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On the Exact WKB Analysis of Second Order
Linear Ordinary Differential Equations

with Simple Poles

By

Tatsuya KOIKE*

§ 1. Introduction

The principal aim of this paper is to do an exact WKB-theoretic study of a
linear differential equation of the form

(i.i)
on a neighborhood of a simple pole of the potential Q(x). Here and in what
follows rj denotes a large parameter. Such a study of (1.1) has been completely
done near a point where Q(x) is holomorphic and has a simple zero (i.e., near a
simple turning point) or near a point where Q(x) has a double pole. (See [9],
[1], [2], and references cited there.) However no exact WKB-theoretic study of
(1.1) near a simple pole has ever been done. (See [4] and [8] for some non-
exact WKB-theoretic study.) The difficulty arises from the fact that a simple
pole plays also a role of turning points in the exact WKB analysis as it appears
as a consequence of the confluence of a simple turning point and a double
pole. (Cf. § 3 below.) In this paper we establish a connection formula for the
Borel transform of WKB solutions of (1.1) near a simple pole of Q(x), using the
canonical equation found in [5].

The plan of this paper is as follows: In §2, after introducing some basic
notions and notations in the exact WKB analysis, we state our main theorem on
the connection formula for the Borel transform of WKB solutions of (1.1) near
a simple pole. In §3 we first recall the results in [5] which enable us to bring
the equation (1.1) to the canonical form
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near a simple pole of Q(x) through a "formal coordinate transformation". As
a matter of fact, having the application of our results to the study of (1.1) with
a periodic potential Q in mind, we discuss somewhat more general equations of
the form

where QQ(X) and Qi(x) denote holomorphic functions near the origin satisfying
2o(0) 7^ 0. Note that, if the potential has the form P(cos x) with a polynomial
P(z), then a coordinate transformation z = cos.x will bring (1.1) to the form

(».4) (-£ +
1-Z* 4(1 -Z2)

Although the construction of a "formal coordinate transformation" has been
done in parallel with [1] where a simple turning point is discussed, giving an
analytic meaning to the "formal transformation" is much more difficult in our
case; as the singularity spectrum of the Borel transform of a WKB solution of
(1.2) is so wide that we cannot employ the microlocal approach used in [1].
We overcome this difficulty by making full use of the explicit form of WKB
solutions of (1.2). Having the explicit form of the Borel transform of WKB
solutions of (1.2) in mind, we study the Borel transform of the "formally
transformed" WKB solutions of (1.2) that give WKB solutions of (1.3) and
establish the connection formula. As it will become evident in the course of
our discussion, the resulting connection formula is a variant of Gauss' con-
nection formula for hypergeometric functions (with some particular parameters,
cf. §3). In the final section we give a proof of key estimates.

Some applications of the results in this paper to Heun's equation can be
found in [6], and applications to the case where Q(x) is periodic will be given in
our subsequent article.

I wish to express my sincere gratitude to Professor Takahiro Kawai and
Professor Yoshitsugu Takei for helpful suggestions and stimulating discussions.
I would also like to thank Professor Takashi Aoki for valuable comments.

§2. Statement of the Main Results

In what follows we discuss the equation (1.3):

To state our main results we prepare some notations. (We follow [2].)



EXACT WKB ANALYSIS NEAR SIMPLE POLES 299

A WKB solution of (2.1) is, by definition, a solution of (2.1) of the
following form:

(2.2) \l/±(x,ri)=expn S ± ( x , r j ) d x J ,

where

(2.3) S±(x,ri) = ±*iS-i(x) + So(x) ± 1~lSi(x) + - • •

satisfies the Riccati equation

Note that

and that *S2/_i(x) (7 = 0, 1,2, . . .) has the singularity of square-root type at the
origin. Note also that, denoting

(2.6) Sodd — / $21-1?! J and Seven =

we have

(2.7) *Jeven = ~~ ^ ~JT~ log^odd-

Thus we can introduce a normalized WKB solution of the following form:

1 ( [x \
(2.8) \l/± = exp f + Sofadx j.

Here the integral in the right-hand side of (2.8) should be regarded as a contour
integral. In the following we say the WKB solutions (2.8) as those normalized
at the origin.

WKB solutions (2.8) are not convergent in general. To overcome this
problem we employ the exact WKB analysis initiated by Voros ([9], see also [3]),
which is based on the Borel summation method.

To consider the Borel sum of WKB solutions we first consider their Borel
transform; for an infinite series of the form

(2.9) (f)(x, fj) = es(x]ri ]JT (t)j(x)rj-j^ (a e C\Z),
7=0
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where s(x) and $j(x) (j > 0) are holomorphic functions in a common domain
U of C, its Borel transform $B(x, y) is, by definition,

00 A\ ( v\

(2.10) <t>B(x>y) = J

Note that WKB solutions (2.8) can be expanded in the form of (2.9); for
example, in the case of \j/+ we take

(2.11) s(x]

and a = 1/2. If for any compact set K in U there exist constants AK and CK
for which

(2.12) sup \^(x)\ < AKCj
Kj\ (j = 0, 1, 2, . . .)

holds (and WKB solutions do satisfy this condition), then (f>B(x, y) defines an
analytic function on a neighborhood of (x, — s(x)) e C2. If (/>B(x, y) can,
further, be analytically continued to a neighborhood of

(2.13) {(*, y) E U x C; $y = <S(-s(x)),Ky > K(-s(x))}

and the integral

(2.14) f
J-S

converges where the path of integration is parallel to the positive real axis, we
say (f>(x,rj) is Borel summable and call the integral (2.14) the Borel sum of (2.9).

Using these terminologies, we now state the main theorem:

Theorem 2.1. There exists a positive constant r0 for which the following
hold:
(i) (y + s(x))l/2\l/+jB(x,y) (resp. (y - s(x))l/2\l/_^B(x, y)) is convergent and
defines a holomorphic function in

(2.15) W+(r0) = {(x,y) E C2;0 < \x\ < r0, \y + s(x)\ < 2\s(x)\}

(2.16) (resp. ^_(r0) = {(x, y) e C2; 0 < \x\ < r0, \y - s(x)\ < 2\s(x)\}).

(ii) ^+,JB(-*?>') (resp. ^-s(x^y)) can oe analytically continued and de-
fines a multi-valued analytic function in FF_(ro)\{>> = s(x)} (resp.

(iii) The discontinuity of i j / + B ( x , y) (resp. &-,B(x,y)) along the cut

(2.17) {(x, y) e C2; Zy = Sts(x), Xy >
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2(2.18) (reap. {(x, y) e C2;3y = Qt(-s(x)),9ly > «(-

coincides with

(2.19) 2/cos(7c>/l+4e2(0))^_ i jB(jc, y)

(2.20) (resp. '

Remark 2.2. The factor v/l4-4e2(0) in (2.19) and (2.20) is the difference
of two characteristic exponents of (2.1) at x = 0.

In [5] we state that x — 0 has a similar structure with usual turning points.
Theorem 2.1 justifies this statement to the effect that two singular points
y = -s(x) and y = s(x) of the Borel transform ^±^(x^y} actually merge at
x — 0. Similarly the following definition of the Stokes curve

(2.21)

for (2.1) given in [5] can be justified by the above theorem; Theorem 2.1 tells us
that a singular point y — s(x) of I//+^B(XI y) ties on the path of integration of the
Borel sum of \j/+ if <RJ0* ^/Q0(x)/xdx > 0.

Thus, if we assume the Borel summability of \//±, we obtain from Theorem
2.1 the following connection formula on the Stokes curve (2.21): In case
5R Jo* ^/Qo(x)/xdx > 0 along the Stokes curve, we have

i.e., the Borel sum of \l/+ becomes the Borel sum of
v/1 4 4(?2(0))^_ while the Borel sum of \l/_ is unchanged when we cross

the Stokes curve in a counterclockwise manner with respect to the center
x = 0. Similarly, in case 9! J0* ^/Qo(x}/xdx < 0 along the Stokes curve, we
have

(2-23) {*+~**+'

when we cross the Stokes curve in a counterclockwise manner with respect to
the center x = 0.

§3. Connection Formula for the Borel Transform of WKB Solutions

The proof of Theorem 2.1 is based on the transformation theory developed
in [1]; the idea is to reduce the equation in question to a canonical equation
near the origin.



302 TATSUYA KOIKE

As discussed in [5] (and also explained in Introduction), the canonical
equation of (2.1) near x — 0 is

d2

where /I is a constant 2i(0) (cf. Proposition 3.1 below).
For (3.1) we can explicitly describe the Borel transform of WKB solutions

\l/+ in terms of Gauss' hypergeometric functions as follows:

(3.2) ^+B(^y}

(3.3) ^B(Xty)=-

where a and /? are constants satisfying

(3.4) a +^ = 2, <*p=-4L

Furthermore it follows from Gauss' connection formula for hypergeometric
functions that

(3.5)

(3.6)

where A+(x, j) and A_(x, j) are expressed as

(3.7)

with some constants C\ and Ci. Hence we can verify Theorem 2.1 for the
canonical equation (3.1) by using this explicit description. (See [5], §3 for the
details.)

In a general case, we prove Theorem 2.1 by using the reduction of (2.1) to
(3.1) which was formally constructed in [5]. In the following we use x as the
independent variable of (2.1) and \j/+ and \jt_ as WKB solutions of (2.1).

Proposition 3d. ([1], Proposition 1.1 and Proposition 2.4.) We can find a
neighborhood U of x = 0 and an infinite series

(3.8) x = x(x, rj) = XQ(X) 4- *i~lx\ (x) H ----

where Xj(x) (j > 0) is holomorphic in U and satisfies the following:
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(i) *o(0)=0, (dxQ/
(ii) Xj(x) (j > 1) vanishes at the origin.
(iii) X2j-i(x) (j > 1) is identically zero.
(iv) There exist positive constants A, C for which the following inequality holds
in U:

(3.9)

(v) The following relation holds degree by degree with respect to rj:

(3.10)
x x

2 ( 1 -2 ^ \ ! -2r- ~ ~

{x-,x} denotes the Schwarzian derivative, i.e.,

(3.11) {x;*}=^-

(vi)

-1/2
(3.12)

where \j/± and \l/± are WKB solutions of (2.1) and (3.1) normalized at the origin,
respectively.

For reader's convenience we sketch how to construct Xj(x) (see [5], §2 for
the details).

By substituting (3.8) into (3.10) and comparing both sides degree by degree
with respect to n, we obtain

(3.13.0)v ; xQ\dx

for the 0-th degree, and

XQ x \XQ

for the ft-th degree (n > 1). Here Fn(x) is a rational function of
x\ ( x ) , . . . , .XH-I (x). Then we find
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is a holomorphic solution of (3.13.0) which satisfies the required condition.
Note that 2^/xo(x) coincides with s(x) defined in (2.11).

For n > 1 we can determine xn(x) recursively by solving (3.13.«). Note
that in this process we must choose

to ensure that X2(x) vanishes at the origin; otherwise we cannot obtain a
holomorphic solution of (3.13.4) (or, at least, (3.13.6)). Due to this choice of A,
we can recursively determine xn(x) which vanishes at the origin and show that
Fn+\(x) has an at most simple pole at the origin.

We now begin the proof of Theorem 2.1, using Proposition 3.1. To give
an analytic meaning to (3.12) we first take the Borel transform of both sides.
Let x = x(x,rj) be the infinite series given in Proposition 3.1. Then we can find
the following:

a

(3.16) \l/+(x(x,ri),rf) = y

N=0

rl

Hence the right-hand side of (3.12) for \l/+ becomes

Y Y (_p« r^+1/2 )

vi+-+vn=v

vn+\

In order to give a concrete description of the Borel transform of the right-hand
side of (3.17), we prepare the following lemma:
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Lemma 3.2. Using the notations introduced in §2, we find the following
relations for an infinite series (/>(x,rj) of the form (2.9) satisfying (2.12):

(i)

f / r3 \m ~\ / rl \m

(3.18) -) #*,,) =(-r) jB(X,y) (m = 0,1,2,...),
L\ox/ IB \cx/

(ii)

(3.19) [f,-"4(x,?,)]B = —^ f (y - t)n-l</>B(x, t)dt (n = 0 ,1 ,2 , . . . ) ,
(n- 1)! J-s(jc)

where the integral in the right-hand side of (3.19) should be regarded as a contour
integral (around the endpoint y = —s(x)).

Remark 3.3. In the following we use the following notation to specify the
endpoint of the integral:

(3.20)

(
fl \ — n

— ] </>s(x,y) in
°yJ -S(X)

this notation.

Proof of Lemma 3.2. As (i) is obvious, we prove (ii). It follows from the
definition of the Borel transform of rj~n^(x,ri) that

°Q ^.fv^

(3.21) [l~n4(x,*l)]B = Y

Since

holds, we obtain

(3.23) tr-

Thus we have completed the proof.
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It follows from (3.12), (3.17) and Lemma 3.2 that the Borel transform of
becomes

(3-24) f+iJ,(*, „)=-
V *0 W #=0 n+v+m+n=N fii

/^,v>o VH
m,«>0 /V

In what follows we take x = XQ(X) as a new local coordinate and write the
above relation (3.24) as

(3-25) ^(i, y) = (P

where

vi+-+vn=v
m,«>0 /"j,v,>0

(
o

a^

Here we rewrite Jty(i) — *j(x) and (-^o(^))~ — ̂ C^) w^ some holomorphic
functions Xj and / of x.

In a similar way we find

(3-27) _iB(x, y) =

Then Theorem 2.1 (i) immediately follows from the following:

Proposition 3.4. There exists a positive constant r for which
(y + 2^/x)l/2P_2^\l/+^(x,y) (resp. (y - 2^/x)ll2P2^/_^B(x, y)) is convergent
and defines a holomorphic function in

(3.28) W+(r) = {(x,y) e C2;0 < \x\ < r, \y + 2^\ < 4\x\l/2}

(3.29) (resp. W-(r) = {(x,y) e C2;0 < \x\ < r, \y -
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Remark 3.5. Since ^+,5(^,7) has singular points at y = — 2^/x and at
y = 2^/x, the above domain of analyticity is the best possible one we can
hope.

We shall prove Proposition 3.4 in §4.1.
Next we consider the analytic continuation of iA+i#(3c, y) by using the

relation (3.5) for the Borel transform ^±^(x^y) °f WKB solutions of the
canonical equation (3.1). In order to consider the action of the operator Pyo

(defined by (3.26)) to both sides of (3.5), we choose the endpoint yQ to be zero;
that is, we apply PQ to both sides of (3.5) to obtain

(3.30) /W+,5(*, y) = ico*(ny/l+4Q2(0))Poil'-,B(Xi y} + ^oM*, y).

Both sides of (3.30) converge in

(3.31) {(x,y)eC2;0<\X\<r,\y\<2\x\1'2}

if we replace r by a smaller one if necessary. (We can prove this convergence
by a similar argument that used in the proof of Proposition 3.4, or by using
Proposition 4.1 and Proposition 4.4.)

In order to change the endpoint from yQ = 0 to yQ = —2^/x or yQ =
let us define

(1 1^\ J? JYi/\ \^J.JZJ ^y^y'] — \ / z
AT=Q n+v+m+n=N ,

v\+-+vn=v

X % y

where

(

Then we find that P0 = P_2^ + R[0t _2^} and ^0 = ^2^ + ^(0,2^] hold-
Hence from (3.30), we find

(3.34) P.2^+,a(x, y) = icos(W>/l +4fi2(0))P2^_ill(jc, y) + R-(x, y),

where

(3.35) R_(x, y) = -R[o,-2^+,B(x, y) + icos(n^l +4e2(0))^[0,2^]^-,5(^ y)
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To examine where R- (x, y) is analytic we prepare the following two
propositions:

Proposition 3.6. There exists a positive constant r for which P2^h-(x, y) is
convergent and defines a holomorphic function in W-(r).

Proposition 3.7. For an arbitrary positive number L, there exists a positive
constant r' for which %_2v^]*/'+,5> ^[0,2^]^-,* and R[^2^c}h-(^y] a™ con-
vergent and defines holomorphic functions in

(3.36) {(*, y) e C2; 0 < x < r ' , |y + 2>/x| < L\x\1/2}.

These propositions shall be proved in §4.1 and §4.2.
It follows from these two propositions that R-(x, y) is a holomorphic

function in W-(r) if we replace r by a smaller one if necessary.
Summing up, we have proved the following. There exists a positive

constant TO for which

(3.37) ^(X, y) = /cos(7cv
/l+4e2(0))^_ i jB(x, y) + R-(XQ(X), y)

holds in

(3-38) {(*, y) 6 C2; 0 < |jc| < r0, \y\ < \s(x)\}

and R-(XQ(X), y) is holomorphic in

(3.39) W_(f) = {(x, y) e C2; 0 < |Jc| < ?0, \y - s(x)\ < 2\s(x)\}.

In a similar way we find

(3.40) $_<B(x, y) = icos(n^/l+4Q2(0')W+,B(x, y) + R+(x0(x), y)

holds in

(3-41) {(x, y} e C2; 0 < |Jc| < ?„, \y\ < \s(x)\}

and R+(XQ(X), y) is holomorphic in

where

(3.43) R+(x,y) = -R,l

Theorem 2.1 (ii) and (iii) are immediate consequences of the relations (3.37) and
(3.40) and the holomorphy of R+(XQ(X), y). Hence what remains to be proved
is Proposition 3.4, Proposition 3.6 and Proposition 3.7.
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§4. Completion of the Proof

§4.1. Proof of Proposition 3.4 and Proposition 3.6

For the sake of simplicity we introduce the following notation: For a
holomorphic function /(z) on the unit disk {z e C; |z < 1} we set

and
l \ - l /2

Then Propositions 3.4 and 3.6 are special cases of the following:

Proposition 4.1. There exists a positive constant r$ for which the following
hold for any holomorphic function /(z) on the unit disk:
(i) P-2^f+(x->y) (resp. P2^cf-(x,y}} defines a holomorphic function in
W+(rQ) (resp.

defines a holomorphic function in W+(r§) (resp. W-(r§)}.

Here we give only the proof of this proposition for f+(x,y) and fll(x,y).
We can prove for f _ ( x , y ) and f^~l^2\x,y) in a similar way.

Let us begin the argument by showing the following lemma:

Lemma 4.2. For any positive number e and any holomorphic function /(z)
on the unit disk, there exists a positive constant ME for which the following two
inequalities hold for

(4.3)

and for m = 0,1,...,I, / = 0 ,1 ,2 , . . . :

(i)

(4.4)

(4.5)

< 1-e
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Proof. Since (i) and (ii) are proved in a similar way, we only give the
proof of (ii). By using the Taylor expansion /(z) = ^n>QCnz

n, we have

n+7-1/2

Let

(4.7)

(4.8)

Then we have

/ 3 \ m

(4-9) £} (±
d\m{ d^~l

m

From the formula of differentiation of composite functions ([7], pp. 6-7), we
obtain

dk

\y\=j

where y e Z^ indicates a multi-index, and

To estimate the right-hand side of (4.10) we prepare the following sublemma:
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Sublemma 4.3. The following inequalities hold:

(i)

E nA P\r(i/2-P) -

y
J 2

•\\=k

Proof of Sublemma 4.3.
(i) Since

(4.14)

we have

i J-. 1-^]<1 ,p\r(l/2-p) 11V 2;

v- A i\ If ^ / ' <
/ -^ j L A n i " . — ' - - - x

|y|=7

On the other hand

k J__ t(l-t
k)

-

M=7

holds for any positive number t. Hence we have

E R A

By setting t=\/2 we obtain (i).
(ii) Since
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we obtain

k l
= z^ UTT

1 *
Pir(i/2-p)

The right-hand side of (4.19) is dominated by

1
(4.20)

in view of (i). This completes the proof of Sublemma 4.3.
Since

we have

(4.22,

where M£ - v^E«>o I^K 1 ~ e)"- II follows from (4.10), (4.22) and Sublemma
4.3 (ii) that the right-hand side of (4.10) is now dominated by

(4.23)

= Mf.
-1/2

-1/2 l

\x

fc k

+ ~

k /c\ /

Thus we have finished the estimation of (4.10).
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Applying this estimate to (4.9), we obtain

ml r(//2

T(l-

m-j

m

x

m

m\ 2
x

This finishes the proof of Lemma 4.2(ii).

Now we return to the proof of Proposition 4.1. We first estimate
J(x) = (xfQ(x))~l/2 and Xj(x) = Xj(x) constructed in Proposition 3.1. Here we
are using a new local coordinate X = XQ(X). By Proposition 3.1, we can find
positive constants A,C, CQ,R for which the following hold for |x| < R:

(4.25) \J(x)\ < C0,

(4.26) Xj(x)\<AC''-lj\ (y = 0,1, , 2 . . . ) ,

(4.27) \x}(x)\^A0-lj\ (j = 0,1, , 2 . . . ) .

Then we have

(4.28)

r(l/2)mW,w=// ^ V1/^^1-^-
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Here we have used (4.25), (4.26), (4.27) and the fact that jci(x) is identically
zero. By using the inequality

(4.29)

(which can be readily shown by induction on ra), we obtain

(4.30) (-— + l- J P_2^f(~l/2\x, y)

Mj_ ^ 2m-1(//-f
^Nn\r(N+\/2)

•

2"-'(v+ l)U"Cvf—N)"'(5v/6|x|1/2);v

V -^ /

4r(i/2) /i

1 / 2"

Hence, if we choose TO = mm{(5V6C)~2,R}, (4.30) converges for 0 < \x\ < r$.

This proves Proposition 4.1 for f+ (x,y). In a similar way we can prove
Proposition 4.1 for f+(x,y) by using Lemma 4.2 (i).

§4.2a Proof of Proposition 3.7

We use the same notation as in §4.1 in this subsection. Proposition 3.7 is
a special case of the following:

Proposition 4.4. For an arbitrary positive number L, there exists a positive

constant r'Q for which £[_2v51o]/+(*»>0 and *[-2vM/+~1/2)(*i J>) (resP-
,o]f-(x, y) and R[2^o\f^~l^2\x,y}} define holomorphic functions in

(4.31) \(x,y)eC2;Q<\x\<r'0, -^+l- < L\
{ *+yx z j

(4.32) (resp. {(x,y) e C2;0 < |x| < r
\ I

for any holomorphic function f ( z ) on the unit disk.
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As in §4.1, we prove Proposition 4.4 only for f+(x, y) and f+(x,y). First
we prepare the following lemma:

Lemma 4.5. For any holomorphic function f ( z ) on the unit disk, there
exists a positive constant M for which the following estimates (i) and (ii) hold for
x^Q, /= 1,2 , . . . and ra = 0 ,1 , . . . , / :

(i)

(4.33)

Proof. We prove the inequality (ii). Let f ( z ) = ^n>$cnz
n. Then

(4-35) xtfm(x>y)

where

By letting

<«•»>
(4.38)

we obtain
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( 3 \m
—} Kfixj

 A[

m-j

In parallel with (4.10) we obtain

U\=k
\y\=j

Since

and

(4.42) |rfB| <

for some positive constant M, we have

(4.43)

M'

It follows from this inequality and Lemma 4.3(ii) that the right-hand side of
(4.40) is dominated by

(444)
2 k
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y iwhere z = ——= + -. Hence we obtain
2

(4.45)

xM'
( / -I)!

2
(2|z| \/-i

< 4Af'I.
ml

( / -I)!
1/2

/-i

This proves (ii). In a similar way we can prove (i). Thus the proof has been
completed.

Now we prove Proposition 4.4. Let A,C,C$ and R be constants given in
(4.25), (4.26) and (4.27). Then we have

(4.46) l

E
;i^^r(l/2)mW

/J., v>0 vH hvw=v
m,«>0 / 'y iVy^l

A^-l
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m,n>Q

-1

"! U + v + m+ «-!)!

Hence, if we take ro = min{(4v/6(Z,+1/2)) 2,R} for a given L, (4.46) con-
verges for

(4.47) 0 < |x| < i

Thus the proof of Proposition 4.4 has been completed.
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