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Cauchy Problems for Mixed-Type Operators

By

Keisuke UCHIKOSHI*

Abstract

We give a general theory of the Cauchy problems for various types of operators, containing
hyperbolic operators, elliptic operators, and mixed-type operators. We will give a necessary and
sufficient condition for the Cauchy problems to be well-posed.

§ 1. Introduction

The aim of this paper is to give a general theory for Cauchy problems,
applicable for hyperbolic operators, elliptic operators, and mixed-type operators.
For example, it will turn out that we can consider Cauchy problems for

(1) P=(D\- x\Dl)(D\ - x\D2
n}(D\ + x\D2

n} + (fifth-order operator).

The general theory is as follows. Let P(x,D] be a microdifferential
operator denned at x* = (0; 0, . . . , 0, >/— T) e V—lT*Rn of order m>2, written
in the form

(2) P(x,D)=D?+ Y. Pj(x,D')Dl ordPj<m-j.
Q<j<m-\

Here we have written D = d/8x, and D' — (Z>2, • • • ,Ai)- We also write as
D" = (A,. . . ,/Vi), D1" = (Z>2, • • • ,^«-i). Let am(P}(x,£) be the principal
symbol of P(x,D). We assume that

if xi =0, then am(P) = ^-
(3) ^ if x\ ^ 0, then the equation am(P] = 0 has m distinctive roots
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We denote by (9 the sheaf of holomorphic functions, and we define 0(y) =
Y^ x^J0 for j E N. Without loss of generality, we may assume that

for 3 q j E N / m f , 3aj(x,£') e (9(m>^x* we have ^-(x, £') = xfo/(x, £'), fl/(x*) ^ 0
(1 < 7 < w). Here each ^y-(x, <^;) is homogeneous in £' of degree 1. We also
assume that

(4) i/y^fa.a^/fa.aX**)).

We denote by # (resp. (?) the sheaf of microfunctions (resp. micro-
dijfferential operators). Let us consider the Cauchy problem

Pw = 0,

where u E #R«iJC, and uy e VRn-i^ (x<" = (0; 0, . . . , 0, V^T) e vcTr*Rn-1). If
P(x,D] is microhyperbolic, (5) is well-posed for arbitrary initial values, as is
well-known (See [5]). Otherwise (5) may be solvable for some initial values
(e.g., for v\ = ••• = vm = 0), but may be unsolvable for other initial values.
Therefore there arises a problem to know for which initial values (5) becomes
solvable.

To give the main theorem we need to give some preliminaries.
Let A(x',Dr) be a both-side invertible mxm matrix whose components
A(^v}(x',D'} E <?£, are independent of (x\,D\). Here we denote by <fR the
sheaf of holomorphic microlocal operators (c.f. [2,9]). We choose r rows of this
matrix in an arbitrary way. To be clear, let 1 < jl < j2 < • • • < jr < m and
choose the y1? . . . ,jr-th rows of A. Then we obtain an r x m matrix A'(xf,Df)
of holomorphic microlocal operators. Let us choose some r rows of some A.
We say that v \ ( x r ) , . . . ,vm(xr) e #R»-i ^, satisfy an r-relation (defined by A'} if
A'(x', D')v(x') = 0. Here v denotes *(v\ , . . . , vm), and we denote the set of such
vectors by (<eRn-i^,)m. We have A : (<gRa-i^,)m ^ (^R^^)m, and an r-
relation means that r of the components of v disappear when it is sent to right-
hand side. We note that even if v\(x'),...,vm(x') satisfy an r-relation and
another ^-relation, it does not necessarily mean an (r + s) -relation.

We next define a classification of the characteristic roots. Let 9 E {0,7r}.
Let co a R* x v^— TR"""1 be a small neighborhood of x*, and let CDQ =
{(x, <f) e co- xi i- 0, arg^i = 9}. We define

Mo,, = {A e M; Refo^x, O) = 0, if (x, f ') e ^

M±,, = {A e M; ±Re(xi^(x, £'}) > 0, if (x, f) e
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To give another expression of this definition, we consider the solutions
i//+1^(X £') of the following phase equation:

and define i/^ '^(x, £') by

Then it is easy to see that

M0,0 = {AeM;Re^ (+ 'A)(^,O = 0},

= {A G M;Retff (- A )(x,f ') = 0},

M±,0 = {A e M- ±Re,//+'A) (*,£') > 0},

= {A e M; ±ReiA (~'A) (*,£') < 0}.

Let ra0i0,m±i0 be the numbers of the elements belonging to Afo,0, M+.0, re-
spectively. We always assume that

(7)

Example. If we have

then the above classification is as follows. We have (x, £'} e R" x V^
Im£ n >0 , and arg^i = 6, arg£n = n/2. Therefore we have Re^i^^x,^'))
= 0, and 1 G Mo,0. Similarly we have 2 e M-^, 3 e M+i0 (for each 0 e {0, n}).
We next note that arg(xi^4(^:, f ' } ) = 39/2 -f n/2. It follows that 4GMo,o,
4 G M+i^. Similarly we have 5 G MO,O, 5 G M_)7r. Finally we have

and it follows that 6eM'Q. This means that the types of q>4(x, £'), ^5(x,^')
change from elliptic to hyperbolic as xi varies, but that of ^?6(x, ^') changes
as x\,x2 vary. Our assumption (7) means that we do not consider such a
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complicated characteristic root as <p6(x,£'). Let us summarize the above
calculation.

9

0
n

M0i 0 M+i0 Af_,0 M'e

{1,4,5} {3} {2} {6}
{1} {3,4} {2,5} {6}

Now we give the main result.

Theorem 1. We assume (2), (3), (4), and (7). Then there exist an w+io-
relation and an m+^-relation (which are defined only by P), such that the Cauchy
problem (5) has a solution u e %R",JC* if, and only if, v \ ( x f ) , . . . , vm(xf) e #R«-i ^,
satisfy both these relations.

We give some examples. At first we remind the reader of the well-known
result for the operators of principal type.

Example (Lewy-Mizohata operators). If P± = D\ ±v—lx\Dn, then we
have Af± i0 = {l} (= Af), M+,0 = 0. This means that P_w = 0, u(Q,x') =
v(xf) is solvable for any v e #R«-i x*, without any relations, which coincides with
the well-known result. On the other hand, P+u = 0, u(Q,xf) = v(x'} is solvable
only for the case when v(x') satisfies a one-relation. This means v = 0, and
u = 0. It follows that P+u = 0 => u = 0, i.e., P+ is hypo-elliptic (See [9]).

Lewy-Mizohata operators are the simplest case of our theory, and our
theorem gives a similar result even for more complicated operators. The
characteristic roots belonging to M+,0 cause obstruction, and correspondingly
the Cauchy data must satisfy suitable relations. Let us see the case m = 2.

Example (microhyperbolic operators). Let P(x,D) = D\ — x\D^ -f-
P f ( x , D ) , ordP' < 1 (Without loss of generality, we may assume that Pf is a
polynomial in D\ of degree 1). In this case we have (pl(x,f'} = x\£n, ^(^O
= —x\£n. It follows that Mo,0 = {1,2}, Af± i0 = 0 for 9 e {0, n}. This means
that (5) is solvable for an arbitrary v\(x'),V2(x') e #R»-i ^, without any relations
(See [1,7,8,10,13]).

Example (Tricomi operators). Let P(x, D] = D\ - x\D2
n + P'(x, D),

ordP7 < 1. We have ^(*,£') = Jx[£n, (p2(x^'} = -^/xi£n- It follows that
M0l0 = {l,2}, /w+i0 = 0, and that M+,^ = {1}, M_i7E = {2}, m^n = 1.
Therefore there exists a 1-relation, and (5) is solvable if, and only if, the Cauchy
data satisfy this relation. This case was investigated by [7].

Example (hypoelliptic operators). Let P(x, D] = D\ + x^D^ + P'(x, D),
ordP7 < 1. Since (pi(x,g) = V^lx^n, (p2(x,£>'} = -\f^lx\^ it is easy to see
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that Af_,0 = {!}, M+i0 = {2}, m+,e = 1 for 9e {0,7r}. It follows that (5) is
solvable if, and only if, v\,V2 satisfy a 1-relation and another 1-relation. If
these two 1-relations mean a 2-relation, (5) is solvable only in the case v\ =
v2 = 0, and we have u = 0. In other words, Pu = Q does not have non-trivial
solutions. It is well-known that this is true if the principal symbol o\(P') of the
lower order term satisfies £~l<ri(P') £ {V^T^A/^T^v^T,. - •} (See [4]).

Of course our result applies for higher order operators. For instance, let
us consider the Cauchy problem (5) for the sixth-order operator (1). Then the
Cauchy data v\,...,v& must satisfy a 1-relation and a 2-relation. Roughly
speaking, we can give three microfunctions arbitrarily among v\,...,V6.

In order to prove Theorem 1, we shall show that fixing argjci, we can give
a canonical representation of the elementary solution of P(x,D). This result
has its own interest. But to give its precise statement, we need to prepare a
symbol theory. Therefore in the next section we shall give such a symbol
theory, and we postpone the discussion of the canonical form until Section 3.

§2. An Operator Theory

In this section we give an operator theory, which is necessary for the proof
of Theorem 1. We may assume that q\ < ••• < qm, and we define q =

§2.1. A Theory of Formal Operators

Let C> 0, i e Z+ = {0, 1, 2, . . .}. We define

Q(C) = {(*, f ') e C" x C"-1; C\x\ < 1,

Qt(C) = {(*,£')

Assume that for 3C > 0, 3jR e (0, 1), Ve > 0, 3C£ > 0 a formal series /
^ /;•(*, O satisfies fieO(Qi(C}) and

/eZ+

(8) !/,(*, Ol < C^

on Q,(C). We denote by 3~(Q(C)) the set of such formal series. If / =
i

we define a formal series f# = ]T/f by ff = ^ fp and ^"(fl(C)) byp
o<y</
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Finally we define

2T = lim 3~(Q(C)), Jf = lim
C>0 C>0

Remark, (i) According to the useful method of Aoki [2], we can neglect
the elements of ,/T, as we shall see.

(ii) We write ^ff = Y^ 9t i£ and only if, ft = gt for any /. Since this
does not merely mean that the sums of these two series are the same, we
sometimes write as Y^fi= Y,9i-

i
(in) We identify a function /0 with a formal series /0 + 0 + 0 H e

y(Q(C)), if it satisfies (8) for / = 0. A function /0 belongs to Jf(Q(C)) if, and
only if, it is exponentially decreasing.

(iv) For a formal series / = Y^ft we define SX]f = Y^^X}ft.

Let / = Y,fi E ̂ (^(c))- We next define

and show that it defines a formal operator. To be precise, we use an analytic
partition of the unity. Let C' » C. We consider the following linear
transformation:

($ = -€'$ + £„, 2<j<n-l,

\<, = C'(& + "- + 6_1) + £ll, j = n.

Then V^lR""1 e £' i— > |' e v^TR""1 is an isomorphism, and the first octant
A = {£' e C^'jlml,- > C'|Re£;|,2 < 7 < «} corresponds to a small neighbor-
hood of £' = (0, . . . ,0 , \^I)eCn~}. We define the central region Ace and
the boundary region Abo of A by ^ce = {|' eA-n2lm^ > Im4,V;,VA:} and
^bo = {!' e ^; C' Im lj < Im 4, 3y, 3A:}, respectively. There exists <?(<*') e (9(A)
such that for Ve > 0, 3Ce > 0

(9) e(t')\ < Ceexp((C'|Re^'|2(Im^)-2 +e)Im|B) on A,

(10) g(|') - 1| < C'expt-C''1 Im|B) on ̂ ce,

|')l ^ C'exp(-C'~1 Im|«) on ^bo

(See [11]).
Let f = H f i ( x ^ ' ) e f f ' ( Q ( C ) ) . From (9) it follows that e/ = Ee(5')'

for some C". From (10) we have e(£') = 1, ef = f in

We define J^ (/)(*,/) by
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(11) <F(f)(x, /) = (2n^\)-n

where 4,-(C") = {£' e x/^TR"'1; <,- > C"C/ + 1), 1 < j < n}.
We define f'° = (0, . . . ,0, 1) e R"-1, Z' = {£' e R"'1; |C' =!,-! < C« < 0}

and

» = {(x,y')eC" xC"-l;C\(x,y')\ < 1,

lm(xn - yn) + CT1|Re(x' - /)|2 > r|Im(x'" - y'")\

,<5,C') = |(^/)eC" xC-^q(x,/)| < l,Im(jc'-/)| >

1

for C,r,d > 0,C' e Z7. Then we have the following

Lemma 1. (i) L*f / = E>/(^O E ̂ (^(c))- ^(/) « holomorphic on
W(C'",r) for 1C"' > 0 a«J 3r > 0.

(ii) Let C" < C". If we replace Ai(C"} by A^C") in (11), we obtain a
different ^(/). Let ^(f) be the function thus obtained. Then we have ^(/) —
^(/) = E 3P)(jc,/), wAere F;-(x, 3;') e G(W(Cf",d,£'U))) with some C" > 0,

y:fmite

(5 > 0, C/0) e Z' /or eacA /
(iii) If f e Jf(Q(C)), then ^(f] is holomorphic in a neighborhood of the

origin.

We can prove this lemma by an elementary calculation. Now let W =
Um0(JP(C,r)), let i^[ be the set holomorphic functions defined on F^(C,r)U
C,r
W(C,d,C) with some C,r,5,C7, and let TT2 be the set of finite sums of the
elements of TTi. We have defined a map J^ : P/jr -* TT/^. Similarly to
[11], we can prove that this is an isomorphism. We next define a ring structure
of -r/iTz. Let Hi(x,/),tt2(*,/) e G(W(C,r)). Let C7 » C and let

A(C',s) = {z' EM""2 xC; |Rez^| < 2C/-1 (2 < A: < n),

lmzn = max(-Cr~3, (-C'"1 Rez' j2 -h

where ^+ =max(0, /). Then we have the following

Lemma 2. (i) Let 0 < C « C' « C", 0 < £ < C"'1. 7f (^z7) e W(C",r]
and x' - y' EA(C',£), then we have (x, y ' ) , ( x i , y',z'} e W(C,r).
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(ii) I f u l ( x , y ' } , u 2 ( x , y ' ) E ( 9 ( W ( C , r } ) } then

HI * u2(x, zf) = I Ml (x, /)n2(*i, /, z')d(x' - yf) E 0( W(C", r))
Jyi(C',e)

w well-defined. Here u\ * u2 does not depend on 8. Furthermore., if we replace
C' by Cf, then the difference is holomorphic in a neighborhood of the origin.

(lii} If at least one of u\(x, y1), u2(x, yr) belongs to @(W(C,S,C)), then
ui * u2 belongs to 0(W(C,S,C)) for some S>Q and C E Z1.

Therefore we obtain a map U^/1^2 x i^/i^i 3 (ui,u2] •-> u\ * u2 E
and we can endow H^/i^i with a ring structure with the unit element
Furthermore, we can easily prove the following

Lemma 3. Let ^2f/^9j e ^"(Q(C)). We define h = ̂  A/(x,^') ^
7

we Aaue X] A/ e ^"(^(C")) ./or C' » C, owrf as an element ofi^/if^ we have
. (We denote Y,hj also by f ° 9\

j

Let us define formal operands corresponding to these operators. We define

K(C,r) = {x e C"; C|*| < l,Im^ > Hlm^'l H-

0 < 3 6 > <

Let 0 < C « C / « C / / . If u(x,y')e0(W(C,r)), f(x)e0(V(C,r)), then

u * f ( x ) = I u(x, y')f(xl, y')d(x' - y'} e 0( V(C\ r))
J/i(C',e)

is well-defined. Let TT = lim fi?(K(C,r)), let ^1,^2 be defined similarly to

-Ti, ^2. We obtain a map V/TT2 x Tr/TT2 3 (M, /) •-> M * / e TT/T^2. In this
way we can endow 1^/1^2 with the structure of a left ^/^-module. If
a(.x, £') e ^/y^, then w = 3F(a) defines an integral operator iT ji^i 9 / i—>

25 which we denote by a(x,D').
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Remark, (i) Let u(x,y') eO(W(C,r)\JW(C,S,?)), f ( x ) £ ( 9 ( V ( C , r ' } }
with 0 < r' < r. Then u*fei^, and this means §A,C, , u(x, y')f(x\, y') •
d(x' -y'}e{)k.^(9(V(^C"^d^'(k^). However in the following special
case this function is holomorphic in a full neighborhood of the origin. Assume

that rf satisfies ffi + r' £) ICJ^I < ° for every ^ (This is the case when r' is

small enough). Let A'(C',e) = ^'2 x • • • x l'n, where A£ is the union of line
segments joining -2C7'1 - ^6k,nC~-\ -2C7'1 + V^J^k, 2C'~l + V^l/ZC*,
and 2C7"1 — v^T^^C7"3, successively (0 < R « 1). We can easily prove that

f ufd(x'-y')=\ ufd(x'-y').
Jyi(C',e) J/l'(C7,e)

Furthermore, if x e Cn, x « 1, x' — y' E A'(C',E), then we have (x, y') e
)U WK(C,(5,O3 (^i,/) e F(C,r;). This means

- j e C.,0,
Jyl'(C',e)

and therefore we have w * / E ^ c » i 0 -
(ii) As we have said ntr/ir2 is a left 'Wj 'Wi -module. Therefore if

u\,U2ti!f and / e 1^ , then we have (u\ * u^) * / = u\ * (1/2 * /) modulo f^.
Furthermore, by an elementary calculation we can prove (u\ * 1/2) * / = wi *
(«2*/) modulo ^C",o-

All the above discussions are formal. However, if w(x, j^7) e T^" (resp.
f(x)ei^}, then w(0,.x7,y) (resp. /(0,x7)) defines a microfunction, and
restricting to {x\ = 0}, the above calculations are valid in the sense of
micr ofunctions .

Remark. We sometimes consider functions with fractional powers in
x\. In this case we replace (9 by $(„,/). We can generalize all the above
arguments to this situation with trivial changes. For example let 3~(m>} =

E xf/mV, and ^K),ir(m0, Tr2,(m'), *V)> ^2,(m') be defined similarly.

Then i^(m>}/^(m'} is a ring, and ^V)/i^2,(m') is a left iT^/^K) -module.
We sometimes differentiate / = ^ Xj m /^ e ^(m/) ;A-* by ̂ i, where fk e 0^*

(0 < k < m' — 1). Since we do not necessarily have dxif e &(mi),x*, we must
assume fk\Xl=Q = 0 for k ^= 0, in this case.

§2.2. A Theory of Real Operators

We next consider how we can make the above discussions valid in the sense
of microfunctions on the half space {^i^O}. This is a special case of the



200 KEISUKE UCHIKOSHI

theory of mild microfunctions studied by [6]. Let C > 0, z e Z+ = {0, 1, 2, . . .}.
Let 9e{0,n}. We define

Qe(C] = {(*,£') eC" x C"-l;C\x\ < l , R e ( e % ) > 0,

Qe,i(C) = {(*,<*')

Assume that for 3C > 0,1R e (0, 1), Ve > 0,3C£ > 0, a formal series /
£ /,(*,£') e y(Q(C)) satisfies

/eZ+

(13) \fi(x,?)\ < Q

4-

on Q0i/(C) (Note that /; e ^(O/(C)) satisfies (8) on fl|(C), and (13) on fl0)/
We denote by ^e(Q(C}} the set of such formal series, and 9>e = Urn

c>o
If / = E/i(^O ^ W(C')), we have e/ = E*(€')fi(x,t') e

for some C", and #"(/) is holomorphic on W(C"f,r)\JWe(C'",r), where

/;/,r) - {(*,/) eC" x C1-1;^!^,/)! < l.Re^^) > 0,

n - yn) + C'"-l((\Re(xf - yf}\ - C'"\Xl\
l/m')+)2

with 3C//7,3r. Replacing the sheaf (9 by 0(m/)5 we can define ^e,(m'} similarly.
If / = E/-(^Oe^,(m')(fi(C))J then we have #"(/) e ̂ ^(^(C^r)).

It is easy to see that if u(x, y') e (9(ml](W(C, r) U We(C, r))3 then it defines a

microfunction spw on (Re^^^^i) > 0}. Note that sp(w(0,x /, /)) is also
well-defined, and it is a microlocal operator.

Let us define the corresponding operands. We define

Ve(C,r) = {xeCn-C\x < ̂ Re^^S) > 0,Im;cw > r|Im;t"|},

where C,r > 0. If 0 (m/)(F(C,r) U Ke(C,r)), then/defines a microfunction sp/
on {Re(^x/ZT6l^i) > 0}. Moreover sp/ is a mild microfunction in the sense of
[6], and sp(/(0,x/)) is well-defined.

If u(x,y') e 0w(W(C,r)\JWe(C,r)), f ( x ) e 0(m,}(V(C,r) U F,(C,r)), then

(14) u * /(x) = f u(x, y'}f(x^y'}d(x' - y'}
JA(C',s)



MIXED-TYPE OPERATORS 201

is well-defined (C" » C' » C). (14) coincides with the integration in the sense
of microfunction on {RG(e^0x\) > 0}. Moreover, we can also restrict (14) to
{x\ = 0} in the sense of microfunction.

§2.3. A Theory of Annihilating Operators

Let <9e{0,7r}. Assume that for 3C > 0,lRe (0, 1), V e > 0 , 3 C £ > 0 , a
formal series /= ]T ft(x^r) e 3~(Q(C)} satisfies

'|/Imcy2 - C~l\Xl

on Q0j(Q. Then #"(/) is holomorphic on ^(C'",r) U W'e(C'" ,r) with
3C'",3r, where

) > 0,

- yn) + C^1!^!1^1^ > C^IJdl^' lImjc +r|Im(jcw - /O

Let

0,

If M6(P(^(C,r ) ) (resp. / e G(V^(C,r))\ then spw = 0 (resp. sp/ = 0) on
(Re^^1^) >0}. If we lim (P(^(C,r)) or /e lim ®(V^(C,r)), then we

C,r C,r
have w * / e lim (9 (¥$(€, r)). Of course we can consider the case of fractional

C,r
powers in ;ci.

§2.4. Other Symbol Classes

Sometimes it is important to consider a formal series defined only for the
case when x\ belongs to a sector. Let 0 E [0, 2n] = {t e R; 0 < t < 2n}, and let

Qi(C,0) =

(Here we do not restrict 9 to {0,7i}). We define 3~B(Q(C,9}) (resp.
^e(Q(C,9})} as the set of formal series /= £ /-(x,^7) satisfying (8) (resp.

ieZ+

(13)) on Qi(C, 9], instead of fi/(C). We define Ste(Q(C, 9}} as the set of formal
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series Y*fi e f0(Q(C)) such that for 3R e (0, 1), Ve > 0, 3C£ > 0 we have
/

\fi(x^f)\<CERiexp(elm^n) on Qt(C,0). We define »Q = lim
c>o

and similarly we define ^ , «^~ .

Lemma 4. L^ 0e{0,7r}. W? /KHH? ^ T! 9>Q a % and

Let £/; e^ny70 . Let e be an arbitrary number. If (x,f')
satisfies |Imxi| « |Rexi|, we have

|Imx| + C\xi ,1/m'

If (*,£') eO(9)Z-(C) does not satisfy |Imxi| « |Re%i|, we have

iy;.(x,<r)|<3ce3*'^

This means Y ^ f t G ^Q- The proof of the latter statement is the same. Q.E.D.

§3» Transformation by Holomorphic Microlocal Operators

In this section, we given a canonical representation of the elementary
solution of the Cauchy problem (5). We first rewrite the equation using
matrices. Let L(x,D) be an mxm matrix defined by L(x, D)=D\Im

Jt-
L ( x , D f ) , where Im is the unit matrix and L is defined by

0, -1, 0 \

0 o, -i,
Q(x,D'), Pi(x,D'), . . . , Pm-i(x,D'

Let u(x) = <(u,Diu, . . . ̂ f1"1") e (V*",x*r and ?(^
x*/)w . Then (5) is equivalent to

Lw = 0, 2(0, x') = u(y).

We grade the complete symbol of L as follows. If A(x,D) = ]T Aj(x,D] e ^*
y</

is a microdifferential operator of order at most f e Z, and each ^4y is ho-
mogeneous in Z> of degree 7, we denote Aj(x,£) by <Jj(A) (This notation depends
on the choice of the symplectic coordinate system, except for the principal
symbol). Now we define
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( 0, -6fl, 0 \

0 0, -Sjo,

for j eZ+. If 7 is a ring, we denote by Ymxm the ring of m x m matrices
whose components belong to Y. It is easy to see that we can inductively define
£,(± W) 6 (0(0(0))"""", i e Z+, C » 1, by

1 j
 Xl

where /s^) = E^7 . In fact, if E^, are already calculated for 0 < /' <
i

/— 1, (15) is an ordinary differential equation for E^\ which is easy to solve.
For each number /I e {1, ... ,ra}, let X^^^x.D') be a Fourier integral operator
(maybe with a complex phase function) satisfying

and

respectively.

Remark. Here we are considering holomorphic functions in (x\ ,x',£').
If / = E xf/m'fk e 0(m,}^ with /, e 0,., then we define f\X{=0 = fQ\Xi=0.

We consider the above equations in this sense.
In fact we can calculate the complete symbol X^^^x, £') of the cor-

responding operator in the form JT^'^fof) = exp(^ (± 'A)(^,O)E ^'^'^(^O

modulo ^wi)(fi(C)) with some elliptic amplitude function ^JT/± ' of/
order 0. Here we denote by i/^±1/l)(;c, £') the phase function defined by (6) + .
Let A'(±)(x,(J') be the matrix defined by

0

0 *(±'m)

Theorem 2. fFe oswiwe (2), (3), (4), and (7).
xm, and for each <9e[0,2;r] there exist

mxm such that

y-mxm
'(m') •

Now we have the following
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Remark, (i) Note that 6 is an arbitrary real number belonging to [0,2;r]
this time.

(ii) /r(±,0) is defined in a full neighborhood of x\ = 0, belongs to &£™
there, and belongs to (<%e)mxm in a sector around x\ = 0. Therefore
F(±'^(0, *',£') is well-defined.

(iii) Since G ( ± '^ = ^ G^'^ does not depend on xl3 it follows that its
/ > o

(//, v)-element G/^ is holomorphic on 0(fi/(C)), and lRe(0, l) , Ve > 0,

3C£ >0 we have \G^0^(xr^f)\ < C£^z'exp(£lm^) on O/(C). According to

[2], it is a symbol of GJ*;^ (*',/>') e #* , and we have G^'^x7,/)')^'^,/)7)
= /!»-

(iv) ^(i)^,/)7), X M ( x , D f ) , F(±^(x,D')i G^^(x',Df) are operators
acting on (i^(mf)/i^2,(mf))m' Some of these operators (and their composites) do
not contain fractional powers in x\.

(v) Let (9e{0,7r}. Then F^^(x,D'} is a map of (<V)(K(C,r)U
F,(C,r)))m into (0K)(K(C7 ,r) U W,r)))m with C7 » C.

(vi) Let #e{0,7r}. If // e Mo,<9UM_50 (resp. // e Mo,#U M+,g), then
X(

(^} (resp. Z^) is a map of 0(w,')(K(C,r) U F,(C,r)) into ^(^(C'.rJU
F6i(C /,r)) with C7 » C. This operator is well-defined in the sense of micro-
functions on {e^9xi > 0}.

(vii) Let 9 e {0, n}. If fi e M_,0 (resp. ^ e M^9\ then Z(
(^} (resp. x[~^

is a map of 0(K(C,r)U K0(C,r)) into ^(^(^(C7^) U ̂ (C7,r)) with C; » C.
This operator annihilates all the microfunctions on {e^ex\ > 0}.

Admitting Theorem 2, we can prove Theorem 1 as follows. We want to
prove that the Cauchy problem is solvable if, and only if, v\(x'),...,vm(x'} e
#R/,-i x*, satisfy the following ra+,0 -relation:

(16)0 (G^(X',D')v(x'»M = Q, ^6M+ i 0 ,

and the following m+,n -relation:

(16), (Gt-^&^'Wx'V^O, f^eM+,n.
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Let us prove the sufficiency. We want to show that if v satisfies (16)0 and
)^, then E^(x,Df)v is well-defined as a microfunction and its first com-

ponent (E(+}(x,D')v}l satisfies (5).
Let <9e{0,7r}, and let w^ = G^e\xf,Df)v(xf). We assume (16V

Therefore we have vv* = 0 for fj, e M+,9, and v(x') = G(+^(x' ,D'}we(x'}. We
have

' ' 3C,3r.

Let v~ be the defining function of v. We may assume that suppi; is small, and
therefore we have v~ e (9(V(C,r))m, where r is small enough. We can define
%~ = <(M~, . . . , M~) 6 Vm by u~ = ^(£W) * v~ . Then we have

\<K<m

* ̂ (X(+]}\^K] * wP~(x') modulo 0C",o

for any //. It follows that u~ (x) E 0(V(C, r) U F0(C, r) U KW(C, r))m. We have
&(L) * 2^ (x) = #"(L) * ̂ (£W) * t; ̂  (x;) = ^(£"(+)) * (Drf- (xf)) = 0 modulo
G£n 0. This means u e (^R« X *) m

3 L(x,D)u = 0, ^(O,^7) = t;^7), and u\ satisfies
(5)/

We next prove the necessity. Let 9e{Q,n}. We want to show that if
/ /eM+,0, then (G^~'e\x' ,D'}E^~\x,D'}v}^ is a microfunction which does not
depend on jq, coincides with (G(~'^(x',Df)v)^ if x\ = 0, and vanishes if e^~^9x\
> 0 (Note that this means (16)0, (16)J.

We assume that u is a solution of (5). We define u = l(u\,. . . , um) by Uj =
D{~lu, and therefore u satisfies L(x,D)u = 0, u(Q,xr} = v(xf) = *(v\, . . . ,vm).
We define

3,

, \

where R>Q is small enough. Let V(xf) = U(Q,xf). Then we have
supp(L(x,D}U)^{(x^y,xf\=R}U{\lmt'"\=RImtn}, and V(x') = v(xf)
on {(*',£'); kl < ^ llmf"7 < RTmtn}, and supp K(x') c {(jc;,O; 1^1 ^ ̂ ^
llmcf"! < ^Im^}. Let AT = (^,v)) e Cmx;77 be the diagonal matrix defined by
K? n\—^ ^ V $ ̂ +,0, and K? . = I if ju e M+5^. We may assume that £/
has' a defining function U~ e ( ( 9 ( V ( C , r } } } m with 0 < r « l . Let

*£(-)) * C/~3 and let F~(x') = (7^(0,y). We have
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DI W(e]~(x) =

£/~) modulo 0£,i0.

Here the right-hand side belongs to i/
2

m. Furthermore, it defines a hyper-
function, which is microanalytic at dxncc on {e^~iex\ > 0}. We also have

* Z7~(0,x') = KG(-'e] * K~(x') modulo 0£)0.

It follows that JPW~ (x) = HM")~ (0, x') modulo ^m. We have ^G^'^ * E^ e
&(Wl(C',r'))mxm with some 3C; > 0, 3r' > 0, and fF^~ e ^(F^C'7,^))^
with some 3C/r > 0, 3r" > 0. If jci is a constant satisfying e^ex\ > 0, then
^^(x^x7) is analytic at x; = 0, and we obtain IF^~(0, x'} e 1^n. Taking
the singularity spectrum we obtain (16)0.

Therefore we next need to prove Theorem 2, and the plan is as follows.
We define M(x,£) by

0

It suffices to find F(±^(x,O e (y(m,} f\Ste)mxm satisfying

- F^V o M = 0,

For this purpose we need to consider the case |xi^w| » 1 and the contrary case
separately. Precisely speaking, let C» l , 0 e [ Q , 2 n ] , and we define

S(C) = {(x, f ;) E Cn x C"-1; C|x| <

= {(x,O e^^CjargX! -0| < 1},

Note that S7(C) UE"(C) = E(C}.
At first we shall calculate F^1^ on E'(C}. This part is divided into

several steps. Section 4 is an auxiliary step. The most important part is
Section 6, and in Section 5 we shall prepare an estimate of the phase functions,
which will be necessary in Section 6. Since such a phase calculation is valid
when xi belongs to a sector with its vertex at the origin, we shall discuss on
s'(c,e).
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After that we shall calculate F^± 5^ on S"(C] in Section 7, and also on the
whole S(C) (We do not divide E"(C) into sectors). Let us illustrate our plan
by a special case without proof.

Example. For the sake of simplicity we assume that m = 2 and let L =
Z>i/2 + L(XI,£>„), where

-1
- aDn b

We need to solve

=

Let

\

We can proceed as follows:
(i) Neglecting the initial value for the moment, we have solutions j^+'^) =
/r(+,0)^(+) and £(-,0) = ^(-)/r(-,0) of the above equations on E'(C,Q).
Here F^^^XI^) are infra-exponential functions of £„, and we have

(ii) We next extend F^'^ to 5"'(C). We can extend F^^ to a infra-
exponential function on this region.
(iii) We finally adjust the initial value. Let S(C,0) = S(C) n [x\ = 0}.
S"(C) is not a usual conical neighborhood of 3"(C, 0), but it is a neighborhood
of 3(C, 0) in the topological sense. Therefore we can define
F(+'^L^o on ^(C^0)- Then we have G^'^G^'^ = 72, and we define
by

This means that H^^ are the solutions of the above Cauchy problem,
therefore we have H^^ =£ r ^ ± ) . After that, we can study these symbols on
the whole S(C).
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§4. Diagonalization of the Principal Symbol

We assume (2), (3), (4), and (7). Let C» 1. We define

We will diagonalize L(x, £) in several steps. Let us consider the following
Vandermonde's matrix on Q°(C)\

i I 1 .-. 1 \

<P\(x, £') ^(^J^O "'' 9m(X^')

l(-*jO) (0>2 ( * > £ ) ) '" ((Pm(x->^JJ /

It is easy to see that the (//, v)-component ^(~^v) of the inverse matrix A"1 (in
the sense of the usual multiplication, and not in the sense of the previous
composition A o A~1} satisfies

X-V+l

Now let us calculate the inverse A~(x,l;f) of A+(x, £,'} = A(x,£') in the sense of
our composition this time. Let / = ^ ftj be a formal sum. We write

f — g or / = g if ft • = gf / for every i and j. On the other hand, if Y) ft • =J ' J

Y, 9i,j for every i, we write / = g. Note that J] ffj- is a finite sum for each
J ' ' 7

/. Finally we define / o g = J]/z/7- by

/"+/"+|a'|=i
J'+J"=J

Lemma 5. Let C»a»l. We define ^t.(x,f7) =^yO^(^O- Then
there exist 4~/*>O 6 (&(Q0(Q))mxm, 0 < j <i, which satisfy A(±\x,£}o

,?)=Im, and we have

on Q°(C}.

Proof. Let A' = A o A~l . In other words we define A\, vj = £) —
a '

1. Then we have A'0 = Im, and |a'l=;
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We define

. J dfiAq, i = 0,

and A"j = <Jio<J/o/m — J] —-d^A^j.d^A^j,, by induction on i. By a direct

j'+j"=j
calculation we can prove

Defining zT = zT1 o J" we obtain Lemma 5. Q.E.D.

Let us define L'(x,$) = £i/m + Lf(x,£f), where

Therefore we have L(x,D)A+(x,Df) = A+(x,D'}L(x,D] formally. Here we
remind the reader that we have defined L = ̂ Lt= ^ Ltj, where Ltj =

Sj^Lt. Therefore we have L' = ^ L\- naturally. We have obtained the
0<y</ '

following

Lemma 6. If C » a » 1, then we have

dx,A
+ + L o A+ — A+ o Lr = O,

\LIM^\ < aM(i-j)\\Xl

on Q°.

§ 5. Miscellanea

§5.1. Formal Norms

The next step is the most important part, and will be discussed in the next
section. Here we give some preliminaries. At first we define formal norms
similar to [3]. Let CD c Cn x Cn~l be an open set. Let / = Y ^ f j ( x ^ ' } be a

j
formal sum where j$(jc,O e G(co). We define N(f,cal) = N ( f , CD, t, x, £,'} by
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where (x,£')ecQ. This is a formal series in t. In place of \ d ^ d ^ f j ( x , £')| •
l^'l"7'"1"1" ' in the above definition, [3] considered its supremum. This means that
our formal norm (resp. the formal norm of [3]) is a formal series in t, whose
coefficients are continuous functions on co (resp. constants). Let f(x,D'}e
$^(co). Let s > 0 be an arbitrary number. Shrinking CD if necessary, we
can choose its formal symbol /(*, £') such that N(f,co) is convergent and
N ( f , CD) < 3C£exp(eIm£w) for 0 < f « l , (X,£')ECD. Conversely, such a for-
mal series defines a holomorphic microlocal operator on co.

If /=E-/KX '£ ') satisfies fj = Q for 0<j<jQ-l, then we define

Nk(f,co)=Nh(f,co,t,x^') by

N - ( f co]- V \g*'gP' f
' *' J+J

If / = E J5(^ ̂ 0 and AO(^, ̂ 7) e ^(w), then we define AQ/ = E *oJ5- If « =
^ajtj and b = ^bjtj (a7-,67-eR) satisfy aj<bj for every y, then we write
a <b. As in [3] we have the following

Lemma ?„ #" / = E .//> 0 = E ft'
;>o y>o

N(f og,co)< N(f, a>)N(g, co}, N(h0f, co) < N(f, co}N(h^ co)

on co. If f = Y, fj, 9 = E 9j> and ^o e ^(co), then we have
j>kQ

Njo(f, a>)Nh(g, co), Njo(h0f, co) < Njo(f, co)N(h0, co)

on co.

We finally consider a formal series /= ^ /^-(.x, £'), and define fj —

E Ay f°r eac^ -^ (®n ^e otner hand, we define ft = E Ay f°r eac^ z')'
i j

such a formal series with double indices, we define

, CO = , CO, /! , /2> X, = y-, CO, /! , JC

If /= E Ay^'^0 and 0= E ^(^fO, then we define
o<j<i o < y < /

where hij is defined by
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as before, and if AO,O (*>£') e 0(co) then we define /ZQ,O/ = X) ^o,o//j- If a =

^ai,jt[tJ
2 and b = Y^blJt[tJ

2 (aij,bije'R) satisfy aij < bjj for every r and y,
then we write a <b. It is easy to see the following

Lemma 8. // / - £ ftj(x^ g= £

we have

§5.2. Phase Functions

We next give a geometric discussion.

Lemma 9. Let 6 e [0, 2n] be an arbitrary number. We can choose some
numbers Of

k,6£ (\<k<m) satisfying the following conditions'.

define 0( such that

(ii) ( f t+l)fl; + a rga , - (** )#z + > 8? -6', =n/(qt+l),

(iii) T/" ^r/ = qj, i / 7, //z^« we have

(q, + 1)0,' + arg(a,(x*) - a,^*)) # \ Z+, ^' - ^', ^ = ^'-

We first remind the reader that q\ <qi< • • • < ^m. We can

if ^i = ^

if qi = qj = qkj

and 0" = 0{+n/(q\ + \). Assume that 2 < / < m and that we have already
chosen O'k satisfying O'k < 9 < 9'k + n/(qk + 1) for 1 <k <i —I, and let us define
Q\. In case of qt = q^i, we define Q\ = Q\_\. In case of qf > g/_i then we
choose Q\ satisfying

*) * Z+, if ^- = qj,
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(q, + 1)0,' + arg(a,(**) - «*(**)) t ^Z+, if <?, - % = #, y * fc,

e e (^;, 0; + n/(qi + i» c (#;_, , Ci + */te-i + 1))-
Since n/(qi + 1) < n/(qi-\ + 1), we can certainly choose such a 0-. In both
cases we define Q" = Q\ + n/(qt 4- 1). It is easy to see (i)-(iii). Q.E.D.

We define 6f = (9[ + 0")/2> and formally let g0 = ?i, #o = #i> C = C
#o" = 6"'. We define jci(A) = (e-^e"' x\)q*+l . Let 1 « a « C. We define

Re(jci(A))

C" x C^1; C\x'\

(See the figure below). We have the following

Lemma 10. (i) If C < C", then we have

flJ(C) = Oi(C;)
u u

(ii) // (x,O efi-KO, (^^) eC" x C"-1, W \yj\ < C'1/5, |
C~1/5 for 2<j<n, then we have (x\,xr -h y',£,' -h//0 e Q[(C).

(m) If (x,t'}EQ',(C2), (yrf)eCn x C*'1, and \yj < C~\ |^|/
C~2 for 2<j<n, then we have (x\, x' + /,£' + rj'} e Q'^C).

(iv) Le^ 1 < /I < // < m. We define t^ e C as follows. If qi =
^ eC w the point at which +Re((a//(x*) — a^(x*))x^1+ ) ?a/:̂  /^ maximum
when (x,£,') belongs to the closure of Q'^(C). If qx ^ q^, then it is the point at
which +Re(#;i(.x*)z^+1) takes its maximum. Then for any A and JLL, (f\ ^)qx+l is
one of {AfrAZ}, and (t^)9*+l is the other. Here A'^A^A'" are the points
indicated in the following figure.
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arg xi =

Proof, (i)-(iii) are direct consequences of a simple calculation, and we
prove (iv). We first consider the case q^ = q^. From (iii) of Lemma 9 it
follows that in the above figure the line segment combining (<fy(x*) - ax(x*)}A'^
and (ap(x*) — a^(x*))A" is parallel with neither the real axis nor the imaginary
axis. Since a > 0 is large enough (compared with the slopes of these line
segments), we may assume that we have either

or

Accordingly, if (x, c^7) belongs to the closure of £^(C), we have either
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or

This proves (iv) for the case q^ = q^. We can prove the case q^ ^ q^ sim-
ilarly. Q.E.D.

Let 1 < A < JLI < m. If (x, £') e £2j[, then we define a continuous curve
yj^Oi) from (^)^+1 to ;tfA+1 as follows. Let us consider the case t^ = A\
(resp. tffl = A"). If argxi < 0"' (resp. arg*i >0"r), then y^(xi) is a line
segment' from (^)^+1 to xf;+1. If arg^i > #"' (resp. argxi < 0f), then
y^ (x\) is the union of two line segments: one from (^fj^1 to y^+l, and the
other from yf+l to xf^1. Here j^i is the point defined by Re(.y1(^)) +
a-^lmy^l = Re(;ci(/l)) 4- fl-^Imxi^)!, arg^! = 0j[". Finally we define

<^(*i) = i? e c; ̂ A+1 e y^(^i)}' and denote by ̂ (^) the length of ^
Note that we have

We illustrate the case /p = A", argxi < 0^" in the following figure.

* Re«+1)
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Let 1 «a« C0« C\ « ••• « Cm, and let
Therefore we have

«o = ••• = A;
u u

The next lemma will be important in the next section.

Lemma 11. Let I < 1 < ft < m, (x, £') e Q'^, teS^(x\), and let
je.f . = - L x ' ^ - I s ^ ^ d s . Then we have

Proof. Let

e

We denote

By Lemma 6 we may assume |<(x,<f)l <alm£n , |fev(x,^')| <
We have +Re ̂ (x, t, £,') = I + II + III + IV, where

^ + 1),

III ' '

IV =

We can prove

(17)
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as follows. We first consider the case q% = q^. Since we have

(18) |arg(e~^(^(0, *',<?') -«,(<), x',O))l < ^

it follows that Re(£r^^°(^(0, *',£') - ^(0, *',£'))) ^ a~l/2lm£n. From
Lemma 10 it follows that ±Re(ev/rT^0(>f +1 - t^+l)) < -a-^2\x\^1 -
Therefore we obtain

1=

We next consider the case q^ ^ q^. We can similarly prove

If / e Z+/OT' satisfies 0 < / < (m1 - \)/m', then we have

and thus

It follows that

Since we have q^ > qj,+\, it follows that

(19) x?*+1 - ?«"+1 < a|jc!1/m' - tl'm'

< a'1 x\'m> - tl/m'\(\xi\l/m' + \t

Therefore we have
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and we obtain (17).
We next prove

(20) |II

Let q\ = q^. In this case (20) for II is a direct consequence of (18). Let
<7/i 7^ fy. In this case from (18) and (19) we obtain

We next prove (20) for III. We have

< f (
"MVM

and we obtain (20) for III. The proof for IV is similar. We obtain Lemma 1 1
from (17) and (20). Q.E.D.

From (ii) of Lemma 10 and Lemma 11 we obtain the following

Corollary. Let 1 < A < n < m, (x, £') e Q[, t e S^(x\). Then we have

§6. Diagonalization of the Complete Symbol

§6.1. Calculation of Some Matrices

Let

. * = 0,

We have ^L'^ = ^L'-j, and these two formal series are essentially the same.

We define M(x, O' (= M0,0(*,O) by
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We study the following equation:

dx V(x, £') -h Lff(x, £') o V(x, £') — V(x £') o M(x, £') = O.

The essential part is the following

Proposition 1. There exist m x m matrices U^(x, £') = ]T) U j j ( x , £ r ) ,

and M'(x,^/)= Y, M-j(x,£f) of formal series satisfying the following

conditions'.
(i) All the components U^., , and M(. / v^ are holomorphic on Q'm.
(ii) We have

SXl t/W + L" o

dxi U(~] + M' o U('} - U(~] o L" = O

™ o;-
(iii) M; M a diagonal matrix and we have

+^^,0;,^,^) < Cm\xi ~ - 1 ) - 1

ifO<tl,t2«l.

Precisely speaking, Q'm, and thus U^ are dependent on 0, and we should
have written as Q'^ and U^'6^. But we omit d for the moment.

We can prove Proposition 1 inductively for the rows and columns of the
matrices. We first find some matrices M W - £ M^, U^V = £ U$'*\

Q<j<i ' 0 < y < i

t/(-^) = E [/(7^)(0 < A < m) such that Mg t/(+£v), f/(-J e
o<y<i

and

(21)

= 0, min(/^, v) < A and ^ ^ v,

= ^v, min(ju, v) ^ A or /z = v,

o C/(*^) - £/<+•*> o MW = O,

) = ,
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(Here we define M^~1^ = L" if A = 0). In other words, we have

" o \ I

0 *
m — A

A —M— m — k —»

n \

*

*

0

T
and

Proposition 1 is a consequence of the following

Proposition 2. Lef 0 < A < m. There exists some
(9(Q'i)mxm such that M^\ U^^ satisfy (21) and we have

for 0 < ti < q-1, 0 < h < a1(>m+l-V.

We prove Proposition 2 by induction on A. Let us denote C/^+iA) by
If A = 0, we only need to let U^ = Im, M^ = L". Let 1 < AQ < m and
assume that Proposition 2 is true for 0 < A < AQ — I . Now we prove it for
A = AQ (Therefore we assume that U^~^ and M^~1^ are already known). We
write U'W = U^ - Im. Then we need to solve

(23) 5^ U'W + M^1) - MW _ M(^ o U'W - U™ o M W = O,

where t//^ \ = 0 if min(//, v) 7^ A or JLI = v. Let us calculate the (//, v)-
component of (23). It follows from (21) that the (//, v)-component in the left-
hand side of (23) is equal to the following:
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if minGM^-l,

if minC//, v) > X + 1,

if min^' v) = A and „ = v,

if min(//, v) = A and ju ̂  v.

This means that if we obtain U'^\ then we must define

if min(//, v) < A— 1,

1) ° U(^l)' *f min(0, v) > A +1,

( ~v) ~^~ 7_^ ^( ~JO ° ^(K v)' ^ min(0, v) = A and JLL = V,

0, if min(0, v) = A and JLL ̂  v.

On the other hand, we must define U'^ by

t24) MSv) = 1

for min(//, v) = A, JLL^= v. Substituting (24) into (25), we can eliminate
from (25). We define A ( / t , v ) and B(ju, v) by

'^ v) = {A}, B(n, v) = {(z, TC); z = A, A + 1 < K < m}

if JLL > v = A, and

^4(//, v) = {A+ 1, . . . ,m}, B(p,v) = {(I,K); A 4- 1 < z < m,K = A}

if v > JLI = A. Then we obtain

/ /^y^\ /> F7"'(^) fl~^(^—1) i \. "^ jl~Jir\A-—1) TJ^\*.J(^o / (7v- c// \ ~T" yw / \ ~r~ ^ yv^ / \ o LJf

j'Wfor min(0, v) = A, // ^ v. Therefore we need to solve (26) for u! , at first,

^ v

and define M^ v) by (24), after that. We will do this in the next section.
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§6.2. A Study of Ordinary Differential Equations

We solve (26) by the following successive approximation. Let min(/z, v)
= A, JLI ¥= v. We consider

+ E

(27) •

V — 5a/M(A~1}

2^a/!^/Mi",/,(i
(28) ^ '

Here we have defined

(27) I' + r + l

/ + / =

and

(28) i7 + /" + |

for i',i"J'J",KeZ+, and a7 e Z^1 (We have written
F(^y) = o if fc < 0). Let

if // < v, and

if JLL>V. Note that if we have decided Ur
(
(**~l\ then we can determine

Therefore we may define Uf,^ff by
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fr$(x,t') = f
% v(

We want to prove that lim u!^V e Ste exists and it satisfies (26). For this
&— >oo Wv)

purpose, we define £/'(*•*) = U'^ - U'^k~l\ p(W = F^ - F^k~l\ and
pfrks) = F(iM _ p(w-\s) m Therefore we need to consider

and

0, (1C, V) ~ V-H), (v, V) ;

(27) ~ '

\^ 1 a' -(A-l

(28) a '

Let us define

^'v)'^^') = f
J^

Then we have the following

Lemma 12. #"min(/i, v) = A, // / v, 0 < /i < Q"1, 0 < t2 < a7(m+1"A),
we have

Proof. Let ko e Z+ and assume that Lemma 12 is true if 0 < k < k$ — 1
(We have also assumed that Proposition 2 is true if we replace the number A by
A — 1). Then we may assume that
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(29)
and we can prove

:~ 0~ 1 y 1 a, £ — I, .3,
/> 1t — Z.

Let us prove (30) for the case t = 2 (The other cases are easier). We have

'

L\

(32) (l

where

(31) f' + y' + l / ^ O , l<K<m

and

(32) z-/ 4- 7' -f |y; 7^0, K E A(ju, v)

for i ' , i f f , j ' , j f f , K E Z + , and a'^^a't2),/?'^,/?'^,/e Z+"1. Here we have

2(2ii)"'l"I'll"|yl|(i/ + «// + |/|)!(a /(1)+a /(2))!^^^^

Let a'(" = a'W, a'(2' = a'<2) + 7', ̂  = ^'(1} + 7', jg'(2> = ^'<2). Then it follows
that



224 KEISUKE UCHIKOSHI

v i i : | ' ( 2 ) L 2 ; ' + 2 i " + | a ' ( " + a ' < 2 ' + j ? ' ( " + j S ' ( 2 ' | J'+y"
x IS I fl *2 '

where

(31)' i' + /

for /',/", /,/,K,a'(1),a'(2 ',A'(1),A'(2),/. Here we have

x | | - ' - q f l -

by the assumption of induction (on 1). It follows that

V

x rf ''+|a~'(2)+^

Here we note 0 < t\C^\ < Q_i/Q « 1 and 0 < ^^-7(^+2-^) < a-7 By the

assumption of induction on k, it follows that Y^ <2l~kma~7 x\\qilm^n. We
(31)

can similarly prove the same inequality for ^.
(32)

From (29) and (30) we obtain

^ <5ma-72-k\Xl\
q*Tmen.

From Corollary of Lemma 11 it follows that

if r e (J. We have
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f
J^,v(*l)

Q.E.D.

Now we can prove Proposition 2. From Lemma 12 we obtain
\YQ'^ti,t2} < a~l. If we define M^ by (24), we have (25). We can

prove (22) directly from this.
We define t/^+i/l^ = U^\ and calculate its inverse series t/(~ i / l) as follows.

Lemma 13. There exists some [/(-'*) = ]T [ / • ' , such that

A:— times

: Let U^~^ = Im + ]T ^'(A) ° • • • ° ^'(A) - Then it is easy to see that
k>\

x max - ' k>\

and we have U^-^oU^^ =Im. Q.E.D.

If we let C/W = t/(+-0) 0 . . . 0 [/(+,i«) and £/(-) = t/(-^) 0 • • • o C/(-'°), we
obtain Proposition 1. Our next step is the following

Proposition 3. Let C » Cm, and let xf = C/exp(v/irTC/(^m + 1)).
xist V^f]

( v) e ^(^(C7)), 1 < 7 < /, JwcA r/zar K^^ = ^ F/7
±}

(33)

(34) dxt F- + Mo F-' - )/ o Mm = O,
ij
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c,H/y4M(|a'+/n)/2)+lfl-6y

x jq -x

Proof. Let MzV> = S^^M and Af ̂  Oi ̂  v) = M0, o, („, v) - M(™^ (^ v) .
Since all the matrices in Proposition 3 are diagonal matrices, we can easily
calculate F/+| ) by solving the following equation:

We solve this equation by successive approximation. Let

(+'k] - /(m) (+i/t) - ^'^

where

for k > 0 (Here K^+i ^ = O). Then by a direct calculation we can prove that

-67

x Xl-

by induction on k. This means that F^ = F^+'^ satisfies (33) and (35). We
can similarly construct F^ satisfying (34) and (35). It follows that

F H )+M ( m ) o(F ( ^o FH)-(F ( + )o F (~})oM ( m ) -0,

whose unique solution is F^+^ o F^~^ = 7m. We can similarly prove F^ o
=/m. Q.E.D.



MIXED-TYPE OPERATORS 227

§7. The Last Part of the Proof of Theorem 2

Here we rewrite the results we have already proved. Let C » C'(»Cm),
e[0,2n],keZ+. We define

S(C) = {(*,<£') e C" x C"-1; C\x\ < 1, C]O <

IinU,

xi|,C|arg Xl-0\<\},

E"(C) = {(x^')eE(C); x,|

E"(C) = {(x,t')eE"(C);Xl * 0, arg *,| < 2n},

E(C,0) = E'(C,0)(JE"(C),

S(C,8) = 3'(C,6)\JS"(C),

Ek(C) = {(x,t')eE(C);C

Let W^'^=A+oU^oVM, and W(--9) = F^o U^oA~ on S"(
Precisely speaking, U^\ V^\ and f3^ are dependent on 6, and we should
have written as U^'0'1, V(±'e~> and Q'^\ respectively. To the contrary, A(±)

are independent of 6. Let a+(/i, v) = / / — ! , and CT-(/<, v) = 1 - v. Then we
have

xi + LO
I 3Xl W(~^ + M o ̂ (--9) - ^(-.fl) o Z =

and

(37) 15','a,' ^ . | v |

on S'(C,0). Finally we need to calculate W(±<6) on S"(C). This means
that we have already calculated W^'0^ on {|^n| » l/|xi|}, and we need to
extend them to the remaining domain. This is very easy. Let x\ =
C-ii/4(yt + 2)-1/(2m?+2m'ev^Te_ We define the distance /?«(*,) from x[k} to x,

by />w(*i)= |x1|1/m-|xf)|1/'"l + -ki|1/'"|arg ^ -fl|. Then we have the

following
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Lemma 14. If (*,£') e 3'k(C,0)\S'k+2(C,6), we have (xf\x',?)e

Proof. It is easy to see that C(Im^)-1/(m?J-m) < \x\k)\ <
C-1/2(Im4)-1/(2m?+2m), and the lemma follows immediately. Q.E.D.

Lemma 15. We have

(38)

Proof. As we have already seen, FF^+i<9) satisfies (36) on E'(C,0). Of
course we can uniquely extend this solution to E^(C)\E'^+2(C). To be precise,
let us consider the following successive approximation:

where H^ =Zo W^9^~^ - w'(+^f-^ oM for t eZ+(W(+<0>-V = O). By
induction on /, let us prove that

(39)

^ (i ~ J + jot' + I'D! r2,--2/+|«'+/;'|+^+i -57
-

on El(C)\E£+2(C}. Let ^ = 0. Since ^(+-0'°)(x,^) = W^+^(x[k} ,jc',O and
(xiW,y,^')e^'(C,(9), (39) follows from (37). Assume that 4 > 1 and that
(39) is true if 0 < f < t§ — 1. Let us consider the case f = S0. Then we obtain

on 3'^(C)\S'^+2(C), and we obtain (39). (38) follows from (39), and we can
similarly estimate Wl(--*e\ Q.E.D.



MIXED-TYPE OPERATORS 229

Now we can conclude the following

Proposition 4 . We have W 6 ] E®(5(C,0)) and

(40) \d$dwW\ <

x (Im <y -/+'-|/r|+mexp(C(Im f „) 1

on E(C,0\

Proof. Let (x,f) e£(C,0). If (*,£') e 5" (C,0), then (40) is already
known. Therefore we may assume that (x, £,') e 5"'(C), but it is sufficient to
prove (40) for the case x\ / 0. Then we can choose some k e Z+ for which we
have (x^')ES^(C)\S^+2(C). From Lemma 15 it follows that

0<7<i

x (ImO"1'̂ '1''1^^ + CpW(xi)Tmfn).

Since we have p<*>(*i) < 10|*i|1/m < 10C-1/2w(Im^)~1/(2/^+2m) on S"(C) and
G± (//, v) + 1 < m, we obtain Proposition 4. Q.E.D.

CoroUary. W^ e (3le)mxm.

Now we can prove Theorem 2. Let E(+'e\x,£) = W+'e(x,£] o
Z (+) (x, {') o ̂ -'0(0, y , f ') and £(-^) (x, {') = ^+^(0, ̂  , ̂ ) o *(-> (x, f;) o
W-^e(x^'). Then £(±'0) satisfy (15) on £(C,0). Since such a solution is
unique, it follows that E^ = E(±'e] on 5(C,0).

The above discussion is valid for each fixed Oe[Q,2n]. To consider
various values of 9 simultaneously, we must denote the large number by Co
instead of C, because it may depend on 0. Let us consider on the whole
E(C'),C'»l. There is a finite set {0\, . . . A} e [0,2*;], such that [0,27c] c
Ui<;<5(^/' "~ 1/^,0; 4- l/Qy)- If we choose C; = max(C01,...,QJ, then we
have E(Cf) ^(J^.^E^.Oj). It follows that E^ e *rmxm. We have

trivially X^ E f%?}
m, and it follows that

References

[ 1 ] Amano, K. and Nakamura, G., Branching of singularities for degenerate hyperbolic op-
erators, Publ. RIMS, Kyoto Univ., 20 (1984), 225-275.

[ 2 ] Aoki, T., Symbols and formal symbols of pseudodifferential operators, Adv. Stud. Pure
Math., 4 (1984), 181-208.



230 KEISUKE UCHIKOSHI

[ 3 ] Boutet de Monvel, L. and Kree, P., Pseudo-differential operators and Gevrey classes, Ann.
Inst. Fourier, 17 (1967) 295-323.

[ 4 ] Boutet de Monvel, L., Hypoelliptic operators with double characteristics and related pseudo-
differential operators, Comm. Pure Appl. Math., 27 (1974), 585-639.

[ 5 ] Kashiwara, M. and Kawai, T., Microhyperbolic pseudodifferential operators I, /. Math.
Soc. Japan, 27 (1975), 359-404.

[ 6 ] Kataoka, K., Micro-local theory of boundary value problems I, J. Fac. Sci, Univ. Tokyo,
27 (1980), 355-399.

[ 7 ] , Structure of solutions of differential equations, Proceedings of a symposium held at
Katata/Kyoto, World Sci. Publishing, River Edge, NJ, 1997.

[ 8 ] Nakane, S., Propagation of singularities and uniqueness in the Cauchy problem at a class of
doubly characteristic points, Comm. Partial Differential Equations, 6 (1981), 917-927.

[ 9 ] Sato, M., Kawai, T. and Kashiwara, M., Microfunctions and pseudo-differential equations,
Lecture Notes in Math., 287 (1973), 265-529, Springer.

[10] Takasaki, K., Singular Cauchy problems for a class of weakly hyperbolic differential op-
erators, Comm. Partial Differential Equations, 1 (1982), 1151-1188.

[11] Uchikoshi, K., Symbol theory of microlocal operators, Publ. RIMS, Kyoto Univ., 24 (1988),
547-584.

[12] , Stokes operators for microhyperbolic equations, /. Math. Sci., Univ. of Tokyo, 5
(1998), 507-545.

[13] Yamane, H., Branching of singularities for some second or third order microhyperbolic
operators, J. Math. Sci., Univ. of Tokyo, 2 (1995), 671-749.


