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Harmonic Function Spaces of
Probability Measures on Fusion Algebras

By

Tomohiro HAYASHI*

Abstract

In this note, we study harmonic function spaces of probability measures on fusion algebras of
C*-tensor categories and show that almost ergodicity is equivalent to ergodicity for amenable fusion
algebras, which generalizes a result due to S. Popa for probability measures associated to subfactors.

§ 0. Introduction

Nowadays fusion algebras play an important role in the index theory of
subfactors. Roughly speaking, fusion algebras are a certain kind of discrete
hypergroups with dimension functions. An important class of examples is
provided by bimodules as follows. Let A be a IIi -factor and ^ be a category
consisting of A-A bimodules with finite index. We assume that # is closed
under direct sum, irreducible decomposition, conjugation and unitary equiva-
lence, and denote by 5 the set of all unitary equivalence classes of irreducible
bimodules. Then the free vector space C[*S] over S becomes a fusion algebra,
where multiplication is defined by A -relative tensor product. The quantum
dimension provides a dimension function on S (see [11], [19]).

In [12], F. Hiai and M. Izumi considered random walks on fusion algebras
and extended concepts of "amenability" and "ergodicity" to abstract fusion
algebras. These notions were originally introduced by S. Popa for subfactors
in order to classify them. He showed that amenable, ergodic (i.e., strongly
amenable) subfactors have a generating property and hence they are classified
by their standard invariants. The importance of these two notions can be seen
also by Popa's recent announcement that standard invariant is complete for
amenable subfactors ([30]).

Let N ci M be an extremal inclusion of Hi -factors with finite index.
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Consider the lattice of finite dimensional C* -algebras {M/ HM/}^- where

• • • d M_2 d M_i = N d MQ = M d MI d MI d • • • d MOO

is a Jones tower and a tunnel sequence. In [26] and [31] S. Popa proved the
folio wings:
(1) The center of N' fl M^ is either atomic or diffuse (completely non-atomic).
(2) The von Neumann algebra (\Jk>l M'_k HM^)" is always a factor.
(3) If N a M has an amenable graph, almost ergodicity implies ergodicity, or
equivalently, the center of Nf D M^ is either trivial or infinite dimensional.

These facts are translated in terms of fusion algebras as follows. Let €![/$*] be
the fusion algebra generated by jyL2(M)N and ju = dNL2(M)N be the canonical
probability measure on S (see Section 1 for the definition of SNL2(M)N)- Then
the above facts imply the following statements respectively:
(1) The left (or right) //-harmonic function space is either atomic or diffuse.
(2) The (//,//) -harmonic function space is trivial.
(3) If (C[S\ is amenable, the left (or right) //-harmonic function space is either
trivial or infinite dimensional.

In this paper, we will generalize these results to arbitrary probability measures
on fusion algebras of C* -tensor categories (in particular, on fusion algebras of
bimodules). The proof is simpler than Popa's original one even if we restrict
our arguments to the subf actor case.

The author is grateful to Professor Shigeru Yamagami and Professor
Fumio Hiai for fruitful discussions and suggestions on the present subject. He
also would like to thank the referee for careful reading.

§1. Basic Terminologies

In this paper, we will freely use the notations given in [10] (C* -tensor
categories, Frobenius duality, minimal traces, quantum dimensions, etc.). We
also use the notations and the results in [12]. A tensor category consisting of
N-N bimodules with finite index (N being a Hi -factor) has a C*-tensor category
structure in our sense (see [36] for the proof). It should be remarked that
in studying fusion algebras associated with C* -tensor categories, C* -tensor
categories may be assumed to be strict, thanks to the coherence theorem. (Any
C*-tensor category is isomorphic to a strict one. In particular, their fusion
algebras are isomorphic, see [39], [40] and [10, Theorem 1.4].) Thus,
throughout this paper, C*-tensor categories are always strict, semisimple and
they have conjugation and Frobenius duality. For the basic terminologies on
subf actor and bimodule theory, we refer to [4], [6].

Definition (cf. [16]). Let C[*S] be a fusion algebra with the multiplicative
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unit / 6 S. Take two probability measures //, v on S and fix them. For a
function /e/00^),
(1) / is (ju, v)-harmonic if for s e S,

tES

(2) /is left ju-harmonic if it is (//,<5/)-harmonic.
(3) /is right /Li-harmonic if it is (<J/,//)-harmonic.

The vector space consisting of all (//, v)-harmonic functions is a closed subspace
of /°°(5'), which is referred to as the (ju,v)-harmonic function space. The same
is true for the left or right harmonic function spaces.

Notations.
(I) Let ^ be a C*-tensor category and C[5] be the associated fusion algebra.
For each X,Y e Object(#), we write

IT - JT (g) r,

^1 = Hom(F,JT),

^ J = dim
^ Y

seS

(2) For a von Neumann algebra M, we denote its center by Z(M).

§2. The Relation between Harmonic Functions and Elements in

Let ^ be a C* -tensor category and C[S] be the associated fusion algebra
with the unit / e S. Take and fix a symmetric, generating (equivalently, non-
degenerate) probability measure JJL on S such that / e support(yu). By using JLL,
we can associate a von Neumann algebra Aao(X) and a Hilbert space Jifoo to an
object X in ^ as defined in [10] (see also [9]). For convenience, A^(I] is often
denoted by A^. Since the ergodicity of JLL is not assumed, Aao(X) may not be
a factor. We summarize some properties of Aao(X) and Xao proved in [10].
(1) The von Neumann algebra AQO(X) has a canonical tracial state
?x(= T400(A r))J which is constructed from minimal traces and the unique tracial
state on the AFD Hi -factor R. (Sometimes we omit the symbol "X",

)" and denote a trace simply by i if no confusion occurs.)
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(2) The Hilbert space (XY)^ is an A^X^A^Y*) bimodule.
(3) EDd((XY)aoAn(Y.})=Aao(X).
(4) The inclusion

v4oo (X) c ^oo (XY) c ^

is standard with the Jones projection given by
(5) There exists a one to one correspondence between the left //-harmonic
function space and the center of A^(X) such that

seS

where .x e Z^o^X)) (the center of A00(X)) and / is a left //-harmonic func-
tion. ("£"' means the trace-preserving conditional expectation.)
(6)

where the left hand side is a relative tensor product with respect to the canonical
trace explained in (1).

For each n e M, define von Neumann algebras Bn and Bs
n (s e S) by

^ \xn...x\X

zn...z\X

®

and

Sn...diY*

xn...x\X

y n . . - y i X \

zn...ziX

z,weSn

e ® I *

s

e ©
y,SeS"
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Embedding maps Bn —> Bn+\ are defined in the same way as the definition of
An —> An+\ in [10, Section 3]. The minimal trace and the unique tracial state
on R induce a tracial state on Bn which is compatible with the embeddings.
Then the following statements can be easily checked:
(1) Bn — ®SESB

s
n via the Frobenius reciprocity.

(2) Bs
n ~ R if s e support(//" * dx) U support^" * <$r*) and otherwise, Bn must

be {0}.
(3) For each xeZ(B00), there exists a unique left //-harmonic function such
that

Conversely, for each left //-harmonic function /, we can find xeZ(Ba

satisfying the above equality.
(4) Let

Fn=
X E S n , S E S p:xn-x\ X^s

where p runs through the set of coisometries whose initial spaces are mutually
orthogonal. Then Fn = Fm for any n,m e N. Thus we can define F = Fn.
(5) FBnF ^ An(X) and (/ - F)Bn(I - F) ~ AH(Y*).
(6) Take a left //-harmonic function/. Let xeZ(B00), y e Z(A^(X)} and
z E Z(Aao(Y*)) be elements corresponding to/. Then, under the identification
of (5), we have xF = y and x(I — F] = z.
(7) F

By the above consideration, we get the following proposition.

Proposition 2.1. Let X e Object (#) 0/7^ ^6Z(^4oo). Consider p as an
element of the right action of A^ on X^. Then we can find a unique element
px e Z(A00(X)) such that px ^ = ^p for £ e X^. Moreover, p and px corre-
spond to the same left ^-harmonic function, i.e., there exists a left ^-harmonic
function f such that

s<=S seS

Remark.
(1) In the above construction, we see that the correspondence

Z(A00(X}) 3x i-> / (a left //-harmonic function)

^yeZ(Aao(Y))

is a * -isomorphism of von Neumann algebras.
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(2) Under the natural identification L2(AQO(X)) <-» (XX ^^ we have
JA^(X}PJA^(X] = Pxx* for each peZ(AOQ), where JAoo(x} is a modular
conjugation.

Corollary 2.2. Let f, g be left u-harmonic functions and p,qeZ(A00) be
elements corresponding to f, g respectively. Then for X e Object (#), we have

r(pqx) = Hm
n^C° S.tES

Proof. Thanks to the previous proposition, we have

T(pqx] = Y

= lim V f(s)g(t)r(lA'-lA',(x)\
n — > oo * •*

s.teS

whereas

E E
p:x^s p':sX-*t

showing the assertion. D

§3. Some General Properties of Harmonic Function Spaces

In this section, we will show some properties of harmonic function spaces.
The tensor category # is always assumed to be finitely generated.

Proposition 3.1. Let X be an object in (6. If XX* generates the category
#, then the inclusion A^ a A00(X) is connected, i.e.,

Proof. Take a projection p E Z(Aao) H Z ( A ^ ( X ) ) . Let / be the left //-
harmonic function corresponding to p. i.e.,

seS

for n > 0. Then we get
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By repeating this argument, we can prove

Because the left /z-harmonic function corresponding JA^xx'Y^P-fA^xx'Y) is
/ (here we use Proposition 2.1), we have

= EAo(p) =

SES

for any n. This implies that /(/) = f ( s ) for any s e S such that s ^ (XX*)2n

for some n. Since XX* is a generator, /must be a constant function and hence
p is a scalar. D

Theorem 3.2. Assume that the tensor category %> is finitely generated.
Then the left fi-harmonic function space is either atomic or diffuse.

Proof. Take X e Object (#) such that XX* is a generator. By the remark
after Proposition 2.1, we have only to show that Z(Aao(X)) is either atomic or
diffuse.

First we will show that the probabilistic index ([24]) of Aao(X) c A^(XX*)
is equal to d ( X ) 2 . The proof goes by the same line of that of Pimsner-Popa

inequality: Let e — -r( — ̂ £x&x e Aao(XX*). Then the inclusion
d(X)

A* c A^X) d A^XX*)

is standard with the Jones projection e (but these algebras are not factors in
general). Take a positive element xeAao(XX*). Thanks to a property of
basic extension ([14]), the *-algebra

is weakly dense in Aao(XX*). Thus, for the proof of the inequality E

> - 2 x> we may assume that there exist a\,...,an,b\,...,bnE A^(X] such
d(X)

that

x =

Let ^4 = {EA^CI^J}}^ j and P = diag(e,. . . ,e) (a diagonal matrix) be « x «
matrices. We also define a «xl matrix B by B = r(6i, . . . ,bn). By the
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complete positivity of EA^, the matrix A is positive and hence there exists a
matrix C e Matn(Aao) such that C*C = A. Then we compute

x = B*C*CPB = B*C*PCB

< B*C*CB = bE^(aa^bf

Therefore we get the desired inequality. Since EA (x) (e) = - 2 j ^
d(X)

abilistic index of Aao(X) a Aao(XX*) is equal to d(X) .
Now we will show the assertion. Let p E Z(A^(X}} and q e Z(Aao(XX*))

be the projections onto the atomic parts. If p(I — q) ^ 0, there exists a
minimal projection p' e Z(A^(X}p] and a sequence of mutually orthogonal
projections {#/}°^ in Z(AQO(XX*)) such that p'qt^Q. This contradicts the
fact that the probabilistic index of A^(X) c A^(XX*) is finite (see [2], [27]).
Indeed, since AaQ(X)pf is a factor, there exists a sequence of positive scalars

}Si sucn tnat EA^(X)(<li}pf = hp'. Then the inequality ^-^ < 1 holds.
On the other hand, we have ^p' — EAa2(X}(qi)p' ^ d(X}~2qip'. This implies
that A,i>d(X)~2 and contradicts the inequality ^2fli<l. Hence we get
p(I — q) = 0. In the same way, we also have q(I — JA00(xx*)pJAx(xx^) = 0 and
q(I—p) = 0. (Here we remark that JA^XX^P^A^XX*) i§ the projection onto
the atomic part of Z(AQO(XX*X)), and the probabilistic index of Aao(XX*) c
Aao(XX*X) is shown to be finite in the same way.) By the above consideration,
we get p = q. Moreover, by Proposition 3.1, Z(Aao(X)) nZ(Aao(XX'f)) = C.
Therefore, p is equal to 0 or /. D

Remark. Let N a M be a Ili-subfactor with finite index and denote its
Jones tower by

In [26] Popa proved that Z(N' H M^) fl Z(M' n M^} = C. (This corresponds
to Proposition 3.1.) By using this fact, he also proved that Z(A/ r /flM00) is
either atomic or diffuse. This implies that in the fusion algebra generated by
7vL2(M)jV, the SNJLI (M^ -harmonic function space is either atomic or diffuse.
Therefore, Theorem 3.2 is a generalization of his result.

Let v be a probability measure on 5 which satisfies the same assumption as
ju. Take a family of mutually orthogonal projections {e's}seS from the AFD
Hi -factor R such that

-
d(s] '
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where r is the unique tracial state on R. (This is "es" for v.) We also define a
projection e'x (x E Sn) by replacing // with v in the definition of ex and set

for x,yeS".
For each z , y e N U { 0 } ((/,j) / (0,0)), define von Neumann algebras

Aij(frv) and A f j ( ^ v ) (s E S) by

Z
x R y ®

xRy®2R'w.

For the initial algebra, we set AQ,Q(JLI,V) = AQ Q(JU,V) = (E (hence AQQ(/J., v) =
{0} if s 7^ /). Two embedding maps X/j(//, v) -^ Ai+\j(ju, v) and Aij(ju, v) — >
Aij+\(jLi, v) are defined as the definition of ^4W — > Xn+i. The tracial state T on
A i j ( / t , v ) is also defined by using minimal traces and the unique tracial state on
R in the same way as in the construction of the tracial state on A^. Then it is
easy to check the folio wings:

(1) Aij(fji,v) —®ses^ij(fav) v*a ^e Fr°benius reciprocity.
(2) Ajj(/ji,v) ^ R if se support(//7 * vj) and otherwise, A*j(fjL,v) must be {0}.
(3) The family {Aij^v)}^ forms commuting squares.
(4) For each x e Z(Aaoj(ju, v)), there exists a unique left //-harmonic function/
such that

seS

Conversely, for each left //-harmonic function /, we can find x e
Z(Aaoj(^ v)) satisfying the above equality.
(5) For each y e Z(A^00(ju, v)), there exists a unique right v-harmonic function
g such that

SES

Conversely, for each right v-harmonic function g, we can find y E
Z(Ai^(/t, v)) satisfying the above equality.
(6) For each z e Z(Aao^00(ju, v)), there exists a unique (//, v)-harmonic function
h such that

SES

Conversely, for each (//, v)-harmonic function /z, we can find z e
Z(v400)00(//, v)) satisfying the above equality.
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Proposition 3.3. For each /e/°°(S r), f is (n,v)-harmonic if and only if f
is both left ju- and right v-harmonic.

Proof. If /is (//, v) -harmonic, then by (6) there exists x e Z(A(X)^ao(u, v))
such that the above equality holds. Since EAao (^v)(

x) e Z(^4ooj(//, v)), we can
apply (4) and show that /is left //-harmonic. By the same reason, /is also right
v-harmonic. The reverse implication is obvious. Q

Proposition 3.4. The (u, u)-harmonic function space consists of only con-
stant functions.

Proof. We have only to prove that Z(AOD^00(u,u)) = C, thanks to (6).
Take x e Z(A00^ao(ju,u}). Then there exists a unique (^, /^-harmonic function/
such that

seS

By this equality, for each z ,y , we have

s,teS

Therefore,

This implies that \\EAa:)j^^(x) — ̂ ^^(^Mlli does not depend on the choice
of j. Since the value in consideration tends to 0 as j — » oo, we see that jc E
^oo, o(/*,^)- In tne same way, we can also show that x E AQ^OO(^JU). Com-
bining these, we get X6^0,o(^,/") = C, i.e., Z(A00^ao (//,//)) = C. D

(1) If C [5] is a group algebra, statements in Proposition 3.3 and Proposition
3.4 are already known (see [16]).
(2) If ju = 6xx* for some X e Object (#), Proposition 3.4 is reduced to [31,
Theorem 4.10, a)].

Corolary 3.5. If C[5] is commutative, JLI is always ergodic.

Proof. Since <C[S1 is commutative, the (^,//)-harmonicity is equivalent to
the left //2-harmonicity. Hence by applying Proposition 3.4, we see that ju2 is
ergodic. Then // is also ergodic. D
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Remark. In [12] F. Hiai and M. Izumi introduced the concept of weak
amenability for fusion algebras by requiring the existence of an invariant mean,
and this is equivalent to the existence of a generating, symmetric and ergodic
probability measure (see [10] [9]). Hence the above corollary implies that C[S]
is weakly amenable if it is commutative. Although we consider only fusion
algebras which come from tensor categories, this fact remains valid in general
(see [5]).

The next corollary is useful in Section 4.

Corollary 3.6. For any left ^-harmonic functions f and g, we have

lim lim T /(^(;XW*/(0 = f (1)9(1)-

Proof. Define x e Z(A<x>t0(fJi, jn)) and ^ e Z(AaoJ(^/j)) (j = 0, 1, 2, . . .)
by

seS

Take an ultrafilter co. Because {>>y}y is a norm-bounded sequence, it converges
weakly to some element in Z(^l00]00(yu,^)) = C as j —> co, whereas

seS

Thus { y j } j converges weakly to g(I) as j —» co. Since co is arbitrary, we also
have yj —> g(I) weakly as j —> oo. This implies

lim lim Y^ f(s)g(t)jun(s)6s * juk(t) = lim t(xyk)
k—>oo «—>oo ^—•' A:^oo

= /(/)»(/). n

§4. The Equivalence between Almost Ergodicity and Ergodicity
In Amenable Fusion Algebras

Let N^M be an extremal IIi-subfactor of finite index and amenable
graph with the Jones tower denoted by N <= M c M\ c • • • c M^. In [31,
Corollary 6.4], Popa proved that "the center Z(JV /flM00) is either trivial or
infinite dimensional" by using his characterization of amenability. Equi-
valently, under the assumption of amenability, if dimZ(A^ /nM00) < oo
(he called this condition almost ergodicity), then Z(A^ /nM00) must be one
dimensional (ergodicity). This fact implies that the harmonic function space of
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dNL2(M)N is either trivial or infinite dimensional if the fusion algebra generated
by NL2(M}N is amenable. The aim of this section is to extend this fact to
arbitrary probability measures.

Let ^ be a C*-tensor category and <C[S\ be the associated fusion algebra.
Let ^ be a symmetric, generating probability measure on 5 such that support (//)
9 /. We assume that the left harmonic function space of ju is finite dimensional
and denote its dimension by «o- Then Z(ACO) is finite dimensional and we
denote a basis of Z(AQO) consisting of minimal projections by {P\,P2, • • • ,Pn0}-
For each pt, there exists a unique left //-harmonic function ff such that

SES

(Here we remark that r(pj) = r(EAo^(p?)) = ff(s) for any seS.) We also
assume that # is finitely generated.

Definition 4.1. For each X e Object (^), we define HQ x no matrices as
follows:

L(X}(iJ] = di

where d(-) denotes the quantum dimension (the square root of the minimal
index), [•] means Jones index, and "dim" is the coupling constant. Here we
recall that the Jones index [X] of an A-B bimodule X is given by

[X] = (dimAX).(dimXB).

Lemma 4.2. For each X e Object (^),

(1) L ( X ) ( i J ) = T(Pi P j } d ( X ) =

Proof. First we introduce "the commutant of traces" according to [35].
Let N be a II i -fact or with the unique tracial state r and N acts on a Hilbert
space H. By a general property of normal representations (see [Takesaki's
book]), there exist an index set J and a projection p e N such that

®#J
NH - NL2(N)®#(l ® - - - 0 1 0 p).
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Then N' can be represented by the right multiplication of elements in

diag(\, .. . , ! , / > ) • Mat#J(N) • diag(\, . . . , I,/?)

and hence the restriction of i ® Tr (Tr means the usual trace on Mat#j(<C)) on
this algebra defines a trace on Nf. We call this trace the commutant of T and
denote it by ir . Then we have

for any projection /' e N'.
Now we will show the equality (1). Take Y e Object (#) and consider the

left module ^^^-(^7*)^. Let e = ^(7)-1
£*y£r and T' = (rAgoplY (Aaopi is a

Ill-factor). Since 6^.(7^*)oo = PiL2(A00}, we get T'(e/>/) = 1. On the other
hand, we compute

i) = d(Y}~2>z(Pi).

Thanks to the factoriality of A00(YY*)opph a trace on it is unique up to scalar
multiples. Hence we get

A YV*
T(Pi)

 A-YY

on A^(YY*}op
Pi.

Let Y = / © X. In the canonical way, X^ and X^ can be regarded as
submodules of (YY*)^. Let /be a projection from (77*)^ onto X^. By the
property of left dimensions, we have

Here we remark that ^QO(r)/^DO(r) is a projection from (77*)^ onto X£ and
we can consider JAao(Y}fJA00(Y}A^(YY:")JAoo(Y)fJA00(Y) = Aao(X*}. Under this
identification, it is shown that

and

Hence we get

d(x}

showing (1). The relation (2) is a direct consequence of (1).
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Lemma 4.3. For each X, Y e Object^), the following statements hold:
(1) M(X© Y) = M(X) + M(Y).
(2) M(XY) = M(X)M(Y).
(3) M(X*) = 'M(X).
(4) A(XY}(iJ}>(A(X)A(Y))(iJ).
(5) A(X)(iJ)>
(6) A(X)(iJ) =
(7) R(X)(iJ)=L(X*)(j,i).

Proof. Thanks to the additivity and the multiplicativity of quantum di-
mensions ([19], [11]), (1) and (2) are easily shown by using the isomorphism

The equality (3) is also trivial from the conjugation-invariance of quantum
dimensions.

For the proof of (4), we use the following well-known (and obvious) fact:
Let N be a Hi -factor and N%N, jv^v be two N-N bimodules with finite index.
Then we have the inequality

r v /TN v 1 1/2 ̂  r v 1^/2 i r v l ^ / 2[NXN ® N^Nl < (N%N\ + [NIK] •

Finally, (5), (6) and (7) are immediate from definitions. D

Lemma 4.4. For each X e Object (#) such that XX* is a generator, the
following inequality holds:

\\LXX.\\ < \\M(XX*)\\ < \ \ A ( X X * } \ \ < d ( X } 2

where LXX* is the left regular representation of XX* on 12(S) (see the definition
of amenability of fusion algebras in [10, Definition 2.1]), i.e.,

teS

Proof. First we will show that M(XX*) is an irreducible matrix. For
each /, set

fii = [J ' PiPJXX*r * 0 ^ some n e N}.

If Qi ^ {1, . . . ,fto}, PQ, = !L,JEQ, Pj ^s not e(lua^ to I- On the other hand, it is
easy to see that pQi is an element in ^\ne^Z(AaQ((XX*}n} = (C (by Proposition
3.1). This is a contradiction. Hence we have Q, • = {1, . . . ,«o}- If PtPj ^
* 0, then pt(XX^pj / 0 and M(XX*)n(iJ) ^ 0. This implies that M(XX*)
is irreducible. (Here we remark that by the same reason, A(XX*), L(XX*) and
R(XX*) are also irreducible.)

By the irreducibility and self-adjointness, we can apply the Perron-
Frobenius theorem to get
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\\M(XX*)\\= \l
—

and

")(!, I)}17"

A1/"

In the rest of this section, we always assume that ^ is amenable.

Corollary 4.5. For each X e Object (#), we have

A(X] =M(X).

Proof. Let Y be an object such that YY* is a generator. Then by the
previous lemma, we have

\\LYY.\\<\\M(YY*}\\<\\A(YY*)\\<d(Y)2.

Moreover, thanks to the amenability, ||Lrr*|| = d(Y}2 holds. Hence we get
||M(F7*)|| = ||J(rr*)||. By the Perron-Frobenius theorem, this equality and
Lemma 4.3 (5) imply that M(YY*) = A(YY*). This relation is equivalent to
the extremality of each bimodule AaDp,Pi(YY":)00pjA , i.e., the subfactor

is extremal. By this fact, we can show that the bimodule A p p^X^pj is also
°° •* ^CoPj

extremal for any object X. Indeed, for each X, there exists a generator YY*
such that X -< YY*. Then

showing that AxPlPi^ooPi A is also extremal.
•* A J^PJ

The extremality of Aa,PlP\^^PjA is equivalent to

whence we get M(X)(i,j) = A(X)(i,j) for any X.



246 TOMOHIRO HAYASHI

Lemma 4.6. The number

~ L ( X ) ( i J )

does not depend on the choice of X whenever L(X}(i,j) =£ 0 and satisfies

%ij • &j,k = %i,ki U~ij = %j,i'

Proof. Thanks to the extremality of Aa,p,PiX00pjA , for each subbimodule

A^HA^ r< AaoPlPiXcopjAoopj,

we have

By this property and the fact that X& and FOO are submodule of (X © Y)^ for
any X, Y e Object(^), we get the first assertion. The second assertion follows
from

and the extremality of these bimodules. The last assertion is a consequence of
the property

dimAaopH = dimH^pi. D

Lemma 4,1.
(I) The family of matrices {^(^)}^eobject(^) nas a common Perron-Frobenius
eigenvector

(yt > 0) such that

(2) For each X e Object (#),

\\A(X}\\=d(X).

Proof. Take a generator XQ = XX* and fix it. Let y = (yl , . . . , yno)
(jt > 05 \\y\\2 = 1) ^e tne Perron-Frobenius eigenvector of A(X$). For any ir-
reducible object 5-, there exists n e IN such that s ^ X f i . Let F = T0

W

= X£.) Then we get
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while we have

d(s) + d ( Y ) = \\d(s)y + d(Y)y\\2 = \\(A(s) + A(Y))y\\2

<\\A(S}\\ + \\A(Y)\\<d(S) + d(Y]

where the last inequality follows from \\A(Z}\\2 = \\A(ZZ*)\\ and \\A(ZZ*)\\ <
d(Z)2 (see Lemma 4.2 (2)). Hence we get

= \\A(Y)\\=d(Y),

The last equality implies that there exists a scalar a > 0 such that aA(s)y
A(Y}y. Then we have

and

These imply that A(s)y = d(s)y and we get (1). The equality (2) is a conse-
quence of (1) and \\A(X}\\ <d(X}. Q

We are now ready to prove the following theorem.

Theorem 4.8. Assume that m is amenable. Let u be a symmetric
generating probability measure on S such that I e support(//). Then the left
fji-harmonic function space is either trivial or infinite dimensional.

Proof. We have only to prove that, if the left //-harmonic function space is
finite dimensional, it is one-dimensional. We continue to use the notations as
above. Recall that pieZ(A00) corresponds to a left //-harmonic function ft.
For each probability measure v on S, define an HQ x n$ matrix Lv by

SES '

We remark that L(s)(i,j] actually depends on //. By Lemma 4.2, we get

s,t,u<=S

= T^Jl™ E //0//(«K(0«5. * v(«).
T(Pi)n °° t,uES

This expression, together with the relation LVA = (Lv)
k, enables us to show that
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= T3JI™ E
'̂ ~*

as k -* oo. (Here we use Corollary 3.6.) For each probability measure v on
S, define

>v(s)

Then we compute

seS

Thus A^(i,j) tends to j t ( p j ) as fc — > oo. On the other hand, by the defi-
nition of azj, we have

and hence

This implies that the common Perron-Frobenius eigenvector y obtained in
Lemma 4.7 is proportional to (rQ^)1/2, . . . , TQ^J1/2). Therefore, for each

1/2

1/2
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and we have T(PJ) = r(pf). This is equivalent to the relation _/]•(/) = ff(s*).
Since s is arbitrary, each f{ must be a constant function, showing that // is
ergodic. D

As a direct application, we get the following result due to S. Popa ([31,
Corollary 6.4]).

Corollary 4.9. Let N c M be a II\-subfactor with finite index and ame-
nable graph. If we denote the associated Jones tower by

N d M d M\ d • • • d MOO ,

then the center of N' fl M^ is either trivial or infinite dimensional.

Proof. Let X — NL2(M)N and ^ be a C*-tensor category generated by X.
(Thus objects of # are Af-JV bimodules.) The associated fusion algebra is
described by C[S]. The amenability of the principal graph means that # is
amenable ([12, Proposition 2.4 (4)]). Hence we can apply the above theorem
to show that the harmonic function space of 6x is either trivial or infinite
dimensional. D

Remark.
(1) In the case that ju = dxx* for some X e Object(#) (in particular, the
subfactor case), we can work with Ocneanu's path-space construction of bi-
modules to get the result in Theorem 4.8: We just repeat our arguments by
replacing as follows:

(XX*)nY

(XX*]nY

(XX*)nZ~

(2) If we remove the assumption of amenability, Theorem 4.8 does not hold.
In fact, there exists a counter example constructed by U. Haagerup. See [12,
Example 8.11].

In the group case, Theorem 4.8 holds without the assumption of ame-
nability. More strongly, in [15] it is shown that the Poisson boundary is either
trivial or diffuse. Here we can present a direct proof of this fact by using our
methods as follows.

Proposition 4.10. Let G be a countable discrete group (G may not be
amenable] with the (algebraic] group algebra C[G]. Let ^ be a symmetric,
generating probability measure on G such that I e support(/^), where I E G is a
unit. Then the left u-harmonic function space is either trivial or diffuse.
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Proof. Let a : G — > Aut(R) (R is an AFD II i -factor) be an outer action.
Then {RL2(R)y.gR}geG generates a C*-tensor category and the associated fusion
algebra is <£[(/]. Assume that the left ^-harmonic function space is atomic. It
suffices to show that this space is trivial. We use the notations in this section.
Remark that the left //-harmonic function space may be infinite-dimensional
in this case. Since d(g) = I for any g e G, we get Aao(g) = A^. From this,
for each g e G, there exists / e {1, . . . ,HO} such that pf = p{. Hence we have
f\(g) e {ft(I)}i for any g E G. Consider the set of all values of /j and denote it
by Q. Then the inclusion Q c {/•(/)},- holds. On the other hand, since Q is
countable, we can write Q = {an}™=l. Consequently,

By this inequality and the positivity of /b f{ attains its maximum. Hence there
exists go e G such that f\(go) = \ \ f i \ \ n . Then for each integer n, we have

gt=G

geG

This implies that f\(g) — f\(go) if fln *dg0(g) ^ 0- Since n is arbitrary and ju
is symmetric, generating and //(/) > 0, /j must be a constant function. By the
same argument, all ft must be constant, proving the triviality of the left //-
harmonic function space. D

Final remark. Although we consider fusion algebras coming from C*-
tensor categories (in particular, bimodules), there exist some fusion algebras
which do not admit a C* -tensor category structure (in particular, they cannot
be realized by bimodules). Fusion algebras of this kind are dealt with in [34],
for example. Our methods established in this paper heavily depend on the
properties of a C* -tensor category and we do not know whether the present
results remain true or not for fusion algebras which do not come from C* -tensor
categories.
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