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Schur Products and Module Maps on B(#)

By

Takashi ITon* and Masaru NAGISA**

Abstract

We describe the isometry which induces a Schur product on B(s#°) and characterize Schur
product maps as completely bounded module maps from K(#) to B(#).

§1. Introduction

Let # be a complex Hilbert space, B(s#) the set of all bounded linear
operators on J#, and K(s#) the set of all compact operators on #. The
notion of Schur products on B(5#) has been studied in several approaches. In
this paper, we study an abstract characterization of the Schur products, and the
module map property of associated Schur product maps.

For an orthonormal basis = = {¢;}, we define an isometry V = Vz from #
to # ® # by the relation

VE=&6®E; for all ¢ € 5.

Using this isometry, we define the Schur product x oz y of x, y € B(#) relative
to £ as follows:

xozy=V*(x® y)V € B(#).

In this setting, V' satisfies two conditions:

1) V'x@)V=rV*(1®x)V for all xe B(#),

(2) V*(.® 1)V is a projection of norm one from B(#°) to a *-subalgebra in
B(#).
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One of the aims of this paper is to find a necessary and sufficient condition
for an isometry V from # to # ® #, to induce a Schur product on B(#)
relative to some =. We show, in the next section, that if V satisfies the above
two conditions, then V is of the form Vz for some = and thus induces the Schur
product relative to = [Theorem 5].

By using the Schur product, we can introduce, for each ae B(#), the
Schur product map S, from B(s#) to B(#) by S;(x) =aox. One of the most
important properties of Schur product maps is the module property. For
example, let M,(C) be the n x n complex matrices and D, the diagonal matrices
in M,(C). If the Schur product on M,(C) is defined for the standard basis as
usual, then the Schur product map S, is a D,-bimodule map. Moreover if ¢ is
a Dp-bimodule map from M,(C) to M,(C), then there exists a € M,(C) such
that ¢ = S,.

Given an integer n (1 <n < o) and a linear map ¢ from B(#) to B(#),
we define a linear map ¢, from M, (B(#)) to M,(B(#)) by ¢,([x;s]) = [o(xy)]-
The map ¢ is defined to be completely bounded if

ol = sup [, < co.
nelN

We recall that ¢ is said to be n-positive if ¢, is positive, and completely
positive if n-positive for all n. It was Haagerup who proved that the norm
ISz]| for S, coincides with the completely bounded norm ||S,||, for S, on
M,(C) [7]. Let D be a maximal abelian *-subalgebra of B(s#). Davidson
and Power have shown that the (bounded) D-bimodule maps on B(#) are
completely bounded [3]. Moreover Blecher and Smith have proved that the set
of all normal D-bimodule maps on B(s#) can be identified with the set of all D-
bimodule maps from K(#) to B(s#), denoted by CBp(K(#), B(#)), and that
CBp(K(s),B(s#)) is isometrically isomorphic to the extended (or weak*)-
Haagerup tensor product D ®,, D [2]. When we take the Schur product on
B(s#) relative to some orthonormal basis = and denote by D the maximal
abelian *-subalgebra of B(s#) diagonal to =, it is clear that the Schur product
maps are normal D-bimodule maps and are completely bounded.

The other aim of this paper is to determine the position of the Schur
product maps {S,|la € B(#)} in CBp(K(#),B(#)). In other words, it is to
solve the following problem: under what condition ¢ € CBp(K(5#), B(+#)) can
be written as ¢ = S, for some a € B(#)? Denoting by P the normal projection
of norm one from B(s#°) to D, we prove that if ¢ and P — ¢ are 2-positive, then
there exists a positive contraction a € B(#) such that ¢ =S, [Theorem 13].
Moreover we show that {S,|a € B(#),a =a*} is isometrically (completely)
order isomorphic to a self-ajoint subspace of D ®,, D, which is characterized by
using the element corresponding to P [Theorem 14].
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§2. Characterization of Schur Product
For &,77 € #, we define a rank 1 operator we , € B(s#) by
we, n(C) = (LIn)é, for all (e #.

Let = = {&]i e I} be a complete orthonormal system of #. Given x € B(#),
the sum

Z(Xfﬂfi)wé,.c,

i,jel

is weakly convergent to x. We call {x;},;.;, xj = (x¢;|¢;) a matrix repre-
sentation of x by =Z. By Dg(#), we denote the weakly closed *-subalgebra of
B(#) generated by

{o¢,1¢: € £}
Then the following easily follows:

Lemma 1. Dz(#) is a maximal abelian x-subalgebra of B(#), that is, if M
is an abelian x-subalgebra of B(#') containing Dz(H), then M = Dz(H).

Lemma 2. For x,y € B(s#), the operator xoz y has the following matrix
representation

{(xéj|éi)(yéjléi)}f,jel'
Moreover, we have
lxos yll <lIxlllIyll  and  xozy=yozx
Proof. The following estimation is easy:
[xoz yll < IVFIHIx@ Y VI < llx]| I ¥]l-
It is sufficient to show that
((x oz y)fjlfi) =((yoz x)fj|fi) = (xijff)(J/fﬂfi)-

Indeed, we have

((x o0z ¥)gl&) = (V* (x ® ¥)V¢1E:)
(x®»)VEIVe)
(x®@ )& ®EIE®E)
= (x&1€) (¥&l&))- O

Let B be a closed *-subalgebra of B(#°) and P a linear map from B(#) to
B. We call P a projection of norm one onto B if

Il
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Plp=idg  and I|IP|| =1.

It is known that a projection P of norm one onto B is automatically completely
positive and satisfies the bimodule map property:

P(axb) = aP(x)b for all a,be B and  xe B(s#).
We define a map Pz from B(#) to B(#°) by the relation
Ps(x) =x0s51=105x. x € B(#).

Then Pz is the unique normal projection of norm one onto Dz(#) satisfying
the relation
Pz(we,¢) = djwe, ¢,

where J; is Kronecker’s symbol.

Proposition 3. Let D be a maximal abelian *-subalgebra of B(s). If
there is a normal projection P of norm one onto D, then there exists a complete

orthonormal system Z such that D = Dg(#) and P = Psz.

Proof. Since B(s#) is atomic and P is normal, there exists a minimal
projection e in D ([12, Proposition 1.1]). By the maximality of D, e is also
minimal in B(5#), that is, dimes# = 1. Using Zorn’s lemma, we can choose a
maximal family {e;|i € I} of orthogonal projections with dime;# =1 for each
iel. If we set &= {&liel} with

eigi = i &l =1,
then we obtain D = Dz and P = Px. O

For another complete orthonormal system @ = {¢;|i € I} in &, we have a
Schur product xog y of x,y e B(#°) with the following matrix representation
relative to @:

((xo0 y)4)ld;) = (x4;l9:)(yg)l¢;)  for all i,jel.
Let U be the unitary operator on # satisfying
U¢ = ¢; iel,
and 7 the *-isomorphism of B(s#) defined by
n(x) = U*xU for all x € B(+#).
Lemma 4. For x,y e B(#), we have the following relation:
n(xog y) = n(x) oz n(y).

In particular, n is a x-isomorphism from Dg(H#) onto Dz(H).
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Proof For &,& € 5, we have

(r(x 00 )&j1E1) = ((x 00 ¥)4;16:)

= (x¢;|¢:) (ve;l8:),
and
(r(x) oz m(p)&;1&i) = (m(x)1EN) (R (¥)&5140)
= (xd;1¢,) (y4;|¢:)-
By this calculation, we have
n(x 0 y) = n(x) oz ().
By the identity
W¢,¢, OF We.¢, = Vg6 D44, 00 D4, = D44,
and
m(@g,4,) = @,
we can get
n(Dg(#)) = Dz(H). O

If we have no confusion, we denote xo y instead of xoz y.

Let V be an isometry from # to # ® #. For a complete orthonormal
system {&;|ie I}, we set rx]?"k = (V¢&ilé; ®&k). Then V and V™ have the fol-
lowing form:

=) a, E®E, VI(ERE) =) o &

Jj.kel iel

We need the following identities later:

(VI @ we, &) V) = Z of @b,

(v (wés & ®1) Véaléb Z(xt k(xs k

We call V an S-isometry on 4 if V is an isometry from # to # ® # and
the map Py defined by the relation

Pr(x)=V'x@ 1)V =V 1®x)V  (xeB(#))

becomes a projection of norm one onto some x-subalgebra Ay of B(#). A
typical example of an S-isometry V' on J# is an isometry which defines a Schur
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product on B(s#), and then
PV = P:‘, AV = D5

for some complete orthonormal system .=.
Our main result in this section is the following:

Theorem 5. If V is an S-isometry on #, then there exists a complete
orthonormal system = = {]i e I} such that

Véi=&®¢ (iel),  Py=Ps, Ay=Ds.
To prove this theorem, we need some preparation.

Lemma 6. Let V be an isometry from # to # ® # and e a projection on
H satisfying

e=V(e@DNV=Vr*(1®eV.
Then Ve becomes an isometry from e# to eH & eH.

Proof. 1t suffices to show that Ve = (e ® e)Ve. Since V is an isometry,
we have

(Ve—(e®1)Ve) (Ve— (e®1)Ve) =eV*(1—e)®1)Ve
—eV*Ve—eV*(e®1)Ve=0.
Hence Ve = (e ® 1)Ve. Similarly we have Ve = (1 ® ¢)Ve. Hence
Ve=(e@1)Ve=(e®@1)(l@e)Ve=(e®e)Ve. O

This statement says that, for an S-isometry ¥ on #, a projection e € Ay is
automatically central as follows: for any x e Ay,

xe=Py(x)e=(e+(l—e) V" (x®1)Ve
=elV*'x@)Ve+(1-e)V* (1 -e)® (1 —e))(x®1)(e®e)Ve
= exe.

Corollary 7. Let == {&;|lie I} be a complete orthonormal system. If V
is an S-isometry on # with Ay = Dg, then there exist complex numbers o;
(iel) such that

ol =1, Véi= (s ®¢&)
for all iel, that is,
Py(x)=Iogx  for all xe B(X),
where @ = {o;&;|i e I'}.
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Lemma 8. If dim s > 1, then there is no S-isometry V on # such that
Ay = Cly.

Proof. Suppose that Ay = Cly. In this case Py has the form ¢(-)ly
for some normal state ¢ on B(#). Let () =, 4(-&|&) where {&} is a
complete orthonormal system of #, 4; >0 and ) ,4; =1. Let J = {j|4; > 0}
and n=|J|. Set

Ve = Z o 1 (& ® &)
Iy

If s ¢ J, 2s = 0 hence a’ = 0 and «’, = 0. Therefore, we can restrict the sum
over j and over k in (%) to jeJ and ke J.
(Case 1) n=1: Then,

VE = ap (& ® &)

where J consists of a single index k and «f, is a complex number of modulus 1
for each i. Since dim s > 1, this contradicts with

(V'51|V'fz) = (fllfz) =0.

(Case 2) 1 <n < oo: The following vectors are mutually orthogonal with
norm +/7; for any fixed k and span C”:

(“{}c ieJ (jeJ).
So they are a basis of €". Let /eJ, [ # k. The vectors
@ies  Ued)

are orthogonal to the above basis due to (x). Hence aj =0 for ieJ, jeJ,
l#k, leJ. Therefore

(@ Dies=(0,...,00 4,...,0)  (jelJ).
Thus these vectors are all proportional to a vector
(5’7‘)[6] = (0’ ) 15 70)

and are linearly dependent for » > 1. On the other hand, using the same
argument as for (a}),., (jeJ) and (*), the vectors (a,{’i)iej (j € J) are shown
to be mutually orthogonal with norm +/4; and hence are linearly independent.
This is a contradiction.



260 TAKASHI ITOH AND MASARU NAGISA

(Case 3) n=co: Consider the Hilbert space #2(IN) with the orthonormal
system {{;|j e J} (which can be identified as the subspace of # spanned by
{&jeJ}). Define v; e B(¢*(N)) by

vl = Y ol 5 &

jeJ
Then we have
(U éjtu ék) jki - (U éj‘v ék)

and hence vjv; = vv; and |v;|& = [v}|& = /4.
By the polar decomposition v; = u;|v;|, we obtain a unitary »; commuting
with |v;]. This means that, for any k,/ e J with Ax # 4,

(vigl&r) = 0,

because

Vo) = wilvil&elé)) = (0igkl&) = el [ilE1) = V(i)

Hence a,i, =0 for all i e J if A # A; by definition of v;. Due to Y 4; =1, the
number of / with A, = A, for a given k is finite. Therefore, the vectors

(a,ij)jeJ (iel)

has non-zero elements only for a finite number of j (satisfying 4; = ;) and has a
finite basis. This contradicts with the fact that they are mutually orthogonal
vectors of norm /4x # 0 and are of an infinite number due to |J| =n=c0. []

Now we can prove Theorem 5.

Proof. Since Py is a normal projection of norm one onto Ay (c.f. [12]),
Ay has a minimal projection p. By Lemma 6, Vp is also an S-isometry on
p#. Applying Lemma 8 to Vp, we get that p is l-dimensional. If we
continue this argument to (1 — p)4y (1l — p), we can show that Ay is Dz for
some complete orthonormal system =. The remaining part follows from
Corollary 7.

§3. Characterization of Schur Product Maps

Throughout this section we restrict to separable Hilbert spaces for nota-
tional simplicity, although the results remain true with any index sets replacing
the integers. Let /% be the set of all bounded sequences with the norm ||a||, =
sup |a,|, ¢' the set of all absolutely summable sequences with |f||, =
S 1f(n)] and ¢ the set of all sequences tend to 0 with the same norm in .
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We fix a complete orthonormal system = = {£,|n =1,2,...} of &# in this
section, and use the notation /* instead of Dz (#).

As in the usual operator space setting, #* (resp. ') is the (standard) dual
operator space of /! (resp. o), that is, M,(¢') = CB(co, M,) and M,(¢*) =
CB(¢',M,) (cf. [1], [5]). We consider the Haagerup tensor product to the
algebraic tensor product /! ® ¢! and denote its completion by ¢! ®, ¢!, where

g1
lolly = i SN S| 5 | [ [o=D fi®gies @
i=1
gn

We recall the extended Haagerup tensor product which is the dual operator
space of /! ®,¢!. Given ue/® ®,,¢®, if we identify u with the bilinear form,
then there exist {a;};2;, {bi};o; = ¢% such that || Y2, aa]|| < oo, || D72, brbill
< oo, and u(f,g) = .7, ai(f)bi(g) for f,ges! (cf. [6]). We denote u by
>.;ai ®b;. The extended Haagerup norm is also given by

oy = inf{

Let {e;};°, be the canonical basis in /. For x = [o;] € B(#) we define
the bilinear form Z;ﬁ':l o;e; ® e, which converges pointwisely in the following
sense:

© 1/2 1/2

E a;a;

i=1

0

> bib;

i=1

uziai(@b,}.
i=1

0

£'xt s (f.9) Y af(ed(e) € C.

ij=1
Moreover we have:
Lemma 9. > "_, aje; ® ¢; belongs to £% @y t™.
Proof. 1t is enough to show that 37, aye; ® e (4 '®,¢")*. For

le1,-..,en) € My o(£*), it is clear that ||[e;,...,e,]|| =1. By the definition of
the norm for [f},...,f,,] € M1 m(¢!), we have

”[ | I ’fm]” = sup{H[ l(xkl)’ s ’fm(xk/)]“ |
[Xit] € Mu(co), [|[xu]ll <1,ne N}

= [|[lfi(er)s s filen)s - s fn(er)s s Srn(en)]l-

Then given Y/, f, ® gx € /' ®;, ¢!, we obtain that
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33 oy fuledanle)

k=1ij=1

< |Uiler)s- s filen)s- s fuler)s- - s Sn(en)]ll

[ g1(e1)
i [al'f};,lj=l 0 cee 0 ]
" g1(en)
0 [o‘ij]i,j:1 0
X
0 . 0 gm(€1)
. 0 0 [“ij];,ljzl_
_gm(en)_
g1
< Us - s Sl o] i
Im
This implies that Y7 oe; ® ¢; is in (¢! @,¢")". O

We define the x-operation to x=) .2 ai®b;€l® ®,u¢° by x*=
2. b ®a; and also introduce a positive cone (£/® ®,,/%)" as

{Zm@tl,-*efw o £® a,-e/w}.

i=1
The multiplication for 7, a; ®b;, .72, ¢ ® dj € /* ®,,/* is defined by

©
Z aicj ® b,dj

i,j=1

(c.f. [2)).

Proposition 10. If we introduce the multiplication on B(#) defined by
Schur product, then the map

o0
B(#) 3 [ag] = D ajei ® e el @t
i,j=1

is faithful, x-preserving, homomorphic and contractive, i.e.,

o0
e ®@e| <ol
=1

eh
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Proof. It is easy to check that the map is faithful, *-preserving, and
homomorphic. The inequality has been already done in Lemma 9. O

Lemma 11. If a sequence x,= [ocg')] € B(#) converges to x = [o]
weakly, —then 377 ocg’)ei ®ej converges to Y5 oei®e in  the
o(t® ®ut®, ' ®,¢1)—topology.

Proof. Let fi = (fi(1), £(2),...) and gi = (gx(1),gx(2),...) €', Tt is
clear that f, and g are in #>. Then given Y./", fi ® gr € /' ® ¢!, we have

<§: o(l(.j")ei ®e — i oje; @ ej) (ifk ® gk)
=1 =

ij=1
m o0 ( )
=33 Al (@ = 4)ge()
k=11ij=1

Since {37, oc,(;)e,- ® ¢} are uniformly bounded, it follows that the convergence
is valid. |

Lemma 12. If x = o] € B(#) is positive, then ) wje; ® e; belongs to
(/OO ®eh "/OO)+-

Proof. Since x = [o5] >0 in B(H#), there exists [f;] € B(#) such that
log] = [By1"[B;). Let b =372, Briei. 1t follows that by € £* and > ;_, BBy

converges to x strongly when n tends to co. Hence we have by the previous
Lemma,

Z wje; @ ej = lim Z Zmﬁkje,- ® e
Q=1 "m0 =1 k=1
= 1in302b; ®bi € (£° ®Rpt™)". O
T

Theorem 13. Let P be the normal projection of norm one from B(#) onto
% and S a 2-positive map from B(A#) to B(#). If P— S is 2-positive, then
there exists a positive contraction x € B(#°) such that

S(a)=aox  for all ae B(X).
In particular, S is a completely positive £*-bimodule map.

Proof. For elements &;, ¢; in the fixed basis of #, we use the notation
ej € B(#) instead of the operator we ¢, that is,



264 TAKASHI ITOH AND MASARU NAGISA

;¢ = (&|&)E; for any e #.
Then we show that there exists a complex number x; such that
S(ej) = xjjey;.
By the relation 0 < S(e;) < P(e;) = ey, there exists a positive real x; such that
S(eir) = xiieii for all i.

Since the matrix

(& o) e maiaion)

Gi €

is positive, by the 2-positivity of S, we have

S(ei) S(ey) P(ei) Pey)
OS(&W ﬂm>ﬁ<mw H%»’

0 < ( Xii€ii S(e,j)) < <€,’,‘ 0 )
Slei)  xjej 0 ¢

So we have that there exists a complex number x; such that

that is,

S(elj) = Xijj€jj-
If we define an operator x by

xg =Y x;&  for &edt,

then we show that x becomes a positive contraction.
For any positive integer 7, Z’; x—1 &k 1s positive. So we have

0< S(i e,k> < P(i: ejk) - ;;ejy,

Jik=1 Jrk=1

and
n 2 n
0<S D ex| <D e
Je=1 =1
For a vector 7 =Y/ _; &, with ||| = 1, we have

k=1

Since
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.S< 3 ejk> n
k=1

2 2

n

E Xjkou e

jo =1

. 2
> X

=1

<1

K

we have

lx7]|* = <1

Zx]kkafj

that is, x € B(#°) and ||x|| < 1. Moreover, the relation

z"‘: Xjk 00 = (i xjk%’k’?lﬂ) = <S< z”: ejk>’7|’7) =0

Jik=1 J.k=1 J k=1

k)

implies that x > 0.

By the normality of P, S is also normal. So we can show that S(a) =
aox for all ae B(H#). O

Let B(Jf)f be the set of all positive contractions. For a pair of selfadjoint
elements x,y € /° ®,,/®, we write x >y when x — y € (/*° ®,¢%)".

We define (¢ QL/°) ={xel® @u¢®|0<x< Y2 ei®e}. Let
CBs~ (K(#),B(#)) be the set of /*-bimodule completely bounded maps from
K(#) to B(K).

For ¢ € CB(K(#),B(#)), we define x-operation by ¢*(x) = ¢(x*)* for
x € K(#). For a pair of selfadjoint maps ¢, € CBs»(K(H#), B(#)), we write
¢ =y when ¢ — ¢ is completely positive. We define

CPf=(K(#),B(#)) = {p € CB,=(K(#),B(#))|0 < ¢ < P}.
Now we can show the main theorem in this section.

Theorem 14. There exist affine isomorphisms among the following three
closed convex sets:

(1) B(#),
2) (¢ ®5t)"
(3) CPL(K(#),B(X)).
Proof. First, by Proposition 10, we have the map
B(#)] 3 5] — Z aje; ® ¢ € (¢° @,y °)"

is affine and injective.
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Next, for Y., a; @ b; € £® ®,,¢/®, we define the map () 2, a; ® b;) by

<Za,®b> Za,xb

for xe K(#). Then ¢® ®,,/® is isometric isomorphic to CBy«(K(H#),
B(s#)) by [2]. Moreover we have (3. e; ® ¢;> = P, so the map

(¢* ®F ¢ Za, ®af — <Za, ®a; > € CPL.(K(#), B(#))

is affine isomorphic.
Finally, for ¢ € CPL.(K(#),B(#)), there exists x € B(s#)], such that
¢ = Sx. Therefore the first correspondence is surjective. We are done. []

Corollary 15. If x = [o;] € B(#) is selfadjoint, then
|x|| =inf{A > 0] —AP < S, < AP}
00 0 o0
= mf{i = 0‘ —AZei ®e < Za,-jei@ej < }.Zei ®e,}.
i=1 i=1 =1

Remark 1. If ¢ € CBy(K(#),B(#)) is selfadjoint, by [8], we have

lell = llolles
=inf{llolley | =¥ <@ <y, ¥ =y, ¥ € CB=(K(H), B(H))}-

Moreover since x € B(o#) is positive if and only if S, is positive if and only if
S, is completely positive, we have for x = x*

ISxll = [1Sxllcp = f{[[Syllop | =Sy < Sx < S,y = y* € B(#)}.

In the rest of this section, we discuss the relation between the 2-positive
map and the module map, which leads the crucial part to get the main theorem.
For the convenience of the reader, we show the next proposition, however it
might be well known.

Proposition 16. Let M be a von Neumann algebra with a cyclic vector and ¢
an M-bimodule map from B(#) to B(#). If ¢ is positive, then ¢ is completely
positive.

Proof. Given any nxn positive operator [a,,] € M,(B(#)), and any
&,...,&, € #. Then there exist £ € # and {b }CM (k=1,...,00) such
that

lim b8 — &l =0 fori=1,....n
k—o0
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Since 37/, bgk)*a,-jbj(.k) is positive, we have
SEIERS!
[p(ay)]
nd L&y
e | |0
= Iim | [p(ay)]

b¥e, || L6,

>0. O

Proposition 17. Let M be a von Neumann algebra of type I, P a normal
projection of norm one from B(#) to M, and ¢ a 2-positive map of B(H#) to
B(#). If P— ¢ is 2-positive, then ¢ is a normal M N M'—bimodule map.

Proof. Let q be a central projection in M. Since the positivity of P — ¢
and the normality of P lead that ¢ is normal, it is enough to show that ¢(xq) =
@(x)q = qp(x) for all x e B(+#). By the module property of P, it is clear that
v(gxq) € gB(#)q for all x € B(H).

Let {e;} and {f;} be minimal projections such that g =) e;, 1 —g= 3} f.
Choose the partial isometry v; which has e; as the initial projection and f; as
the final projection, then the 2 x 2-matrix

e )
Uj,' fj
is positive.
Since P(v;;) = P(v;iq) = P(v;i)g = qP(vi;) = 0, we have

o= 260 SB[ ol [ 3]

Thus, for &, 1 e #,
([(p(ei) (v} H(l—q)é]”(l-q)éb
0<
o)  o(f) qn an
o1 (13071 il R
RN/ qn qn
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and

p(e:)(1 — 9)¢ = o(f;)qn = 0.

Therefore we have that

(p(wi)anl(1 — q)¢) + (p(vii)(1 — q)¢lgn) = 0.

This implies that Re(g(v;i)(1 —g)¢lgn) =0. By the same argument, we also
have Im(gp(v;;)(1 — q)¢|gn) = 0. Hence we have ¢(v;) € (1 — g)B(#)q. Thus it
turns out ¢(f;xe;) € (1 — q)B(#)q, moreover ¢((1 — g)xq) € (1 —q)B(#)q. O

Remark 2. In Proposition 17, we cannot replace the assumption of the
2-positivity by the 1-positivity: indeed, let # be the map

] € M,(C).

My(@) 5 [0611 0612] . 1 [0611 o1

0] O 2 oy o

Then 0 and P — 0 are positive, but § is not an /*-bimodule map.

References

[1] Blecher, D. P. and Paulsen, V. I., Tensor products of operator spaces, J. Funct. Anal., 99
(1991), 262-292.

[2] Blecher, D. P. and Smith, R. R., The dual of the Haagerup tensor product, J. London
Math. Soc., 45 (1992), 126-144.

[3] Davidson, K. R. and Power, S. C., Isometric automorphisms and homology for non-
self-adjoint operator algebras, Quart. J. Math., 42 (1991), 271-292.

[4] Effros, E. G. and Kishimoto, A., Module maps and Hochschild-Johnson cohomology,
Indiana Math. J., 36 (1987), 257-276.

[5] Effros, E. G. and Ruan, Z.-J., A new approach to operator spaces, Canad. Math. Bull., 34
(1991), 329-337.

[6] , Operator convolution algebras: An approach to Quantum groups, Preprint.

[7] Haagerup, U., Decomposition of completely bounded maps on operator algebras, unpublished
manuscript.

[8] , Injectivity and decomposition of completely bounded maps, Lecture Notes in

Math., Springer-Verlag, 1132 (1983), 170-222.

[9] Paulsen, V. I., Completely bounded maps and dilations, Pitman Res. Notes in Math. Ser.,
146 (1986).

[10] Smith, R. R., Completely bounded module maps and the Haagerup tensor product, J.
Funct. Anal., 102 (1991), 156-175.

[11] Takesaki, M., Theory of Operator Algebras I, Springer-Verlag.

[12] Tomiyama, J., On some types of maximal abelian subalgebras, J. Funct. Anal., 10 (1972),
373-386.



