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Schur Products and Module Maps on

By

Takashi ITOH* and Masaru NAGISA**

Abstract

We describe the isometry which induces a Schur product on B(jtf') and characterize Schur
product maps as completely bounded module maps from K(Jtf') to B(j^}.

§ 1. Introduction

Let Jf be a complex Hilbert space, B(JV ) the set of all bounded linear
operators on J>f , and K(Jti?) the set of all compact operators on Jf . The
notion of Schur products on B(jjf) has been studied in several approaches. In
this paper, we study an abstract characterization of the Schur products, and the
module map property of associated Schur product maps.

For an orthonormal basis 3 = {£/}, we define an isometry V = Vs from JtF
to 2tf ®jtf by the relation

^• = 6® & for all be 3.

Using this isometry, we define the Schur product x OE y of x, y e B(J^) relative
to E as follows:

x QS y = F*(JC ® y) V e B(Jff).

In this setting, V satisfies two conditions:
(1) F*(x® 1)F= F*(l®;c)F for all xeB(jV),
(2) F*(. (x) 1)F is a projection of norm one from B(J^) to a *-subalgebra in
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One of the aims of this paper is to find a necessary and sufficient condition
for an isometry V from 3F to J^ ® J#*, to induce a Schur product on B(J^)
relative to some S. We show, in the next section, that if V satisfies the above
two conditions, then V is of the form Vs for some E and thus induces the Schur
product relative to E [Theorem 5].

By using the Schur product, we can introduce, for each a e B(j^), the
Schur product map Sa from B(jjf) to B(3?} by Sa(x) = a o x. One of the most
important properties of Schur product maps is the module property. For
example, let Mn(<C) be the n x n complex matrices and Dn the diagonal matrices
in MW(C). If the Schur product on Mn((C) is defined for the standard basis as
usual, then the Schur product map Sa is a Dw-bimodule map. Moreover if (p is
a Dn-bimodule map from Mn(<C) to MW(C), then there exists a e Mn(C) such
that (p = Sa.

Given an integer n (I < n < oo) and a linear map (p from B(3tf) to
we define a linear map q>n from Mn(B(3F}} to Mn(B(jtf}) by pn ([*,;/]) = [
The map (p is defined to be completely bounded if

We recall that (p is said to be ^-positive if (pn is positive, and completely
positive if ^-positive for all n. It was Haagerup who proved that the norm
\\Sa\\ for Sa coincides with the completely bounded norm H-S^il^ for Sa on
MW(C) [7]. Let D be a maximal abelian *-subalgebra of B(J^). Davidson
and Power have shown that the (bounded) D-bimodule maps on B(j^) are
completely bounded [3]. Moreover Blecher and Smith have proved that the set
of all normal D-bimodule maps on B(j^) can be identified with the set of all D-
bimodule maps from K(jf) to B(jjf), denoted by CBD(K(^},B(^}), and that
CBD(K(3?},B(3?}} is isometrically isomorphic to the extended (or weak*)-
Haagerup tensor product D®ehD [2]. When we take the Schur product on
B(J^) relative to some orthonormal basis E and denote by D the maximal
abelian *-subalgebra of B(Jtf) diagonal to E, it is clear that the Schur product
maps are normal D-bimodule maps and are completely bounded.

The other aim of this paper is to determine the position of the Schur
product maps [Sa\a e B(Jtf)} in CBD(K(^},B(^}}. In other words, it is to
solve the following problem: under what condition (p E CBD(K(^),B(^)) can
be written as (p — Sa for some a e B(3?}! Denoting by P the normal projection
of norm one from B(3tf) to D, we prove that if cp and P — (p are 2-positive, then
there exists a positive contraction aeB(JJf) such that (p = Sa [Theorem 13].
Moreover we show that {Sa a E B(jtf},a = a*} is isometrically (completely)
order isomorphic to a self-ajoint subspace of D ®eh D, which is characterized by
using the element corresponding to P [Theorem 14].
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§2. Characterization of Schur Product

For c^T/EJ 'f , we define a rank 1 operator co^n e B(J^) by

for a11 C e J f .

Let S = {£/]*' e /} be a complete orthonormal system of Jf . Given * e
the sum

is weakly convergent to x. We call {xjj}tjel3 Xy = (*£/|£/) a matrix repre-
sentation of x by 31. By Ds(j^f), we denote the weakly closed *-subalgebra of

generated by

Then the following easily follows:

Lemma 1. Ds(jjf) is a maximal abelian *-subalgebra of B(jjf ), that is, if M
is an abelian *-subalgebra of B(jjf) containing Ds(^}} then M = D^(

Lemma 2. For x,y e B(3F], the operator x 03 y has the following matrix
representation

Moreover, we have

\\xos y\\ < \\x\\ \\y\\ and xosy

Proof. The following estimation is easy:

\\xosy\\<.\\V*\\\\X®y\\\\V\\<,\\x\\

It is sufficient to show that

Indeed, we have

t). n
Let B be a closed *-subalgebra of B(jt?) and P a linear map from B(3? ) to

B. We call P a projection of norm one onto B if
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P\B = idB and ||P|| = 1.

It is known that a projection P of norm one onto B is automatically completely
positive and satisfies the bimodule map property:

P(axb) = aP(x)b for all a,b e B and x e B(3f).

We define a map Ps from B(3tf) to B(jf) by the relation

Ps(x) = x °s I = / os x. xe B(Jt?).

Then PS is the unique normal projection of norm one onto DS(^} satisfying
the relation

where dy is Kronecker's symbol.

Proposition 3. Let D be a maximal abelian *-subalgebra of B(J^). If
there is a normal projection P of norm one onto D, then there exists a complete
orthonormal system E such that D = Ds(^} and P = P*.

Proof. Since B(Jtf} is atomic and P is normal, there exists a minimal
projection e in D ([12, Proposition 1.1]). By the maximality of D, e is also
minimal in B(jjf), that is, dim^Jf = 1. Using Zorn's lemma, we can choose a
maximal family {et\i e /} of orthogonal projections with dime/Jf = 1 for each
/ e /. If we set S = {£/|z e /} with

then we obtain D = DE and P = Ps. D

For another complete orthonormal system 0 = {^|z e /} in Jf7 , we have a
Schur product xo& y of x, y e B(j^) with the following matrix representation
relative to 0:

((x o0 ytylfa) = (xjjlfaKyjjlfa) for all i,j e I.

Let U be the unitary operator on 2tf satisfying

and 7i the *-isomorphism of #(jf ) defined by

n(x) = U*xU for all x e

Lemma 4. For x, y e 6(3?), we have the following relation:

n(xo0 y) = n(x) osn(y).

In particular, n is a ^-isomorphism from D0(3?} onto
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Proof. For £,-, ̂  e S, we have

and

(n(x) osnWjlt,) = (KWtjM

By this calculation, we have

n(x o0 y) — n(x) QS n(y).

By the identity

and

we can get

D

If we have no confusion, we denote x o j; instead of x o^ j;.
Let V be an isometry from 3? to Jf ® ffl . For a complete orthonormal

system {^|/e/}, we set aj^ = (K&|£y- ® &). Then F and F* have the fol-
lowing form:

j,kel iel

We need the following identities later:

We call F an S-isometry on J«f if F is an isometry from Jf to 3tf ® J^ and
the map P^ defined by the relation

Pv(x) = F*(jc(x)l)F= F*(l®x)F (xeB(^)}

becomes a projection of norm one onto some *-subalgebra Av of B(^f}. A
typical example of an S-isometry F on Jf is an isometry which defines a Schur
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product on B(J^), and then

PV = PE, AV=DE

for some complete orthonormal system 3.
Our main result in this section is the following:

Theorem 5. If V is an S-isometry on ffl, then there exists a complete
orthonormal system E = {£/ i e /} such that

Vtt = & ® & (i e /), Pv = PE, Ay = D3.

To prove this theorem, we need some preparation.

Lemma 6. Let V be an isometry from 3? to ffl ® $? and e a projection on
ffl satisfying

e= V*(e®l)V= V*(\®e)V.

Then Ve becomes an isometry from effl to effl ® e$P .

Proof. It suffices to show that Ve = (e ® e) Ve. Since V is an isometry,
we have

(Ve-(e®\}Ve}*(Ve-(e® \}Ve) = eV*((l - e) (x) l)Ve

= eV*Ve-eV*(e®l)Ve = Q.

Hence Ve = (e® \)Ve. Similarly we have Ve = (1 ®e)Ve. Hence

Ve= (e®\)Ve= (e ® 1)(1 ® e)Ve = (e®e)Ve. D

This statement says that, for an S-isometry V on Jf7, a projection e e A v i
automatically central as follows: for any xeAy,

xe = Pv(x)e =(e+(l- e)) V*(x ® \}Ve

(l-e)V*((l-e)®(l-e)}(x®\}(e®e)Ve

is

= exe.

Corollary 7. Let E = {£j\i e /} be a complete orthonormal system. If V
is an S-isometry on ffl with Ay — DS, then there exist complex numbers a/
(i e /) such that

for all i e I3 that is,

Pv(x) = Io0X for all x e

where 0 = {ar-£z- i e /}.
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Lemma 8. If dim J-f > I, then there is no S-isometry V on ^ such that

Proof. Suppose that Ay = d^>. In this case Py has the form <p(')l#>
for some normal state cp on B(3F). Let #?(•) = IC/M'&l^i) where {£/} is a
complete orthonormal system of Jf, A/ > 0 and X^A/ = 1. Let / = {y'|A/ > 0}
and n = \J\. Set

By p(x) = F*( l®x)F = K*( l®Jc)K, we have

«jA* = E «/%«S = ^"4"

If s$J, ks = 0 hence a^5 = 0 and 0^ = 0. Therefore, we can restrict the sum
over j and over k in (*) to j e J and k e J.

(Case 1) « = 1: Then,

where / consists of a single index k and a^ is a complex number of modulus 1
for each i. Since dim^f > 1, this contradicts with

(Case 2) 1 < « < oo: The following vectors are mutually orthogonal with
norm \f^ for any fixed k and span (Cn:

So they are a basis of <C". Let / e /, / ^ ^. The vectors

(«/,),.e/ (;e/)

are orthogonal to the above basis due to (*). Hence a/7 = 0 for / e /, ye /,
/ ^ k, I E J. Therefore

(a(,-)/6/ = (0 , . . . ,a^ , . . - ,0) (ye/) .

Thus these vectors are all proportional to a vector

and are linearly dependent for n > 1. On the other hand, using the same
argument as for (<x,Jik)ieJ (j e J) and (*), the vectors (a/ t)iej (j e /) are shown
to be mutually orthogonal with norm \/J^ and hence are linearly independent.
This is a contradiction.
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(Case 3) n = oo: Consider the Hilbert space ^2(M) with the orthonormal
system {£j\j e J} (which can be identified as the subspace of #£ spanned by
{tj\j e /}). Define vt e JJ(^2(N)) by

JEJ

Then we have

and hence v*Vj = vtv* and Vj\£j = \vf\£j =
By the polar decomposition Vj = w/|t;/|, we obtain a unitary Uj commuting

with Vi\. This means that, for any k,leJ with A& ¥^ A/,

because

\Vi\Si) =

Hence al
kl = 0 for all z e / if A& 7^ A/ by definition of vt. Due to ^ A/ = 1, the

number of / with A/ = A^ for a given k is finite. Therefore, the vectors

has non-zero elements only for a finite number of j (satisfying A/ = A^) and has a
finite basis. This contradicts with the fact that they are mutually orthogonal
vectors of norm \/A^ ̂  0 and are of an infinite number due to |/| = n = oo. Q

Now we can prove Theorem 5.

Proof. Since Py is a normal projection of norm one onto Ay (c.f. [12]),
Ay has a minimal projection p. By Lemma 6, Vp is also an S-isometry on
pffl. Applying Lemma 8 to Vp, we get that p is 1-dimensional. If we
continue this argument to (1 - p)Av(l — p), we can show that Ay is Ds for
some complete orthonormal system E. The remaining part follows from
Corollary 7.

§3o Characterization of Sehur Product Maps

Throughout this section we restrict to separable Hilbert spaces for nota-
tional simplicity, although the results remain true with any index sets replacing
the integers. Let /°° be the set of all bounded sequences with the norm \\a\\ ̂  =
sup|aw|, /* the set of all absolutely summable sequences with 11/11! =
Z)£Li \f(n)\ and co the set of all sequences tend to 0 with the same norm in *f°°.
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We fix a complete orthonormal system S = {£>n\n = 1,2,.. .} of ffl in this
section, and use the notation ^°° instead of DS(£?}.

As in the usual operator space setting, zf°° (resp. /*) is the (standard) dual
operator space of tl (resp. c0), that is, Mn(f

l) = CB(cQ,Mn) and Mn(f°°) =
CB(fl,Mn) (c.f. [1], [5]). We consider the Haagerup tensor product to the
algebraic tensor product £l ® £l and denote its completion by £l 0/j^1, where

H I * = inf< I I L / l , - • - , / , ] I I

We recall the extended Haagerup tensor product which is the dual operator
space of /* ®h^1 - Given we / 0 0 ®eh /°°, if we identify u with the bilinear form,
then there exist {fl/}?^, {*,-}£i <= ^°° such that ||ESi«/<ll < oo, IIESi^^ll
<oo , and u(f,g) = '£™lai(f)bi(g) for f,g e /! (c.f. [6]). We denote u by
E/0/®*/- The extended Haagerup norm is also given by

ueh =
1/2 1/2

Let {et}^ be the canonical basis in zf°°. For x = [a,y] E B(jjf) we define
the bilinear form Ef/=i a(/e* ® ej-> which converges pointwisely in the following
sense:

oo

tl x fl a (f,g) ,-> Y^ «vf(et)a(ej) e «.

Moreover we have:

Lemma 9. Z)f/=i a(/^' ® ^/' belongs to /00®e/z^
00.

Proof. It is enough to show that Ef/=i a(/e/ ® ^/' e C^1 ®h^Y- F°r

[e i , . . . ,en] E MiiW(/°°), it is clear that \ \ [ e \ , . . . ,en]\\ = 1. By the definition of
the norm for [ / j , . . . ,fm] E M\,m(tl), we have

Then given EitLi fk® Qk^^1 ®h^1 > we obtain that
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X

/%i 0 ... 0

0 N^i 0 '=

: 0 '-. 0

|~#i 001

0i 0«)

9m(e\)

nThis implies that Y^j=i ^Jei ® eJ is i

We define the *-operation to x = £)£i at ® bt e t™ ®eh /°° by ;c* =
* and also introduce a positive cone (/°° ®e/z^°°)+ as

a/ e ^ > -

The multiplication for X)£i fl* ® ̂ '? Z^i 9 ® 4' 6 ^°° ®eh ^°° is defined by

(c.f. [2]).

Proposition 10. |T we introduce the multiplication on B(3?} defined by
Schur product, then the map

00

B(Jtf) 9 [oLff] h-> ̂  a,^/ ® ey e t" ®eh ^
'•J=l

Z5 faithful, ^-preserving, homomorphic and contractive, i.e.,
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Proof. It is easy to check that the map is faithful, *-preserving, and
homomorphic. The inequality has been already done in Lemma 9. D

Lemma 11. If a sequence xn = [a|y ] e B(3tf) converges to x = [azy]

weakly, then S/°y=i a/y ei ® ej converges to ]Cf/=i a(/^/ ® ej *n me

Proof. Let fk = ( f k ( l } J k ( 2 } , . . . } and ^ = (^(1),^(2),...) e ^!- It is
clear that /^ and ̂  are in /2. Then given Y^k=i fk ® ̂  6 ^ ®^1

5
 we have

oo

1,7=1 / \*=1

oo

k=l

Since {S/v=i a(T^/ ® ey} are uniformly bounded, it follows that the convergence
is valid. D

Lemma 12. If x = [a7y] e U(Jf ) w positive, then Y^Tj^i ai/'^" ® ^/' belongs to

Proof. Since jc = [a,y] > 0 in 5(^f ), there exists [^-] e 5(^f) such that

[«(/] = [ '̂] * t^-] - Let ̂  = E"i fa*. It follows that ^ e /2 and ELi t^^y]
converges to x strongly when n tends to oo. Hence we have by the previous
Lemma,

Theorem 13. L^r P Z>e ?/z^ normal projection of norm one from B(Jt?) onto
/°° flwrf 5 a 2-positive map from B(j^) to B(j^). IfP-S is 2-positive, then
there exists a positive contraction x e B(3tf) such that

S(a) =aox for all a

In particular, S is a completely positive ^-bimodule map.

Proof. For elements f/, £y in the fixed basis of Jf, we use the notation
e\j E B(j^} instead of the operator co^, that is,
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for any f e X.

Then we show that there exists a complex number x# such that

s(eij} = xaeij-

By the relation 0 < S(en) < P(eu) = en, there exists a positive real XH such that

S(eu) = xncn for all i.

Since the matrix

is positive, by the 2-positivity of S, we have

*«) S(eg)\ <(P(eii] P(eij)
ejf) S(ejj)J ~ \P(eJi) P(ejj)

that is,

*»eu S(e9)\ feu 0
0 <

So we have that there exists a complex number Xy such that

V(a..\ V - - / 3 - -\ y) — y ij'

If we define an operator x by

£ fr\r £ /•- -*&uCj lor c/E JT ,

then we show that x becomes a positive contraction.
For any positive integer «, £)". A:=I ^ is positive. So we have

and
2

For a vector // = X)^=i a^^ w^ \\1\\ ~ ^ we ^ave

2 / / \2

Since

=1.
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we have

INII2 =

that is, XEB(J^) and \\x\\ < 1. Moreover, the relation

n \ ( ( n

I = 15 1 ̂  ejk

implies that x > 0.
By the normality of P, S is also normal. So we can show that S(a) =

aox for all aeB(je). D

Let B(J^f)^ be the set of all positive contractions. For a pair of selfadjoint
elements x, y e /°° ®eh /°°, we write x > y when x — y e (zf00 ®eh /°°)+.

We define (/°° ®e
p
h /°°)+ - {;c e r° ®e^°° | 0 < x < ^i d ® */}- Let

CB^(K(J^),B(jf)) be the set of ^°°-bimodule completely bounded maps from
K(3V) to 5(Jf).

For qfeCB(K(j^),B(jf)), we define *-operation by <?* :(x) = K^*)* for

jc e A:(jf ). For a pair of selfadjoint maps <p, ^ e C^oo (A:(^f ), 5(^f )), we write
9? > \j/ when q> — \l/ is completely positive. We define

Now we can show the main theorem in this section.

Theorem 14. There exist affine isomorphisms among the following three
closed convex sets:

(i)
(2)

(3)

Proof. First, by Proposition 10, we have the map

nf 'i/z>\Jr -^ ["-. ]
Jj(JV Jj 9 [fty]

is affine and injective.
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Next, for J]£i *« ® *i e <f°° ®e/2 r°, we define the map < £Si ^ <g) 6£-> by

, 1=1
for jceA^Jf). Then /°° ®e/z/°° is isometric isomorphic to CB
B(Jtf)) by [2]. Moreover we have <£^i*i ®£i> =/*, so tne maP

i=\

is affine isomorphic.
Finally, for (peCP%«>(K(Jtf),B(tf)), there exists xeB(jV)f, such that

cp = sx. Therefore the first correspondence is surjective. We are done. D

Corollary 15. If x = [a//] e B(J^) is selfadjoint, then

\\x\\ = inf {A > 0 | -IP <SX<

= inf < A > 0 -i / ^ i ^
1=1 J

Remark I. If cp e CB^(K(^),B(jtf}) is selfadjoint, by [8], we have

IMI = IMU

Moreover since x e B(3tf) is positive if and only if Sx is positive if and only if
Sx is completely positive, we have for x — x*

\\SX\\ = ||&|U = mf{||S,|U \-Sy£Sx<Sy,y = y*e B(tf}}.

In the rest of this section, we discuss the relation between the 2-positive
map and the module map, which leads the crucial part to get the main theorem.
For the convenience of the reader, we show the next proposition, however it
might be well known.

Proposition 16. Let M be a von Neumann algebra with a cyclic vector and (p
an M-bimodule map from B(jjf) to B(jjf). If cp is positive, then (p is completely
positive.

Proof. Given any n x n positive operator [ay] e Mn(B(3?)}, and any
£ l 5 . . . , ^ e tf. Then there exist £ e JP and { b f } } c M (k = 1 , . . . , oo) such
that

lim 11^-^11=0 for / = ! , . . . , / i .
k—>oo
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Since YJij=\ "i au^j ls positive, we have

== lim
£—* 00

>o. n

Proposition 17. Let M be a von Neumann algebra of type I, P a normal
projection of norm one from B(3?} to M, and q> a 2-positive map of B(3tf) to

If P — (p is 2-positive, then <p is a normal MflM' — bimodule map.

Proof. Let q be a central projection in M. Since the positivity of P — cp
and the normality of P lead that (p is normal, it is enough to show that (p(xq) =
(p(x)q = q(p(x) for all x e B(j^}. By the module property of P, it is clear that
(p(qxq) e qB(^}q for all x e B ( t f ) .

Let {ej} and {fj} be minimal projections such that q = ^e^ I - q = Y^fj-
Choose the partial isometry Vy which has et as the initial projection and fj as
the final projection, then the 2 x 2-matrix

is positive.
Since P(VJI) — P(vjtq) = P(vjt)q = qP(vjt) = 0, we have

0 2 S | : M l((fi)}-[P(^ P(fj)] = [eo fj\'
Thus, for ^
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and

^,-)(i-^
Therefore we have that

This implies that Re(q>(vjj)(l - q)£\q?j) = 0. By the same argument, we also
have lm((p(vji)(l — q)£\qrj) = 0. Hence we have <p(vji) e (1 — q)B(3tf)q. Thus it
turns out q>(fjXei) e (1 - q)B(jff)q, moreover <p((l - #).*#) e (1 - q)B(jf)q. D

Remark 2. In Proposition 17, we cannot replace the assumption of the
2-positivity by the 1-positivity: indeed, let 9 be the map

Then 9 and P — 9 are positive, but $ is not an *f°°-bimodule map.
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