, if <5G4) = DR, -A] for some R in i 21, then we find (again
when/G C£(/)) that

§ 4. Special Cases

The Lowner Kernel 4.1. For an interval / in E we define for each /
in C'CD its Lowner kernel fm in C(/2) by

if ,*y

/'GO if * = ;y
From this we obtain for each finite set Ulf . . . , AB} in / an n x « matrix L,
where Lf;- = /[1](Af, Ay). These matrices were used by K. Lowner in [20]
to show that / is operator monotone (increasing) precisely if each
matrix L is positive (definite). The reason for this becomes transparent
when L is seen as a differential, cf. [17, Theorem 3.2]. Thus, if
T = T* e MM and T is diagonal with eigenvalues Ti{ = Af-f 1 < i < n, then
for every S in Mn we have

In other words, d/T(S) is the Schur (or Hadamard) product between S
and the Lowner matrix L.

An infinite-dimensional analogue of this matrix calculation was
given by Widom in [33] (and found again in [17, 3.5]): If JC = L*(/) for
some Borel measure # on the bounded interval /, and if T = id (regarded
as a multiplication operator), then for each Hilbert-Schmidt operator
S = Sfc, where k denotes the kernel in L^(/2) determining S, we get
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for / in COP (/), i.e. d/T(S) is the Hilbert-Schmidt operator with
(pointwise) product kernel / C1]/c. Note that even though the above result
was only established for/ in CJ-CO. it does apply to any function / in
C^CO, and it will describe the action of the differential (restricted to the
class of Hilbert-Schmidt operators) when /e COP(/). The reference [33]
contains a succinct commentary by Peller on the ramifications of this
approach to operator differentiability.

The Square Root 4,2. For elementary functions the differential can
sometimes be found as a solution to an operator equation. Thus, if
nthr(0 = tl/n for n in N , and similarly nthp(0 = tn, the fact that
nthp o nthr = id gives the following formula, (cf. Remark 2.5).

S - d(nthp)Ti/n (d(nthr)T (S))

= J T(/c~1)/nd(nthr)T(S)T("~/c)/n

k= 1

for S in £ (IK) and T invertible in £ ( JO+ (i.e. sp(T) C]0, <*> [). Thus for
S = S* the element d(nthr)T (S) is the unique self-adjoint solution to the
operator equation

V1 y(*-l)/nyy(n-*)/n _ Q

k = 1

In particular, with n = 2 (and renaming sqr(0 = t l / 2 ) we see that
d(sqr)T (S) is the unique self-adjoint solution to the operator equation

Tl/2X+XT1/2 = S.

This equation was studied in [23], and by a result due to VanDaele it
follows that

d(sqr)T (S) = |

The Logarithm 4.3. The fact that exp o log = id on ] 0, oo [ gives the
formula

S = d(exp)logT(d(log))T(S))

for every invertible T in ®( IK) + . Inserting the expression for the
differential of exp, cf. the proof of Theorem 3.2, we see that for S = S*
the differential d(log)T (S) is the solution to the integral equation
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(*) TsXTl~sds = S.

In order to find an explicit formula for the differential of log we
note that since the function is operator monotone on ] 0, °° [ it must have
an integral representation of extremal functions; and a few experiments
show that, in fact,

108(0 =

It follows that

d(log)T(S) = J C s l + TT'SCsl + TT'ds.

The integral equation (*) is also studied in [18, § 2], where other
formulas for the solution, akin to VanDaele's in 4.2, are presented.

Operator Monotone Functions 4.4. Both the logarithm (in the
translated form /GO = log (! + #)) and all the root functions are operator
monotone on the (closed) positive half-axis. The estimates for com-
mutators obtained from Corollary 3.6, using the operator norm of the
differential, will therefore take the form

cf. Remark 3.5. However, the root functions are operator monotone on
R+, but have a vertical tangent at 0, so this formula is of little help near
zero. In [22, Lemma 2.1] and again in [24, Lemma 6.2] a much improved
estimate, also discovered by Davidson, is given. A simple proof,
presented in [25] , shows that

for every T > 0 and S with || S ||< 1. Although the argument is only
given for root functions, it holds for every operator monotone function /
on E+, because each such is also subadditive.

The constant -r- in the estimate above is not optimal, cf . [24, Remark~
6.5], the current record for the square root function being 2 / t f ~ 1. 128.
If S is unitary, the constant may be taken equal to 1, and this is
probably also true for all other operators.
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