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Extended Affine Root System IV
(Simply-Laced Elliptic Lie Algebras)

By

Kyoji SAITO* and Daigo YOSHII*

Abstract

Let (R, G) be a pair consisting of an elliptic root system R and a marking G of
R. Assume that the attached elliptic Dynkin diagram F(R, G) is simply-laced. To the
simply-laced elliptic root system, we associate three Lie algebras, explained in 1), 2)
and 3) below. The main result of the present paper is to show that all three algebras
are isomorphic.

1) The first one, studied in §3, is the subalgebra &(R) generated by the highest
vector ea for all a £ R in the quotient Lie algebra VQ(R^ / DVQ(p^ of the lattice vertex
algebra attached to the elliptic root lattice Q(R).

2) The second algebra e(reii), studied in §4, is presented by the Chevalley gen-
erators and the generalized Serre relations attached to the elliptic Dynkin diagram

3) The third algebra fjff * 0af , studied in §5, is defined as an amalgamation of an
affine Heisenberg algebra and an affine Kac-Moody algebra together with the finite
amalgamation relations.

Contents

§1. Introduction

§2. Generalized Root Systems and Elliptic Root Systems

§3. The Lie Algebra &(R) Associated to a Generalized Root System

§4. The Elliptic Lie Algebra Presented by Generators and Relations

§5. The Amalgamation Algebra fjff * Saf

Appendix A. Table of the Simply-Laced Elliptic Diagrams

Received October 5, 1999. Revised February 29, 2000.
1991 Mathematics Subject Classification(s): 17B65

* Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa-Oiwake-
cho, Sakyo-ku, Kyoto, 606-8502, Japan.



386 KYOJI SAITO AND DAIGO YOSHII

Appendix B. An Explicit Description of Q(R)

References

§1. Introduction

In the following (1.1) and (1.2), we give a brief overview of the history, the
motivation and the results of the present article. Some readers may choose to
skip to (1.3).

(1.1) The concepts of the generalized root system and, in particular, the ex-
tended affine and the elliptic (= two-extended affine) root system are intro-
duced in the early eighties [Sa3-I]. Since then, there have been several attempts
to construct Lie algebras realizing a given root system as the set of its "real
roots." The answers were not unique, since there seemed to be no a priori
constraint on the size of the center of the algebra. Let us recall some of these
works.

The first attempt was due to P. Slodowy [S13], who looked at the tensor
product of a simple algebra with the algebra of Laurent series of two variables.
Wakimoto [W] has constructed some of the representations of these algebras
with trivial center action (see also [ISW] for further development). The idea
was extended by U. Pollmann [P]. For all types of elliptic root systems, she
defined a twisted construction of, so called, biaffine algebras by using the affine-
diagram automorphisms. The next attempt was due to H. Yamada [Yl], who
constructed the tensor of the affine Kac-Moody algebra with the algebra of
Laurent series of one variable by the use of vertex operators [F], [FK]. It is a
certain infinite dimensional central extension of the two variables Laurent series
extension of a simple algebra. He put a constraint on the size of the center of
the algebra in order to get the action of the central extension of the elliptic Weyl
group on the algebra. Still, the occurance of an infinite dimensional center in
the algebra was a puzzle at the time.

The universal central extension of the tensor of a Lie algebra with a com-
mutative algebra was systematically studied by Kassel [Kas] in terms of Kahler
differentials of the algebra. Moody-Eswara-Yokonuma [MEY] studied the case
where the commutative algebra is the Laurent series of several variables, and
named it toroidal algebra. In [S12], [S14], Slodowy studied a certain general-
ization of the Kac-Moody algebra, called the generalized intersection matrices
algebra. He defined the intersection matrices algebra as the quotient of the gen-
eralized intersection matrix algebra by the ideal generated by the root spaces
whose roots have norms larger than two. Then, using the concept of the fi-
nite root system grading, Berman et al. [AABGP], [BGK] studied Lie algebras
whose real roots are elliptic root systems. Modifying Cartan matrixes of sim-
ple Lie algebras, Berman and Moody [BM] constructed an intersection matrixes
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whose intersection matrix algebras are toroidal algebras.
The general idea to construct a Lie algebra g(fl) for an arbitrary homoge-

neous generalized root system R comes from vertex algebras, as we now explain.
For an arbitrary even lattice Q Borcherds [Bol], [Bo2] defined the vertex opera-
tor action for all the elements of VQ, where VQ is the total Fock space VQ of level
1 representations of the Heisenberg algebra attached to Q. He has also axiom-
atized the structure on VQ as the vertex algebra V and has shown that V/DV
carries a Lie algebra structure for the derivation D of V. For a homogeneous
generalized root system R, consider the Lie algebra VQ^/ DVq^ attached to
the root lattice Q(R). Then, we define Q(R) as its Lie subalgebra generated
by all the highest weight vectors ea attached to all the elements a e R. If
the intersection form of the root lattice Q(R) is degenerate (in fact it is the
case for an elliptic root system) , we embed the root lattice to a non-degenerate
one. Accordingly, we embed Q(R) into g(-R), whose Cartan subalgebra § is the
non-degenerate extension of fj. The algebra $(R) admits a finite-dimensional
root space decomposition with respect to I), where the set of the real roots
of Q(R) contains R. The norms of the roots are less than or equal to two (if
we normalize R to consist of elements of norms two). Thus, the algebra is a
quotient of a certain intersection matrix algebra.

The correspondence R i-» &(R) works as follows. If .R is a finite or affine
root system, then $(R) is the corresponding finite or affine Kac-Moody algebra,
respectively. If R is an extended affine root system, then $(R) becomes a
toroidal algebra.

In particular, let us call the algebras &(R) and &(R) attached to an elliptic
root system R the elliptic algebras. The algebras considered by Yamada and
Pollman are quotients of the elliptic algebra

(1.2) We turn to the question of presentations of the algebra g(#). If the Witt
index of the root lattice Q(R) is less than or equal to 1, then the root system
is either finite, affine or hyperbolic. Then it admits Weyl chambers and the
system of normal root vectors of the walls of the chamber define a simple root
basis. Accordingly, the algebra g(-R) is presented by Serre relations. If Witt
index of Q(R) of a root system R is equal to or greater than two, we can not
apply chamber theory. On the other hand, Moody-Eswara-Yokonuma [MEY]
have found a presentation of the two-toroidal Lie algebra with infinitely many
generators and relations.

One of the main goals of the present article is to give another presentation
of the elliptic algebra with finite number of generators and relations (see (4.1)
Definition 2), which are still locally nilpotent.

The elliptic root system R has the two-dimensional radical. An arbitrary
one-dimensional subspace G of the radical is called a marking (2.3). The pair
(R, G) admits a "root basis" F(jR, G), called the elliptic root basis (see Sect. 2, or
[Sa3-I]), even though there is no longer a good analogue of the Weyl chambers.
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The intersection matrix attached to the elliptic root basis is called an ellip-
tic Cartan matrix. It contains some positive entries in its off-diagonal parts.
Therefore it is not a generalized Cartan matrix [K]. The "classical" Serre re-
lations which describe Kac-Moody algebras are not sufficient to describe the
elliptic algebra. Thus it was necessary to find some new relations attached to
the elliptic diagram.

A new impetus for the problem came from a description of the elliptic Weyl
group. In [SaT3-III], the elliptic Weyl group was presented via a generalization
of a Coxeter system as follows: the generators are involutions attached to
all vertices of the elliptic diagram, while the relations are Coxeter relations
involving two vertices of the elliptic diagram and new relations involving three
and four vertices of the diagram. Inspired by this description we asked whether
one could find presentations of the elliptic Lie algebras, the elliptic Artin groups,
and the elliptic Hecke algebras where the defining relations involve only the
same two, three and four vertices of the elliptic diagram (see Remark 2 below).

In the present article, we answer this problem affirmatively for the elliptic
Lie algebras: the algebra c(ren) is generated by a system of the Chevalley basis
(i.e. sl2-triplets attached at vertices of the elliptic diagram ren = T(R,G))
and is defined by a generalization of the Serre relations involving three or four
vertices of the diagram ((4.1) Definition and Theorem 1). We denote by e(reii)
the extension of e(reii) by the non-degenerate Cartan subalgebra F). In the
course of the proof of the isomorphisms: &(R) — e(reii) and c(reii) — fl(-R),
we need to consider the amalgamations f)|f * gaf and fj^f * gaf, where f)^f is the
affine Heisenberg algebra, f)ff is the extension of f)ff' by I) and gaf is the affine
Kac-Moody Lie algebra. This gives the third description of the elliptic algebra.
As a by-product of this third presentation, we obtain a generalized triangular
decomposition of the elliptic algebra (5.2.2) ([BB] used a similar triangular
decomposition to study their representations of the algebras).

Remark 1. The two-extended affine root systems [Sa3-I] describe the
(transcendental) lattices generated by vanishing cycles for simple elliptic sin-
gularities [Sal]. This is the reason why we call them the elliptic root systems
[SaT3-III]. In fact, the radical of the root system corresponds to the lattice of
an elliptic curve, and a rank one subspace of the radical, called a marking, cor-
responds to a choice of a primitive form for the elliptic singularities [Sa2]. The
elliptic algebra should (conjecturally) serve to reconstruct the primitive form
and the period mapping for the elliptic singularities (cf. the simple singularity
case [Br], [Sll], [S12], [Ya2]). From the marked elliptic root system, one has al-
ready reconstructed the flat structure on the invariants of elliptic Weyl groups
[Sa3-II], [Satl], [Sat2] and the elliptic L-functions [Sa3-V].

Remark 2. The problems raised in [SaT3-III] on the description of the
elliptic Artin groups and Hecke algebras were affirmatively solved by H. Yamada
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[Y3]. He rewrote the presentation of the fundamental group of the complement
of the discriminant loci for simply elliptic singularities, which had been given
by van der Lek, in terms of elliptic diagrams.

The relations for an elliptic Artin group naturally "cover" the relations for
an elliptic Weyl group. Still, the relationship between the presentation of the
elliptic Artin group and that of the elliptic algebra is not yet clear.

(1.3) Let us give an overview of the contents of the present article.
Section 2 reviews the material from [Sa3-I] on generalized root systems,

elliptic root systems R and the elliptic diagrams reii = T(R,G). Section 3
reviews Borcherds' description of lattice vertex algebras. Then we introduce
the Lie algebras g(-R) and &(R) for each homogeneous generalized root system
R. In particular, if R is an extended affine root system, then Q(R)/$($(R))
turns out to be the finite dimensional simple Lie algebra tensored with the ring
of Laurent series of two- variables, where $(g) is the center of the algebra g.

In (4.1), we introduce the algebras c(reii) and e(reii) attached to a simply-
laced marked elliptic diagram ren. Both algebras &(R) and e(reii) admit
root space decompositions and there is a natural surjective homomorphism
c(reii) — > g(/2) compatible with the root space decompositions. The root spaces
e(reii)/x with roots // belonging to the marking G span an extension £j^f by £j
of the Heisenberg subalgebra f)^f in e(ren). The subalgebras fj^f , fj^f and the
affine Kac-Moody subalgebra gaf attached to an affine subdiagram Faf of reii
in e(Feii) satisfy some simple relations (4.3.6). We consider, in Sect. 5, the
abstract amalgamation i)^f' * gaf and f)ff * gaf of the those algebras satisfying
those relations.

By definition there is a natural surjective homomorphism i)ff *gaf ~* *(reii)
compatible with the root space decompositions. On the other hand, it turns out
that the amalgamation algebra admits a generalized triangular decomposition:

This fact leads to the proof that the set of roots of f)ff * gaf coincides with that
of Q(R) and the multiplicities of the real roots are equal to one. It also implies
that the derived algebra i)^f * gaf = (fj^f * gaf ) of fj^f * gaf is a central extension
of $(R). By the universality of the central extension g(-R) — >• Q(R)/$($(R)') and
the perfectness of the algebra fy^f * gaf we obtain the inverse homomorphism
Q(R) — )• t)%f * gaf . These facts inmply the isomorphisms:

- e(ren)

and, therefore, the isomorphism:
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This proves the main result of the present paper.
Finally we note that the algebra g(jR) does not depend on the choice of

the marking G, but the other algebras e(Feu) and £jff * gaf do depend on this
choice, i.e. that of an element of PSL(2, Z). So, an ambiguity of the triangular
decomposition of an elliptic algebra (more exactly, an ambiguity of the subal-
gebra {jaf 0 n^) depends on an element of PSX(2,Z). Full study of this fact
(i.e. PSL(2, Z) action on the elliptic flag variety) is beyond the scope of the
present article.

List of Relations. For the convenience of the reader, we list below the
reference numbers for the relations of the algebras 0(/Z), t(T(R, G)), Q(A&),
gaf = e(Faf), f)af', £j^f and fjaf * gaf studied in the present article.

- Relations in the lattice vertex Lie algebra $(Q) = VQ/ DVq:

(3.1.8) 0, I, II.1, II.2, III and IV.

- Relations for the elliptic Lie algebra e(F(.R, G)):

(4.1.1) 0, I, II. 1, IL2, III, IV, and V.

- Relations for the affine Kac-Moody algebra %(A&):

(4.2.5) A-0, A-I, A-II.1, A-II.2 and A-IL3.

- Relations for the affine Kac-Moody algebra gaf = e(Faf) ~ 0(Faf):

(4.1.1) 0, I, II.1 and IL2.

- Relations for the Heisenberg algebras f)af and l)af :

(4.3.6) H-I and H-II.

- Amalgamation relations among f)af and gaf :

(4.3.6), (5.1.1) I*, II*.l and II*.2.

Notation. (1) For a sequence of elements xi, X2, ̂ 3, . . . , xn of a Lie alge-
bra, put:

and call it a multi-bracket of length n. For any s with 1 < s < n by successive
applications of the Jacobi identity one gets an identity:

[xi,x2 ,x3 , . . . ,x n ,y ] = [x i , . . . ,x s_i,?/, xs,xs+i, . . . ,xn]

+ x i , . . . , x s _ i , x s , 2 / ] , x 5 + i , . . - ,xn

,x s_i,x s , [

,x s_i,x s ,x s +i ,
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We shall refer to this transformation as "delivering y to the left".
(2) For a subset S of a root system R in F, we put

±5 := 5 U (-5) - S U {-s | s € 5}.
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§2. Generalized Root Systems and Elliptic Root Systems

The notions of a generalized root system and an extended affine root sys-
tem were introduced in [Sa3-Ij. We recall the classification of 2-extended affine
root systems (= elliptic root systems) in terms of elliptic diagrams together
with some related facts.

(2.1) Let (F, q) be a pair of R- vector space F and a quadratic form q on it with
bounded rank, that is, the set of dimensions of all the non-singular subspace of
F is bounded from above. The bilinear form I : F x F — >> R is attached to q
by I(x,y) := q(x + y) — q(x) — q(y) and q(x) = J(x,x)/2. Let radF := F^ be
the radical of q. The signature sigg = (/i+, /^o, M-) is the triplet with //+ (resp.
//_) := the maximum rank of the positive (resp. negative) definite subspaces
of F and //o := rank(radF). We call /(a, a) = 2g(a) the norm of a £ F.
A vector a £ F of nonzero norm is called non-isotropic. For a non-isotropic
vector a, put av := a/q(a). We have avv = a. Define the reflection wa on F
by wa(u) := u — /(av, u)a, which satisfies w% = idp and / o wa = I.

Definition. A set R of non-isotropic vectors of F is called a generalized
root system belonging to (F, q) if it satisfies the following conditions:

1) The additive subgroup Q(R) generated in F by .R is a full lattice of F (i.e.

2) For all a and /? G R, one has /(av, 0) G Z.

3) For all a £ R, the reflection wa preserves the set R.

4) If R = RI U RZ and RI _L R<2 with respect to g, then either RI or R-2 is
empty.
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A root system R is called reduced if Qa D R = {=tcx} for any a € R. The
subgroup Q(R) C F is called the root lattice for the root system R. The group
W(R) generated by the reflections wa for all a G R is called the Weyl group of
the root system R. Two root systems are isomorphic if there is an isomorphism
between the ambient vector spaces which induces a bijection between the sets
of roots. For any subspace H of rad(q) which is defined over Q, the image set
of R in the quotient space F/H is a root system, called the quotient root system
modulo H , and is denoted by R/H. In particular, R/ rad q is called the radical
quotient of R.

Definition., We say that a subset II C R generates the root system R if
R = W(tt)n, where W(H) := (wa a e II).

If II generates R then the following holds: i) Q(R) = ZII := X^aen ^5 ii)

One can show that the set {q(a) a E -R} is finite and that the proportion
q(a)/q(/3) for any a,/3 £ -R is a rational number. Hence the integer:

(2.1.1) t(R) := lcm{q(a) \ a <E R}/gcd{q(a) | a G R},

called the total tier number of the root system, is a well-defined positive integer.
So, up to a constant factor, the bilinear form / may be assumed to take rational
values on Q(R). In particular, by choosing a constant factor c such that gcd{c-
q(a) | a G R} = 1, we define the normalized forms:

(2.1.2) qR'-=c-q, IR := c • I

(the constant c will be referred to as IR : I). Then Q(R) becomes an even
lattice with respect to the form q^ (and IR). We shall always consider the
vector space F to be equipped with the integral lattice structure Q(R) and the
rational structure FQ := Q(8>z Q(R). A root system R is called homogeneous if
t(R) = 1, and, hence, qn(a) — ±1 for a € R.

Let R be a root system. The set jRv := {av | a £ R}, called the dual of
R, is also a root system with respect to the same quadratic form q. It satisfies
q(av) = l/q(a) for all a £ R, and t(Rv] = t(R). The sets R and J2V span
the same vector space F, but the lattice Q(RV) := ZjRv (equipped with the
normalized quadratic form qpy = (/#v : I) -q satisfying to (a) • q^ (av) = t(R))
may define a different Z-structure on F.

(2.2) We call R a k-extended affine root system of rank I if q is positive semi-
definite with rank(radg) = k and rankQ(.R) = I + k.

One has the equivalence: #R < oo <=> #W(R) < oo 4=> q is definite
4=4> A: = 0. This is the case studied in the classical literature. The root
systems are classified into types AI ( />! ) , BI (I > 2), C\ (I > 3), DI (I > 4),
^ (Z = 6,7,8), F4 andG2.
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If & = 1, then R turns out to be an affine root system in the sense of
Macdonald [Me] (cf. [K], [MP]). These are classified by the types P^ , where
P is the type of the finite root system R$ := R/ T&dq and t\ is called the first
tier number (an integer satisfying t\\t(K)).

If k = 2, then R is called an elliptic root system [SaTa-III]. In most cases
these are classified by the types _p(*i'*2)? where P is the type of the finite root
system R$ = R/ rad q and t\ , t<i are called the first and the second tier numbers
(integers satisfying ti\t(R), t2\t(R)) explained in (2.4).

In general, let R be a homogeneous fc-extended affine root system. Then
by a suitable choice of the basis ai , . . . , a^ of the radical radg, one has an
expression of the set of roots

(221) R = flf®20!®'"
= {a + n\a\ H ----- h n^a^ \ a G Rf , Hi G Z for i = 1, . . . , k}

where Rf is a "splitting sub-root system of Rn defined in a positive subspace
Ff of F and is isomorphic to the radical quotient finite root system R/ rad q of
R.

If k < 1, then the Weyl group W(R) acts properly discontinuously on a
domain in F* . The fundamental domain of the action bounded by the reflection
hyperplanes is called a Weyl chamber. Then the set T(R) of those roots which
are normal to the walls of a fixed Weyl chamber gives a simple root basis of R
and defines the classical or affine Dynkin diagram according to whether R is
a finite or an affine root system. If k > 2, then the Weyl group acts nowhere
properly discontinuously on F or F*, so that there is no concept of a Weyl
chamber. Nevertheless, for the elliptic root system R (i.e. k = 2), by a use of
a marking G (see (2.3)), we introduce an elliptic root basis T(R, G) of R which
leads to a definition of an elliptic Dynkin diagram for (JfJ, G). We recall some
more details on this in the following (2.3)-(2.6).

(2.3) Let R be an elliptic root system of rank /. That is: R is a generalized root
system whose quadratic form q is positive semi-definite with a two-dimensional
radical, where I := rank(F/radg) = rankF — 2. H R is elliptic, so is Rv .

Definition. A marking of an elliptic root system R is a rank one sub-
space G of rad F defined over Q. The pair (jR, G) is called a marked elliptic
root system.

The dual Ry is also marked by the same space G. We choose and fix
integral basis a and av of the marking G:

(2.3.1) Za - Gz := G n Q(R) and Zav - G\ := G n Q(^v),

satisfying av : a > 0 (here av is not (a)v for the operation ( )v defined in (2.1)).
The marking G induces a projection

(2.3.2) TTG : Q(R) -> Qaf :=
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The image Raf := R/G := KG(R) is an affine root system belonging to the affine
root lattice Qaf. We assume Raf to be reduced. For the rest of the present paper,
we choose and fix a simple root basis F(.Raf) of the affine root system Ra$ and a
set Faf C R such that the projection -KG induces a bijection 7TG|Faf ^> F(jRaf).
In particular, the intersection matrix (/(av, /?))a ^€r equals the affine Cartan
matrix attached to T(Raf). The set Faf is unique up to an isomorphism of
(.R, G). We identify Faf with the affine Dynkin diagram F(JE?af), the lattice
0Q,€Paf JJOL with Qaf, and the set of roots jRn®aer f Za with Paf, respectively.
The following three properties are well-known: i) Faf forms a basis of Qaf
such that the affine roots Raf are contained in Q^~f U Q~f where Q^f := ( db
SaEraf ^>oa)\{0}. ii) There exist positive integers {na G Z>0}aeraf such that
Saeraf

 n<*a ls a generator of the radical of Qaf (null roots of Qaf). iii) There
exists 0:0 G Faf with nao = 1 such that Ff := Faf \ {QQ} is a Dynkin diagram
of the finite root system Rf = R/ radg with the root lattice Qf := ®aerf Za.
So, the root lattice Q(R) and the radical radQ(P) split over Z as:

(2.3.3) Q(R) = Qaf 0 Za = Qf © Z6 0 Za,

(2.3.4) i8idQ(R) = Z60Za,

where 6 is a lifting of the generator of the null roots in Qaf .

(2.3.5) b := ]P naa.
aeraf

Similarly, F^f := {av | a G Faf } C -Rv is bijective to a simple root basis of the
dual affine root system R^f. So, we get a generator 6V := J]averv navav of
the radical of

(2.4) We introduce the first and the second tier numbers t\,ti of a marked
elliptic root system (R, G) and its dual (Rv , G) as follows. These will describe
some subtle relations between the two integral structures Q(R) and Q(RV),
and will be used to define the type of a marked elliptic root system.

, , *i(/2,G) := (6V : 6) - (Jflv : I), ^(E^G) := (6 : 6V) • (IR : I),
(ZAA) t2(R,G) := (av : a) - (Iflv : I), t2(^v,G) := (a : av) - (IR : I).

These are positive integers satisfying the relation

(2.4.2) t(R) = £ iCR,G)- t iOR v ,G) = t2(R,G) -t2(R
y,G).

The isomorphism class of (R, G), in most cases, is determined by the triplet
(P, ti,t2) where P is the type of the finite root system fl/radg and ti and £2

are the first and the second tier numbers of (J?, G). The symbol P^1^2) js caned
the type of (fl,G).
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Let us define some further numerical invariants which lead to the definition
of the exponents and the definition of the elliptic root basis F(R, G). For a G R,
put

(2.4.3) k(a) := inf {& G Z>0 a + k • a G R} and a* := a + fc(a) • a

(and define fcv(c*v) similarly for av G #v). Then, one has the following pro-
portionality relations: for a G Faf ,

fo 4 <n ^L( ' ' ' na

Definition. (1) The set of exponents (resp. dual exponents) of (R,G) is
the union of {0} and {ma a G Faf (resp. {m^v | a G Faf), where

(2.4.5) raa := — - • na (resp. mav :=a . a v

for a G Faf .
(2) Put ramax := maxima, a G Faf} and

(2.4.6) Fmax := {a G Faf | ma = mmax}, F^ax := {a* a G Fmax}.

An elliptic root basis is the union of Fmax and F^ax:

(2.4.7)

Fact 1. The set F(R,G) generates ((2.1) Definition) the elliptic root
system R.

Note that the proportionalities in (2.4.4) imply the proportionalities:
mav/ma = t^R.G) • t2(R,G)/t(R) and therefore F(#V,G) - F(^,G)V. The
(aa,0 '•= I(°^,&)}a 3er(RG)' can<ed the elliptic Cartan matrix, is not a gen-
eralized Cartan matrix in the sense of Kac-Moody theory [K] because of the
positive off-diagonal entry aa,a* = 2 for a G Fmax.

(2.5) The elliptic diagram (which we shall identify with the elliptic root basis
F(/2, G)) is defined by the following rule:

i) vertices are in one-to-one correspondence with T(R, G),

ii) the type of the bond between the vertices a, /? G F(JR, G) is defined ac-
cording to the value aa,/3/a/3,a by the usual convention (e.g. [B Chap.VI,
§4 n°4.2]), except for the new additional convention: a double dotted bond
o===o if aa ^ = a/35Q! = 2 (i.e. between vertices a and a* for a G Fmax).
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Fact 2 ([Sa3-I] Theorem (9.6))0 The elliptic diagram is uniquely de-
termined by the isomorphism class of ( JZ, G) . Conversely, the elliptic diagram
F(jR, G) determines uniquely the isomorphism class of the marked elliptic root
system (R, G) together with an elliptic root basis which is identified with the
vertices of T(R,G).

Let us review briefly the reconstruction of the root system (R, G) from the
diagram T(R,G).

a) PutF:=©a€IWG)Ra.

b) Difine a symmetric bilinear form / : F x F — > R satisfying the relations

- aa?/3 and I(a, a) > 0 for a, 0 € F(R, G).

c) Put W := (wa | a G T(R, G)) where wa is the reflection on F with respect
to a.

d) Define the pre-Coxeter element c := YlaertR G) ™<* w^ere wa* comes next
to wa for a G rmax. Then one has:

(i) The eigenvalues of c are given by 1 andexp(27r^/::^lma/minax) fora G Faf.

(ii) The image of 1 — cmmax is contained in rad I and is spanned by a
k^ —

krJ? for a, (3 G rmax? where m'^^ := the least common denominator of

the m^/ramax for a G Faf .

Fact 3. Put F := F/(l - cm^)F, I —the form on F induced from I,
G := the subspace in F spanned by a* — a for a G rmax and R :=the image
set of W • F(R,G). Then R is an elliptic root system belonging to (F, /) with
the marking G. The image set in F of the vertices of T(R, G) forms an elliptic
root basis of the elliptic root system. The root lattice in F generated by r(jR, G)
is given by

m a x ,(2.5.1) Q(R) = ZrOR, G)/< - | a, 0 £ T

(2.5.2) Q(R-) = Z T ( * , G ) V < ~ - a, 0 £ rmax>.

(2.6) A marked elliptic root system (R, G) is called simply-laced if its diagram
, G) consists only of simply-laced bonds o o and doubly dotted bonds
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Fact 4. A simply-laced elliptic root system (R, G) is homogeneous. Hence
t(R) = ti(R) = t2(R) = 1, m'max = rrimax, and k(a) = 1 for all a G R. The
set of roots decomposes (cf. (2.3.3)) :

(2.6.1) R = Rai + Za = #f + Z& + Za.

The simply-laced elliptic root systems are of types A\ ' for I > 2, D\ '

for / > 4 and E\-for I = 6, 7,8, whose diagrams and exponents are exhibited
in Appendix A.

§3. The Lie Algebra &(R) Associated to a Generalized Root System

Borcherds [Bol] has introduced a Lie algebra Vq/OVq as a quotient of
the vertex algebra VQ attached to an even lattice Q. The aim of this section
is to introduce the Lie algebras &(R) and 0(#) attached to a generalized root
system R as subalgebras of Vq^/DVq^ ((3.2) Definition 1). We recall the
construction of VQ/DVQ in the first half of this section (cf. [G], [GN], [K2] and
[MN]).

(3.1) We review the construction of the lattice vertex algebra in our context.
Let Q be an even lattice with an integral symmetric bilinear form / attached
to a quadratic form q such that q(x) = J(x,x)/2. There is a canonical central
extension: 0 —>• Z/2Z —> Q —> Q —>• 0 defined by the skew symmetric form
/ mod 2. Fixing a section e : Q \-t Q, a *-> ea, we have the product rule:
eae@ = K/^'^e^e", where K is the multiplicative generator of the center Z/2Z.
The following two are equivalent: 1) giving an additive cocycle £ : Q x Q ->
Z/2Z such that e(a, /3)+e(/3, a) = I (a, 0) mod 2, and 2) giving a product rule:
eaep = ^(a,/3)e«+^ In this art[cie5 we g^all assume e(a,a) = I(a,a)/2 mod 2
for any a G Q. Let Q{Q} be the quotient of the group ring Q[Q] divided
by the ideal generated by 1 + K. The image of the section {ea a G Q}
(denoted by the same symbol) gives a basis of Q{Q} with the product rule
eaef3 = (-l)e(a'/3)ea+/3.

Put FQ := Q <8>z Q and let FQ be a Q vector space equipped with a
non-degenerate symmetric bilinear form / such that i) FQ contains FQ as a
subspace, ii) the restriction of / on FQ coincides with /. Such FQ, having the
lowest rank (=rank<2 -f rank(radQ)) is unique, and shall be called the non-
degenerate hull of FQ. We identify FQ with its dual space FQ by / : FQ —> FQ;

x ^ I(x)(y) = ( I ( x ) , y ) := I(x,y). Put ^ := F^ = J(FQ), i) := J(FQ) (note
that f) is not the dual space FQ of FQ if / is degenerate) and hx := I ( x ) e ^ for

any x G FQ. We introduce the form /* on ^ by /*(/(#), I(y}} := /(x, y) for any
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Put

(3.1.1) VQ := S

where 5 := 5(0nez>o ^(~n)) ^s tne symmetric tensor algebra of the direct

sum of an infinite sequence {F)(— n)}nez>0 °f copies of ^ (copies of an element
ft G £) are denoted by ft(-l), ft(-2), . . . ). Then VQ has the following structures
i)-iv).

i) As the tensor product of algebras, VQ is an algebra.

ii) For any h G 1) and n G Z, we define the left-operator h(n) on VQ as follows:
if n < 0 then h(n) is multiplication by h(n). If n = 0 then /i(0)eQ: = {/i, a)ea

for any a G Q- If n > 0 then h(n)ea = 0 for any a G Q. One has the rule:
[h(m),g(n)] = m5m+nio/*(ft,#) for any h,g £ fy and ra, n G Z.

iii) The algebra VQ has the Cartan involution u : cj(ea) = e~a, a; (ft) = -ft for
any a G Q and ft G f).

iv) There is a linear map deg : VQ — > VQ such that degea = q(a)ea and
degft(— n)v = h(—n)(nv -\-degv) for any a G Q, ft E () and t; G VQ. We say
u G VQ is homogeneous of degree n if deg u = nu (n £ Z) . VQ is Z-graded
by this degree: VQ = 0n€Z VQn.

v) The algebra VQ is Q-graded. That is: VQ = @aeQ(VQ)a, where (VQ)a :=
S <8> ea. An element u € (VQ)Q is said to have the grade a.

For any n G Z we define the n-th product, denoted by u^v, of u =

hi(-ni) • • • hk(-nk)e
a G VQ (fti, . . . , hk G £), a G Q and fc > 0) and t; G VQ by

, v U(n)V := the coefficient of z~n~l in
1 j

where for ft G f) and n > 0, we put

(3.1.3) Q(h(-n), z) := j-J— ( -£ ) I V l̂ *' + MO) log(z) I -

Here "°^o" is ^ne "normal ordering of X " , where one rearranges the ordering of
products in the formal expression of X in such a way that the creation operators
h(—i) (i > 1) occur to the left of all annihilation operators h(i) (i > 1) and ea

occur to the left of operators ft(0). Note that exp(fta(0) log(z))e/3 = e/V(a>/3).
Extending (3.1.2) linearly in u, we make the vector space VQ equipped with
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countably many bilinear operations (n). Then, the system of these operations
defines the vertex algebra structure on VQ [Bol], [FLM].

For any h £ 1), u £ VQ and n £ Z, we have h(— n)(_i)U = h(—n)u by
definition. So, VQ is generated as (— l)-th product algebra by h(—n) and ea

for h £ J), n £ Z>0 and a £ Q. Define an operator

(3.1.4) £>: VQ-+VQ, a^ a (_2)l.

Then, for any n £ Z and tt, ?; £ FQ we have

(3.1.5) D(u(n]v) = (Du)(n]v + u(n}Dv.

In addition, for any h £ f), a £ Q and n E Z>o,

(3.1.6) £>ea - fta(-l)e
Q, Dh(-n) = nh(-n - 1),

so .D is a homogeneous operator of degree 1.

Fact 5 (Borcherds[Bolj). The product u^v for u, v £ VQ induces a Lie
algebra structure on the quotient space VQ/DVQ and a left VQ/DVQ -module
structure on VQ.

In this section, let us tentatively denote the algebra VQ/DVQ by
We shall use the same symbols to express an element in §(Q) as an element

in VQ. The Lie bracket of &(Q) is given by [u,v] = u^v. The algebra §(Q)
inherits Z- and Q-grading structures since D is homogeneous and preserves the
Q-grading.

If u, v E VQ have degrees l,m G Z respectively then U(n)t; has degree
I + m — n — 1. So, the subspace VQI is closed under the 0-th product.

Fact 6. §(Q)i = (VQ/DVQ)I ^ VQI/WQQ w a Lie subalgebra of g(Q).

Here, we recall some terminologies from [K], [MP]. Given a Lie algebra g
and its abelian subalgebra £j, we say an element x e 0 is a weight vector of
weight a £ £}* if [ ft, x] = (h, o;)x for all ft (E £). Let ga be the set of all elements
which have weight a. If Qa / {0}, a is called a root and 0Q, is called its root
space. If 0 is spanned (as a vector space) by root spaces, then we say that g
has a root space decomposition with respect to I).

Let u £ VQ be an element of the grade a £ Q. Then ft(— l)(o)^ = (ft, a)w
for any ft E f) (use (3.1.2)) and z/ is a weight vector of weight a with respect
to f ) (— 1). This means that the concepts weight and grade coincide. Therefore
Q(Q) has the root space decomposition with respect to ^(—1) and &(Q)a —
(S/(D + h0i(-l))S)^ea for a G Q(R). The subalgebra §(Q)i has a root space
decomposition with respect to f ) (— 1). The norms /(a, a) = 2q(a) of every root
a of g(^R) is less than or equal to two (since if v = hi(-ni) - • • hk(—nk)ea is a
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nontrivial weight vector, then q(a) < q(a) + ]C» ni =: deg v — !))• Some of the
root spaces are described easily as follows.

,„ , 7} ,« for q(a) = 1,
1 J - - l # for

A root a e Q such that g(o;) = 1 (resp. q(a) < 0) is called a rea/ roo£ (resp.
an imaginary root).

Let us list some bracket formulae in §(Q), which can be calculated from
the definition (3.1.2) (or refer [GN] (2.119)-(2.123)). We shall use them in the
present article without mentioning it explicitly. Put Q\ := {a £ Q \ q(a) = 1}.
In the following formulae, a, /3 £ Q, h,g £ f), h,g G ^ and /x, A € radQ:

-l), (/(-I)] = 0,

if /(a,/3) >0
if /(a,/3) = -
if Ja,/3) = -

-0 if /(a,/3) < 0 and a € Qi,

Remark 3. The above construction of the vertex algebra VQ and the Lie
algebra §(Q) attached to an even lattice Q works completely parallel, even
when we replace the space FQ at the begining by its quotient space Fq/H for
an arbitrary linear subspace H C radFq and replace / by its induced form
on Fq/H but keep Q{Q} the same. Tentatively, let the resulting algberas be
denoted by VQ,H and QH(Q)5 respectively. They are naturally the quotient
algebras of VQ and

(3.2) Let jR be a homogeneous generalized root system and IR the even lattice
structure (2.1.2) on the root lattice Q(R). In the rest of this section we use the
normalized bilinear form IR but will denote it by / for short.

Definition 1. Define subalgebras Q(R) and $(R) of §(Q(B)) by

where {*) denotes the Lie algebra over Q generated by the set *.
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The algebra $(R) is a subalgebra of g(Q(.R))i (since all the generators are
in $(Q(R))i and in view of (3.1) Fact 6). It inherits the Q(jR)-grading structure
from &(Q(R))i. Since all the generators are weight vectors, the algebra
has a root space decomposition with respect to f ) (— 1). If a is a root of
then q(a) < 1. For every a G R, {e := ea, h := /iav, / := — e~a} is a standard
5/2-triplet, i.e. [h,e] = 2e, [f t , / ] = -2/ and [e, f] = ft. Note that g(B) is
the derived algebra of &(R) (i.e. $(R) = [g(jR),g(fl)]) and it is perfect (i.e.

For S C R, we consider the subalgebra g(5) of

(3.2.2) g(5):-(ea | a e ± 5 > .

Assertion 1. For any subset S C R, one has g(5) = g(W(S')5). /n
particular, if H generates R ((2.1) Definition), then {ea \ a G ill} generates
the algebra g(.R).

Proof. First, we show that e™Q^ G (ea, e^). Since the degree one space is
closed under the 0-th product, we have eWa^ = const • (adea)~ /^a ^e^ for
roots a,(3 £ R s.t. J(a, /3) < 0. It is enough to show (adea)~ / (aV ' /3)e /3 / 0 since
the real root space is one dimensional (3.1.7). If it were zero then applying
(ade-0)-7^'^ we would get e0 = 0 and a contradiction. If /(a,/3) > 0,
consider the pair —a and /?.

Let us return to the proof. Any element of W(S)S is an image of 5 by
successive applications of reflections with respect to elements of S. Applying
the claim above successively, we obtain s(W(S)S) — g(5). D

Let R be a homogeneous fc-extended afrine root system of rank I (2.2). In
this case, we have an explicit description of g(.R):

(3.2.3) g(fl) - f j(- l) 0 0 Qea 0 0 (*)(
a£R /zGrad Q(R)\{0}

If we replace f ) (— 1) by ()(— 1) in (3.2.3), then we get an explicit description
of g(jR). Put N := J(radFQ) C f). Then it is not hard to see the following:

ii) g(-R)/3 (g(-R)) is isomorphic to gf 0Q[ e±ai , . . . , e±afc], where gf is the simple
Lie algebra associated to the finite root system R/iadF.

The following lemma is due to [MEY].

Lemma 1. $(R) is the universal central extension o/g(-R)/3(g(.R)) and
perfect. That is: by definition, $(R) is the k-toroidal Lie algebra.

The next assertion is easy to show.
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Assertion 2. If R is a simply-laced finite or affine root system, then
Q(R) is isomorphic to a finite or affine Kac-Moody algebra, respectively.

Proof. Take a simple root basis F of R. Take a proper cocycle e as in
(3.1). Then the Serre relations are satisfied by the Chevalley generator system
{av := hav(—l),ea := ea,fa := — e~a}aer and hav(—1) for a G F are linearly
independent. Apply Gabber-Kac's theorem. D

For a root lattice Q(R) = Qaf © Za of a simply-laced elliptic root system
R, we always use Z-bilinear cocycle e satisfying:

(3.2.4)

This choice simplifies the formulae in $(R) as

(3.2.5) [eV~a] = -hav for any a £ R.

The following is a construction of such a cocycle e. Recall from the splitting
(2.3.3) that the set Faf U{a} forms a Z-basis of Q(R). Index Faf = {a0, • • • , a/}
and a_i := a tentatively, and define e(ai,aj} to be I(a.i,a,j} mod 2 if i > j,
I(ot.i, OLi)/(2 mod 2 if i — j, otherwise 0. Extend them Z-linearly to Q(R).

Remark 4. Recall the notation Qn(Q) of Remark 3 at the end of (3.1).
Let us denote by §#(R) the subalgebra of Qn(Q(R)) generated by ea for all
a e R. Then §radFQ(^) = B(fi)/3(fl(-R)). For a marked elliptic root system
(.R,G), Qc(R) is the algebra studied by Yamada [Yl].

§4. The Elliptic Lie Algebra Presented by Generators and
Relations

In section 3, we have introduced the Lie algebras $(R) and &(R) attached
to a simply-laced elliptic root system R. In this section, we introduce the second
Lie algebras e(Feii) and e(Fen) attached to the ellpitic diagram Fen = T(R, G) of
a simply-laced marked elliptic root system (R, G). These algebras are presented
by generators and relations determined by Fen. In (4.1) Theorem 1, we state
the main result of the present article: the isomorphism of the two algebras g(-R)
and e(ren).

The rest of this article is devoted to the proof of the theorem. This section
gives a preparation by studying subalgebras of e(Fen). In (4.2), we study the
subalgebras t(A) of e(Fen) attached to the A-parts A of the diagram Feii, which
turn out to be the affine Kac-Moody algebras $(AA) with the generator system
AA associated to A. In (4.3) we consider the subalgebra f)ff °f e(reii)- The
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subalgebra ()^f turns out to be a Heisenberg algebra and all the weights of the
elements of fj^f' belong to the marking la.

(4.1) Let reii = F(jR, G) be the elliptic diagram of a simply-laced marked
elliptic root system (R,G) (2.6). Let us fix or recall some notation. As in
(2.5) a)-d), we reconstruct the root lattice Q(R) (2.5.1) from reii, where ren is
identified with an elliptic root basis of R as a subset of Q(R). As in (3.1) put
FQ := Q ®z Q(R} and let (FQ,/) be its non-degenerate hull. The space FQ is
identified with its dual space 1) := HomQ(Fg,Q) by I : x ^- hx, where hx (E f)
is defined by hx(y) := I(x,y) for any y £ FQ. Recall that a G Q(R) denotes
the base of the marking space G (2.3.1) and a* - a — a for any a £ rmax (see
(2.4.3) and (2.6) Fact 4). Hence we have ha*v — hav = hav .

Definition 2. The Lie algebra e(Feii) is the algebra presented by the
following generators and relations:

Generators: £j and {Ea a G ±Fen}

Relations:

0. I) is abelian,
1. [h,E*] = (h,a)Ea,

(4.1.1) ILL [E
= Q for J (a ,^)>0,

II.2. (adEa)l-(h~v>VEP = 0 for 7(a,/3) < 0,

TTTm-
\Ea E13 E^} - 0' ' ' -I ~

where /i runs over fy in I, a, 0 run over ±reii in I, II, and a, 0,7 run over ±Faf
in III, IV and V.

Remark 5. The definition of a root system is invariant under the scalar
multiplication cl of the form / for c € Q \ {0}. We use hav instead of ha for
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a G R so that the result does not depend on the choice of c, where (hav, a) = 2.
Similarly, /iav does not move after rescaling of J (see (2.4.1) where t<2(R,G) is
fixed to 1 in the present article). See also the proof of (4.3) Lemma 4 H-II.

Remark 6. The relations O-II are the well-known Kac-Moody type rela-
tions. The relations III-V are new relations caused by the new type bonds
o ===== o in T(R,G). Note that the relations III-V reduce to the classical
relations if we replace E±a by E±a for a G rmax.

The following is the main theorem of the present article.

Theorem 1. The following correspondence extends to an isomorphism
from c(reii) to fl(-R):

(A i 2^1 h *-> ft(-l) for h G f),
{ } Ea H-> ea for a £ ±reU.

Here, the cocycle e is so chosen to satisfy e(a, a) = e(a, a) = 0 and e(a, a) =
7(a,a)/2 for any a G Q(R).

The rest of this article is devoted to the proof of the theorem.

Assertion 30 The map defined in (4.1.2) extends to a surjective Lie ho-
momorphism (p

(4.1.3) <p : c(rell)

Proof. We can check the vanishing of the (^-images of the defining rela-
tions (4.1.1) of c(reii) using (3.1.8). The surjectivity follows from (2.4) Fact 1
and (3.2) Assertion 1. D

The following facts follow immediately from the definitions.

Facts o i) The algebra e(ren) has the root space decomposition with re-
spect to £j and the set of roots is contained in Q(R). The root space of a root
a is denoted by £(^11)0,.
ii) 0(e(reii)a) - B(R)a for any a 6 Q(R).
iii) There exists and involution a;, called the Cartan involution, on e(reii) de-
fined by h ̂  -h for ft e fj and Ea ^ E~a for a e ±reii-
iv) Since adE10 : x H-> [Ea,x] is a locally nilpotent derivation for every
a G ±reii, we have a Lie algebra automorphism of e(reii):
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(Note that the sign of the middle factor is not equal to the usual one because
of the minus sign in the relation II. 1.) One verifies directly that the restriction
of na on f) coincides with the reflection wa on £j: wa(h) :—h — (h, a)ftav. This
implies na induces an isomorphism tp ~ twap- Therefore the elliptic Weyl
group W(R) acts on the set of all roots of c(reii).

For a subset S C ren, we consider a subalgebra e(5) of c(reii):

(4.1.4) t(S) := (Ea a e ±5).

The subalgebra c(reu) is an example. Note that the derived algebra of e(ren)
is e(reli).

Assertion 4. // a subset S C Te\\ is linearly independent in Fq and
its intersection matrix (I(av,/3))a)/#Gs forms a generalized Cartan matrix (i.e.
off-diagonal parts are non positive}, then c(5) is canonically isomorphic to the
(derived) Kac-Moody algebra constructed from the Cartan matrix, and also to

8(5).

Proof. The elements {Ea,hav, — E~a}aes satisfy the Kac-Moody rela-
tions and linear independency of S implies the isomorphism. For the last claim,
see (3.2) Assertion 2. D

Applying this assertion to Faf, we have e(Faf) ~ g(Faf).

(4.2) This subsection is aimed to prove Lemma 2, which plays a crucial role in
the proof of Theorem 1 in the sequel.

Definition 3. An A-part A of T(R, G) is a union of a maximal linear
subdiagram Aaf of Faf and {a* | a £ Aaf fl rmax}. That is: A = Aaf U (Aaf D
-»- max/ •

Explicit list of A-parts is given in Appendix A. The following facts follow di-
rectly from the definition.

Facts, i) For any a, (3 G r(JR, G), there exists an A-part A which contains

a and J3 (note that A[ ' ^ is not simply-laced).
n) Aaf n rmax ^ 0.

Lemma 2. For any given A-part A, the restriction of tp (4.1.5) on t(A)
gives an isomorphism onto &(A).

Proof. Since y>|e(A) ls a surjective homomorphism, it is sufficient to show
an existence of a surjective homomorphism T : g(A) —> t(A) such that T o ip =
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Put Aaf — A fl Faf =: {ai,... ,an} such that 1(0^,0,1+1) = -1 for
1, . . . , n — 1. We fix an element as £ A D rmax for 1 < s < n. Put As*

(4.2.1) = _ a _ £ Q

a€Aaf

and AA := Aaf U {C*A}- The diagram of AA is given below.

Then, W(AS~)AS* = W(A)A = W(AA)AA and hence g(As*) - g(AA) ((3.2)
Assertion 1). Note e(As*) = t(A) due to the relation V in (4.1.1).

Let us define a map Ts: {ea, e~a \ a 6 A A} -> e(ren). First, we put

(4.2.2) Ts : ea *-> Ea for a e ±Aaf.

In order to define the images of e±aA , we consider an automorphism MaA of
e(reii):

(4.2.3) MaA := nai • • •nQs_1na*nQs+1 • • • n Q n _ 1 ,

and put

where v G {il} is defined by the relation

Let us see that the map Ts extends to a homomorphism from g (A) to e(A).
Since 0(A) = Q(A&) is a Kac-Moody algebra with respect to the generators
{ea, /iav,e~a | a £ AA}, it is enough to show the vanishing of the Ts-images
in e(ren) of the defining relations of the affine Kac-Moody algebra

A-O. [fcav(-l),V (-1)]=0,
A-L [hay(-l),e^] = (h^,0)e^

(4.2.5) A-II.1. [ea,e-a] = -hav(-l),
A-II.2. [ea,e/3] = Q for /(a,/3)>0,
A-II.3. (adea)1-^v'^e'3 = 0 for 7(a, /3)<0,
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where a, J3 G ±A&. Furthermore, it is enough to check only the relations involv-
ing QA- A-0 and A-I vanish by 0 and I in (4.1.1). A-II.l: [Ef*,E~a*] =

A-II.2: Let us show [Es°*,Ea*] = 0 for i = 1, . . . ,n ([£?*, E^0"] - 0 can
be shown similarly). First we consider the case i ^ s. The relation is inside a
finite Kac-Moody subalgebra e(As* \ {as}) of type An (see (4.1) Assertion 3).
We know a A — &i is not a root of e(As* \ {as}), and we have done. Next, the
case i = s. We use the following formulae, which are easily shown.

Formula. Let a,0 G ±T(R,G).
If /(a, /3V) - 0, naE? = EP.Tf /(a, £v) = -1,

(4.2.7) na^-a = Ea, naE
a = E~a.

Using these formulae, the definition (4.2.4) is rewritten as

EaA — ?;[ E~ai E""8-1 E~a5 E-«S+I E~arilf4 2 8) ~~ I- ' ' • ' ' ' ' ' • • • ' J»
^ ' ' ; Es~

aA = v(Ea\... ,Ea-i,Ea**,Ea*+^... ,Ea-].

Now we show the case z = s. In [£"~aA, JS1"3], expanding E^a^ as in (4.2.8)

and delivering Eas to the left, we have two surviving terms

[••^Ea-^[Ea-^Ea-],EaS.^

For the first term, delivering Eas to the left, we have

= 0.

For the second term, delivering [ Eaa+1,Eaa] to the left, using the fact that
[ Ea*, [Eas+i, Ea*]] = 0 for i < s - I and III, we find that only one term

survives. Finally, delivering EQs to the left, we see that it is equal to IV and
hence 0.

To show A-II.3, we study t(A) in more detail.
First, let us see the set {E±a \ a E Aaf} U Es

 Q:A generates e(A). It is
enough to show E±a* is generated by those elements. The next formula proves
this (the case E**3 can be shown similarly).

(4.2.9) [ E-^-1 , . . . , £Tai , Es~
aA , E~a- , . . . , E~as^} = (-l)n~lEa* .
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This is shown by expanding E^~a^ as in (4.2.8) and using the relations 0, I and
II in (4.1.1).

In the previous proof, we know that t(A) has the triangular decomposi-
tion with respect to the generators {Ea \a £ ±^4.af} U {Es

 aA}. Define an
automorphism naA := Ma^nanM~^ of e(Feii), which is equal to the reflection

wa^ on £j. Together with {na \ a G ^4af}, we know the action of the group
W(A&) := (wa | a G A A) on f) extends to the action on e(Fen). Restricting
these actions to on c(A), we know the set A(e(A)) of all roots of e(A) is invari-
ant under the action of W(A&).

A-II.3: It follows from the fact that for any a, 0 £ A& such that /(a, /?) <
0, 0-\- (I -/(av, 0))a is not a root of t(A). Let us prove this. Any root is a sum
of elements of A A (called positive) or sum of elements of — A A (called negative),
especially 0 — a is not a root because a ^ (3. So, wa(/3—a) = /3-f(l-/(av,/3))a
is not a root.

Finally, let us see that the homomorphism Ts satisfies Ts o ip = ide(^). It
is enough to show Ts(e

±a°) = E±a** because e(^4s*) = t(A).

Ts(e<) - Ts(r[e-^-S... ,e-ai,e-^e-^,... ,e~a^])
(4.2.10) = Tv[E-a-!,... ,E-ai,E7a*,E-a»,... ,£-"•+*]

= rv(-l)n-lEa'.

Similar calculation also shows ea* = rv(-l)n~lea*. So, Ts(e
a-) = Ea*. Sim-

ilarly we can show Ts(e~a«) = E~as. This finishes the proof of Lemma 2. D

Remark 1. In [S12], Slodowy has shown a weaker statement than that
of Lemma 2: the diagram Aaf U {a*} is braid equivalent to the diagram AA,
and hence the intersection matrix algebra for A^ U {a*} is isomorphic to the
Kac-Moody algebra for A&.

(4.3) We construct elements of c(reii) whose weight belong to the marking
G^ — Ta (2.3.1). For the purpose, let us define E±a* not only for a e Fmax

but also for a e Faf \ Fmax. First recall a* := a + a ((2.4.3), (2.6) Fact 4)
and Feii = Faf U F^^ (2.4.7), where Fmax is a connected subdiagram of the
affine diagram Faf such that the complement Faf \ Fmax is a union U^=i ^j
of A^-type diagrams (Appendix A). Let ao G Fmax be an element connected
to a component Fj. Let the elements of Fj be ordered from the side QQ as
QI, ag, . . . , afc5 as in the figure below.
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any fi G r) ana a G l a f - n an A-part contains a, e(/ij contains £, " . using
the relation V in (4.1.1) for e(Feii) and (3.1.8) for §(#), one easily checks that
(4.1.3) induces the correspondence:

for any a. G Faf.

Assertion 5. Let m be a positive integer and a G Faf , then,

\ P~a pa* P~0i
 P

a*] — f — O^-l/j v f _ l V m a
[6 , e , . . . , e , e \ — ( z,) / i a v v 1Je >

" m-pairs

77i— pairs

Proof. One can show this by induction on m using (3.1.8). D

In view of Assertion 5, we make the next definition.

Definition 4. Define Hiv for any a G Faf and n G Z by

(4.3.3)
m— pairs

m— pairs

where m G Z>o- Put -H"_^v := —H^) for any a G Faf and any n G Z.

By (4.3.1), < p ( H ) = /iav(-l)ena for any a £ ±Faf and n G Z. The
following is straightforward.

Lemma 3. For any given A-part A C Fen, T in (4.2) Lemma 2 satisfies:

hav(-l) H-> hav,
(4.3.4) T: ea h-> Ea,

where a runs over {±a, ±a* | a G A} = ±A U ±A*.

According to (4.2) Lemma 2, the algebra e(Fen) inherits all the relations
in Q(A). So, let us list up some formulae in Q(R) obtained by a use of (3.1.8).
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Assertion 6. Let n,m £ Z, a,/3 6 R and h,g 6 f), then one has:

H-II. [h(-l)ema,g(-l)ena] = r(

I*. [ea,h(-l)ema,g(-l)ena]
(4-3.5) = -i(h,a){g,a)[ea,ha*(-l)e(n+m*],

II*. 1. [h(-l)ena,ea,e-a]
= [h(-l)ena,e-°,e<*} = (/i,a)/iav(-l)

II*.2. [h(-l)ena,ea,e0} = Q for I(a,(3)>0.

Relations in g(-R) imply the relations in e(Fen) below:

Lemma 4. The following relations hold in e(reii):

H-I. [h,H%}] = (h,na)H$\
H-II. [ H$} , H$] = /(av,

(4.3.6) * a O W -

II*.2. [^,^,^ = 0 for 1(0, 7) >0,

where h G ̂ , n, m G Z and a, /3, 7 E ±Faf .

Proo/. Since the formula H-II in (4.3.5) contains a basis ftav, we first
treat this case separately. The relation H-II in (4.3.5) is a specialization of the
relation IV in (3.1.8):

Replacing IR by J (where IR = c • I for any constant c (2.1.2)), we see that
the right-hand side becomes ^I*(h,g)m6m+n,ohav(— l)e^m+n^a, since we have
ha(— 1) = /iav(— 1) (we use the normalized form IR in &(R)) and c-I^ — I* on f)
(use av - c • a for a 6 fl). One has (l/c)/(av,/3v) = /(av,/?) = I(/3v,a) G Z
for any a,(3 £ R. See also (4.1) Remark 5.

H-I: Clear from the definition of ̂  v • II*. 1: Take A-part A containing
{a,/3} (4.2), and apply (4.2) Lemma 2 for A. These are T-images of the
relations II*. 1 in (4.3.5). Similar argument shows the following relation holds:

(4.3.7) [H™,E?] = ±I(a',0)[H$,Ef>].

(Note that the relations can also be induced from the relation I* by substituting
m = 0). I* and II*.2: Use (4.3.7) for the first bracket, then take an A-part A
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containing {/?, 7}. They are T-images of the relations I* and II*.2 in (4.3.6),
respectively. D

(4.4) We introduce three Lie subalgebras of c(reii): fyaf', ^af anc^ flaf • They are
the subalgebras generated by <B° U {hav}, 03° U fj and 03+ U 35", respectively,
where

(4.4.1) *+
 := tfl

g
v

Lemma 5. (1) fy^f is a Heisenberg algebra:

(4.4.2) f£f = Qftav © 0 ^

(2) l)ff is tfte extension of

(3) gaf = e(Faf) is isomorphic to the affine Kac-Moody algebra g(Faf).
(4) e(ren) ^s generated by f)^f anrf gaf.

Proof. (1), (2): The relations H-I and H-II in (4.3.6) are the defining
relations for the Heisenberg algebra and its extension. Linear independence of
components of direct sum follows from linear independence of their (^-images in
g(jR). (3): See (4.1) Assertion 4. (4): Notice that the following relations prove
(4): for a € Taf, one has [H$,Ea] = 2Ea* and [H^l\E~a] = -2E~a*. Let
us prove the first relation. The second relation can be proved similarly. By the
definition of 11$, we have [H$,Ea] = [E~a,Ea\Ea]. Delivering Ea to the
left, we get [/*av,£a*] ([Ea*,Ea] = 0 since a + a* is not a root of t(A) for
some A-part A and apply (4.2) Lemma 2) and it is 2Ea . D

§5. The Amalgamation Algebra £j f̂ * gaf

We introduce the third Lie algebras fj^f * flaf and £Q * gaf attached to a
simply-laced marked elliptic root system, where fj^f is the affine Heisenberg
algebra, J)^f is the extension of f)^f by the non-degenerate Cart an subalgebra ()
and gaf is the affine Kac-Moody Lie algebra (see Notation below).



412 KYOJI SAITO AND DAIGO YOSHII

In this section, we prove that three Lie algebras §(/£), e(Fen) and f)ff *gaf are
isomorphic. We first show that the amalgamation algebra admits a generalized
triangular decomposition. Then it implies that the natural surjective homo-
morphism g : fjff * gaf —> e(Feii) induces a central extension of
We already know that g(R) is the universal central extension of
(3.1). Using this universality, we can show that the composition g o (p is an
isomorphism.

Notation. By the amalgamation gi * §2 of two Lie algebras gi and §2,
we shall mean the Lie subalgebra generated by Qi (i = 1,2) in T(gi © 02)/^3

where T(V) is the tensor algebra of a vector space V, and X is the both-side
ideal generated by the elements <fr <8> hi — hi <g> ^ - [ <fc, ft*] for all ^, /^ G g;.
Further, if there are Lie algebra homomorphisms (pi : g —» %i(i — 1,2), we
denote by §1 *fl §2 the Lie algebra defined similarly, but adding more relations
p i ( g ) — ̂ 2(9) f°r 9 € 0 to the generators of the ideal /. Abusing the notation,
we sometimes call a quotient algebra of gi * 92 also an amalgamation of gi and
02 and denote it by 0i * 02-

(5.1) Let (R,G) and reli := T(R,G) be as before. Recall reii := Taf U T^ax

(2.4.7), the extension fj^ of the Heisenberg algebra ^f', gaf = c(Faf) ~ 0(Faf)
in (4.4), and ^ n 0af - i)af := ©Qeraf ^«v •

Definition 50 We define the Lie algebra f)ff *flaf as the quotient algebra
of the amalgamation ^f *{jaf gaf of ^f and gaf divided by the ideal defined by
the following relations 0*, I* and II*:

0*. [h,£7«] = (h,a>£a,
I*. E ^ l f ? ? =

II*.20 [ff;7,£^, JS7] = 0 for

where h G fy, a, /?, 7 G ±Faf, ra, n G Z and .ff^ •"= ^av f°r any a G ±Faf.

Thanks to (4.3) Lemma 4, all the relations in (5.1.1) are satisfied in e(Fen).
So, due to (4.4) Lemma 5 (4) the next fact follows.

Assertion 7. The natural inclusion homomorphisms from fj^f and gaf to
e(Fen) induce a surjective homomorphism

(5.1.2) Q : J)f f*ga f -> e(F).

As a consequence of the above assertion the algebras fj^f and gaf can be
considered as subalgebras of £jff * gaf. We can also consider the root space



ELLIPTIC ALGEBRAS 413

decomposition of fj^f * gaf with respect to ?) since all the generators of fj^f * gaf
are weight vectors (I in (4.1.1) and H-I in (4.3.6)) and their weights are in
Za © Qaf = Q(R] (2.3.3). The set of all roots of the algebra fjf f * gaf is denoted
by A. By definition, Q is compatible with the root space decompositions.

Due to the symmetry of the defining relations (5.1.1) there exists an in-
volution cj, called the Cart an involution, on FQ * gaf defined by h i-> — h for

ft G I), ̂ v} ^ -#lvn) for a G ±raf, n G Z and Ea h-> E~a for a G ±raf.
The Cart an involution brings the root space for a to the root space for —a.

(5.2) Recall the cones Q+f and Qaf in the affine lattice Qaf (2.3). Put

(5.2.1) <3 + :=Za0Q+, Q° := Za = Gz, <2~ := Za 0 Q~f .

Lemma 6. Ac Q"4" U Q° U Q~. So we have the decomposition

(5-2.2) &*flaf = 5

where n£u := 0a(EAnQCT (£)af * gaf)a /or a G {±}. Tfte n^u zs tfee ideal of the

algebra u£u := (^ff,n^ f) = ^f ® n£u generated by n^f := (£?a | a G trraf) and is
nilpotent in the sense:

(5.2.3) p| [neV • • , < n ] = {0} for a
m=i % TT '

77i-times

Proof. Let us introduce additional notaion:

(5.2.4) € := ^U u?[^Y.^y/^

D := the subspace of l)^f * gaf spanned linearly by £.

We want to show that fj^f *gaf = £). It is enough to prove [ J5i,... , J3&] G ID for
any sequence ̂  G 53 with k G Z>0. We show this by induction on k. Cases k =
1, 2 are clear. Assume fc > 3. Then [ jBi , . . . , Bk,Bk+i] = [[Bi,... , 5fc],5fc+i].
Expressing [ jBi , . . . , 5^] G 2) as a linear combination of elements in G, it is
enough to show the following three cases: (i) [G^~ , . . . ,G+,J9fc+i] G X) for
any Cf G 53+ U 03° and any ra G Z>0, (ii) [Cf, . . . ,G~,B f c+i] G S for
any C~ G Q3"~ U 53° and any ra G Z>0, and (iii) [h,Bk+i] 6 2) for any
ft G ^. The case (iii) is clear by I and H-I. Let us consider the case (i).
The case (ii) can be shown similarly. If B^+1 G 2J+ U 53°, it is clearly in
D. So we assume B^.l := Bk+i G Q3~. Delivering Bf^,-^ to the left, we
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have Eti[.--^tiJ^,^+i]^r+1,---]. If Ct G <B+, [Cf.B^J is in
f) by II and the i-th term is in D. If Hi := C+ G 95°, the z-th term is
[ . . . , C^L13 [flj, 5^"+1], (7^_15 • • • ]. If i = 1, then using either relations of the
I*, II*. 1 or II*. 2 in (5.1.1), we can reduce the Ist-term to the case < k. If
i > 1, deliver [Hi,B^+1} further to the left. Again, using relations in (5.1.1),
we can reduce the zth-term to the case < k. D

As a consequence of Lemma 6, we can determine some of root spaces of

Lemma 7. (1) (P)ff * gaf)0 = £),

(2) (^ * 0af)a+na = ®[Ea,H%}} for all a 6 Taf and n € Z,
(3) (fyaf * Saf)ma+na — 0 /or all a, G =tFaf, m G Z such that m\ > 2,

n G Z .
(4) (fjf f * gaf )na = ©a6raf Q#in) /or any n G Z \ {0}.

Proof. Recall the relations in (4.3.6).

(1) According to Lemma 6, (fj^f * gaf)o is spanned by fj and elements [fllv ,

• • • , H^vfc ] for ft G Faf satisfying ni H h n^ = 0. If k > 2, the first bracket
is in Qhav by H-II. So if k > 2, it is 0 by H-I.
(2) If a G Faf, (fjff * gaf)a+na is spanned by elements [ . . . , H^,a~l\Ea, H^s\

• • • ] . That is: one entry is Ea G 25+ and the others are in *B° satisfying
HI + • • • + rik = n. Using H-II and I* repeatedly, we finally find it is either in

(3) (^af *0af)ma+na for m > 2 is spanned by elements [ A, Ea, B, Ea, • • • ], where
A and B are sequences of ^B°. Similarly to (2) above, this becomes [ Ea, Ea, • • • ]
or [Ea,H(

a
n
v\E

a,---] and it is 0 by II*.2.

(4) (F)^f * 0af)na is spanned by elements [Hp, , . . . , HJlk ], where /3i , . . . ,0k
G Faf and n\ H h nk = n. Use H-II. D

(5.3) As in (4.1), we lift the action of the subgroup Waf := (wa \ a G Faf) of
W(R) to automorphisms of j)^f * gaf.

Fisrt note that the action of ad Ea on £j^f * gaf is a locally nilpotent deriva-
tion for all a G ±Faf, since it is a nilpotent for any generators by I, II (4.1.1)
and II*.2 (5.1.1). Thanks to this fact, we can define the exponential of adEa:
exp(adEa) := X^o(V^)(ad^a)? f°r any a ^ ^Faf. This is an automorphism
of the algebra £} f̂ * gaf. Composing these automorphisms, we define

(5.3.1) na := exp(adEQ!)exp(adE-a)exp(adEQ:)

for any a G Faf. Then, it coincides with wa on ^ and maps (fjf f * 0af)^ to
(fjff * 0af)iya/3 isomorphically for any a G Faf and 0 G Q(R). So,



ELLIPTIC ALGEBRAS 415

Fact 7. The set of roots A of fj^f * gaf zs W^-invariant.

Define a height of an element x = ^Caeraf
 mc*a + na G Qaf © Za = Q(^R)

by fo(x) := ^aeFaf m« ^ ^- Let us ca^ the element x positive (resp. negative)
if /i(x) > 0 (resp. /i(x) < 0). Due to Lemma 6, each root in A \ Za is either
positive or negative.

Lemma 8. A = R U i&dQ(R). The multiplicity of a root in R is equal
to one.

Proof. Consider the Waf-orbit of a root x G A. If the orbit contains an
element y with h(y) = 0. Then y = na for some n G Z by (5.2) Lemma 6 and
hence x = na £ i3,dQ(R).

If the orbit contains both positive and negative elements, then there exist
an element y in the orbit and a G Faf such that h(y) > 0 > h(wa(y)). Express
2/ = X^£raf

 m/5/^ + na' where all mp G Z are non-negative. wa(y) \— y —
J(av, y)a = 2]/3eraf \{a} m/5^ + (m« - I(a^, y) )« + na, and ̂ a (y) is negative,
hence 771/3 — 0 f°r ft ^ OL. So, y = maa + na and hence ma = 1 by (5.2) Lemma
7 (3}. Thus, y G R (recall (2.6.1)) and hence x G Waf • # = /2. The multiplicity
of (fj^f * Q&f)y is equal to one because of (5.2) Lemma 7 (2).

Assume that all elements of the orbit Waf • x have positive heights and
y G Waf • x attains the minimal height. Then, for any 0 G Faf, one has
h(y) < h(wp(y)} = h(y - I(y, (3)0) = h(y) - I(y, 0). So, J(y, 0) < 0. Using the
expression: y = Z/3<Graf mpp + na , one has I(y, y) = ]C0eraf ™>0I(y, 0) < 0,
and so, y G radQ(.R). The case where all elements of Waf • x have negative
weights is reduced to the positive case by the Cartan involution (5.1). D

A root in R is called a real root and a root in radQ(^) is called an imaginary
root (see (3.1.7)).

(5.4) We are ready to prove our main result (4.1) Theorem 1.

Fact, (i) The derived algebra (fj^f * gaf) of fj^f * gaf is equal to the amal-
gamation f)ff' * gaf of f)ff' and gaf.

(ii) [ft * gaf is generated by {[Ea, H^)} \ a G ±Faf, n G Z}, because of 0*
and II*.1 in (5.1.1). Especially, f)^f' * gaf is perfect (i.e. the derived algebra is
itself).

Let us denote the composition map <p o Q by ^:

(5.4.1) ^:=(poQ: ^f *

By restricting £ on f)^f * gaf, we have

(5-4.2) f,S * 0af 4 fl(fl) A
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where p is the natural projection (recall Q(R)f — $(R) (3.2)). Put v \— p o £.
Let us show that v is a central extention. Since v preserves the Q(R)-grading,
keri/ is Q(R)-graded ideal. For each real root a, the restriction of v on the
root space of a. is an isomorphism, because of (3.1.7) and (5.3) Lemma 8. So,
we have

(5.4.3) keri/= 0 (kerz/)M.

One calculates further for IJL € radQ(E), n G Z and a G ±Faf:

(5.4.4) [[I^H^Mkeri/y C (kerz/)M+na+a - 0,

since /u-fna + a is a real root. Due to the above Fact ii), one has ker v C 3(f) a f ) .
Since p is the universal central extension ((3.2) Lemma 1), there is a unique

homomorphism ^ such that the following diagram commutes:

B(R) A
(5.4.5) V4- O

Let us prove / := t/> o £ is the identity map of f)^f * gaf . The homomorphism /
satisfies v = v o /. Since z^ is a central extention, [x, y] = [x;, y'\ if z/(x) = z/(x7)
and v(y) = v(yf) for x,y,x' ,y' G i}ff * 0af- The equality z>(/(x)) = i/(x) for all
^ ^ ^f * 3af implies /([x, ?/]) = [/(x), /(?/)] = [x, i/]. Since ^f' * flaf is perfect, /
is the identity and we are done the proof.

It is easy to see that i/j extends to an isomorphism from fjff * gaf to 0(jR).
This completes the proof of the main result (4.1) Theorem 1 and

Theorem 2e We have the following isomorphisms of algebras:

- e(rell) ~ ̂ ; * 0af ,

Let us call the isomorphism classes the elliptic algebras.

Appendix A. Table of the Simply-Laced Elliptic Diagrams

For each type of the root system, we exhibit the following data:

1) mi := mai : the exponent of QJ.

2) Explicit description of Faf and Fmax.

3) The list of the A-parts.
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Type A\l'l> (I > 2).

1) m% = 1 (0 > i > 1); m'max = mmax = 1.

2) Faf = {a0, • • • , &i}, rmax = {a05 • • • ,&i

"5

1) m0 = 1, mi = 1, ml = 2 (2 < z < / - 1), m/_i = 1, m/ = 1;

^max :z= ̂ rnax = £•

2) Faf = {a0, • • • , oti}, rmax = {a2, • • • , ̂ -2}-

3) {a0,ai, 0^2,^2}? {a«-2,^r_25^-i^J7
i = 2 , . . . ,/ - 2} for p e {0, l},q e {I - I,/}.

Type E1 '1 .

1) m0 = 1, mi = 1, m2 = 2, m3 = 3, m4 = 2, ra5 = 1, m6 = 1;

2) Taf = {a0, • • • , Q!6}, rmax =

3)
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aQ Oil

Type E?<».

1) m0 = 1, mi = 1, m2 = 2, m3 = 3, ra4 = 4, m5 = 3, m6 = 2, m? — 1;
mmax = mmax = 4.

2) Faf = {a0, • - - , «?}, rmax = {a4}.

3) {ai,a2, 0:3, 0^,04,0:7}, { a05a6, a
{ai, a2, as, 0:4, aj, a5, a6, a0}-

GL\ a5 <26

Type 1 ' 1 .

1) mo = 1, mi = 2, m2 = 3, 7713 = 4, m4 = 5, 7715 = 6, me = 4, 7717 = 2,
ms = 3;
m/max = mmax = 6.

2) Faf = {a0, . . . , as}, rmax = {a5}.

3)
3, a4, a5, aj, a6,
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Appendix B. An Explicit Description of

Recall from (2.2) that there exists a sub-diagram Ff of Faf for a finite root
system Rf such that the root lattice has the splitting Q(R) = Qf 0 Z6 0 Za
(2.3.3) and the set of roots decomposes as R = Rf 0Z60Za (2.6.1). Then, one
can define a basis Aa and A& of the non-degenerate hull FQ of FQ (3.1) such
that

where /(A0,a) = /(A6,6) = 1, /(Aa,6) - /(Ab,a) = 0 and /(Aa,r f) =
/(A&,Ff) = 0. Recall the identification: h: FQ -^» I); x H-» hx such that
(hx,y) = I(x, y) for x, y G FQ. Then we put:

day := /iav, dby := /i&v, , — - := foA — := /IA and
oa ob

t)f := © Qftav, SQ := Qea for a G #f.aerf

Then the elliptic algebra is given by

The non-degenerate hull ^ of {), the Heisenberg subalgebra f)ff', the affine
Kac-Moody subalgebra gaf and "nilpotent" subalgebras n^ are given by the
following.

O r\

t) = Q-5- © Q^7 © f)f © Qrfa

n£Z\{0}

0af = © (0Q®Q[e6 ,e-b])®
a€fif meZ\{0}

(f la®em b®Q[e a ,e- a])® 0 (0Q®Q[ea,e-a])

((f j f 0 Qdav ) (8) Qem6 0 Q[ ea , e~a}) .
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