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The First Fundamental Theorem of Coinvariant
Theory for the Quantum General Linear Group

By

Kenneth R. GOODEARL*, Thomas H. LENAGAN** and Laurent RIGAL***

Abstract

We prove First Fundamental Theorems of Coinvariant Theory for the standard coactions of the
quantum groups Oq(GLt(K)} and (9q(SLt(K}) on the quantized algebra &q(Mm,t(K)) <g> Gq(Mt,n(K)).
(Here K is an arbitrary field and q an arbitrary nonzero scalar.) In both cases, the set of co-
invariants is a subalgebra of (9q(MmJ(K)) (x) Oq(Mt,n(K}), which we identify.

Introduction

One of the highlights of classical invariant theory is the determination of
the algebra of invariant functions for the standard action of the general linear
group on the variety of pairs of matrices over a field K. More precisely, the
standard action of GLt = GLt(K] on the variety V := Mm^t(K) x Mt,n(K) in-
duces an action of GLt on &(V), and the classical theorem determines the
algebra of invariants, (9(V}GLt. We recall the details below, since, if we assume
that K is algebraically closed, the method of proof we follow has an easy
geometric translation.
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The main theorem of this paper, Theorem 4.5, gives a quantum analog of
the above theorem. Since the quantum group @q(GLt} is not a group but a
Hopf algebra, we first place the classical situation into a Hopf algebra context.
This is standard: the action of GLt on V induces a coaction of G(GLt) on 0(F),
under which (9(V) becomes an 0((7Lr) -comodule algebra, and (9(V)GLt equals
the algebra of 0(GLr) -coinvariants in ®(V). It is this situation which has a
natural quantization: the coordinate ring 0(V) becomes the algebra Gq(V) :=
®q(MmJ) (x) Gg(Mt,n), and the coaction of (9(GLt) on (9(V) becomes a coaction
of (9q(GLt) on Oq(V). We prove the First Fundamental Theorem of Co-
invariant Theory for this coaction, that is, we identify the set of coinvariants,

There is a natural comultiplication map 9* : Gq(Mm,n) — > ®q(Mm,t) (x)
&q(Mt,n), which is the quantum analog of matrix multiplication M,,M x M^n — »
Mn,«- We prove that the set of coinvariants is equal to the image of 0*. In
an earlier paper, [2], the first two authors have shown that the kernel of 0* is
the ideal generated by the (t + 1) x (f + 1) quantum minors of @q(Mm,n): this is
the Second Fundamental Theorem of Coinvariant Theory for this comodule
action. Taken together, these two results give a complete description of
(9q(V)co(9^GL'\ Further, we investigate the coaction of Gq(SLt) on Gq(V)
induced by that of Oq(GLt] and identify the coinvariants of this coaction.

The basic structure of our proof follows the outline of one of the possible
proofs in the classical invariant theoretical setting. However, there are sig-
nificant problems that arise due to the noncommutative setting. The most
striking one is that, unlike in the commutative case, the Oq(GLt} -comodule
Oq(V] is not a comodule algebra. For this reason, it is not even obvious at the
outset that the set of coinvariants forms a subalgebra. More generally, the
quantum analogs of several maps that we need are not algebra morphisms, and
so their properties cannot be analyzed simply by checking how they behave on
sets of algebra generators.

Nevertheless, it is useful to start by reviewing the classical situation, to
provide a skeleton for our approach.

The classical situation. We fix an algebraically closed field K and positive
integers m,n,t. For integers u, v > 0, we write MM)U = MU,V(K) for the set of
u x v matrices with entries in K. We will be mainly interested in the general
linear group GLt = GLt(K) and its standard action on the algebraic variety V =
Vm^n := Mm>, x Mtin. This action is given by:

GLt x V -i V

Thus GLt acts on 0(V) = (9(Mm^t) ® (9(Mt,n}. Classical invariant theory is
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interested in computing the subalgebra 6(V] ' of invariants for this action.
The description of this algebra goes as follows. Consider the morphism of
varieties

(A,B) ^ AB

and its associated comorphism 0* : (9(Mm,n) — > (9(MmJ] ® G(Mt^n). Let X{j

(for 1 < i < m and 1 < j < n) stand for the usual coordinate functions on the
variety Mn^n, and let J*t+\ denote the ideal of (9(Mm^n] generated by all the
(r-f- 1) x (t+ 1) minors of the generic matrix (Xy] over (9(Mm,n}. (This ideal is
zero if t > min{ra,«}.)

Theorem 0.1. The ring of invariants (9(V}GLt equals Im#*. D

Theorem 0.2. The kernel of 0* is Jt+\. D

Theorems 0.1 and 0.2 are respectively known as the First Fundamental
Theorem of Invariant Theory and the Second Fundamental Theorem of Invariant
Theory (for GLt). They give a complete description of (9(V}GLt .

We denote by M^n the subvariety of Mm,n of m x n matrices with rank at
most t. This variety is just the image of the morphism 0, and so we can factor
9 in the form

Since the restriction map r : (9(Mm,n] — > (9(M^'n) is surjective, the comorphism
//* is injective and has the same image as 9*. Thus, Theorem 0.1 can be
rephrased in the form (9(V) ' = Im//*. Further, Theorem 0.2 shows that
ker(r) = ker(0*) = ^r+1, and therefore 0(M*'n) = (9(Mm,n}/J?t+l.

The proof of De ConcinI and Procesi for Theorem 0.1. We briefly describe
the proof of Theorem 0.1 given by De Concini and Procesi in [1]; more
precisely, we follow the exposition of that proof given in [8].

The general case can be easily reduced to that where t < min{m,«}. So,
we restrict attention to that particular case. Let us fix some notation. We will
denote by M^° the open subset of M^*n consisting of matrices with rank at
most t whose upper leftmost t x t minor is nonzero. In a similar way, M;° t

denotes the set of m x t matrices whose uppermost t x t minor is nonzero,
and M°n denotes the set of t x n matrices whose leftmost t x t minor is
nonzero. Finally, we set K° = M;° t x M°n. Clearly the action y of GLt on V
restricts to an action 7° on V° and we can ask for the invariants of that
restricted action. It turns out that they are easy to compute.

Let us adopt the convention that if (A,B) is an element of V =
Mm,t x Mt,n we write A and B in the forms
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A= and

with AQ,BQ E Mt while A\ e Mm_M
 and B\ E MM_f.

With these notations, we define a morphism of varieties:

x GLt

It turns out that / is actually an isomorphism of varieties (this is an
elementary fact, and the inverse morphism can be explicitly written down) and
that the action of GLt on M^° x GLt induced by y° is just the natural one:

GLt x (M*$ x GLt) * M%? x GLt

The invariants for £ are easy to compute, using for instance the coinvariants
of the associated 0((jL,)-comodule structure on G(M^° x GLt) (see the
quantum case below). One then proves that G(M^° x GLt)

GLt = (9(M^°) c
G(M%f x GLt).

To recover from this the invariants for y° it is enough to use the co-
morphism /* of /. Let us consider the morphism

n° • M° x M° — V° — > M-^°r • mm,t x mt,n ~ V mm,n

given by multiplication of matrices, and denote by (ju°)* its comorphism:

(A*0)* : G(M%?) - G(V°)

Then we can describe i* as the composition

) ® G(GLt) &(V°] ® (9(GLt) G(V°)

—-^ <9(M°mJ ® (9(M°n) (g) <P(Mr%) -

where m denotes multiplication in the algebra @(M°n). From the above we
get that the ring of invariants for the action y° is just i*(0(M^tfl

Q}®\) =

The ring of invariants for y° can thus be described as the localisation of
Im//* with respect to the multiplicative set generated by dy ® dz where dY is
the uppermost t x t minor of the generic matrix (F//) of generators of @(MmJ),
and dz is the leftmost t x t minor of the generic matrix (Z,y) of generators of

The second step of the proof is to show that one can "remove denomi-
nators" to deduce invariants for the action y from invariants for the localised
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action y°. Indeed, if ^ is an invariant function in (9(V) (i.e., for the action y)
then of course it is an invariant function in the localised ring (9(V°] =

®(V}dY®dz (f°r ^e acti°n y°)- Hence, there is a non-negative integer s such
that /(dY

Z®dz)
s e Im//*. Thus, in order to establish that (9(V}GLt = Im//*, it

is enough to prove that for \j/ E 0(V), if there is a non-negative integer s such
that \l/(dY ® dz}

s e Im//*, then if/ e Im//*. This last result is proved using the
theory of standard bases.

In the quantum situation, the lower left quantum minors play a special
role, since they are normal elements. It is for this reason that, unlike in the
commutative case, we will invert leftmost lower t x t minors instead of leftmost
upper ones.

Throughout the paper, we work over an arbitrary base field K and make an
arbitrary choice of a nonzero element q E K. We will have to deal with the
following four quantized coordinate rings: (9q(Mm,n), @q(Mmj), &q(Mt,n) and
Oq(GLt}. In order to avoid confusion, we will denote their respective canonical
generators by Xy, Yy, Zy and Ty. The definitions of these algebras will be as
in [6, 2]; for instance, XyXfc = qX^Xy when j < k. Thus, each time we use
results from [7] we must replace q by q~l. Finally, a convention concerning
notation: each time that we have to deal with the multiplication map in an
algebra, we will denote it by m. The context will make clear which algebra is
concerned.

§1. The General Setup

Below, we will have to deal with the following situation combining a right
and a left comodule algebra. Let (#,m, ?/,^,e, S) be a Hopf algebra, (A,p*) a
right comodule algebra over H, and (B, /T) a left comodule algebra over H.
Here,

p*:A-^A®H and A* : B -> H ® B

are the comodule structure maps; that A and B are comodule algebras means
that p* and /T are also algebra morphisms. It is well known that A can
be turned into a left H -comodule using the structure map A ^ A ® H ^— -»
A (x) H ^ H (x) A, where TU is the flip. Thus, A® B can be equipped with
the structure of a left /f-comodule via the following structure map:

f:A®B

T"32) ,H®H®A®B
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where T(i32) is the isomorphism which permutes the factors according to the
cycle (132), that is, T(i32)(a ®h®h'®b) = h®h'®a®b. Using the standard
comodule notations p*(a) = J^ a$ ® a\ and A*(&) = ]T)^ ^-1 ® ^o for a e ^4
and &e# (cf. [5, p. 11]), one thus has

y*(a®b) = Y, S(a\)b-\ ®a$ ® &o-
(«),(*)

Of course, (A ® B, y*) is not a comodule algebra any longer. Nevertheless, this
comodule continues to have nice properties that are now described. Let us
recall that if (M, v*) is a left H-comodule, then the set of H-coinvariants of
(M, v*) (or v* -coinvariants for short) is the sub-comodule of M defined by
McoH:={xEM v*(x) = I ®x}. It is immediate that if (M, v*) is a co-
module algebra then McoH is a subalgebra of M. In the more general situation
described above this property is not automatic but still true.

Proposition 1.1. In the above notation:
(a) If v E A ® B is such that y*(v) = z ® v for some central element z e H ,

and if we A® B is any element, then y*(vw) = };*(^)>;*(H;)- In particular, this
holds when v is a y*-coinvariant.

(b) If v, w 6 A ® B are y* -coinvariants, then vw is again a y*-coinvariant.
(c) The set (A ® B}coH is a subalgebra of A ® B.

Proof. Without loss of generality, we may assume that w = a' ® b' is a
pure tensor. Moreover, let us write v = Y^,i=i af ® h- Since both p* and 1*
are algebra morphisms, we have

1=1 (a,), (^

where a/,0 = («/)o etc- Hence,

(=1 (a, ) , («,) («'),(*')

XI (5(fl,')®l
(a').(i')

(«'),(*')
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But, since y*(v) = z®v and z is central, we have

This proves statement (a). Clearly, (b) as well as (c) follow at once from

(a). D

We now record a special case of a coaction for which computing the
coinvariants is easy. Again, (//,m,//,^,e, S) is a Hopf algebra, and M denotes
a vector space. Clearly, the map

a i— > 1 ® a

defines a (trivial) left coaction of H on M. Moreover, the comultiplication A of
H makes H itself into a left //-comodule. The tensor product of these two
coactions gives a left coaction of H on M ® H:

hi ® a® /Z2-

Lemma 1.2. With the above notation, (M®H)coH = M® 1.

Pr0o/ Consider x e (M ® H)coH, and write x = ^i=i ai ® ni where the
are linearly independent. Now

Since the a/ are linearly independent, we obtain

for each /, whence ht = (id®e)J(A/) = 1 • e(/z/). This shows that the A/ are
scalars, and so x e M
elusion is obvious. Q
scalars, and so x e M ® 1. Thus, (M ® H)coH ^ M ®l. The reverse in-

§2. Quantization of the Standard Action of GLt on V

As in the introduction, we fix our base field K and positive integers m, n, t.
By analogy with the commutative situation, we put
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(9q(V) = Cq(Vm^n) := <9q(MmJ ® Oq(Mt^n).

It is easily checked that ®q(V) is an iterated skew polynomial extension of the
base field K, and so Oq(V) is a noetherian domain. A quantum analogue of
the action y is obtained as a coaction of (9q(GLt] on Oq(V] that we now
describe.

It is easy to check that one can define morphisms of algebras satisfying the
following rules:

<5q(MmJ ^ Og(Mm,t) (g) (9q(GLt] ®q(Mt,n} i 0q(GLt) ® <9q(MtJ

Yik ® Tki Zii -> Tik ® ZkJ'

Moreover, /?* endows Oq(MmJ) with a right (9q(GLt)-comodu\Q algebra
structure, while /I* endows (9q(Mt,n} with a left @q(GLt)-comodule algebra
structure. It follows that TU o (id (g) 5) o /?* gives (9q(MmJ) the structure of a
left ^(GL^-comodule, where -S denotes the antipode in &q(GLt}. The tensor
product of these two left coactions allows us to define a left comodule structure
on @q(V) that we denote by y*. So, as in Section 1,

is given by the rule

for ae<Sq(Mm^) and be&q(Mt,n).
The main objective of this paper is to calculate ^^(F)co^(GL/), the set of

coin variants of y*. As we see by Proposition 1.1, this set is a subalgebra of

Quantum minors. Recall that quantum minors in a quantum matrix
algebra (9q(Mu,v) correspond to quantum determinants in subalgebras of
@q(Mu,v). More precisely, if 1 < r\ < YI < • • • < r/ < u and 1 < c\ < c-i < • • • <
ci<v, then the subalgebra of @q(Mu,v} generated by { X T l C j \ \ <i,j <l} is
naturally isomorphic to Oq(Mi), and the element of this subalgebra corre-
sponding to the quantum determinant in &q(Mj) is called the quantum minor of
®q(Mu,v} corresponding to the rows r i , . . . , r / and columns C I , . . . , Q (see [6,
§1.2; 7, §4.3]). Since we require a number of the formulas and results de-
veloped in [2], we shall use the notation of that paper for quantum minors.
Thus, the / x / quantum minor described above will be denoted by the symbol

or by [R\C\ where R and C denote the sets {n, . . . , r /} and
respectively.
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Remark 2.1. (i) The ideal of (9q(Mm,n) generated by all the ( f + l ) x
(t+\) quantum minors will be denoted «/,+i, or J^ when m and n require
emphasis. (In case t>mm{m,n}, there are no ( f + l ) x ( f + l ) quantum
minors in Gq(Mm,n], and «/,+i = 0.) Moreover, we put

and *0 := JQ,-
(ii) For any m' >m and w' > «, we will identify &q(Mm,n} with the

subalgebra of &q(Mm^n>) generated by those Xy with / < m and y < n. Now
there is a ^-algebra retraction

such that nm,n(Xij] = Xy for 1 < / < m and I < j <n, and nm^n(Xjj} = 0
for i > m or j > n. It is worth mentioning here that the inclusion map
(9q(Mm,n) — * ®q(Mmi,ni} (corresponding to the identification above) provides a
section for 7imiW; this fact will be used without further comment. Note that
nm,n[I\J] = [I\J] when /c {!,... ,m} and / <= {!,... ,«}, while nm,n[I\J] = Q
otherwise. It follows that nm,n(S™{n') = S™\", and consequently St+\n =
s£n'n0q(Mm,n).

(iii} As is easily checked, there is a morphism of algebras

For instance, this can be checked by using the commutative diagram

where />max{m,«} and zl denotes the comultiplication of Gq(Mi).
(iv) The comultiplication rule for quantum minors in a square quantum

matrix algebra, say (9q(Mj), states that

A[I\J]=

for all quantum minors [I\J] e Gq(Mi) (e.g., [6, (1.9)]).
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(v) From points (ii), (iii) and (iv), it is clear that Jt+\ is contained in the
kernel of 0* Hence, there is an induced morphism of algebras

such that [JL*(xij) = Y^k=\ ^tk ® Zy. The work of the first and second authors
in [2] leads to the following result:

Theorem 2.2. In the above notation, the morphism //* is an injection. In
particular, &q(M^t

n) is a domain.

Proof. We must show that ker(#*) = J>t+\. In view of Remark 2.1(ii),
there is no loss of generality in assuming that m = n > t. That case is proved
in [2, Proposition 2.4]. D

Clearly, Theorem 2.2 gives a quantum analogue of the Second Funda-
mental Theorem of Invariant Theory; see Theorem 0.2. The rest of this work
is devoted to proving a quantum analogue of the First Fundamental Theorem
of Invariant Theory; see Theorem 0.1. A first easy proposition is in order.

Proposition 2.3. The set of coinvariants (9q(V}co ^ *' is a subalgebra of
(9q(V] containing Im//*.

Proof. We are in the setup defined at the begining of Section 1, so we may
apply Proposition l.l(c) to see that &q(V)co(9ci(GLt] is a subalgebra of Gq(V).
For the rest of the statement, since the map //* is a morphism of algebras, it is
enough to prove that ^q(xtj} is a y*-coinvariant, for 1 <i<m and 1 < j < n.
However,

S(Trk)Tks® Yir®Zsj

k=\ r,s,k=\

r,j=l r=l

Remark 2.4. By using the retraction maps 7T0i@ discussed in Remark
2.1(ii), most results proved for quantized coordinate rings of square matrices
immediately carry over to the rectangular case, as in the proof of Theorem 2.2.
For the purposes of the present paper, rather than carry over a large number
of results in this way, it is more efficient to check that it suffices to prove our
main theorem in the case m = n. This also allows us to assume that t < n, as
follows.

Choose an integer />max{m,«} (later, it will be helpful to take />
max{m,fl}), and observe that we have a commutative diagram as follows:
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<t)®&q(Vm,t,n)

id(x)7z:,,M ®nt,n

Here '^' is shorthand for various embeddings induced by identifications (cf.
Remark 2.1(ii)), and nm,n denotes the map induced by the retraction nm,n :
(9q(Mi] -> (9q(Mm,n} (recall from Remark 2.1(ii) that nm,n(J^) = S™\"). It is
clear from the above diagram that

Hence, to prove our main theorem it suffices to consider the case (m = n> t).

§3. A Localisation of y*

In view of Remark 2.4, we assume, until further notice, that m — n>t.
Certain notations contract slightly in this case; e.g., (9q(M^t

n) becomes (9q(M^1}.

Remark 3.1. (i) We label the following tx t quantum minors:

4 r : = [ / i , . . . , / i - f + l l,...,t]e0q(Mn)

dy :=[/!, . . . ,»- t + 1|1, . . . , ? ] 6 &q(Mn,t)

Further, we set <4 = ^ + «//+i e (9q(M^t). It is known that dx £ <#t+\ (for
instance, it is clear from Remark 3.2(i) below that 0*q(dx) ¥^ 0), and so dx ^ 0.

(ii) It is well known that in any (9q(Mu^}, the "lower left" quantum
minors — i.e., those corresponding to the lowest / rows and the leftmost /
columns, for any / — are normal elements (e.g., see [2, Corollary 5.2]). In
particular, the quantum minors dx, dy, dz are normal in Gq(Mn), (9q(Mn,t),
Oq(M^n), respectively. Since dT is the quantum determinant in Oq(GLt), it is
central. It follows from the normality of dx that dx is normal in (9q(M^1}.
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(iii) Since dy is a normal element in (9q(Mn^t}, we can consider the
localisation of ®q(Mn,t] with respect to the multiplicative set generated by
dy. By analogy with the commutative case, we denote this localisation,
®q(Mn^\dyl\ by (9q(M^t). Similarly, the localisations (9q(Mt^n}[d^1} and
(9q(M^){d~1} will be denoted &q(M°n) and (9q(M^°), respectively. At this
stage it is worth mentioning that

this is an easy consequence of the universal properties of quotients and lo-
calisations. We will use this isomorphism without further comment.

Remark 3.2. (i) It follows from Remark 2.1(ii,iv) that in the notation of
Section 2, one has

p*q (dy} = dY®dT and rq (dz) = dT®dz.

Further, 0*(dx) = dy ® dz> and so

p*(dx) = dy®dz.

(ii) In view of Remark 3.1 (iii) and point (i) above, /?* and A* extend
uniquely to morphisms of algebras

/>;° : (9q(M°J -+ (9q(M°J ® (9q(GLt]

i;° : <Sq(Mln) - <3q(GLt) ® ̂ (M°J.

(iii) Clearly, A*° defines a left d^(G£?)-comodule algebra structure on
®q(M°n), while /?*° defines a right <^(GL,)-comodule algebra structure on
(9q(M^t). Again, the composition TU o (id ® S) o p*° defines a left Oq(GLt}-
comodule structure on (9q(M°t). Finally, if we set

and tensor the above two left coactions, we obtain a map

endowing Oq(V°) with the structure of a left d^(<xL,)-comodule. The map y*°
follows the same formula as y*; namely,

y*q°(a®b)= S(a\)b-\ ® dQ ® b$

for a 6 Oq(M^t) and b e 0q(M°n). Obviously, the restriction of y*° to Oq(V) is
just y*.

(iv) Recall from Theorem 2.2 that the morphism //* : ̂ (M^) -^ (9q(V) is
injective. Because of Remark 3.1 (iii) and point (i) above, we can extend n* to
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the corresponding localised algebras and obtain another injective morphism of
algebras:

ft : <3q(M?>°) -+ <5q(V°).

We shall need a technical lemma. We have already mentioned that y* is
not an algebra morphism, and so neither is y*°. Nevertheless, we have the
following statement, the first part of which is a special case of Proposition 1.1.

Lemma 3.3. The set of coinvariants <T^(J/°)CO^GL^ is a subalgebra of
(9q(V°}3 containing Im//*°.

Proof. As noted, Proposition l.l(c) implies that ^(j/°)coCU^) is a

subalgebra of Oq(V°).
Let us observe that for r e N, the element (dY ® dz}~r is a coinvariant

for y*°. Indeed, since both p*° and A*° are morphisms of algebras, we have
p*q°(dyr)=dyr®drr and ^ \d^r] = d?r ® d^ '. Recall that S(dT) = dfl [6,
p. 40; 7, proof of Theorem 5.3.2]. Hence,

f q ( ( d Y ® dzD = f q ( d y r ® dz
r]

= dr
Tdjr ® dyr ® dzr = 1 ® dyr ® dzr.

This proves the claim. Now since //*° is a morphism of algebras, any element
celm//*0 has the form c = a(dy®dz}~r for some a elm//* and r eN . So,
from the observation above, the fact that Im//* c ^(^)CO^(G!L') (see Proposition
2.3), and the fact that ^(K0)00^^ is a subalgebra of ^(F°), we conclude
that ce^(F0)co^(GL'}. D

Coaction of 0q(GLt) on Oq(M^°) ® Gq(GLt). One key point in the
commutative case is that the action of GLt on F° turns out to identify with the
natural action of GLt on Mw-f'° x GLt by left translation on the second factor.
Here, we define and study a quantum analogue for the latter action.

We can apply the situation described at the end of Section 1 with M =
@q(M^°) and H = Oq(GLt}. We thus obtain a left ^(GLr)-comodule
structure on Oq(M^°) ® &q(GLt} via:

Gq(Mf) ® <5q(GLt) - Gq(GLt) ® &q(Mn^°) ® <5q(GLt)

x®h^ y^ h\ ® x ® A2.

According to what we proved in Lemma 1.2, we have the following statement:

Proposition 3.4. The set of ^-coinvariants is a subalgebra of the algebra
(9q (M^ *'° )®Oq(GLt}. More precisely,
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Link between the coactions f° and £*. In light of the commutative case,
one expects that ®q(M^°) ®(9q(GLt) and 0q(V°) are isomorphic as (9q(GLt}-
comodules. This is, in fact, true, although we do not need the full statement
here, only that Oq(V°) is a comodule retraction of 0q(M^°) ® (9q(GLt}. The
morphism that appears as the most natural candidate for an isomorphism
between these two comodules is a quantum analog of i* that we describe below.

Remark 3.5. (i) The following injective homomorphisms of algebras will
be of constant use in the sequel. One should pay attention to the fact that, due
to the choice of the minors we have inverted, these are not the usual maps one
might expect to use. These embeddings are all into the lower left corner of the
target algebra, in order to make use of the normality of the elements dy etc.
We denote all these morphisms by "inj" in order to avoid introducing too much
notation; the context will make clear which one we are using.

Ty i > Yn-t+ij

Tij (9q(GLt) ^U 0,(M°r) Y^

inj inj

The injectivity of these maps is easy to prove, since in each case we can exhibit
a left inverse. We show how to deal with the case of the left hand one; similar
arguments hold for the others. The retraction TTM (see Remark 2.1(ii)) induces
a morphism of algebras @q(M°n) —> Oq(GLt) that maps Zy to Ty ifj < t and to
0 if j > t. Clearly, this map provides a left inverse for inj.

(ii) Identify Gq(M°J (respectively, 0q(M°n)) with its image in Oq(M^°).
Then, the restriction of u*q° to Oq(M^t) (respectively, Oq(M°n)) coincides with
p*° (respectively, A*°), as one can easily check on generators (this is enough since
the maps involved are morphisms of algebras). More precisely, we are claiming
that the following diagram is commutative:

I*

For example, to see that the left hand square commutes, it suffices to check that
//*°oinj and (id® inj) o/?*° agree on the Yy and on dy. This is clear—both
maps send Yy to X^=i ^ ® ̂ / anc^ dy to dy ® dz- The commutativity of
the right hand square is proved analogously.
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(iii) Finally, the restriction of A*° (respectively, JLL*°) to Oq(GLt] coincides
with A, i.e., the following diagram is commutative:

(9q(GLt] > (9q(M°n) > Oq(M^^°)1 ' i *
(9q(GLt}®(9q(GLt) Oq(GLt)®(9q(Mln) 0,(M°,) ® 0,(M,%)

In the following, we will identify the algebras (Bq(GLt), Gq(M^t\ 0q(M°n)
with their images under inj and we will use the commutativity of the above
diagrams without explicit mention.

Quantization of i*. Due to our identification of Oq(GLt] with a subalgebra
of @q(M°n), we can use the multiplication map m on @q(M°n) to endow
&q(M°n) with the structure of a right (9q(GLt) -module. We now consider the
following quantum analogue of i*:

LL*° (x) id
i,* : (9q(M^°) ® Gq(GLt) ^ - » ^(Mn° ,} ® 09(M°H) ® (9q(GLt]

It can be proved that /* is an isomorphism of left ^(GL^-comodules, but we
shall not need the full result — for our purposes, it suffices to construct a right
inverse for /*.

Recall that the antipode S in Gq(GLt) is bijective (e.g., [7, Theorem 5.4.2]).
Consider the map j* : (9q(V°] -> 0q(M^°) ® Oq(GLt) defined as the

composition of the following maps:

P*a° ® C

&q(V°) = &q(M°nJ} ® <P,(M,%) -! - ^ &q(M°nJ] ® (Oq(GLt] ® Gq(GLt) ® &q(M°n)

- Qq(Ml,) ® (9q(GLt) ® &q(GLt) ® &q(GLt) ® &q(M°n)

m(m (g) id) ® id

Here T(i35)(24) denotes the isomorphism which shuffles the factors via the
permutation (135)(24), that is,
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For a pure tensor a®be(9q(V°), we can give the following formula for
j*(a ® b] using the notation p*(a) = Y^(a)

 ao ® a\ and (A ® id)A*(&) =
Z]6 *-2 ® b-\ ® 60 . Namely,

Lemma 3.6, The map j* is a morphism of left (9q(GLt}-comodules.

Proof. We must prove that the following diagram is commutative:

id (x) / *
Qq(GLt] ® &q(V°] '-* (9q(GLt}®(9q(M^°}®(9q(GLt}

If a E (9q(M° t] and b e (9q(M°n), then (with the usual conventions for expanding
components)

(id®y;)y:°(fl®6) =

Since zf(5(c)J) = Z)(c),(rf) S(c2)di ® ^1)^2 for c,deQq(GLt), we also have

O'>®^)= E

Therefore (id ®j*)y*°(a ®b)= Q'*(a ® b), as desired.

In the sequel, we shall need the identity

(0 (0

for c e &q(GLt). This follows from the defining property of the antipode *S by
applying the antiautomorphism S~l. Moreover, in view of the identity
A o 5 = TII o (S ® S) oA (e.g., [5, Proposition 1.5.10]), we also have

(S~l ®S-l)oruoA = AoS~l.

Lemma 3.7» The composition iq°jq is the identity map on Oq(V°).
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Proof. Let a ® b e Oq(V°\ Using Remark 3.5(ii,iii) and the fact that //*°
is a morphism of algebras, we have

(fi ®id)fq(a® b) =

Consequently, with the help of the identities above, we see that

(l£° ® id}j*(a ® b}

Thus,

Proposition 3.8. ^(Fo)co

Proof. We have the inclusion "^" by Lemma 3.3. To prove the reverse
inclusion, consider an arbitrary y*°-coinvariant ce(9q(V°). Since j* is a co-
module morphism (Lemma 3.6), j * ( c ) is a (J*-coinvariant in (9q(M^t^)®
Oq(GLt}. Hence, 7*(c) e Oq(M^°) ® 1 by Proposition 3.4. Since fy'*(c) = c
by Lemma 3.7, and since clearly i*(@q(M^°) ® 1) = Im//*°, we conclude that
celm//*0. This verifies the inclusion "c". Q

§4. The First Fundamental Theorem for 09((jL;)-coinvariaiits

In this section, we complete the proof of our main theorem — that the set
of y*-coinvariants in (9q(V] equals the image of JLI*. We first discuss how to
obtain y*-coinvariants from y*°-coinvariants by "removing denominators".
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Remark 4.1. (i) As we already mentioned in Remark 3.2(iii), the re-
striction of y*° to Gq(V) is just y* So, if w e (9q(V] is a y*-coinvariant, it is
also a y*°-coinvariant. Thus, according to Proposition 3.8, welm//*0 . This
means that there exists s e N such that w(dy <8> dzY e Im//*. So, to prove that
the set of y*-coinvariants equals Im//*, it is enough to show the following
property (cf. Proposition 2.3):

(t) Vw e Oq(V), if w(dY <g> dz) e Im//*, then w e Im//*.

(ii) Recall from Remark 3.2(i) that the image under //* of the (normal)
element dx E (9q(M^t) is the (normal) element dY ® dz e Gq(V). We claim that
to prove (f), it is enough (in fact, equivalent) to verify the following property:

(t) K)~1«rfy®rfz» = <i>-

Thus, assume that (f) holds, and let w E @q(V) such that w(dy ®dz) elm//*.
Then w(dY ® dz] = Hq(y] for some y e (9q(M^t), and (J) implies that 3; = z<4
for some zeOq(M^t). Since //* is a morphism of algebras, w(dY®dz) =
fJLq(y) = jLi*(z)(dY ® rfz), and so w = ^*(z) because 09(K) is a domain. This
shows that (J) implies (f). The converse follows easily from the injectivity of
//* (see Theorem 2.2).

Remark 4.2. (i) The computations in this section and in Section 6 below
rely on the preferred bases for the algebras Qq(Mn), (9q(MnJ), and (9q(Mt,n)
developed in [2, Section 1], and we follow the notation of that paper. See, in
particular, [2, Corollary 1.11] for the rectangular case. We recall the notation
[T\T'\ for the product of quantum minors corresponding to an allowable bi-
tableau (T, T'}, and we recall also that it is sometimes convenient to label rows
of (T, T'} in the form (/,/) where / and / are sets of row and column indices,
respectively.

(ii) On tensoring the preferred basis elements of (9q(MnJ] with those
of &q(Mt,n), we obtain a preferred basis for Oq(V) consisting of all pure
tensors [S\S'\ ® (T\T'\ where (5,5") and ( T , T f ) are preferred bitableaux with
appropriate entries. In particular, S and T each have at most t columns.

(iii) Because of the quantum Laplace expansions [6, Proposition 1.1 and
Corollary; 7, Corollary 4.4.4], the ideal Jt+\ in (9q(Mn] contains all the r x r
quantum minors for t + 1 < r < n. Hence, [T\Tr] e Jt+\ whenever (T, T') is a
preferred bitableau and T has at least t -f 1 columns.

The statement and proof of [2, Proposition 2.4] show that J*t+\ does not
contain any nonzero linear combinations of distinct products [S\Sf] where the
(5, S') are preferred bitableaux and S has at most t columns. Consequently,
i/f+i has a A'-basis consisting of the products [r|7"] such that (T,Tf) is a
preferred bitableau and T has at least t -f 1 columns.

(iv) In view of point (iii), the cosets [T\Tf] -f J>t+\ such that (T, T'} is a
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preferred bitableau and T has at most t columns form a A'-basis for
To simplify the notation, we shall write cosets a + J>t+\ in the form a. Thus,
\T\T'} = 0 whenever T has more than t columns.

It is convenient to label two special index sets:

/ = {/i-r-h !,... ,«} and /={!, . . . , t}.

With this notation, observe that dx and dy can both be labeled [/|/j, while dz

and Jj can both be labeled [J\J].

Lemma 4.3. (a) A K-basis for <dy> consists of all \T\T'\ in (9q(Mnj)
where ( T , T f ) is a preferred bitableau with first row (/,/).

(b) A K-basis for <dz> consists of all [T\T'} in ®q(Mt,n} where (T, T') is a
preferred bitableau with first row (/,/).

(c) A K-basis for (dy ® <fe) consists of all pure tensors [S\S']®[T\T'\ in
&q(V) where (S,S') and (T,T'} are preferred bitableaux with first rows (/, /)
and (/,/), respectively.

(d) A K-basis for <4> consists of all [T\T'\ in (9q(M^} where (T, T'} is a
preferred bitableau with first row (/,/).

Proof, (a) Obviously any such [T\T'} lies in <Wy>, because dy = [/|/].
Recall that dY is a normal element of (9q(Mn^t}, so that <£/y> = dy(9q(MnJ}.
Since (/,/) is the minimum index pair labeling quantum minors in (9q(M^t), the
preferred basis of (9q(Mn,t} is closed under left multiplication by dY. Hence,
<dy> is spanned by products ^[5] 5'] as (5,5") runs through all preferred
bitableaux, and each such Jy[5'|5'/] = [T\Tf] for some preferred bitableau
(r, r) with first row (/,/).

(b) This is proved in the same manner as part (a).
(c) Note that because dy and dz are normal elements of (9q(Mn^} and

Gq(Mtin), respectively,

(dy ® dzy = (dy ® dZ}(9q(V] = dy(9q(Mn,t] ® dZ(9q(Mt,n] = <^y> ® <^Z>-

Hence, part (c) follows directly from parts (a) and (b).
(d) By Remark 4.2(iv), a ^-basis for (9q(M^1} consists of all [T\Tf] such

that (T, T'} is a preferred bitableau and T has at most t columns. Among
index pairs (/,/) with |/| < t, the minimum element is (/,/). Since dx — [I\J]9

we therefore obtain part (d) in exactly the same manner as part (a). Q

In the following proof, we shall need the natural multigradings on quantum
matrix algebras (cf. [2, §1.5]). For instance, (9q(MnJ) is graded by Z" x Z?

with each generator Yy having degree (£/,£/), where £ i , e 2 , - - - denote the
standard basis elements in Zw and Zr. In the proof, we use the label 'ho-
mogeneous' to refer to homogeneous elements with respect to the above
gradings.
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Proposition 4.4. (^T « dY ® <fe» = <dx\

Proof. The inclusion 6^' is clear since ]Li*(dx) = dY ® dz. If this in-
clusion is proper, choose an element

where the a,- are nonzero scalars, the (7J, TV) are distinct preferred bitableaux,
and the Tt have at most t columns. We may assume that none of the [7i|J/]
lie in (dxy. Thus, by Lemma 4.3(d), none of the (I}, T-} has first row (/,/).
Define ^-tuples p(Tj) as in [2, §2.2], and let p be the minimum of the p(Tt}
under reverse lexicographic order.

After re-indexing, we may assume that there is some r' such that p(Ti) = p
for i<r' and p(Tt) >T\ex p for i > r' . Applying [2, Lemma 2.3] to each
l2*[Ti\T-} (= 0*[Ti\T-]) and collecting terms, we see (using the notation of [2,
§2.2]) that

where the A} and Yj are homogeneous with c(Xj) = f( Yj) >riex p. We then
observe (as in the proof of [2, Proposition 2.4]) that all of the 1} belong
to different homogeneous components than the [Ti\ju(Ti)} for i <rr. Since
//*(#) e <^r ®dzy = <^y> ® <^z> and the ideal <^r> is homogeneous, it
follows that

For 1 < / < j < rf, either Tt ^ Tj or T[ ^ Tj, whence (Th/^(Ti)) ¥=
(Tj,ju(Tj)) or ( n ' ( T i ) , T ! ) * ( i J L ' ( T j ^ T ! ) . Recall from [2, §2.2] that the
(Ti,[j,(Ti)) and the (//'(J1/), J^x) are preferred bitableaux. In view of Lemma
4.3(c), it follows that 7} has first row / and T- has first row / for 1 < / < r;.
However, this contradicts our choices above, and therefore the proposition is
proved. Q

Theorem 4.5. Let m, n, t be arbitrary positive integers. The set of
y*-coinvariants in (9q(V) = Oq(MmJ} ® (9q(Mt,n} is Im/u*, that is}

Proof. In view of Remark 2.4, there is no loss of generality in
assuming that m = n > t. The theorem is then immediate using Remark 4. 1
and Proposition 4.4. D
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§5. (9q( SLt ) -coinvariants

For arbitrary positive integers m, n, t, there is a natural coaction F* of
Oq(SLt) on Oq(V] induced from the (9q(GLt) -coaction y* that we have been
studying. Denote by n the natural quotient map Gq(GLt) — » Oq(SLt). The
coaction r* : Oq(V) -* Oq(SLt) ® &q(V) is given by r* := (n <g) id) o fq. In
this section and the next, we compute the F* -coinvariants.

In fact, F* can be constructed from the left coaction of @q(SLt} on
®q(Mt,n) given by

(n ® id) o rq : Gq(Mt,n) - Oq(SLt) ® Gq(Mt^

and the right coaction of (9q(SLt] on (9q(MmJ} given by

(id® n) op* : (9q(Mm,t) -> Gq(MmJ ® ®q(SL

by using the construction described in Section 1.

Proposition 5.1. The set of coinvariants @q(V)co(9q^SL^ is a subalgebra of
(9q(V) containing Im//*.

Proof. That ®q(V)co°«(SLt] is a subalgebra of Oq(V) follows from
Proposition l.l(c). It contains Im/^* because the elements of Im//* are yq-
coinvariants and hence also /^-coinvariants. D

In order to describe the F* -coinvariants, we may assume that m — n
and that t < n, as in Remark 2.4. We start by observing that there is a natural
Z-grading on quantum matrices which will simplify the problem. The algebra
(9q(Mn,t) can be graded by total degree in the variables Yy and we put
^(Af/i,/) = 0f.>o^(Mi,f)/3 where Oq(Mn^t is the subspace spanned by
monomials of total degree / in (9q(MnJ). In the same way, and with obvious
notation, Oq(M^n} = ©/>o ®g(Mt,n)j- It follows that

',7=0

where (9q(V)tJ = (9q(Mn^t)i ® <3q(Mt^j.
Recall that p* : ®q(Mn,t) -> Gq(Mn^®Gq(GLt) is the algebra morphism

defined by p*(Yfj) = ELi *& ® Tkj. Thus, it is clear that p"q((9q(Mn^i} c
Gq(MnJi ® Oq(GLt). Similarly, one has ^q(Oq(Mt^ ^ Oq(GLt) ® (9q(Mt^n)j.
It follows that

for all i, j.
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Given we0q(V), we will write w = ^I.Jwiy with wtj E (9q(V)tJ.

Lemma 5.2. Let w = £Vy.w t j E(9q(V}. Then
(a) w is a y*-coinvariant if and only if each Wy is a y*-coinvariant.
(b) w is a F*-coinvariant if and only if each Wy is a F*-coinvariant.

Proof. If each Wy is a y*-coinvariant then, obviously, w is a y*-coin-
variant. Conversely, suppose that w is a y*-coinvariant. One has J]/71 ® Wy
= 1 (g) w = y*(w) = Y^ij yq(wu)> and from the discussion above, we see that

Oq(V)tjy one has y*(wy) = 1 ® Wy for all i,j. This finishes the proof of (a); the
proof of (b) is similar. D

The previous result shows that, in order to describe the /^*-coinvariants,
it is enough to describe the coinvariants which are in each (9q(V)tj. It
is obvious from the definition of F* that any y*-coinvariant will be a F*-
coinvariant. Our first aim is to show that any homogeneous /^*-coinvariant w
is a y*-semi-coinvariant, meaning that y*(w) = d? ® w for some integer s; this is
achieved in Theorem 5.5. We begin by constructing some maps which will help
us to prove this fact.

The above grading on @q(V) relates to the following comodule structure.
Consider the Hopf algebra Gq(K*) = K[T±l] and the algebra morphism n' :
Oq(GLt)^(9q(K

x} such that Tu ^ T for all /, while Ttj H-» 0 for / ^ j. It is
easily checked that n' is, in fact, a morphism of Hopf algebras. The composite
map

Gq(V) —^ Og(GLt) ® Oq(V) ^^ Oq(K
x) ® Oq(V)

thus gives Oq(V) the structure of a left comodule over Oq(K
x). The following

proposition shows that, in fact, (9q(V) is an @q(K
x)-comodule algebra.

Proposition 5.3. (a) (n' ® id) o y* is an algebra morphism.
(b) (n1 ® id)y*(Yy ® 1) = T~l ® Yy ® 1 awrf (TT; (x) id)y*(l ® Z,y) = J"®

1 ® Zy for all i, j.
(c) (n' ® id)y*(w) = r-7'"' ® w /or a// w 6 (9q(V)tj.

Proof, (a) Recall that, for a€(Sq(Mn,t) and bE&q(Mt,n), if we
put p^(«) = S(a) ao ® ^i and ^(^) = S(6) ̂ -1 ® ^°' then y*(a ® Z?) =
S(fl),(6) ^(fli)*-i ® flo ® bo. If, also, a' ®b' E Gq(V) then, since /?* and 1* are
algebra morphisms, one has

y*((a ® 6)(fl' ® 67)) = V" ^(flDS^iJi-ii^
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Using the fact that (9q(K
x) is a commutative algebra we then get

(n ® id)y*((a ® b}(a' ® b')} = ((n ® id)y*)(a ® b)((ri ® id)y*)(af ® b').

(b) If Ajk denotes the ( t — \ ) x ( t — 1) quantum minor of (9q(GLt) ob-
tained by deleting row j and column fc, then S(Tk/) — (—q)k~jA^d^1, by [7,
Theorem 5.3.2], and so

t t

k=l k=\

and y*(l ® Z?7) = Y*=\ T& ® 1 ® Zkj. It follows that (n' ® id)y*(Yy ® 1) =
T~l ®Yij®\ and that (nf ® id)y*(l (x) Z/,-) = T (x) 1 ® Z7y.

(c) This is clear from parts (a) and (b). Q

We shall need the algebra morphism

where / is an indeterminate and % = / + </r — ̂ j1), such that each Jl/ ® 1 »-»•
r/,/ and 1 ® T \-+ x~l- It is easy to check that (/>*(dT ® 1) = dT%1 = 1, and so
there is an induced algebra morphism

such that <p* o (n ® id) = ^*.
Finally, let o^ : (9q(GLt) —> ̂ (GLr)[/] denote the canonical injection.

Lemma 5.4. (a) ^* o (id ® n'} o J = a^.
(b) (p* ® id) o (id ® TC; ® id) o (id ® y*) o T; = (a, ® id) o y*.

Proof, (a) It is enough to check this on the generators T/,, since each of
the maps involved is an algebra morphism. One has

Tik ® Tkj = ^q(T{j ® T) = Ttj.
k=\ J

(b) Since y* is the structure map of a left ^(GL^-comodule, we

(A ® id) o y* = (id ® y*) o y*. In view of part (a), it follows that

(oiq ® id) o y* = (^* ® id) o (id ® n' ® id) o ( A ® id) o y*

= (^* ® id) o (id ® nf ® id) o (id ® y;) o y;.

We also have the following commutative diagram:
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(9q(GLt)®<3q(V) -^±-» <3q(SLt}®(9q(V)

id <g> y*\ id <g> }>*

q(GLt}®&q(GL,)®C)q(V) "® id® i1 <Sq(SLt)®Gq(GLt)®Gq(V)

id(x)7r'(g)id

Thus (^* ® id) o (id ®ri ® id) o (id ® y*) o y * = (p* ® id) o (id ® n' ® id) o
(id® y*) o/^*, which completes the proof of part (b). D

Theorem 5,5, Let w e ^ ( F ) / - be a F*-coinvariant.
(a) rfe difference i — j is divisible by t, and y*(w) = rf^5 ® w where s =

(b) If i > j, then (1 ® d^)w is a y*-coinvariant.
(c) If i < 7., ^/ze« (J^5 ® I)w is a y^-coinvariant.

Proof, (a) By Proposition 5.3(c), we have (TC' ®id)y*(w) = r7~z ® w.
From this and the assumption that r*(w) = 1 ® w, it follows that

(^* ® id) (id ® nf ® id) (id ® ̂ )r/(w) = (^ ® id) (id ® n' ® id) (id ® ^*)(1 ® w)

Thus, by Lemma 5.4(b), (a^ ® id)y*(w) =/z~y (x) w. In particular,

XH ® w e Im(a9 ® id) = 0<,(GL,) • 1 ® ^(F).

Since Gq(GLt}[x\ is a free Oq(GLt) -module with basis {I,/, . . . ,/r~1}, we have
t\i- j. Set s=(i- j)/t. Now

(ag ® id)y*(w) = x's ® w = (a^ ® id)(rf^s ® w),

and therefore y*(w) = djs ® w, as required.
(b) Since A* is an algebra morphism, we see using Remark 3.2(i) that

A*(J|) = d*T ® J|, and hence y*(l ® rf|) = rff ® 1 ® ds
z. As ds

T is central in
@q(GLt), we may apply Proposition 1.1 (a) to conclude that

fq((l ® £/|)w) = y;(l ® rfl)yg*(w) = (rff ® 1 ® d*z)(dT* ® w) = 1 ® ((1

(c) By Remark 3.2(i), p*(dys) = dys ®d^s. Since S(dT) = d f l , we thus
obtain
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and therefore part (c) follows from a second application of Proposition
l.l(a). D

§6. The First Fundamental Theorem for 09(5L;)-coinvaiiants

In this final section, we determine the /^*-coinvariants in Gq(V). Let s&\
and j/2 denote the respective subalgebras of ®q(Mm,t} and (9q(Mt,n} generated
by all the t x t quantum minors. We shall prove that the set of 7^*-coinvariants
in Oq(V) is the subalgebra generated by s£\ ® j/2 together with Im//*. In fact,
this subalgebra turns out to be equal to the product (j/i (x) j^2) • Im/^*. On the
road to this goal, Theorem 5.5 puts us in a position roughly similar to that
of Remark 4.1(ii), and to finish we need some computations analogous to
Proposition 4.4.

Until further notice, we continue to assume that m = n > t.

Remark 6.1. (i) As in Section 4, we set / = {n — t + 1 , . . . , n } and / =
{!,...,?}. Let P\ and PI denote the following ideals:

Pi = <[/|/] \J c= {!,...,»} and |/| =

S I , - - - , * and |/| =

These turn out to be completely prime ideals of (9q(M^1} — see Remark 6.4. In
view of [2, Corollary 5.2], the quantum minors [7|/] can be arranged in a
polynomial sequence, as can the [I\J]. Hence,

and

(ii) It can be proved that a ^/-basis for PI consists of all [TI^P] where
r') is a preferred bitableau with first row of the form (/,?), and that a

for P2 consists of all [T\T'} where (T,T') is a preferred bitableau
with first row of the form (?,/). However, we shall not need these bases.

(iii) In view of point (i), powers of the Pt can be expressed as follows:

f= E

for s — 1,2, —



294 KENNETH R. GOODEARL, THOMAS H. LENAGAN AND LAURENT RIGAL

Lemma 6.2, Let s be a nonnegative integer.
(a) A K-basis for (ds

Y ® 1> consists of all pure tensors [S\Sf] ® [T\Tf] in
®q(V) where (S,S'} and (T, Tf) are preferred bitableaux and the first s rows of
(S,S') equal (/,/).

(b) A K-basis for <l®d|> consists of all pure tensors [S\Sf] ® [T\Tf] in
@q(V] where (S,Sf) and (T, T'} are preferred bitableaux and the first s rows of
(r,r) equal (/,/).

Proof. Since <Jf ® 1> = <Jf> ® ®q(Mt,n) and <1 ® J|> = Gq(MnJ ®
<d|>, it suffices to check that the ideals <Jf > and <W|> have bases of the
appropriate forms. This can be done just as in Lemma 4.3(a)(b). D

Proposition 6030 If s is any nonnegative integer, then

ft*)-ldS®iy = Ps and -1

Proof. We prove the first equality; the proof of the second is analo-
gous. The proof closely mimics that of Proposition 4.4.

In view of Remark 2.1(iii-v), we see that

= [/|/] ® [J\J] = dy® [J\J]

for all ^-element subsets / ^ {1,... ,n}. Using Remark 6.1(iii) and the fact that
//* is an algebra morphism, it follows that Ps

{ ̂  (/^*)~1«Jy ® 1».
If this inclusion is proper, choose an element

where the a/ are nonzero scalar s, the (T/, TV) are distinct preferred bitableaux,
and the Tj have at most t columns. We may assume that none of the [Tz T-]
lie in P[. Let p be the minimum of the p(Ti) under reverse lexicographic order.

After re-indexing, we may assume that there is some r' such that p(Ti) = p
for /' < r' and p(Tt) >T\ex p for / > r' . Applying [2, Lemma 2.3] to each
ju*[Ti\T{] and collecting terms, we see that

where the Xj and 1} are homogeneous with c(Xj) = f(Yj) >riex p- We then
observe that all of the A} belong to different homogeneous components than the
[Ti\n(Ti)} for / < rf. Since
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and the ideal (dY > is homogeneous, it follows that

For l < / < y < r ' , either (7^(7})) * (7}X7})) or (//'(7}),77) *
(//'(7}), TJ). In view of Lemma 6.2(a), it follows that for 1 < i < r', the first s
rows of r/ equal /. But then [r/|T/] e P[ for 1 < z < r', which contradicts our
choices above and therefore establishes the desired equality. D

Remark 6.4. Although we shall not need the fact here, we note that the
case s = 1 of Proposition 6.3 implies that P\ and P^ are completely prime ideals
of Oq(M^1}. To see this, it obviously suffices to show that < W y ® l > and
<1 ® dzy are completely prime ideals of &q(V). Observe that Gq(Mn,t}/(dYy is
an iterated skew polynomial ring over an isomorphic copy of Oq(Mt) modulo
the ideal generated by its quantum determinant. Since the latter algebra is a
domain ([3], [4, p. 182], or see [2, Theorem 2.5]), it follows that (9q(Mn,t)/(dYy
is a domain. Now the algebra

is an iterated skew polynomial ring over @q(MnJ)/(dYy, and therefore the
algebra (9q(V}/(dY ® 1> is a domain. Thus (dY (x) 1> is completely prime, and
a similar argument shows that < l ® d z > is completely prime.

Lemma 6.5. Let we@q(V)fj- be a F*-coinvariant.
(a) If i > j, then w E ($$\ ® 1) • Im//*.
(b) If i < 7, then w e (1

By Theorem 5.5(a), the ratio s = (i — j)/t is an integer.
(a) In this case, Theorem 5.5(b) shows that (l(g)J|)w is a ^-coin-

variant. Thus, by Theorem 4.5, (1 ® d^w = ^(x) for some xE(9q(M^t).
Now p*(x) e <1 ® J^)? and hence x e P^ by Proposition 6.3. In view of
Remark 6.1(iii), we thus have x = Y^i=\Pixi f°r some xt e (9q(M^t) and some
pt e Oq(Mn) of the form

Now by Remark 2.1(iii-v), each

Since ^* is an algebra morphism, it follows that each

A^fo*/) = (1 ® ^)([/ul^l ® 1)([^2|/] ® 1) • • • ([IiM ® lK*(x/).

Consequently, (1 ® J|)w = //*(jc) = (1 ® ds
z)v for some v e (M (g) 1) - Im//*.
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Since \®dz is a nonzero element of the domain Oq(V], we conclude that
w = v, and the proof of part (a) is complete.

(b) This is proved in a similar fashion. D

Theorem 6.6. Let m, n, t be arbitrary positive integers, and let s$\ and j/2
denote the respective subalgebras of (9q(Mm^t) and Oq(Mt,n) generated by all the
txt quantum minors. The set of F* -coinvariants in Oq(V) = (9q(MmJ] (x)
@q(Mt,n) is the subalgebra generated by jtf\ (x) j/2 and Im//*. More precisely,

Proof As in Remark 2.4, it is enough to consider the case that m = n > t;
we leave the details of the reduction to the reader. Let # denote the set of
F* -coin variants in &q(V], and recall from Proposition 5.1 that ^ is a sub-
algebra of Oq(V) containing Im/c/*.

If [/|/] is a t x t quantum minor in Oq(Mn^t) (necessarily, J = /), then
as in Remark 2.1(iii)(iv), we see that p*[I\J] = [I\J]®dT. It follows that

y*q(\
I\J\ ® !) = drl ® W\ ® !> whence

rq*([I\J] (g) 1) = (n® id)^1 ® [I\J] (x) 1) = 1 ® [I\J] ® 1

and so [I\J] (g) 1 6 ^. Similarly, 1 (x) [/( J] e ^ for all t x t quantum minors [I\J]
in (9q(Mt^n}. Therefore # contains the subalgebra of Oq(V) generated by
s$\ ® j/ 2 and Im//!.

y

On the other hand, it is immediate from Lemmas 5.2(b) and 6.5 that <€ is
contained in (sf\ ® 3/2) • Im//*. The theorem follows. D
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