Codimension Two Compact Hausdorff Foliations by Hyperbolic Surfaces Are Not Stable

By

Kazuhiko FUKUI* and Atsuhide MORI**

§1. Introduction

The set of codimension $q \ C^r$ -foliations of a C^r -n-manifold M carries the fine C^r -topology described in [6]. We denote this space by $Fol_q^r(M)$. We say a foliation \mathcal{F} is C^r -stable if there is a neighborhood V of \mathcal{F} in $Fol_q^r(M)$ such that any foliation in V has a compact leaf. \mathcal{F} is C^r -unstable if not. A foliation in a small neighborhood of \mathcal{F} in $Fol_q^r(M)$ is said to be a C^r -perturbation of \mathcal{F} .

There are many works about the stability of foliations. Let L be a compact leaf of \mathcal{F} . Langevin-Rosenberg[12] showed, generalizing the Reeb stability theorem [15], that \mathcal{F} is C^1 -stable if $H^1(L; \mathbf{R}) = 0$. Let $\pi_1(L) \to GL(q, \mathbf{R})$ be the action determined from the linear holonomy of L. Stowe[18] showed, generalizing the results of Hirsch[11] and Thurston[19], that \mathcal{F} is C^1 -stable if the cohomology group $H^1(\pi_1(L); \mathbf{R}^q)$ is trivial.

On the other hand, as for the foliation \mathcal{F} of an orientable S^1 -bundle over a closed surface B by fibres, Seifert[17] showed that \mathcal{F} is C^0 -stable if $\chi(B) \neq 0$, where $\chi(B)$ is the euler characteristic of B. This result was generalized by Fuller[10] and Fukui[8] : Fuller generalized this to orientable S^1 bundles over arbitrary closed manifolds with $\chi(B) \neq 0$, and Fukui classified all codimension two compact C^r -foliations of closed C^r -3-manifolds $(r \geq 1)$ into C^1 -stable or C^r -unstable ones. Langevin-Rosenberg[13] considered a fibration $\pi: M \to B$ with fibre L and showed that the foliation by fibres is C^0 -stable if 1) $\pi_1(L) \cong \mathbb{Z}$, 2) B is a closed surface with $\chi(B) \neq 0$, and 3) $\pi_1(B)$ acts trivially on $\pi_1(L)$. Fukui[6] generalized this result to compact codimension

Communicated by K. Saito, May 25, 1998. Revised July 12, 1999.

¹⁹⁹¹ Mathematics Subject Classification(s): 57R30.

^{*}This research was partially supported by Grant-in Aid for Scientific Research (No. 10640096), Ministry of Education, Science and Culture, Japan.

^{*}Department of Mathematics, Kyoto Sangyo University, Kyoto 603-8555, Japan.

e-mail: fukui@cc.kyoto-su.ac.jp

^{**}Department of Mathematics, Kyoto Sangyo University, Kyoto 603-8555, Japan. e-mail: rimo@cc.kyoto-su.ac.jp

two foliations. Plante[14] classified all transversely orientable C^r -foliations of closed C^r -3-manifolds by closed orientable surfaces $(r \ge 1)$ into C^1 -stable or C^r -unstable ones. Especially, foliations by hyperbolic surfaces are C^r -unstable, where a closed orientable surface is said to be *elliptic*, *parabolic*, or *hyperbolic* if it is of genus 0, 1, or ≥ 2 respectively. Morover, Tsuboi[20] showed, improving the result of Bonatti-Firmo[2], that a transversely orientable foliation $\mathcal{F} (\in Fol_1^2(M))$ of a 3-manifold M is C^1 -unstable if all compact leaves of \mathcal{F} are hyperbolic. As for the stability of foliations of closed 4-manifolds by closed orientable surfaces, we can summarize as follows (Bonatti[1],Fukui[9] et al): A) The case where $\mathcal{F}(\in Fol_1^1(M))$ is a foliation by elliptic surfaces S^2 :

- A) The case where $\mathcal{F}(\in Fol_2^1(M))$ is a foliation by elliptic surfaces S^2 : In this case the Reeb stability theorem implies that \mathcal{F} is C^1 -stable.
- B) The case where $\mathcal{F}(\in Fol_2^1(M))$ is a foliation by parabolic surfaces T^2 :
- 1) The product foliation \mathcal{F} of $M = T^2 \times B$ is C^1 -stable if and only if $\chi(B) \neq 0$.
 - 2) \mathcal{F} is C^1 -stable if \mathcal{F} has a rotation or a dihedral leaf.
 - 3) $\mathcal{F}(\in Fol_2^2(M))$ is C^2 -stable if \mathcal{F} has reflection leaves with

$$h_* = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix},$$

where $h_*: H_1(T^2; \mathbb{Z}) \to H_1(T^2; \mathbb{Z})$ is the automorphism induced from the attaching diffeomorphism $h: T^2 \to T^2$ and we regard the connected components of the reflection leaves as $T^2 \times [0, 1]/h$.

C) The case where $\mathcal{F}(\in Fol_2^1(M))$ is a foliation by hyperbolic surfaces:

In this case \mathcal{F} is C^r -unstable if the genus of the generic leaf is sufficiently large.

We study here the case of C). Our main result is the following.

Theorem (Theorem 11). All compact Hausdorff C^r -foliations of C^r -4-manifolds by hyperbolic surfaces are C^r -unstable $(1 \le r \le \infty)$.

Note that M need not be compact, but if it is compact, then by the results of Epstein[4], Edwards, Millett and Sullivan[3], codimension two compact foliations of compact manifolds are always Hausdorff ones. Thus our result means that \mathcal{F} is always C^r -unstable in the case of C).

The authers would like to thank the referee for pointing out a gap in the first version and for helpful suggestions. Especially, the referee suggested the argument in §3 taking local sections to prove the non-existence of compact leaves, which made the explanations more precise.

§2. Compact Hausdorff Foliations and Singular Leaves

Let M be a C^r -n-manifold without boundary and \mathcal{F} a codimension q compact Hausdorff C^r -foliation of M $(1 \leq r \leq \infty)$, where \mathcal{F} is said to be *Hausdorff* if the leaf space M/\mathcal{F} is Hausdoff. Then we have a nice picture of the local behavior of \mathcal{F} as follows.

Proposition 1 (Epstein[5]). There is a generic leaf L_0 with property that there is an open dense subset of M, where the leaves have all trivial holonomy and are all diffeomorphic to L_0 . Given a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on the neighborhood as follows. There is a finite subgroup G(L) of O(q) such that G(L) acts freely on L_0 on the right and $L_0/G(L) \cong L$. Let D^q be the unit disk. We foliate $L_0 \times D^q$ with leaves of the form $L_0 \times \{pt\}$. This foliation is preserved by the diagonal action of G(L), defined by $g(x, y) = (x \cdot g^{-1}, g \cdot y)$ for $g \in G(L)$, $x \in L_0$ and $y \in D^q$ where G(L) acts linearly on D^q . So we have a foliation induced on $U = L_0 \times_{G(L)} D^q$. The leaf corresponding to y = 0 is $L_0/G(L)$. Then there is a C^r -imbedding $\varphi: U \to M$ with $\varphi(U) = U(L)$, which preserves leaves and $\varphi(L_0/G(L)) = L$.

Hereafter we consider the case of codimension 2 in this paper. Since G(L) is a finite subgroup of O(2), the action of G(L) is isomorphic to that of a rotation group \mathbb{Z}_k (k > 1), a reflection group \mathbb{D} or a dihedral group \mathbb{D}_l (l > 1).

Definition 2. A leaf L is singular if G(L) is not trivial. The order of G(L) is called the order of holonomy of L. We say such an L is a rotation leaf, a reflection leaf or a dihedral leaf if the action of G(L) is isomorphic to that of \mathbb{Z}_k (k > 1), \mathbb{D} or \mathbb{D}_l (l > 1) respectively.

§3. Instability of a Foliation by Fibres

In this section, we consider the stability of bundle foliations. Let L be a hyperbolic surface and $\pi : M \to B$ a C^r -fibre bundle with fibre L over a closed surface B. Let \mathcal{F} be a foliation of M by fibres and g(L) the genus of the hyperbolic surface L. Then we have the following theorem by the similar way as Plante[14] and Fukui[9].

Theorem 3. \mathcal{F} is C^r -unstable if $g(L) \geq 3$ $(0 \leq r \leq \infty)$.

We can prove this theorem by using the following Remark 4 and Lemma 5.

Remark 4 (Construction of C^r -perturbed cassette). Let U be an open neighborhood in a C^r -2-manifold M which is C^r -diffeomorphic to the open unit disk $intD^2 = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 < 1\}$ via a diffeomorphism φ . Take a family of diffeomorphisms $\{f_t : U \to U \mid t \in [\frac{1}{3}, \frac{2}{3}]\}$ such that

- f_t is C^r-close to the identity in the fine C^r-topology for $t \in [\frac{1}{3}, \frac{2}{3}]$, 1)
- 2) $f_t = id \text{ for } t \in [\frac{1}{3}, \frac{4}{9}],$ 3) $f_t = f_{\frac{2}{3}} \text{ for } t \in [\frac{5}{9}, \frac{2}{3}] \text{ and }$
- for fixed $p(\in U)$, $(t, f_t(p)) : [\frac{1}{3}, \frac{2}{3}] \to [\frac{1}{3}, \frac{2}{3}] \times U$ is a C^r -imbedding. 4)
- 5) $f = f_{\frac{2}{3}}$ has no periodic points.

We say that the C^r -foliation of $\left[\frac{1}{3}, \frac{2}{3}\right] \times U$ by curves of the above 4) is a C^r-perturbed cassette for the product foliation of $\left[\frac{1}{3}, \frac{2}{3}\right] \times U$ and denote it by $P^{r}(U, f)$. For example, for a function $h_{1}(t) = \exp((1/t(t-1)))$ (0 < t < 1), $h_1(t) = 0$ ($t \leq 0$ or $t \geq 1$) and small $\epsilon > 0$, putting

$$h_2(s) = \int_0^s h_1(t) dt / \int_0^1 h_1(t) dt, \quad h(x,y) = (x + \epsilon h_2(2 - 2\sqrt{x^2 + y^2}), y),$$

we can take a family of diffeomorphisms $\{f_t : U \to U; t \in [\frac{1}{3}, \frac{2}{3}]\}$ defined by

$$\varphi \circ f_t \circ \varphi^{-1}(x,y) = (x,y) + h_2(9t-4)(h(x,y) - (x,y)).$$

Lemma 5. Let L be a closed orientable surface and g the genus of L. For given (2g-2) simple closed curves $\delta_1, \delta_2, \dots, \delta_{2g-2}$ in L, there is a simple closed curve δ such that

$$[\delta] \neq 0, [\delta] \neq [\delta_1], [\delta] \neq [\delta_1], \cdots, [\delta] \neq [\delta_{2g-2}]$$

and

$$\langle [\delta], [\delta_1] \rangle = \langle [\delta], [\delta_2] \rangle = \cdots = \langle [\delta], [\delta_{2g-2}] \rangle = 0,$$

where [] denotes the homology class of a simple closed curve in L and \langle,\rangle denotes the algebraic intersection number of 1-cycles in L.

Proof. Let $\alpha_i, \beta_i \ (1 \le i \le g)$ be non-null-homologous simple closed curves in L such that

$$\langle [\alpha_i], [\alpha_j] \rangle = \langle [\beta_i], [\beta_j] \rangle = 0, \ \langle [\alpha_i], [\beta_j] \rangle = \delta_{ij} \ (\forall i, j).$$

Then $[\alpha_i]$ and $[\beta_i]$ $(1 \le i \le g)$ form a canonical symplectic basis for $H_1(L; \mathbb{Z})$. The homology class of δ_j is expressed as $[\delta_j] = \sum_{i=1}^g (k_{ij}[\alpha_i] + l_{ij}[\beta_i]) (j = 1, 2, \dots, 2g-2)$. Put $[\delta] = \sum_{i=1}^g (k_i[\alpha_i] + l_i[\beta_i])$. Then equations $\langle [\delta], [\delta_j] \rangle = 0$ $(j = 1, 2, \cdots, 2g - 2)$ can be solved with $[\delta] \neq 0, [\delta] \neq [\delta_1], [\delta] \neq [\delta_2], \cdots, [\delta] \neq \delta_1$ $[\delta_{2g-2}]$. Note that δ can be realized as a simple closed curve in L if $k_1, l_1, \dots, k_g, l_g$ are relatively prime.

In the above proof, $[\delta_1], [\delta_2], \dots, [\delta_{2g-2}]$ are linearly independent when the dimension of the solution space of equations $\langle [\delta], [\delta_j] \rangle = 0 \ (j = 1, 2, \cdots, 2g - 2)$

is two and then $[\delta_1], [\delta_2], \dots, [\delta_{2g-2}]$ are different from each other. Thus, the following corollary holds.

Corollary 6. Let L be a closed orientable surface and g the genus of L. For given (2g-1) simple closed curves $\delta_1, \delta_2, \dots, \delta_{2g-1}$ in L, there is a simple closed curve δ such that 1) $[\delta] \neq 0$,

 $[\delta] is equal to at most one of [\delta_1], [\delta_2], \cdots, [\delta_{2g-1}] and$ $\langle [\delta], [\delta_1] \rangle = \langle [\delta], [\delta_2] \rangle = \cdots = \langle [\delta], [\delta_{2g-1}] \rangle = 0.$ 2)

3)

Now we are in a position to prove Theorem 3.

Proof of Theorem 3. We consider the dual cell decomposition of a small triangulation of the base space B and denote each of these polygons by P_i ($i \in$ I). Let $V_i (\supset P_i)$ be a neighborhood diffeomorphic to an open disk $(i \in I)$. We can assume that π is trivial over each V_i and let $\psi_i : \pi^{-1}(V_i) \to L \times V_i$ be a trivialization of π over $V_i (i \in I)$. Put $\psi_{ji} = \psi_j \circ \psi_i^{-1}$. Let δ_i be a simple closed curve in L of $L \times V_i$, then $\psi_{ji}(\delta_i \times \{p\})$ $(p \in V_i \cap V_j)$ is homologous, in each fibre, to some simple closed curve δ'_i in L of $L \times V_i$, that is, $\psi_{ii}([\delta_i]) = [\delta'_i]$.

If $P_i \cap P_j \cap P_k$ is a vertex, take a neighborhood U_{ijk} of the vertex such that $U_{ijk} \subset V_i \cap V_j \cap V_k, U_{ijk}$ is diffeomorphic to an open disk and $U_{ijk} \cap U_{i'j'k'} = \emptyset$ for a neighborhood $U_{i'j'k'}$ of another vertex.

If $P_i \cap P_j$ is an edge, take a neighborhood U_{ij} of $(P_i \cap P_j) - (U_{ijk} \cup U_{ijl})$ such that $U_{ij} \subset V_i \cap V_j$, U_{ij} is diffeomorphic to an open disk and $U_{ij} \cap U_{i'j'} = \emptyset$ for a neighborhood $U_{i'j'}$ of another (shortened) edge, where U_{ijk} and U_{ijl} are the neighborhoods of the ends of the edge.

We can take an open set $U_i (\subset P_i)$ diffeomorphic to an open disk for each $i \in I$ such that $\{U_i; i \in I\} \cup \{U_{ijk}; P_i \cap P_j \cap P_k \text{ is a vertex}\} \cup \{U_{ij}; P_i \cap P_j \text{ is } V_i\}$ an edge is an open covering of the base space B as shown in Fig.1(a).

Take a local coordinate (x_{ij}, y_{ij}) on each U_{ij} such that ∂U_i and ∂U_j (resp. ∂U_{ijk} and ∂U_{ijl} are two lines parallel to the x_{ij} axis (resp. y_{ij} axis) in U_{ij} .

Step 1. We perturb \mathcal{F} on $L \times U_i$ as follows. Let γ_i be a non-nullhomologous simple closed curve in L of $L \times U_i$ and Q an open tubular neighborhood of γ_i in L such that its closure \overline{Q} is homeomorphic to $\gamma_i \times [0,1]$ with coordinate $(s,t), s \in \gamma_i, t \in [0,1]$. Since the holonomy of L in \mathcal{F} along γ_i is trivial, the foliation induced on $\overline{Q} \times U_i$ has leaves of form $\overline{Q} \times \{y\}$. In the restriction of \mathcal{F} to $\gamma_i \times [0,1] \times U_i$, we change the part $\gamma_i \times [\frac{1}{3}, \frac{2}{3}] \times U_i$ to $\gamma_i \times P^r(U_i, f_i)$, where $P^r(U_i, f_i)$ is a C^r -perturbed cassette in Remark 4. By such a C^r -perturbation for each i, we obtain a new foliation \mathcal{F}' which has no compact leaves in each $\pi^{-1}(U_i)$. We can choose each (γ_i, f_i) such that $\langle [\gamma_i], \psi_{ij}([\gamma_j]) \rangle \neq 0$ and f_i coincides with the time-1 map determined by a vector field of the form $\lambda_{ij}(y_{ij}) \frac{\partial}{\partial y_{ij}}$ on $U_i \cap U_{ij}$ for any pair (i, j) defining U_{ij} (see Fig.1(b)).

Step 2. We perturb \mathcal{F}' on $\pi^{-1}(U_{ijk})$ as follows. Before the perturbation of the above step 1, take a simple closed curve γ_{ijk} in L of $L \times U_{ijk}$ ($\subset L \times V_i$) which satisfies

$$[\gamma_{ijk}] \neq 0, [\gamma_{ijk}] \neq [\gamma_i], [\gamma_{ijk}] \neq \psi_{ij}([\gamma_j]), [\gamma_{ijk}] \neq \psi_{ik}([\gamma_k])$$

and

$$(*) \qquad \langle [\gamma_{ijk}], [\gamma_i] \rangle = \langle [\gamma_{ijk}], \psi_{ij}([\gamma_j]) \rangle = \langle [\gamma_{ijk}], \psi_{ik}([\gamma_k]) \rangle = 0.$$

This is possible by Lemma 5. Since the holonomy of \mathcal{F}' (after the first perturbation) along γ_{ijk} is still trivial, we obtain, by a similar perturbation along this γ_{ijk} using $P^r(U_{ijk}, f_{ijk})$ as in Step 1, a new foliation \mathcal{F}'' .

In order to show that \mathcal{F}'' has no compact leaves in each $\pi^{-1}(U_{ijk})$ nor in each $\pi^{-1}(U_i)$, we take a point p_i on γ_i (resp. p_{ijk} on γ_{ijk}) and a local section $s_i: U_i \to M$ (resp. $s_{ijk}: U_{ijk} \to M$) which satisfies $s_i(U_i) = \{p_i\} \times \{0\} \times U_i$ (resp. $s_{ijk}(U_{ijk}) = \{p_{ijk}\} \times \{0\} \times U_{ijk}$). We may assume that each local section does not intersect with the interior of $(\gamma_i \times [0,1] \times U_i) \cup (\gamma_{iik} \times [0,1] \times U_{ijk})$. Then any leaf of \mathcal{F}' intersecting with $s_i(U_i)$ is not compact; To see this, take a closed curve $c: \mathbf{R} \to \mathbf{R}/\mathbf{Z} \to M$ which has the geometric intersection number +1 (or -1) with γ_i on a leaf of \mathcal{F} intersecting with $s_i(U_i)$ and consider the lift of c to the corresponding leaf curve on \mathcal{F}' , then we see that the leaf curve accumulates to a point of $s_i(\partial U_i)$. Next we take the lift of c to the corresponding leaf curve on \mathcal{F}'' . If the leaf containing the lift does not intersect with $s_{ijk}(U_{ijk})$, then the lift accumulates to a point of $s_i(\partial U_i)$. Thus any leaf of \mathcal{F}'' which does not intersect with $s_{ijk}(U_{ijk})$ but intersects with $s_i(U_i)$ is not compact. We can also show that any leaf of \mathcal{F}'' intersecting with $s_{ijk}(U_{ijk})$ is not compact as follows; Take a closed curve $c': \mathbf{R} \to \mathbf{R}/\mathbf{Z} \to M$ on a leaf of \mathcal{F}' which has the geometric intersection number +1 (or -1) with one of the components of the lift of γ_{ijk} to the corresponding leaf curve on \mathcal{F}' and does not intersect with the other (possibly empty) components, then the lift of c' to the corresponding leaf curve on \mathcal{F}'' accumulates to a point of $s_{ijk}(\partial U_{ijk})$. We can always take

the above c' since the lift of γ_{ijk} does not separate the leaf of \mathcal{F}' . Thus \mathcal{F}'' has no compact leaves in each $\pi^{-1}(U_{ijk})$ nor in each $\pi^{-1}(U_i)$.

Since the rank of the solution space of the above equations (*) is greater than one, we can choose each (γ_{ijk}, f_{ijk}) such that $\langle [\gamma_{ijk}], [\gamma_{ijl}] \rangle \neq 0$ for $l(\neq k)$ defining U_{ijl} and f_{ijk} coincides with the time-1 map determined by a vector field of the form $\mu_{ijk}(x_{ij})\frac{\partial}{\partial x_{ij}}$ on $U_{ijk} \cap U_{ij}$ (see Fig.1(b)).

Step 3. Similarly as above, we can perturb \mathcal{F}'' by using Lemma 5. Before the perturbations in the above two steps, take a simple closed curve γ_{ij} in L of $L \times U_{ij}$ ($\subset L \times V_i$) which satisfies

$$[\gamma_{ij}] \neq 0, [\gamma_{ij}] \neq [\gamma_i], [\gamma_{ij}] \neq \psi_{ij}([\gamma_j]), [\gamma_{ij}] \neq [\gamma_{ijk}], [\gamma_{ij}] \neq [\gamma_{ijl}]$$

 and

$$\langle [\gamma_{ij}], [\gamma_i] \rangle = \langle [\gamma_{ij}], \psi_{ij}([\gamma_j]) \rangle = \langle [\gamma_{ij}], [\gamma_{ijk}] \rangle = \langle [\gamma_{ij}], [\gamma_{ijl}] \rangle = 0,$$

for any pair (k, l) defining U_{ijk} and U_{ijl} $(k \neq l)$. Then, automatically $[\gamma_i], [\gamma_{ijk}]$ and $[\gamma_{ij}]$ are linearly independent. By the choice of f_i on $U_i \cap U_{ij}$ in Step 1 and f_{ijk} on $U_{ij} \cap U_{ijk}$ in Step 2, we may assume that f_i and f_{ijk} are commutative on the intersection of their domains in U_{ij} if the length of a sequence consisting of f_i, f_{ijk} and their inverses is less than or equal to the geometric intersection number of γ_{ij} with γ_i and γ_{ijk} . This ensures that the holonomy of \mathcal{F}'' along γ_{ij} is trivial. Thus we obtain, by the perturbation along this γ_{ij} , a new foliation \mathcal{F}''' which has no compact leaves in each $\pi^{-1}(U_{ij})$.

In order to show that \mathcal{F}'' has no compact leaves in M, we take a point p_{ij} on γ_{ij} and a local section $s_{ij}: U_{ij} \to M$ which satisfies $s_{ij}(U_{ij}) = \{p_{ij}\} \times \{0\} \times U_{ij}$. We may assume that each local section does not intersect with the interior of $(\gamma_i \times [0,1] \times U_i) \cup (\gamma_{ijk} \times [0,1] \times U_{ijk}) \cup (\gamma_{ij} \times [0,1] \times U_{ij})$. Then any leaf of \mathcal{F}''' intersecting with $s_{ij}(U_{ij})$ is not compact; To see this, take a closed curve $c'': \mathbf{R} \to \mathbf{R}/\mathbf{Z} \to M$ on a leaf of \mathcal{F}'' which has the geometric intersection number +1 (or -1) with one of the components of the lift of γ_{ij} to the corresponding leaf curve on \mathcal{F}'' and does not intersect with the other (possibly empty) components, then the lift of c'' to the corresponding leaf curve on \mathcal{F}''' accumulates to a point of $s_{ij}(\partial U_{ij})$. We can always take the above c'' since the lift of γ_{ij} does not separate the leaf of \mathcal{F}'' as a consequence of the linear independence of $[\gamma_i], [\gamma_{ijk}]$ and $[\gamma_{ij}]$. Any leaf of \mathcal{F}''' which does not intersect with $s_{ij}(U_{ij})$ but intersects with $s_i(U_i)$ or $s_{ijk}(U_{ijk})$ can be identified with the corresponding leaf of \mathcal{F}'' . This leaf has been shown not to be compact in Step 2. Thus \mathcal{F}''' has no compact leaves in M. This completes the proof. \Box

Theorem 3 can be extended to the case of g(L) = 2 as follows.

Theorem 7. \mathcal{F} is C^r -unstable if $g(L) = 2 (0 \le r \le \infty)$.

Proof. In the same setting as in the proof of Theorem 3, we choose simple closed curves γ_i ($[\gamma_i] \neq 0$) in L of $L \times U_i$ ($i \in I$) such that

1) $\langle [\gamma_i], \psi_{ij}([\gamma_j]) \rangle \neq 0$ for any pair (i, j) defining U_{ij} .

2) $[\gamma_i], \psi_{ij}([\gamma_j]), \psi_{ik}([\gamma_k])$ and $\psi_{il}([\gamma_l])$ are linearly independent for any quartet (i, j, k, l) defining U_{ij}, U_{ijk} and U_{ijl} $(k \neq l)$.

Putting $\langle [\gamma_i], \psi_{ij}([\gamma_j]) \rangle = p$, $\langle \psi_{ij}([\gamma_j]), \psi_{ik}([\gamma_k]) \rangle = q$, $\langle \psi_{ik}([\gamma_k]), [\gamma_i] \rangle = r$, we determine the solution of equations

$$\langle [\gamma_{ijk}], [\gamma_i] \rangle = \langle [\gamma_{ijk}], \psi_{ij}([\gamma_j]) \rangle = \langle [\gamma_{ijk}], \psi_{ik}([\gamma_k]) \rangle = 0$$

by $[\gamma_{ijk}]$ (or its multiple) = $q[\gamma_i] + r\psi_{ij}([\gamma_j]) + p\psi_{ik}([\gamma_k])$. We can perturb \mathcal{F} by Steps 1,2 in the above proof of Theorem 3 and obtain a new foliation \mathcal{F}'' .

But we cannot take γ_{ij} as in the proof of Theorem 3 in this case. So we take a null-homologous simple closed curve γ_{ij} representing the homotopy class $\{\alpha_1\}\{\beta_1\}\{\alpha_1\}^{-1}$ $\{\beta_1\}^{-1}$. Then γ_{ij} separates each leaf of \mathcal{F} into two once punctured tori T_1 and T_2 . We may assume that f_i, f_j, f_{ijk} and f_{ijl} are commutative on the intersection of their domains in U_{ij} if the length of a sequence consisting of $f_i, f_j, f_{ijk}, f_{ijl}$ and their inverses are less than or equal to the geometric intersection number of γ_{ij} with $\gamma_i, \gamma_j, \gamma_{ijk}$ and γ_{ijl} , thus the holonomy of \mathcal{F}'' along γ_{ij} is still trivial. Let F_1 (resp. F_2) be a subset of U_{ij} such that $s_{ij}(F_1)$ (resp. $s_{ij}(F_2)$) is the common fixed point set of the holonomies on $s_{ij}(U_{ij})$ along loops homotopic to α_1 and β_1 (resp. α_2 and β_2).

i) First, we consider the case where $F_1 = U_{ij} - (U_i \cup U_j)$ and $F_2 = U_{ij} - (U_{ijk} \cup U_{ijl})$. Let γ'_i and γ'_j (resp. γ'_{ijk} and γ'_{ijl}) be simple closed curves in T_1 (resp. T_2) each of which is homologous to the corresponding one of γ_i and γ_j (resp. γ_{ijk} and γ_{ijl}). From the commutativity of the holonomies, we see that the foliation \mathcal{F}'' , which has been perturbed along $\gamma_i, \gamma_j, \gamma_{ijk}$ and γ_{ijl} , is C^r -diffeomorphic in a neighborhood N_{ij} of $L \times (U_{ij} - (U_i \cup U_j \cup U_{ijk} \cup U_{ijl}))$ to the foliation which is obtained from \mathcal{F} by the perturbations along $\gamma'_i, \gamma'_j, \gamma'_{ijk}$ and γ'_{ijl} in the same way. We may assume $L \times U_{ij} \subset N_{ij}$ by taking U_{ij} sufficiently small if necessary.

Let $\nu(x_{ij})$, $\xi(y_{ij})$ and $\eta(y_{ij}) : U_{ij} \to [0,1]$ be C^r -functions as shown in Fig.2(a) and $g_{ij}^i : U_{ij} \to U_{ij}$ (resp. $g_{ij}^j : U_{ij} \to U_{ij}$) the time-1 map determined by $\eta(y_{ij})\nu(x_{ij})\xi(y_{ij})\frac{\partial}{\partial x_{ij}}$ (resp. $(1 - \eta(y_{ij}))\nu(x_{ij})\xi(y_{ij})\frac{\partial}{\partial x_{ij}})$). Let S_{ij} be the support of the function $\nu(x_{ij})\xi(y_{ij})$. We define a perturbation of \mathcal{F} as follows: Cut T_1 of $T_1 \times U_{ij}$ along γ'_i and $\psi_{ij}(\gamma'_j)$ and paste them along γ'_i (resp. $\psi_{ij}(\gamma'_j)$) with sliding by g_{ij}^i (resp. g_{ij}^j). This is possible since g_{ij}^i and g_{ij}^j commute. We can regard this perturbation as a modification of Step 1 as follows. Change f_i (resp. f_j) into the time-1 map determined by $\lambda_{ij}(y_{ij})\frac{\partial}{\partial y_{ij}} +$ $\eta(y_{ij})\nu(x_{ij})\xi(y_{ij})\frac{\partial}{\partial x_{ij}}$ (resp. $-\lambda_{ji}(-y_{ij})\frac{\partial}{\partial y_{ij}} + (1 - \eta(y_{ij}))\nu(x_{ij})\xi(y_{ij})\frac{\partial}{\partial x_{ij}})$. Then we can extend the domain of f_i (resp. f_j) to U_{ij} . Since this modification is different from the original \mathcal{F}'' only in N_{ij} , we can define a new perturbation

 $\mathcal{F}_0^{\prime\prime\prime}$.

Then a leaf of $\mathcal{F}_{0}^{\prime\prime\prime}$ intersecting with $s_{ij}(int(S_{ij}) - (U_i \cup U_j))$ accumulates to a point of $s_{ij}(\partial S_{ij})$. Another leaf intersecting with $s_{ij}(U_{ij})$ intersects with $s_i(U_i), s_j(U_j), s_{ijk}(U_{ijk})$ or $s_{ijl}(U_{ijl})$. By the same argument as in Step 2 in the proof of Theorem 3, a leaf intersecting with $s_i(U_i)$ or $s_j(U_j)$ accumulates to a point of $s_i(\partial U_i)$ or $s_j(\partial U_j)$ since U_i, U_j are invariant under the new f_i, f_j . In order to show that any leaf which does not intersect with $s_{ij}(int(S_{ij}) - (U_i \cup U_j))$ but intersects with $s_{ij}(U_{ij})$ and $s_{ijk}(U_{ijk})$ (resp. $s_{ijl}(U_{ijl})$) accumulates to a point of $s_{ijk}(\partial U_{ijk})$ (resp. $s_{ijl}(\partial U_{ijl})$), take a closed curve $c: \mathbf{R} \to \mathbf{R}/\mathbf{Z} \to M$ on T_2 in a leaf of \mathcal{F}'' which has the geometric intersection number +1 (or -1) with γ'_{ijk} (resp. γ'_{ijl}), then the lift of c to the corresponding leaf curve on \mathcal{F}'' accumulates to a point of $s_{ijk}(\partial U_{ijk})$.

ii) If we consider the case where $F_1 = U_{ij} - (U_{ijk} \cup U_{ijl})$ and $F_2 = U_{ij} - (U_i \cup U_j)$, we conclude the same result as in i).

iii) In the other cases, we may assume that the foliation \mathcal{F}'' is C^r -diffeomorphic in a neighborhood of $L \times U_{ij}$ to the foliation which is obtained from \mathcal{F} by the perturbation along $\alpha_1, \beta_1, \alpha_2$ and β_2 by taking U_{ij} sufficiently small if necessary, and let $H(\alpha_m) = f_i^{a_i^m} \circ f_j^{a_j^m} \circ f_{ijk}^{a_{ijk}^m} \circ f_{ijl}^{a_{ijl}^m}$ (resp. $H(\beta_m) = f_i^{b_i^m} \circ f_j^{b_j^m} \circ f_{ijk}^{b_{ijk}^m} \circ f_{ijl}^{b_{ijk}^m} \circ f_{ijl}^{a_{ijk}^m} \circ f_{ijl}^{a_{ijl}^m}$) be the holonomy on $s_{ij}(U_{ij})$ along a loop homotopic to α_m (resp. β_m), where a_*^m (resp. b_*^m) are some integers and we regard each f_* as the identity out of the domain, for m = 1, 2. Since $[\gamma_i], \psi_{ij}([\gamma_j]), [\gamma_{ijk}]$ and $[\gamma_{ijl}]$ are linearly independent, g(L) = 2 and $\langle [\gamma_i], [\gamma_{ijk}] \rangle = \langle [\gamma_i], [\gamma_{ijk}] \rangle = \langle \psi_{i=j}([\gamma_j]), [\gamma_{ijk}] \rangle = 0$, we see $\langle [\gamma_i], \psi_{ij}[\gamma_j] \rangle \neq 0$, $\langle [\gamma_{ijk}], [\gamma_{ijl}] \rangle \neq 0$. Thus either $(a_i^1 b_j^1 - a_j^1 b_i^1)(a_{ijk}^2 b_{ijl}^2 - a_{ijl}^2 b_{ijk}^2) \neq 0$ or $(a_i^2 b_j^2 - a_j^2 b_i^2)(a_{ijk}^1 b_{ijl}^1 - a_{ijl}^1 b_{ijk}^1) \neq 0$ holds. Then it is sufficient to consider the five cases (up to rotations and reflections) shown in Fig.2(b) by assuming, for example, $(a_i^2 b_j^2 - a_j^2 b_i^2)(a_{ijk}^1 b_{ijl}^1 - a_{ijl}^1 b_{ijk}^1) \neq 0$. We can always eliminate the intersection of F_1 and F_2 by a perturbation using $P^r(U_{ij}, f_{ij})$ along γ_{ij} for example as shown in Fig.2(b) if we take $U_{ij} - (U_i \cup U_j \cup U_{ijk} \cup U_{ijl})$ sufficiently small. We denote this new foliation by $\mathcal{F}_{11}^{\prime\prime}$ and let F_1' be the image of F_1 by the perturbation.

A leaf of $\mathcal{F}_{1}^{\prime\prime\prime}$ intersecting with $s_{ij}(U_{ij})$ accumulates to a point of $s_{ij}(\partial F_1')$ or $s_{ij}(\partial F_2)$; To see this, for example in the fourth case shown in Fig.2(b), we can choose loops $\delta_1, \delta_2, \ldots, \delta_8$ (resp. $\delta'_1, \delta'_2, \ldots, \delta'_5$) on each T_1 (resp. T_2) of \mathcal{F} over 1) $U_{ijk} \cap U_i$, 2) $U_{ijk} - (U_i \cup U_j)$, 3) $U_{ijk} \cap U_j$, 4) $U_j - (U_{ijk} \cup U_{ijl})$, 5) $U_j \cap U_{ijl}$, 6) $U_{ijl} - (U_i \cup U_j)$, 7) $U_i \cap U_{ijl}$ and 8) $U_i - (U_{ijk} \cup U_{ijl})$ (resp. 1) $U_i - U_{ijl}$, 2) $U_i \cap U_{ijl}$, 3) $U_{ijl} - (U_i \cup U_j)$, 4) $U_{ijl} \cap U_j$ and 5) $U_j - U_{ijl}$) in U_{ij} satisfying that each $[\delta_p]$ (resp. $[\delta'_q]$) is expressed as $\kappa_p[\alpha_1] + \lambda_p[\beta_1]$ (resp. $\kappa'_q[\alpha_2] + \lambda'_q[\beta_2]$) where κ_p and λ_p (resp. κ'_q and λ'_q) are integers such that $(H(\alpha_1))^{\kappa_p} \circ (H(\beta_1))^{\lambda_p}$ (resp. $(H(\alpha_2))^{\kappa'_q} \circ (H(\beta_2))^{\lambda'_q}$) is a contraction to $s_{ij}(\partial F_1)$ (resp. $s_{ij}(\partial F_2)$) for $p = 1, 2, \ldots, 8$ (resp. $q = 1, 2, \ldots, 5$). Then the lift of each loop to the corresponding leaf curve on \mathcal{F}'' accumulates to a point

330

of $s_{ij}(\partial F_1)$ (resp. $s_{ij}(\partial F_2)$). The other cases can be observed more easily. In any case after the perturbation along γ_{ij} , a leaf of \mathcal{F}_1''' intersecting $s_{ij}(U_{ij})$ accumulates to a point of $s_{ij}(\partial F_1)$ or $s_{ij}(\partial F_2)$, thus this leaf is not compact.

Combining i),ii) and iii), we define a new folliation \mathcal{F}''' which has no compact leaves in the saturation of each $s_{ij}(U_{ij})$. Another leaf can be identified with the corresponding non-compact leaf of \mathcal{F}'' . This completes the proof. \Box

§4. Instability of a Foliation with Singular Leaves

In this section, we consider the stability of a Hausdorff C^r -foliation \mathcal{F} of a C^r -4-manifold by hyperbolic surfaces with singular leaves. We can generalize the above theorems as follows.

A) The case of foliations with only rotation leaves as singular leaves.

Theorem 8. If all the singular leaves of \mathcal{F} are rotation leaves, then \mathcal{F} is C^r -unstable $(1 \leq r \leq \infty)$.

Proof. In this case, note that the genus of the generic leaves satisfies $g \geq 3$. Let $B = M/\mathcal{F}$ be the leaf space of \mathcal{F} . B is a two dimensional V-manifold without boundaries and is also a topological manifold. The quotient map $\pi : M \to B$ is a V-bundle (see Satake[16] for definitions). We denote the rotation leaves of \mathcal{F} by L_j $(j \in J)$. Choose saturated neighborhoods $U(L_j)$ as in Proposition 1 to be disjoint. We denote its interior by $int(U(L_j))$. The map π restricted to $M - \bigcup_{j \in J} L_j$ is a fibre bundle with fibre being the generic leaf L. So we take a sufficiently fine open covering of B as in the proof of Theorem 3,

 $\{U_i; i \in I\} \cup \{U_{ijk}; P_i \cap P_j \cap P_k \text{ is a vertex}\} \cup \{U_{ij}; P_i \cap P_j \text{ is an edge}\}$

and modify it partially near the points corresponding to rotation leaves as follows (see Fig. 3):

- 1) $int(U(L_j)) = \pi^{-1}(U_j) \ (j \in J \subset I)$ and
- 2) $U_j \cap U_k = \emptyset \ (j, k \in J).$

First we perturb \mathcal{F} on $int(U(L_j))$ as follows. Let $p_j : L \to L_j$ be the covering map and τ_j a simple closed curve in L_j representing a generator of the holonomy groups $\mathbf{Z}_{k(j)}$ of L_j $(j \in J)$. By using Lemma 5, we can take a simple closed curve δ_j in each L_j such that $[\delta_j] \neq 0$, $[\delta_j] \neq [\tau_j]$ and $\langle [\tau_j], [\delta_j] \rangle = 0$. Since the holonomy of L_j along δ_j is trivial, we can perturb \mathcal{F} on $int(U(L_j))$ as in the proof of Theorem 3 and obtain a new foliation \mathcal{F}' without compact leaves in each $int(U(L_j))$.

Next we perturb \mathcal{F}' on $L \times U_{ji}$ and $L \times U_{jik}$. Each δ_j induces k(j) simple closed curves $p_j^{-1}(\delta_j) = \delta_{j1} \cup \delta_{j2} \cup \cdots \cup \delta_{jk(j)}$ in L of $L \times U_{ji}$ and $L \times U_{jik}$. Since

Fig. 3.

the genus of $L \ge k(j) + 1$, we can take a simple closed curve γ_{ji} on each U_{ji} for the perturbation, by using Corollary 6 and the relation $2k(j) + 1 \ge k(j) + 3$ $(k(j) \ge 2)$, where "+3" means that each U_{ji} meets three other neighborhoods except U_j . Similarly, we can take a simple closed curve γ_{jik} for the perturbation on each U_{jik} by Lemma 5. Since $g \ge 3$, we can perturb \mathcal{F}' on the other neighborhoods in B as in the proof of Theorem 3. This completes the proof. \Box

B) The case of foliations with only reflection leaves as singular leaves.

Theorem 9. If all the singular leaves of \mathcal{F} are reflection leaves, then \mathcal{F} is C^r -unstable $(1 \leq r \leq \infty)$.

Proof. In this case, note that the genus of the generic leaves satisfies $g \geq 3$. The leaf space $B = M/\mathcal{F}$ is a 2-manifold with boundaries and the quotient map $\pi : M \to B$ is a V-bundle. Reflection leaves correspond to the boundary points of B. Each boundary component of B is homeomorphic to the line \mathbb{R} or the circle S^1 . First we consider the case where B has only one boundary component and denote this component by ∂B . Let L_x $(x \in \partial B)$ be reflection leaves of \mathcal{F} . Choose saturated neighborhoods $U(L_x)$ as in Proposition 1 to be sufficiently small and choose an open covering $\{int(U(L_j)); j \in J = \mathbb{Z}/2m\}$ $(m \text{ is a natural number, but if } \partial B \cong \mathbb{R}$, then $J = \mathbb{Z}$, $m = +\infty$) of $\pi^{-1}(\partial B)$ such that $k \equiv j$ or $j \pm 1 \pmod{2m}$ if $int(U(L_k)) \cap int(U(L_j)) \neq \emptyset$. Since π restricted to $M - \pi^{-1}(\partial B)$ is a fibre bundle with fibre L, take a sufficiently fine open covering of B as in the proof of Theorem 3,

 $\{U_i; i \in I\} \cup \{U_{ijk}; P_i \cap P_j \cap P_k \text{ is a vertex}\} \cup \{U_{ij}; P_i \cap P_j \text{ is an edge}\}$

and modify it partially near the boundary as follows (Fig. 4):

1)
$$int(U(L_{j})) = \pi^{-1}(U_{j}) \ (j \in J \subset I),$$

2) If $U_i (i \in I - J)$ meets $U_j \cap U_{k'} (j \in J, k' \equiv j + 1 \pmod{2m})$, we denote such i by i(j),

3) $U_{ji(j)i(k)}$ is a sufficiently small neighborhood which meets U_j , $U_{i(j)}$ and $U_{i(k)}$, and $U_{i(j)i(k)}$ meets $U_{i(k)}$, $U_{i(j)}$, $U_{ji(j)i(k)}$ and $U_{i(j)i(k)l}$ $(j \in J, k \equiv j-1 \pmod{2m})$ and

4) π restricted to the intersection of U_j and the neighborhoods which appear in the above 2) and 3) $(j \in J)$ is also a fibre bundle and we can define the transformation map ψ_{**} over there as in the proof of Theorem 3.

Let τ_j be a simple closed curve in L_j representing a generator of the holonomy group **D** of L_j $(j \in J)$.

Step 1. In the case where j is odd, take an arbitrary simple closed curve δ_j on L_j such that $[\delta_j] \neq 0$, $[\delta_j] \neq [\tau_j]$ and $\langle [\tau_j], [\delta_j] \rangle = 0$ hold and take a tubular neighborhood S_j homeomorphic to $\delta_j \times (0, 1)$. Since the holonomy along δ_j is trivial, $U(L_j) |_{S_j}$ can be regarded as $S_j \times D$, where D is the unit 2-disk. So, we can perturb \mathcal{F} to a foliation which has no compact leaves on $int(U(L_j))$ as in the proof of Theorem 3.

Step 2. In the case where j is even, we choose a coordinate (x, y) of the unit disk D^2 in Proposition 1 such that the linear action is given by $g \cdot (x, y) = (x, -y)$. We apply the diffeomorphism h in Remark 4 in the interior of the disk D^2 .

Then, $g \cdot h(x, y) = h(g \cdot (x, y))$ holds. So we obtain a C^r -perturbation of the foliation of the form $L \times \{pt\}$ by using h which is still preserved by the diagonal action in Proposition 1. This induces a C^r -perturbation of \mathcal{F} which has no compact leaves on $int(U(L_i))$.

We use a simple closed curve with trivial holonomy in Step 1. On the other

hand, we use a simple closed curve with non-trivial holonomy in Step 2. Therefore we obtain a new foliation which has no compact leaves on $\cup_{j \in J} int(U(L_j))$ after Steps 1 and 2. We have to note that on neighborhoods near ∂B , at most 4 simple closed curves are induced from each δ_j in each reflection leaves L_j since $g \geq 3$, but we can perturb on the other neighborhoods as in the proof of Theorem 3.

We can prove similarly in the case where B has several boundary components. This completes the proof.

C) The case of foliations with dihedral leaves.

Theorem 10. If \mathcal{F} has no rotation leaves, but has dihedral leaves, then \mathcal{F} is C^r -unstable $(1 \leq r \leq \infty)$.

Proof. The leaf space $B = M/\mathcal{F}$ is a 2-V-manifold with boundaries and the quotient map $\pi : M \to B$ is a V-bundle. Reflection leaves and dihedral leaves correspond to the boundary points of B. Now, we may assume that B has only one boundary component ∂B and it is homeomorphic to the line \mathbf{R} or the circle S^1 . Let $L_x (x \in \partial B)$ be singular leaves of \mathcal{F} . Choose saturated neighborhoods $U(L_x)$ as in Proposition 1 and choose an open covering $\{int(U(L_j)); j \in J = \mathbb{Z}/2m\}$ (m is a natural number, but if $\partial B \cong \mathbf{R}$, then $J = \mathbb{Z}, m = \infty$) of $\pi^{-1}(\partial B)$ such that 1) $k \equiv j$ or $j \pm 1 \pmod{2m}$ if $int(U(L_k)) \cap int(U(L_j)) \neq \emptyset$ and 2) L_j is a dihedral leaf if and only if j is odd. The open covering of B in the proof of Theorem 9 is modified as in the following Fig. 5.

First, we perturb \mathcal{F} on $int(U(L_j))$. The holonomy group of a dihedral leaf L_j is generated by generators $\tau_j, \tau_{j'}$ which are generators of adjoining reflection leaves on both sides. Let $p_j: L \to L_j$ be the covering maps $(j \in J)$. Then

334

Step 1. In the case where j is odd, take an arbitrary simple closed curve δ_j on L_j such that

$$[\delta_j] \neq 0, \ [\delta_j] \neq [\tau_j], \ [\delta_j] \neq [\tau_{j'}], \ \langle [\delta_j], [\tau_j] \rangle = \langle [\delta_j], [\tau_{j'}] \rangle = 0.$$

This is possible from Lemma 5. Then we can perturb \mathcal{F} to a foliation which has no compact leaves on $int(U(L_i))$ as in Step 1 of the proof of Theorem 9.

Step 2. In the case where j is even, we can perturb \mathcal{F} to a foliation which has no compact leaves on $int(U(L_i))$ as in Step 2 of the proof of Theorem 9.

Hence we obtain a new foliation which has no compact leaves on $\bigcup_{j \in J} int(U(L_j))$. We have to note that on neighborhoods meeting $int(U(L_j))$, at most n(j)+2 simple closed curves are induced from τ_j and $\tau_{j'}$ in each dihedral leaf, but we can perturb it in the same way as in the proof of Theorem 3 since the genus of the generic leaf $\geq n(j) + 1$ and $2\{n(j) + 1\} - 2 \geq n(j) + 2$, where n(j) is the order of the holonomy group of L_j . This completes the proof. \Box

D) The general case.

Combining Theorems 3, 7, 8, 9 and 10, we have the following.

Theorem 11. All compact Hausdorff C^r -foliations of C^r -4-manifolds by hyperbolic surfaces are C^r -unstable $(1 \le r \le \infty)$.

M need not be compact, but if M is compact, then codimension two compact foliations of M are always Hausdorff by the results of Epstein[4], Edwards, Millett and Sullivan[3]. Thus we have the following.

Corollary 12. All compact C^r -foliations of compact C^r -4-manifolds by hyperbolic surfaces are C^r -unstable $(1 \le r \le \infty)$.

References

- Bonatti, C., Difféomorphismes commutants des surfaces et stabilité des fibrations en tores, *Topology*, 29 (1990), 101–126.
- [2] Bonatti, C. and Firmo, S., Feuilles compactes d'un feuilletage générique en codimension un, Ann. Sc. Norm. Sup., 27 (1994), 407–462.
- [3] Edwards, R., Millett, K. and Sullivan, D., Foliation with all leaves compact, *Topology*, 16 (1977), 13-32.
- [4] Epstein, D. B. A., Periodic flows on three-manifolds, Ann. of Math., 95 (1976), 68-82.
- [5] _____, Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble, 26 (1976), 265-282.
- [6] _____, A topology for the space of foliations, Geometry and Topology, Lecture Notes in Math., 597 (1976), 132–150.
- [7] Fukui, K., Perturbations of compact foliations, Proc. Japan Acad., 58 (1982), 341-344.

- [8] _____, Stability of foliations of 3-manifolds by circles, J. Math. Soc. Japan, 39 (1987), 117-126.
- [9] _____, Stability and instability of certain foliations of 4-manifolds by closed orientable surfaces, Publ. RIMS, Kyoto Univ., 22 (1986), 1155-1171.
- [10] Fuller, F., An index of fixed point type for periodic orbits, Amer. J. Math., 89 (1967), 133-148.
- [11] Hirsch, M., Stability of compact leaves of foliations, Dynamical Systems, Acad. Press, (1971), 135–155.
- [12] Langevin, R. and Rosenberg, H., On stability of compact leaves and fibrations, *Topology*, 16 (1977), 107–112.
- [13] _____, Integral perturbations of fibrations and a theorem of Seifert, Differential topology, foliations and Gelfand-Fuks cohomology, *Lecture Notes in Math.*, 652 (1978), 122– 127.
- [14] Plante, J., Stability of codimension one foliations by compact leaves, Topology, 22 (1983), 173–177.
- [15] Reeb, G., Sur certaines propriétés topologiques des variétés feuilletées, Act. Sc. et Ind., 1183, Herman, Paris, 1952.
- [16] Satake, I., The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, 9-4 (1957), 464-492.
- [17] Seifert, H., Closed integral curves in 3-spaces and isotopic two dimensional deformations, Proc. A. M. S., 1 (1950), 287–301.
- [18] Stowe, D., The stationary set of a group action, Proc. A. M. S., 79 (1980), 139-146.
- [19] Thurston, W., A generalization of the Reeb stability theorem, Topology, 13 (1974), 347–352.
- [20] Tsuboi, T., Hyperbolic compact leaves are not C¹-stable, Geometric study of foliations, World Sci., Singapore, (1994), 437–455.