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Blowing Ups of 3-dimensional Terminal
Singularities, II
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Takayuki HAYAKAWA*

Abstract

We study blowing ups of 3-dimensional terminal singularities of type (cD/2)
such that the exceptional loci are prime divisors and have discrepancies 1/2. We
determined such blowing ups completely.
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§1. Introduction

This paper continues our study on the blowing ups of 3-dimensional ter-
minal singularities X of indices m > 2. In our previous paper ([Hay99]), we
introduced the notion of pseudo weighted valuation, which consists of an em-
bedding j : X c-> C4/Zm and a weight a. By using these data, we blow up
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X and get divisorial blow ups of X with small discrepancies. We also showed
that, in most cases, there is a one-to-one correspondence between these divi-
sorial blow ups and a certain set of pseudo weighted valuations, and remarked
that this correspondence does not necessarily hold in the case X is of type
(cD/2). Our purpose here is to study the blowing ups of terminal singularities
of type (cD/2) and to determine all divisorial blow ups of X with discrepancies
1/2. Contrary to the other cases, we cannot get all these divisorial blow ups by
considering the embedding j : X <—> C4 /Jq and a weight cr. Instead, we have to
embed X into a 5-dimensional space C5/Z2 as a codimension 2 subvariety and
make blow ups of X in C5 /J^ • This method works well and we can determine
all prime divisors with discrepancies 1/2 by using the embeddings into 4 or 5
dimensional spaces and weights. These are the main theorems in this paper.
There is a related work by [IT99] which also uses embeddings into C5 in order
to study hypersurfaces in C4.

This paper, combined with the results in [Hay99], covers all 3-dimensional
terminal singularities of indices m > 2. Indeed, if X is a 3-dimensional ter-
minal singularity of index ra > 2, we can determine all prime divisors with
discrepancies 1/ra and in particular we obtain the following (see (3.4)):

Theorem 1.1. Let X be a germ of a 3-dimensional terminal singularity
of index m > 2. Then there exists at least one divisorial blow up TT : X —> X
with discrepancy 1/ra. Furthermore TT does not increase axial weights.

As a consequence of this result, we obtain the following (see (3.5)):

Theorem 1.2. Let X be a germ of a 3-dimensional terminal singularity
of index m > 2. Then there is a projective birational morphism i/j : Y —>• X
such that

(i) Y has only Gorenstein terminal singularities, and
(ii) -0 is a composition of divisorial blow ups of points of indices > 2 such

that their discrepancies are minimal.

This morphism -0 : Y —> X should be compared with the economic reso-
lution by Reid ([Reid87, (6.5)]). He conjectured the existence of a projective
birational morphism i/jf : Y' —> X such that all exceptional prime divisors on
Y' have discrepancies < 1 and Y' has only Gorenstein terminal singularities.
Our morphism i/j : Y —> X only satisfies the second condition, since some
exceptional prime divisors of ip may have discrepancies > 1. However, the ex-
ceptional divisor of ijj contains all prime divisors with discrepancies < 1 over
X, and we can determine all such divisors by using i\). We also remark that
Alexeev ([Alex94, 5.2]) obtained the same kind of birational morphisms by us-
ing Minimal Model Program. These are not necessarily the same as the above
ip:Y -» X.

We shall study the morphism i/j : Y —»• X, especially the exceptional divisor
of -0, more closely in our future paper.
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The detailed contents of this paper are as follows: In Section 2, we recall
the results on the classification of 3-dimensional terminal singularities, and also
review the notion of weighted blow ups, discrepancies, divisorial blow ups, etc.
These are used in the following sections. Almost all notions are the same as in
[Hay99] . The only new notion is about the embedding of X into a 5-dimensional
space C5 /Zm , which we shall call the generalized liftable embedding. In Section
3, we state our main results and give an outline of their proofs. Sections 4 and
5 are devoted to studying the blowing ups of terminal singularities X of type
(cD/2), and we determine all prime divisors with discrepancies 1/2 over X. We
shall give a proof of (1.2) in Section 6.

The author is grateful to Prof. S. Mori and Prof. M. Tomari for their
invaluable suggestions and encouragement.

Notation.
(1) For a real number a, we denote the round down of a by \_a\, and the
fractional part of a by (a), i.e., \_a\ is the integer satisfying [a\ < a < [a\ + 1,
and (a) = a — [a\ .
(2) 6ij denotes the Kronecker's symbol, i.e., Sij — I if i = j and Sij = 0 if

§2. Classification of Terminal Singularities and
Weighted Blow Ups

The purpose of this section is to state the results on classification of 3-
dimensional terminal singularities and to introduce some notation in order to
state our main results. Almost all of them are contained in [Hay99] and the
only new notion is the generalized liftable embedding which we shall define in
(2.8).

2.1. Let Zm be the cyclic group of order ra and let (xi, . . . , xn) be the
complex space Cn with coordinates #1, . . . , xn. We define the action of Zm on
(xi , . . . ,xn) by

(xi ,x2 , . . . ,xn) M> (C a ixi, . . . ,Cnxn)

where £ is a primitive ra-th root of unity and QI, . . . , an are integers. The quo-
tient space is denoted by (xi, . . .,xn)/Zm(a1, . . .,an) or simply (xi, . . .,xn)/Zm.

If ^i, ... , (pr e G{XI , . . . , xn} are semi-invariant elements with respect to
the action of Zm (we shall abbreviate this as Zm- semi-invariants], then Zm

also acts on the germ of {(pi = • • • — tpr = 0} at the origin (0). We denote the
quotient space by {(pi = • • • = (pr = 0}/Zm(ai, ... , an).

Now we recall the results on classification of 3-dimensional terminal sin-
gularities, which are due to [Reid83], [Dan83], [MS84] and [Mori85].
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Theorem 2.2. A 3 -dimensional singularity is terminal of index 1 if and
only if it is an isolated cDV point.

Theorem 2.3. Let X be a germ of a 3- dimensional terminal singularity
of index > 2. Then there is an embedding j : X c-> ( x ^ y ^ z ^ u ) / 1 ! ^ , such that
one of the following holds:

(cA/m) X c± {xy + f ( z , u ) = 0}/Zm(a, —a, 1,0) where a is an integer prime
to m and f(z,u) G C{z,u} is a Z™ -invariant.

(cAx/4) X ~ {x2 + y2 + f ( z , u ) = 0}/Z4(1,3, 1,2) where f ( z , u ) eC{z,u} is a
1*4 -semi-invariant and u £ f(z,u).

(cAx/2) X ~ {x2+y2+f(z,u) = O}/^ (0,1, 1,1) where f ( z , u ) G (*,u)4C{*,u}
is a I® -invariant.

(cD/3) X ~ {(p(x,y,z,u) = 0}/Z3(1,2,2,0) where (p has one of the following
forms:

(cD/3-1) (p = u2 + x3 + yz(y + z),
(cD/3-2) (p = u2+x3+yz2+xy*\(y3)+y6p,(y3) where X(y3), p,(y3) G C{y3}

and 4A3 + 27//2 ^ 0,
(cD/3-3) <£ = u2 + x3 + y3 + xyz3a(z3) + x24/3(z3) + yzb-y(z3) + ^65(z3)

^/iere a(z3), /3(z3), 7(z
3), 5(^3) E C{z3}.

(cD/2) JT ~ {(^(X,T/, z,u) = 0}/Z2(1, 1,0, 1) where (p has one of the following
forms:

(cD/2-1) (p = u2 + xyz + x2a + y2b + zc where a, b > 2; c > 3,
(cD/2-2) 9P = t/2 + y2z 4- A?/x2a+1 + ^(x, z) where A G C, a > 1, g(x, z) G

(x4,x2z2,z3)C{x,z}.
(cE/2) X ~ {u2 + x3 + 0(y, z)x + h(y, z) = 0}/Zv (0, 1, 1, 1) where g(y, z) G
(y, z)4C{y, 4, h(y, z) G (y, ̂ )4C{y, z} \ (y, z)5C{t/, z}.

T/ie index of X is equal to the order of the cyclic group Z*m .

In this paper, we shall study 3-dimensional terminal singularities of type
(cD/2).

The following theorem by [KSB88] (see also [Ste88]) completes the classi-
fication of 3-dimensional terminal singularities.

Theorem 2.4. Let X be one of the hyperquotient singularity {<p(z, y, z, u)
= 0}/Zm listed in (2.3). Assume that (p(x, y, z, u) = 0 defines an isolated singu-
larity at (0) and that the action of Z™ is free outside (0) . Then X is terminal.

2.5. Let X be a germ of a 3-dimensional terminal singularity of index
m > 2 at P G X. Then there is an embedding j : X ^-* (x,y,z,u)/'Z*rn as in
(2.3). We fix one of such embedding and call it a standard embedding of X.

We also see from (2.3) that X can be deformed to a collection of cyclic
quotient terminal singularities (see [Hay99, 2.6] for details). We call the number
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of singularities in such a deformation the axial weight of X at P and we shall
denote this by aw(-X", P) or simply aw(X) if there is no danger of confusion. If X
is smooth or has an isolated cDV point at P, then we shall define aw(X, P) — 1.
The explicit value of aw(X, P) can be found in [Hay99, 2.6].

2.6. Let X be a germ of a normal variety such that KX is Q-Cartier.
For a projective birational morphism ^ : Z -> X from a normal variety Z

such that KZ is Q-C artier, we write

where F runs over prime divisors on Z and a(F, X) G Q. The coefficient
a(F, X) is called the discrepancy of F over X, this depends only on the discrete
valuation of the function field of X, and not on the particular choice of i/j. We
sometimes identify prime divisors with the corresponding valuations when we
speak about divisors over X.

A projective birational morphism TT : X — > X is called a divisorial (resp.
pre- divisorial} blow up with discrepancy k if

(i) X has only terminal (resp. canonical) singularities,
(ii) the exceptional set of TT is an irreducible divisor E, and
(m)Kx=ir*(Kx) + kE.

We also say that TT is divisorial (resp. pre-divisorial) with discrepancy k.

-. i-th
2.7. Let N = Zn + i(ai, . . . , an)Z be the lattice and let a = (0, . . . , 1 ,

. . . , 0) G N (i = 1, . . . , n). An element a = ^(fli, • • . , an) G N is called a
weight if ax, . . . , an > 0 and if GI, . . . , en and a generate N.

For each weight cr, we can associate the function cr-wt : G{XI , . . . , xn} — >•
Q. This function is determined by the values cr-wt (xi), . . . ,cr-wt(xn) (see
[Hay99, 3.4]). For / = £7 a/M/ G C{xi,... ,xn}, a/ G C, M/ : monomi-
als, and for I G Q, we define

fa-wt=i = a/M/ and

For / G C{xi, ... ,xn} and a monomial M, we shall write M G / when the
coefficient of M in the power series expansion of / is non-zero.

If a weight a is given, we have a projective birational morphism

7f : y -» y = (Xl, . . . , XnJ/Z^ (QI, . . . , an)

which is called the weighted blow up associated to a or simply the a-blow up of
Y (see [Hay99, 3.2]). The variety Y is covered by n affine open sets C/i, . . . , t/n.
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These affine open sets and TT are described as follows:

Ui = (x i , . . . ,xn)/Zfli (-«!,... , f m , . . . ,-an)
i-th

The exceptional divisor E of TT is isomorphic to the weighted projective space
P(ai,. . . ,an).

Let (p\,... , (pr G C{xi,... , xn} be Zm-semi-invariants and let X = {pi =
• • • = (pr = 0}/Zm(ai,... ,an). Since X C (x l 5 . _ . . ,xn)/Zm(ai, . . . ,an), we
can define the projective birational morphism TT : X -> X by taking the proper
transform. This morphism TT is also called the weighted blow up associated to
a or a-blow up of X. Thus X is covered by C/i , . . . , Un where Ui — Ui \x
(i = 1,... , n), and Ui is called the x;-chart of X.

In this paper, we only use the cases n = 4 and n = 5, and we usually
denote the coordinates of C4 (resp. C5) by (x,y,z,u) (resp. (x,y,z,u,i)} (in
this order) instead of (xi , . . . ,xn). We denote the x-chart (resp. y-chart, z-
chart, u-chart, t-chart) by U\ (resp. C/2, C/3, C/4, E/s), and the origin of C/z is
denoted by Qi (i = 1,... , 5).

208. Let X be a germ of a 3-dimensional terminal singularity of index
m > 2. Then there is a standard embedding j : X c-^ (x, y, 2, w)/Zm (a, /3,7,5).

We say that j\ : X c-^ (XI,T/I,ZI,^i)/Zm(a,/3,7,5) is a liftable embedding
if there is a Zm-equivariant automorphism x •' (x,t/, z, w) —>• (xi, t/i, ZI,HI)
such that ji = x ° J where x '• (x,y, ̂ ,tt)/Zm —> (xi,yi,2;i,7Xi)/Zm is the
automorphism induced by x- We can write

C (xi,?/i ,z

for some Zm -semi-invariant <£/ G G{XI, t/i, zi,ui}. Let ?;i = (ji,<Ji) be a pair
consisting of a liftable embedding j\ : X <—> (xi,y\, z\, wi)/Zm and a weight
(7i G Z4 + ^a , /3 ,7 ,5Z. We define

For a positive rational number &, we define

: X c-> (XI ,T/I , zi,ui)/Zm liftable embedding
weight, d(vi) = fc

We need another notion to study terminal singularities of type (cD/2). An
embedding j% : X ^ (x2,2/2,^25^2^2)/Zm(a,^, 7,5,e) is called a generalized
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liftable embedding if there is a liftable embedding j\ : X c-> (xi,yi,zi,ui)/
(a,/3, 7, 6) and a Zm-equivariant morphism x : (xi,yi,zi,ui) — »
, 2/2, z2, ^2, £2) of the form

and X*(£2) = ^(xi, 2/1, ZI,HI)

such that j2 = X° ji where x : (zi,yi, Zi,iti)/Zm -> (^2,2/2, ̂ 2,^2, *2)/^m is
the morphism induced by ^.

If j2 : X °-» (x^^^'w^^/Z^a:,/?, 7, £, e) is a generalized liftable em-
bedding, then we can write

j2 : X ~ ^ix 2 ,y 2 ,2; 2 ,u 2 , t 2 = ^2^2 ,2 /2 , ^2 ,^2 ,^2

where </PI , <p2 € C{x2,2/2, 22,u2,t2} are Zm -semi-invariants and we assume that
¥2 = t% — '0(x2,?/2,2;2,u2). We note that (pi is not uniquely determined by j2.
Let t>2 = (j"2,cr2) be a pair consisting of a generalized liftable embedding j2 :
X <-»• (x2 ,y2 ,z2 ,ti
We define

For a positive rational number fc, we define

= (J2,CT2)

J2 :
generalized liftable embedding

0-2 G Z5 + £(a,/3,7,<J,e)Z weight, d(v2) - A;

Each element vi G Wfc (resp. ?;2 G W^.), determines the projective bira-
tional morphism as in (2.7). This is called the vi-blow up (resp. v^-blow up] of
X.

Since all embeddings in this paper are liftable or generalized liftable, we
often omit the word "liftable" and "generalized liftable".

The following proposition is due to Danilov and Barlow (see [Reid87, (5.7)])
which shows the existence of economic resolutions of cyclic quotient terminal
singularities. In this paper, we use it in order to estimate the number of prime
divisors with small discrepancies.

Proposition 2.9. Let X = (x, y, z)/Zm(a, -a, 1) (a is prime to ra) be a
germ of a cyclic quotient terminal singularity of index m > 2. Then there is a
projective birational morphism v : Z —> X such that

(i) Z is non-singular,
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(ii) KZ — v*(Kx) + Y%l=il m^*' waere Z1H71 F* is the exceptional divisor
of i/. Furthermore, if D is a Q-Cartier Weil divisor on X defined by a rLm-
semi-invariant f(x,y,z) E C{x,?/, z}, then

(iii) v*(D) = v~l[D] + Y^=i diFj, where v~l[D] denotes the proper trans-
form of D by v, and di = cri-wt(f(x,y,z)), Oi = ((ai/m), (—ai/m),i/m).

The following is also used to estimate the number of prime divisors with
small discrepancies (see [Hay99, 5.3]):

Proposition 2.10. Let X be a germ of a 3-dimensional terminal singu-
larity of index m > 2. Let TT : X — > X be a divisorial blow up with discrepancy
1/m and let E be the exceptional divisor of TT. Let v : Z -> X be a projective
birational morphism such that Kz is Q-Cartier and Z^ be the exceptional
divisor of v. I f v * ( E ) = v~l[E] + ^aiFi, then we have

for each i. In particular, if Q E X is of index < m and Q E E, then there are
no prime divisors over Q with discrepancies 1/m over X.

§3o Main Results and an Outline of Proofs

The purpose of this paper is to prove the following theorems concerning
with terminal singularities of type (cD/2):

Theorem 3.1. Let X be a germ of a ^-dimensional terminal singularity
of type (cD/2) and let E be an arbitrary prime divisor over X with discrepancy
1/2. Then there exists v £ Wi/2 U W[/2 such that

(i) the v-blow up TT : X — >• X is pre- divisorial with discrepancy 1/2, and
(ii) E is the exceptional divisor ofir.

Furthermore, if TT is divisorial with discrepancy 1/2, then we also have

Theorem 3.2. If X be a germ of a 3- dimensional terminal singularity
of type (cD/2), then X admits at least one divisorial blow up with discrepancy
1/2.

Theorem 3.3. Let X be a germ of a ^-dimensional terminal singularity
of type (cD/2). Let n be the number of prime divisors over X with discrepancies
1/2. Using the notation (2.3), we have the following:
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(cD/2-1)

{1 ifa = b = 2,

2 ifa> 3,6 = 2 ora = 2,b> 3,

3 z / a > 3 , 6 > 3 .

(cD/2-2) Let r-wt(x) = 1/2, r-wt(z) = 2 (resp. r'-wt(x) = 1/2, r'-wt(z) = 1)
and assume that r-wt(g(x,z)) = b (resp. rf-wt(g(x,z)) = b'). We consider the
following conditions, (we think a = -foe if\ = 0):

(i) 2a < b1.
(ii) 2a > b', b' is odd and gr

f-wt=b'(z, z) is a square.
(iii) 2a > bf', 6' ^s ei?en and gr'-wt=b'(^^}z is a square.
(iv) 2a = 6' and ^-x4a+2 - gr

f-wt=b'(x,z)z is a square.
Then we have

n =
L| min{2a + 2, 6 + 3}J if (i), (ii), (iii) or (iv) AoWs,

|_| min{2a, 6 + 1}J otherwise,

where [a\ is the largest integer < a.

The method to prove these theorems is essentially the same as [Hay99].
We first find v E Wi/2 and make a t?-blow up TT : X — »• X. If TT is divisorial with
discrepancy 1/2, then we further blow up X in order to count the number of
prime divisors with discrepancies 1/2 over X. Once we know this number, the
rest is only to find other blow ups which give divisorial or pre-divisorial blow
ups not isomorphic to TT. In this process, we sometimes need an embedding
of X into (x,2/, £,ii, t)/%Q an(i a weight a. These calculations will be done in
Sections 4 and 5.

Combined with the results in [Hay99], we find all prime divisors with dis-
crepancies I/??! if X is a germ of a 3- dimensional terminal singularities of in-
dices ?n > 2. In particular, by using [Hay99, 4.5], (3.1) and (3.2), we get the
following:

Theorem 3.4. Let X be a germ of a 3 -dimensional terminal singularity
of index m > 2. Then there exists at least one divisorial blow up TT : X — >> X
with discrepancy 1/ra. Furthermore, we have

and the equality holds only if X is a cyclic quotient singularity or of type (cD/3).

We also have the following which will be proved by using (3.4) and the
induction on axial weights. The proof will be given in Section 6.
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Theorem 3.5. Let X be a germ of a 3 -dimensional terminal singularity
of index m > 2. Then there is a sequence

such that
(i) Xi has only terminal singularities (i = 0, 1, . . . , AT) and furthermore

XN has only Gorenstein terminal singularities, and
(ii) TTj zs a divisorial blow up at Pi-i G ̂ Q-i w^£/i discrepancy I /mi, where

mi is the index at PI-I (i — 1, . . . , N).

Let TT : Jf/v — > X be the projective birational morphism obtained by com-
posing TTi, . . . , TTjv in (3.5), and let E be the exceptional divisor of TT. Then all
divisors with discrepancies < 1 over X appear as the irrreducible component
of E. However, some irreducible components of E may have discrepancy > 1
over X.

§4. Terminal Singularities of Type (cD/2-1)

4.1. In this section, X denotes a germ of a 3-dimensional terminal sin-
gularity of type (cD/2-1). There is a standard embedding

j : X ~ {u2 + xyz + x2a + y2b + zc = 0)^(1, 1, 0, 1)

where a, b > 2 and c > 3. We have aw(X) = c in this case. By symmetry of x
and i/, we may assume that a > 6.

Lemma 4.2. // a wez$A£ a G Z4 + |(1, 1, 0, 1)Z satisfies (j, cr) G Wi/2,
^en a -|(1, 1,2,1), |(1,1,2,3)7 |(1,3,2,3)7 |(3, 1,2,3) or §(1,1,4,3).

Proof. Let 99 = u2 + xi/z + x2a + y2b + zc. We write w = a-wt. Since
xyz G </?, we see that w(x) + w(y) + w(z) > w((p). Thus we have

1/2 = w(xyzu) - w((p) — 1 > w(u) — 1,

and we get w(u) = 1/2 or 3/2. If w(u) = 1/2, then u2 G (^ shows that
w(</?) = 1 and w(xyz) = 2, thus cr = |(1, 1, 2, 1). If w(u) = 3/2, then w((p) = 2
or 3 since a, 6 > 2 , c > 3 . In this case we have w(xyz) = 2 or 3 and know that
a = i(l,l,2,3), §(1,3,2,3), £(3,1,2,3) or £(1,1,4,3). D

We define

(Ti = £(1,1,2,3), <72 = |(1,3,2,3), a'2 = £(3,1,2,3) and <T3 = £(1,1,4,3).

We also define vi = (J,«TI), v2 - (j,«72), u2 = (j,<72) and u3 = (j,o-3).
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§4-A. Case: a = b = 2

4.3. We first assume that a = b = 2 and study this case in (4.4). It is
easy to see that v\ E Wi/2 in this case.

Proposition 4.4. Assume that a — b — 2. Let -K\ : Xi — > X be the
vi-blow up and let EI be the exceptional divisor of KI. Then TTI is divisorial
with discrepancy 1/2 and X^QEXi(aw(^!'Q) ~ -0 — c~ 3. Moreover, EI is the
unique prime divisor with discrepancy 1/2 over X.

Proof. Since EI ~ {xyz + x4 + y4 = 0} C P(l, 1, 2, 3), we see that EI is
Cartier outside {Q^^Q^} and that Sing(Ei) = {x = y — 0}. Hence we need
only the z-chart t/s and the w-chart C/4 in order to study singularities of X\ :

U3 = {zu2 + xy + x4 + £4 + 2C~2 = 0}/Z2(1, 1,0, 1),

t/4 = {u + xyz + x4 + y4 + uc-2zc - 0}/Z3 (2, 2, 1, 2).

The origin Q3 of C/3 is terminal of type (cA/2) with axial weight c — 2, the
origin Q^ of C/4 is isomorphic to (x, ^, 2)^3(1, 1, 2), and other singularities on
Xi are all isolated cDV points. Therefore Xi has only terminal singularities
and 5^ge^-i(aw(^"i, Q) — 1) = c — 3. Since -Ei is irreducible and d(v\) = 1/2,
?TI is divisorial with discrepancy 1/2.

We can resolve the origin Q^ of C/4 by using (2.9) and get a projective
birational morphism v : Z -> X i such that KZ = z/*(^x1) + |^i + |^2
where FI + F<2 is the exceptional divisor of v over Q4. Since J^i is defined
by xyz + x4 -f y4 = 0 near Q4, we see that v*(Ei) = v~l[Ei] + |FX + §F2.
Therefore a(Fl,X) = 1/3 + 1/2-4/3 - 1 and a(F2,X) = 2/3 + 1/2-5/3 = 3/2.
By (2.10), there are no prime divisors over Qs with discrepancies 1/2. Thus
EI is the unique prime divisor with discrepancy 1/2 over X. D

4.5. Thus (4.4) completes the proof of (3.1), (3.2) and (3.3) if a = b = 2.

§4-B. Case: a > 3 and b = 2

4.6. We next assume that a > 3 and b = 2 and study this case in (4.7)
and (4.9). We easily see that t;2 G Wi/2 in this case.

Proposition 4.7. Assume that a>3 and b = 2. Let 7T2 : X2 -)• X be the
V2-blow up. Then 7r2 is divisorial with discrepancy 1/2 and J^Qex2 (

aw(^25 Q)~
1) = max{c — 3,1}. Furthermore, there are exactly two prime divisors with
discrepancies 1/2 over X .



434 TAKAYUKI HAYAKAWA

Proof. Let E<2 be the exceptional divisor of 7r2 . Since

E2 ~ {u2 + xyz + 6a,3Z6 + £c,3^3 - 0} C P(l, 3, 2, 3),

we see that £?2 is Cartier outside {Q2^Q^} and that Sing(I?2) C {x = u =
0} U {z = u = 0}. Since Q$ 0 E%, X2 is covered by three affine open sets as
follows:

Ui = {u2 + yz + xa~3 + x3b~3y2b + xc~3zc = 0} C C4,

U2 = {u2 + xz + x2aya~3 + y3b~3 + yc~3^c = 0}/Z3 (2, 2,1,0),

C/3 - {u2 +xy + x2aza~3 + y2bz3b~3 + zc~3 - 0}/Za (1, 1, 0, 1).

The origin Q2 of U2 is terminal of type (cA/3) with axial weight 2. We see
that Q3 G E2 if and only if c > 4. If Qs G ^2, then the origin Q3 of C/3

is terminal of type (cA/2) with axial weight c — 3. Other singularities on
X2 are all isolated cDV points. Hence X2 has only terminal singularities and
J]QGx2(aw(^2,Q) — 1) = max{c — 3, 1}. Since E"2 is irreducible and d(v2) =
1/2, we see that 7T2 is divisorial with discrepancy 1/2.

By [Hay99, 6.4], there is only one prime divisor with discrepancy 1/3 over
the origin Q2 of the y-chart U2 and there is a projective birational morphism
v : Z — » X2 such that KZ — v*(Kx:i)

Jr\F where F is the exceptional divisor of
v over Q2. Since v is obtained by the |(1, 1, 2, 3)-blow up of U2 and since E2 is
defined by y = 0 on C/2, we have v*(E2) = ̂ "^^H-^- Hence a(F, X) = 1/3+
1/2 • 1/3 = 1/2. By (2.10), all other prime divisors over X have discrepancies
> 1. Therefore E2 and F are the prime divisors with discrepancies 1/2 over
X. D

4.8. In the case a > 3 and b = 2, it is impossible to obtain a liftable
embedding j : X <->• C4 /I® (1, 1, 0, 1) and a weight a such that the (j, a)-blow up
of JC is divisorial with discrepancy 1/2 and is different from 7T2 in (4.7). Instead,
we use the generalized liftable embedding j' : X ^ (x, y, z, u, t)/!^ (1, 1, 0, 1, 1)
such that

\, ( .
1/22(1,1,0,1,1)

We define a' = |(1, 1, 2, 3, 5), then we have vf = (jf, af) G Wj/2.

Proposition 4.9. ^Isswme ^/iat a > 3 and 6 = 2. Let irf : X' —> X be the
v1 -blow up. Then TT' is divisorial with discrepancy 1/2 and X^QGX'(aw(^/' Q) ~
1) = max{c — 4,0}. Moreover, TT' and 7V2 in (4.7) are not isomorphic over X.
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Proof. Let E' be the exceptional divisor of TT' . Since

, r u2 + yt + <5a,3z
6 + 5c,3z

3 = 0 i f ,E -\ *z + y3 = 0 JCP(1,1,2,3,5) ,

we see that £' is Cartier outside {<23,Q5} n £' and Sing(£') C {Qi, Q3, <25}-
We also see that E' fl {x = 2; = t = 0} = 0, hence X7 is covered by three affine
open sets as follows:

Ui = {u2 + yf + xa~3 + xc~3zc = 0, xf - z - y3 = 0} C C5,

C/3 = {it2 + yt + x2aza~3 + zc~3 = 0, zf - x - y3 = 0}/Z2(1,1,0,1,1),

U5 = {u2 + y + x2afa-3 + zcP~3 = 0, i- xz-y3 = 0}/Z5(1,1,2,3,3).

It is easy to see that Q3 E £" if and only if c > 4. If Q3 € E', then Q3

is terminal of type (cA/2) with axial weight c - 3. The origin Q5 of C/s is
isomorphic to (x, z, tZ)/Z5(l, 2,3), and the origin Qx of C/i is an isolated cDV
point. Thus X7 has only terminal singularities and 5^QeX'(aw(^'' Q) ~~ ^) =

max{c—4,0}. Since E' is irreducible and d(vr) = 1/2, we see that TT' is divisorial
with discrepancy 1/2.

Let D be the Q-Cartier Weil divisor on X defined by y = 0. Then we have

7r*(£>) = n-l[D] + \E2 and ^(D] = 7rf~l[D] + ^JB7.
Zi fL

Thus 7T2 and TT' are not isomorphic over X. D

4.10. In the case a > 3, 6 = 2, we saw in (4.7) that there are exactly two
prime divisors with discrepancies 1/2 over X. We also gave two divisorial blow
ups of X with discrepancies 1/2 in (4.7) and (4.9) which are not isomorphic
over X. Thus we complete the proof of (3.1), (3.2) and (3.3) if a > 3 and b = 2.

§4-C. Case: a > 3 and b > 3

4.11. Lastly we assume that a > 3 and b > 3. We shall treat this case
in (4.12). We easily see that V2, v'2, v% E Wi/2 in this case.

Proposition 4.12. Assume that a > 3 and b > 3. Let ?r2 : X<2 —> X
(resp. 7rf

2 : X'2 -> X, ?r3 : X% -> X) be the v2-blow up (resp. v'2-blow
up, vs-blow up). Then 7T2, 7rf

2 and ?r3 are all divisorial with discrepancies
1/2. No two of these three blow ups are isomorphic over X and there are
exactly three prime divisors with discrepancies 1/2 over X. Moreover, we
have EQ<EX2(aw(^2,Q) - !) = EgG( a w (^2 ' Q) ~ l) = max{c - 3,1} and
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Proof. The calculations for 7r2 and 7T2 are almost the same as in (4.7).
We shall treat the i;3-blow up ?r3 here. Let E3 be the exceptional divisor of ?r3.
Since

E3 ~ {u2 + xyz + 6a,3x
6 + ^6,3y6 = 0} C P(l, 1,4,3),

we see that E3 is Cartier outside {Q3} and that Sing(E"3) C {x = u = Q}U{y =
u = 0}. Since Q^ $ E3, X3 is covered by three affine open sets as follows:

Ui - {u2 + yz + xa~3 + xb~3y2b + x2c'3zc = 0} C C4,

U2 = {u2 +xz + x2aya~3 + yb~3 + y2c~3zc - 0} C C4,

The origin Q3 of t/3 is terminal of type (cAx/4) with axial weight c — I and
other singularities are all isolated cDV points. Hence X% has only terminal
singularities and ^QGX3(aw(^3'Q) ~ -0 = c ~ 2. Thus we see that ?r3 is
divisorial with discrepancy 1/2 since d(v3) — 1/2.

Let DI be the Q-Cartier Weil divisor on X defined by x = 0. Then we
have

*(D1)-7r3-1[^1] + -^3.

where E% (resp. Ef
2) is the exceptional divisor of 7^2 (resp. 7T2). Therefore 7T2

is not isomorphic to 7T2 and TTS over X. By considering the divisors defined by
y = 0 and z = 0, we see that 7T2, 7T2 and 7T3 are not mutually isomorphic over
X.

In order to calculate the number of prime divisors with discrepancies 1/2,
we use the ^3-blow up as the first blow up. The origin Q3 of the z-chart C/3 of
X% is the unique non-Gorenstein point of X% and it is terminal of type (cAx/4).
By [Hay99, 7.4, 7.9], there are at most two prime divisors with discrepancies
1/4 over X%. Thus, by (2.10), we see that there are at most three prime divisors
(including £3) with discrepancies 1/2 over X. On the other hand, we already
have three prime divisors E"2, £"2, E3 which have discrepancies 1/2 over X.
Therefore there are exactly three prime divisors with discrepancies 1/2 over
X. D

4.13. In the case a, b > 3, we saw in (4.12) that there are exactly three
prime divisors with discrepancies 1/2 over X. We also gave three divisorial
blow ups of X with discrepancies 1/2, and they are not mutually isomorphic
over X. Thus we complete the proof of (3.1), (3.2) and (3.3) if a, b > 3.
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§5. Terminal Singularities of Type (cD/2-2)

5.1. In this section, X denotes a germ of a 3-dimensional terminal sin-
gularity of type (cD/2-2). There is a standard embedding

j : X ~ {u2 + y2z + \yx2a+1 + g(x, z} = O}/^ (1, 1, 0, 1)

l, 1,0,1)

where A G C, a > I and g(x,z) G (x4,x2z2,z3)C{x2 ,z}. We shall write
g(x, z) = Y^i j dijx^zi . We have aw(X) = min{j | a0,j ^ 0} in this case.

By considering a = -foo when A = 0, we shall always assume that A / 0.
This will cause no trouble in the following discussion.

Lemma 5.2. // a weight a G Z4 + |(1, 1,0, 1)Z satisfies ( j , a ) G Wi/2,
Jfterc a = |(l ,/ ,2,/), ± ( l , / , 2 , / + 2) or ± ( l , / , 4 , / + 2) /or some positive odd
integer I.

Proof. Let (p = u2 + 7/2z + Xyx2a~*~l + #(x, z). We write u? = cr-ittf. Since
i£2, y22; G y?, we see that w(u) > w((p)/2 and f2w(y] + w;(z) > w((p). Thus we
have

1/2 = w(xyzu) — w((p) — 1 > iy(x) -h w(z)/2 — 1,

and we see that w(x) = 1/2 and it;(z) = 1 or 2. If w(x) = 1/2, w(z) — 2,
then the above inequalities shows that w(u) > w((p)/2, w(y) > w(<p)/2 — 1 and
w(y)+w(u) — w((p) < 1. Hence we get w(u) =w(y) + l. In the case w(x) = 1/2,
w(z) = 1, we can argue similarly to get w(u) = w(y) or w(u) = w(y) -\- 1. D

These are the candidates of weights when one wants to blow up X using

5.3. We denote r-wt(x) = 1/2, r-wt(z) = 2, and assume that 6 =
r-wt(g(x, z)) = minjz + 2j a%^ ̂  0}. We denote

A = {I e Z | 1 < Z < min{2a - 3, 6 - 2}, I : odd },

and define &i — |(1,Z,4, / + 2), then it is easy to see that v\ = (J,(TI) G Wi/2
for ^ G A. We remark that ^4 has [| min{2a — 2, 6 — 1}J elements.

Furthermore, we denote r'-wt(x) = 1/2, r'-wt(z) = 1, and assume that
b' = r'-wt(g(x, z)} = mm{i + j \ a^j ^ 0}.

Proposition 5.4. Under the notation (5.3), £/ie vi-blow up KI : Xi -t X
are all pre-divisorial with discrepancies 1/2. A/0 two of these -KI are isomorphic
over X. Furthermore, if I G A is maximal, then KI is divisorial with discrepancy

1/2 and EQe^ (aw(^5 Q) ~ 1) = aw(^) - (' + 3)/2.
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Proof. Let E\ be the exceptional divisor of iri . Since

i ~ {u2 + y2z + A^i2a_3^2a+1 + 9^=1+2(3, z) = 0} C P(l, J, 4, J + 2),

we see that J51/ is Cartier outside {C^jQa} and that Sing(^) C {u — 0}. We
shall study singularities of X\. Since Q^ & EI, Xi is covered by three affine
open sets as follows:

Ui = {u2 + fz + \yxa~(l+^l'2+g(xll2,x'2z)/xl+2 = 0} C C4,
C/2 = {u* + Z + Ay-('+3)/2Z2°+1

 + g ( - - l / ^ - 2 - } / - l + 2 = 0}/Z, (1, _2, 4, 2)?

f/3 = {u* +f + Ap2a+1z°-«+3>/2 + g&z1/*, z2)/zl+2 = 0}/Z4 (1, J , 2 , Z + 2).

We first assume that I is not maximal, i.e., I < min{2a — 5,6 — 4}. Then
Xi is singular along z-axis of U\ and x-axis of U% which are all canonical.
The origin Q% of C/2 is also a singular point of X\ and it is isomorphic to
(x, t / ,u) /1*i( l , — 2,2). Thus we see that Xi has only canonical (non-terminal)
singularities.

Next, we assume that I is maximal. Then we have I = min{2a — 4,6 — 3}
or / = min{2a — 3,6 — 2}, and we see that Xi has only isolated singularities
which are all terminal. In particular the origin Q% of f/s is terminal of type
(cAx/4) with axial weight aw(JC) — (I + l)/2. Therefore Xi has only terminal
singularities and we have ^Qexz(

aw(^' Q) ~ 1) = aw(X) — (I + 3)/2.
Since ^ is irreducible and d(vi) = 1/2, we see that K^ = KI(KX) + \E\.
Let D be the Q-Cartier Weil divisor on X defined by y = 0. Then we have

7r*(jD) = 7r^l[D] + T^EI. Hence no two of TTI are isomorphic over X. D

Proposition 505. Let n be the number of prime divisors with discrepan-
cies 1/2 over X. Under the notation (5.3), we consider the following conditions:

(i) 2a < V.
(ii) 2a > b1, bf is odd and gr'-wt=v (x•> z) is a square.
(iii) 2a > b', b' is even and gr'-wt=b'(x,z)z i>s a square.
(iv) 2a = bf and —^-x4a+2 + gT

f-wt=b'(x,z)z is a square.
If we further assume that A ^ ®, then we have

n<l[^ min{2a + 2,6 + 3}J if (i), (ii), (iii) or (iv) holds,

~~ 1 [| min{2a, 6 + 1}J otherwise.

Proof. We first make a blow up TTJ : X/ —> X as in the proof of (5.4) with
/ = min{2a - 3,6 - 2} or I = min{2a - 4,6 - 3}. By (2.10), we only need to
study prime divisors F over X\ with a(F, X{) < 1/2 in order to get an estimate
of n. So we shall study the origin Q^ of f/2 and Q% of C/3.
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We can resolve the origin Q% of U<2 by using (2.9), and get a projective
birational morphism v : Z — > Xi such that KZ = is*(Kxt) + X^=i \Fi where
5^=i FI is the exceptional divisor of v over Q2- Since E\ is defined by y = 0
near Q2, we have

^o = *-^«]/£2^F1 + £ ^*-
t=l

Thus we see that

i = l , 2 , . . . , ( J - l ) / 2 ,

Therefore, among Fl, there are exactly (/ — l)/2 = |_| min{2a — 2, 6 — 1}J — 1
prime divisors with discrepancies 1/2 over X.

Next we study the singularity at Q% £ C/s and prime divisors F over C/3
with a(F,X{) = 1/4. We have

U3 = {^ + (^ + | -2a+l -a-a+3)/2)2 _ ̂  -4a+2 -2a-i-3 + ̂ (^l/2? ̂ 2)^+2 = Q}

/Z4(l,i, 2,1 + 2),

and it is of type (cAx/4). Let h(x,z) = -^x4a+2z2a-1-3 + g(xzl/2,z2)/zl+2.
We denote f-wt(x) = 1/4, f-wt(z) = 1/2, and denote k = f-wt(h(x,z)). Then
fc = min{2a, 67} - 1 - //2. Since

if 2a < «/,
- f

we see that hr-wt=k(x->z) is a square if and only if (i), (ii), (iii) or (iv) holds.
By [Hay99, 7.4, 7.9], there are exactly two (resp. one) prime divisors with
discrepancies 1/4 over the origin Q% of U$ if hf-wt=k(x-i z) is a square (resp. is
not a square). By (2.10), over the origin Q% of C/s, there are at most two (resp.
one) prime divisors F with a(F,X) = 1/2 if (i), (ii), (iii) or (iv) holds (resp.
(i), (ii), (iii) and (iv) does not hold).

Therefore, including EI, we see that

f [^ min{2a + 2, b + 3}J if (i), (ii), (iii) or (iv) holds,

~~ 1 L| min{2a, b + 1}J otherwise.

a
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Remark 5.6. In fact, (5.5.1) holds with equality. Moreover (5.5.1) holds
with equality even if A = 0. These will be proved by finding one or two more
prime divisors with discrepancies 1/2 over X which are different from E\. The
rest of this section is devoted to finding these prime divisors as the exceptional
divisors of divisorial or pre-divisorial blow ups of X . We shall do this by
dividing into several cases. We also remark that A = 0 if and only if a = I or
b' = 2. If bf = 2, then x4 <E g ( x , z) and we have b = b' .

§5-A. Case: 2a < b1

5.7. We first treat the case 2a < b1 '. In this case, we define a = |(1, 2a +
l ,2 ,2a+ 1), then v = (j» G Wi/2 where j : X ^ (x,y, ̂ lO/Z^l, 1,0, 1)
is the standard embedding. We also need another embedding j' : X ^
(x, y, z, u, t)/Zv (1? 1? 0, 1» 1) such that

I ' 7 - *~ , . (3 'X-\ t = yz + Xx2a+l j/Zz (1,1, 0,1,1)

C(z, j / ,2: ,u , t ) /Z2 (1,1, 0,1,1).

We define a' = |(1, 2a - 1, 2, 2a + 1, 2a + 3) and v' = (j', a'). It is easy to see
that vf G Wj/2.

Proposition 5.8. Under the notation and assumptions (5.7), the v-blow
upn : X ^ X is divisorial with discrepancy 1/2 and we have X^Qex(aw(^' Q}~
1) - maxjawpO - 2a - 1, 1}.

Proof. Let E be the exceptional divisor of TT. Since

£ ~ {^2 4- Ayx2a+1 + gT>-wt=2a+i (x, z) = 0} C P(l, 2a + 1, 2, 2a + 1),

we see that E is Cartier outside {Q2, Qs}n£l and that Sing(E') C {x = u = 0}.
Since Q± 0 £", X is covered by three affine open sets as follows:

Ui = {u2 + xy2z + Xy + g(xl/2,xz)/x2a+l = 0} C C4,

U2 = {u2 + yz + Xx2a+1 + g(xy1/2, yz)/fa+l = 0}/Z2a+1 (1, -2, 2, 0),

We always have aw(JC) > 6' > 2a + 1 and easily see that Q3 0 E if and only if
aw(X) = 6' = 2a -j- 1. If Qa G E, then Q3 is at worst terminal of type (cD/2)
with axial weight aw(X) — 2a — 1. The origin Q% of C/2 is terminal of type
(cA/2a + 1) with axial weight 2. Other singularities of X are all isolated cDV
points. Hence X has only terminal singularities and X^oex(aw(^5 Q) ~ 1) ~
max{aw(X) — 2a — 1, 1}. Since £" is irreducible and d(v ) = 1/2, we see that TT
is divisorial with discrepancy 1/2. D
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Proposition 5.9. Under the notation and assumptions (5.7), the v'-blow
up wf : X' —> X is divisorial with discrepancy 1/2 and we have ̂ gej^/(aw(X/, Q)
-1) = max{awpO - 2a - 2,0}.

Proof. Let E1 be the exceptional divisor of TT'. Since

»z + A*~~=U j C P d ^ - l ^ J Z o + U a + S),

we see that Er is Cartier outside {Q2,Q3,Q5} n_E' and Sing(E') C {x = y =
u — 0} U {Q2}. Since {y = z = t = 0} fl E' — 0, X' is covered three affine open
sets as follows:

+ f+g(xyl/2,yz)/y2a+1=Q

= 0
0 1, f ,

1/22(1,1,0,1,1),

We have aw(Jf) > bf > 2a + 1 and it is easy to see that Q% $. E' if and only
if aw(X) = 2a + 1. If Q% G £^;, then Qa is at worst terminal of type (cD/2)
with axial weight aw(X) — 2a — 1. The origin Q2 of t/2 (resp. Qs of t/s)
is isomorphic to (x,y,Jx)/Z2a_i(l, — 2,2) (resp. (x,£,w)/Z2a+3(l,2, — 2)J and
other singularities of X' are all isolated cDV points. Thus we see that X' has
only terminal singularities and that 5^QGx/(aw(X/,Q) — 1) = max{aw(J^) —
2a — 2, 0}. Since E1 is irreducible, we see that -K' is divisorial with discrepancy
1/2. D

Proposition 5.10. If la < bf, then there are exactly a-hl prime divisors
with discrepancies 1/2 over X. Furthermore, there are exactly three (resp. two)
divisorial blow ups of X with discrepancies 1/2 if a > 2 (resp. a = 1).

Proof. We remark that 2a + 2 < 2 a + 3 < 6 / + 3<6 + 3in this case.
We first estimate the number of prime divisors with discrepancies 1/2 in the
case A = 0. If A — 0, then we have a = I in our case. We use the i>-blow up
TT : X —> X in (5.8) as the first blow up. The origin Q2 of f/2 is terminal of type
(cA/3) and there is exactly one prime divisor with discrepancy 1/3 over Q2 by
[Hay99, 6.4]. Using (2.10), we see that there are at most two prime divisors
(including E) with discrepancies 1/2 over X. Thus we know that (5.5) is true
even if A = 0 in the case 2a < b'.
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We already have a — I prime divisors EI with discrepancies 1/2 over X in
(5.4) and two more prime divisors E and E1 in (5.8) and (5.9) respectively. If
D is the Cartier divisor on X defined by z = 0, then we have

tf(D) = 7r-l[D] + 2Eh TT*(£>) - 7r-l[D] + E and 7r'*(D) - 7r'"l[D] + Er.

By considering the Q-Cartier Weil divisor D' on X defined by y = 0, we have

7r*£> ' = 7r-lDf + ^tljE? and 7r ' *ZX = Tr' .

Thus we see that these a + 1 prime divisors over X are all distinct.
The last part follows from (5.4), (5.8) and (5.9). If a = 1, then A = 0 and

there is no -K\ in this case. D

5.11. Thus we complete the proof of (3.1), (3.2) and (3.3) if 2a < b1 '.

§5-Be Cases 2a > bf and 6' Is odd

5,1 2- Next we assume that 2a > b' and 6' is odd. We first treat the
case where gT'-wt=bf(x,z) is not a square. We define a — | (!,&', 2, &'), then
v = (j, <r) E Wi/2 where j : X ^ (x,y, z, u)/Z2(l, 1,0, 1) is the standard
embedding. We shall consider the following condition:

(5.12.1) b' = b or 6' = 6 - 1 or b' = 2a - 1,

which is equivalent to

(5.12.2) z26' € g(x, z) or z26'~22 e g(x, z) or x26/+2 G g(x, z) or &' = 2a - 1.

Proposition 5.13. Under the notation and assumptions (5.12), the v-
blow up TT : X — > X is pre-divisorial with discrepancy 1/2. Furthermore, TT
is divisorial with discrepancy 1/2 if and only if (5.12.1) holds, and we have

-!) = max{awpO - 6', 1} z/ (5.12.1) holds.

Proof. Let I? be the exceptional divisor of TT. Since

E~{u*+ 9r'-wt=v(x> ^ = 0} C P(l, 67, 2, 6r),

we see that E is Cartier outside {Q25Qa} H J5 and that Sing(£l) C {u = 0}.
Since Q^ 0 E, X is covered by three affine open sets as follows:

C/! - {^2 + xfz + Apa-(6'-^/2 + ^(x1/2, xz)/xb' = 0} C C4 ,

U2 = {u2 + yz + Ax2a+1r-(6'~1)/2 4- g(xyl/*,y*)/i? = 0}/Z^ (1, -2, 2, 0),

1/3 = {u2 + g2z + Ayx2^1^-^'-1)/2 + ^(xz1/2, ^)/^6/ - 0}/Z2(1, 1, 0, 1).
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We first assume that (5.12.1) does not hold. Then U\ (resp. C72) has
singularities along the z/-axis (resp. x-axis), which are canonical. We always
have aw(X) > b' and the equality holds if and only if Q% 0 E. If Qa £ E, then
Qa is at worst terminal of type (cD/2) with axial weight aw(X) — b1 . Other
singularities of X are all isolated cDV points. Thus we see that X has only
canonical (non-terminal) singularities.

Next we assume that (5.12.1) holds. In this case singularities of X are all
isolated. The origin Q% of C/2 is terminal of type (cA/6;) with axial weight 2, the
origin Q^ of U$ has the same properties as above and other singularities of X
are all isolated cDV points. Hence we see that X has only terminal singularities
and that ^g€x(aw(^' Q) ~ !) = max{aw(X) - 6', 1}.

Since gr'-wt=b'(x-> z) is not a square, E is irreducible. We also have d(v) —
1/2. Thus we see that KX = 7T*(KX) + |#. D

Proposition 5.14. // 2a > 6', 6' zs ode? and 9r' -wt=v (x •> z} is not a
square, then there are exactly [| min{2a, 6 + 1}J prime divisors with discrep-
ancies 1/2 over X. Furthermore, there are exactly two (resp. one) diviso-
rial blow ups of X with discrepancies 1/2 if bf > min{2a — 1,6 — 1} (resp.
b' < min{2a- 1,6- 1}).

Proof. We always have A ^ 0 in this case since b1 > 3. The upper bound
of the number of prime divisors with discrepancies 1/2 is given in (5.5). On the
other hand, as in the proof of (5.10), E in (5.13) is different from EI in (5.4).
Thus we have exactly |_| min{2a, 6 + 1}J prime divisors with discrepancies 1/2
over X. The last part follows from (5.4) and (5.13). D

5.15. The rest of this subsection is devoted to the case where 2a > 6', b'
is odd and gr'.wt=bf (x, z) is a square. We shall write gT

f-wt=b' (%, z) = — h(x, z)2.
Let x± '• (xiy,z,u)/%2 —> (zi,yi,zi,ui)/%2 be the automorphisms defined by

X±(xi} = x, x±(yi) = y, X±(zi) = z and x±(^i) = u± h(x, z),

and let j± = x± ° 3 : X ^> (xi, y\, z\, ui)/Z^(l^ 1,0, 1) be the embeddings.
Then we have

j± : X ~ {u\ ̂ 2ulh(xl,zl) +y*Zl + \yix\a +1 +^1(x1,z1) = 0)^(1,1,0,1)

, 1 ,0,1) ,

where gi(x,z) = gT'-wt>b'+i(x,z). We define cr; = ^(1,6', 2, 6' + 2), then we
have v± = (j±, cr') e Wi/2. We again consider the condition (5.12.1) and divide
the cases whether (5.12.1) holds or not. In our situation, (5.12.1) is equivalent
to

(5.15.1) xb/ € h(x, z) or x2b'+2 G gi(x, z) or b' = 2a - 1.
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Proposition 5.16. Under the notation and assumptions (5.15), let TT± :
X± — > X be the v±-blow up. //(5.12.1) holds, then IT± are both divisorial with
discrepancies 1/2 and we have Y^o^x (aw(^±'*9) ~~ 1) = max{aw(Jf) — br —
2,0}.

Proof. Let E± be the exceptional divisor of ir± . Since

~ 2 2a+lE± ~ {^2uh(x, z) 4- y2z 4 XSb^2a-iyx2a+l 4 0i,r'-«;t=&'+i(z, *) = 0}

CP(l,&',2,6 ' + 2),

we see that E± is Cartier outside {Q<2, QsiQi} n E±. Then X± is covered by
four affine open sets as follows:

Ui = {u2x T 2u/i(l, z) 4 £22 4 Apa~(6/+1)/2 + gi(x
l'*,xz)/xb'+l = 0} C C4,

C/2 - {u2£T2uM^) + * + Az2a+^^^^

/Z6/(l,-2,2,2),

C/3 - {^2^ T 2iifc(x, 1) + y2 + Ap2a+1za-(6/+1)/2 + 9l(xzl'\ z)/zb/+1 = 0}

l, 1,0,1),

U4 = {u T 2ft(x, f) 4- ^2^ + Ayx2a+1iia-^+1)/2 + ^i (x^1/2, ̂ )/^6/+1 = 0}

The origin Q^ of C/2 is isomorphic to (x, y, n)/Zb/ (1, —2, 2) and the origin $4 of
t/4 is isomorphic to (x,y, z)/Z^+2(l5 — 2, 2). Since 6' is odd and gT'-wt=b'(xiz)
is a square, we see that aw(X) > b' 4- 1 and the equality holds if and only
if Qs & E±. If Qs G £?±, then Q% is at worst terminal of type (cD/2) with
axial weight aw(Jf ) — bf — 1. Other singularities of X± are all isolated cDV
points. Hence X± has only terminal singularities and ]Cgex±(aw(^±'*3) ~~
1) = max{aw(X) - b' — 2,0}. Since E± is irreducible and d(v±) = 1/2, we see
that ?r± is divisorial with discrepancy 1/2. D

5.17. We shall continue our study on the case 2a > b' ', bf is odd and
gr'-wt=bf(x,z) is a square. Here we assume that (5.12.1) does not hold. Then
we can write

h(x, z) = zhi(x, z) and g\(x, z) = p(x, z)z + q(x)

where r'-wt(hi(x, z}) = 672 - 1, r1 '-wt(p(x , z)) > b' and r'-wt(q(x)) > bf + 2.
Thus there are embeddings j'± : X °-> (xi,2/i ,zi , i t i ,^i)/Z2(l , 1,0, 1,0) such
that

C(Z l , yi .zi .ui . tO/^zCl, 1,0, 1,0).
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We define a" = |(1,&',2,&' + 2,26' + 2), then we have v'± = (j±X') e W(/2.
We shall consider the condition:

(5.17.1) 6' = b - 2 or b' = b - 3 or 6' - 2a - 3.

This is equivalent to one of the following 8 conditions:

(5.17.2)

z26'+4 6 0(z,*), z26'* e 0(x,s), x26/-V e 0(x,*), z26/+6 6 0(z,*),
z26/+2£ <E (/(re, z), z26'- V G </(*, 2), z26'-6^3 G g(x, z] or 6' = 2a - 3.

In our situation, this is also equivalent to one of the following 7 conditions:

zb/-2 E ft! (*,*), *2b/+4 e g(x), X2b'+6 G q(x),

Proposition 5.18. Under the notation and assumptions (5.17), t/ie v'±-
blow up TT± : X± — > X are both pre-divisorial with discrepancies 1/2. Further-
more, it'± are both divisorial with discrepancies 1/2 if and only z/ (5. 17.1) holds,
and we have Egex' (aw(X'±,Q)-l) = max{aw(X)-6/-2,0} if (5. 17.1) holds.

Proof. Let E'± be the exceptional divisor of 7rj_. Since

= 0

we see that E± is Cartier outside {Q3, Q5}nE±. Since {x = z = t = Q}nE'± =
0, X± is covered by three affine open sets as follows:

U = '+2 = 0
1 b/ =0 -

f w2 + f + A^2a+1^-(b'+3)/2 + q(xzl'2)/zb'+2 = 01
3 I fe-y2±2u/i1(x,l)-p(x21/2,l)/2b'=0 J

/Zs (1,1, 0,1,0),

r u2 + f + A^2o+4~a-(b'+3)/2 + q(xti/2)/tb'+2 = 0-1
5 ~ I t - y2 ± 2uJn(£, z) - p(x^2,zf)/P>' =0 J

/Z2b-+2(l,6',2,6'+2,-2).

We see that the origin Qi of the x-chart U\ is at worst canonical. If (5.17.1)
holds, then at least one of the defining equations has non-zero constant or linear
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terms, and we see that Q\ 0 E'± or Q\ £ X± is an isolated cDV point. However,
if (5.17.1) does not hold, then Qi £ X± is non-terminal.

The origin Q$ of C/5 is isomorphic to (x,y, ii)/Z26/+2(l5 b' ,b' + 2). We
always have aw(X) > 6' + 1 and the equality holds if and only if $3 $ E'±.
If Qs £ £"j_, then Q% is at worst terminal of type (cD/2) with axial weight
aw (X) — b' — 1. We also see that the singularities of Xf

± other than Qi, Qa and
Q5 are all isolated cDV points.

Since E'± is irreducible and d(v'±) = 1/2, we see that K^> = K±*(Kx) +

\E'±. * D

Proposition 50198 If la > b' , b' is odd and gr'-wt=b'(x,z) is a square,
then there are exactly |_| min{2a 4- 2, b -f 3}J prime divisors with discrepancies
1/2 over X. Furthermore, there are exactly three (resp. one) divisorial blow
ups of X with discrepancies 1/2 ifbf > min{2a — 3, b — 3} (resp. b' < min{2a —
3,6-3}).

Proof. In this case, we always have A ^ 0 and the upper bound of the
number of prime divisors with discrepancies 1/2 over X is given in (5.5). On
the other hand, as in the proof of (5.10), E± in (5.16) and E± in (5.18) are all
different from E\ in (5.4). By considering the Q-Cartier Weil divisor D+ on X
defined by u + /i(x, z) = 0, we see that

+ -E+ and TT* (£>+) = 7rIl[D+] + ~E..

Hence E+ and £"_ in (5.16) are distinct prime divisors. Similarly, E'+ and E'_
are also distinct. Thus in any case, we have exactly \\ min{2a + 2, 6+3}J prime
divisors with discrepancies 1/2 over X. The last part follows from (5.4), (5.16)
and (5.18). D

5.20,, By using propositions above, we complete the proof of (3.1), (3.2)
and (3.3) if 2a > b' and b' is odd.

§5-C. Case; 2a > b' and b1 is even

5.21. In the case 2a > b1 and b1 is even, we first assume that b' = b.
Then it is easy to see that x2b' £ g(x,z) and g r

f - w t = b f ( x , z ) z is not a square.
We define o~ = |(1,6; - 1,2, b' + 1), then we have v = (j, cr) £ Wi/2 where
j : X c-)> (x, ?/, z, -u)/Z2 (1, 1, 0, 1) is the standard embedding.

Proposition 5.22. Under the notation and assumptions (5.21), let TT :
X -> X be the v-blow up. If b' = b, then TT is divisorial with discrepancy 1/2
and we have ]Co€x(aw(^'Q) ~~ -0 ~ niax{aw(X) — b' — 1,0}.
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Proof. Let E be the exceptional divisor of TT. Since

E ~ {y2z + gT:.wt=b, (x, z) = 0} C P(l,6' - 1,2,6' + 1),

we see that E is Cartier outside {Q2> Qa^Q^nE and Sing(.E) C {y — 0}b{x —
z = 0}. Since Q\ £ E, X is covered by three affine open sets as follows:

f/2 - {w2y + I + Xya-b'/2x2a^ + g(xy1/2,yz)/yb' = 0}/Zfc'_i(l, -2, 2, 2),

t/3 - {u2z + f + \yx2a+lza-b'l2 + g(xz^2, z)/zb' = O}/^ (1, 1, 0, 1),

U4 = {u + y2z + Xyx2a+1ua-b'/2 + g(xul/\ zu)/ub' = 0}/Z6,+1(1, -2, 2, -2).

The origin Q% of C/2 is isomorphic to (x, y, ii)/Zfc/_i(l, —2, 2) and the origin $4
of t/4 is isomorphic to (x,y, z)/1*b'+i(l, — 2, 2). We always have aw(X) > bf

and the equality holds if and only if Q3 £ E. If Q3 e E, then Q3 is at worst
terminal of type (cD/2) with axial weight aw(X) - b' . Other singularities of
X are all isolated cDV points. Hence X has only terminal singularities and
Sqex(aw(^'Q) ~ 1) = max{aw(X) — bf — 1,0}. Since £" is irreducible and
d(i>) = 1/2, we see that TT is divisorial with discrepancy 1/2. D

5.23. In the case 2a > b' and b' is even, we next assume that b' <
6 — 1 . Then x2b $. g(x,z) and we can write g(x,z) = p(x,z)z + q(x) where
r'-wt(p(x, z)) = b1 - 1 and r'-wt(q(x)) > b' + 1.

5.24. Under the situation (5.23), we first assume that gr'-wt=b'(x, z)z is
not a square. Then pT'-wt=b'-i(x,z) is not a square. In this case there is an
embedding jf : X ^ (x, y, z, it, t)/Z2 (1,1,0,1, 0) such that

zt /y n i n i m/22(1,1,0,1,0)

We define a' = i(l, 67 - 1, 2, 67 + 1, 26'), then we have v' = (f ', cr;) 6 Wj/2. We
shall consider the condition:

(5.24.1) 6' = b - 1 or b' = b - 2 or b1 - 2a - 2,

which is equivalent to one of the following 6 conditions:

( x26/+2 e 0(z, ^)i ^26/~2^ e ^(x, z), x26/+4 6 g(x, z),
1 ' ' ; x2b'z G </(x, z), x26/-4z2 e (/(x, ̂ ) or 6' = 2a - 2.

In the above situation, this is also equivalent to one of the following 6 conditions:

, X2b'+2 & q(x), X2b'+* e q(x), X2b'~2 e p(x, z),
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Proposition 5.25. Under the notation and assumptions (5.24), the v' -
blow up TT; : X' — >• X is pre-divisorial with discrepancy 1/2. Furthermore, TT'
is divisorial with discrepancy 1/2 if and only if (5.24.1) holds, and we have

- !) = maxjawpO - b' - 1,0} if (5.24.1) holds.

Proof. Let E' be the exceptional divisor of TT'. Since

2 + Zt + \5b> ,2a-2yX2a+l + qr'-wt=b' + l(z) = 0

y2 +pT',wt=b>-i(x,z) = 0

CP(1, 6' -1,2,6' + 1,26'),

we see that Ef is Cartier outside {Qa,^} H £" and that Sing(£") C {y =
0} U {z = u = 0}. Since {x = 2 = t = 0} D E' = 0, X' is covered by three affine
open sets as follows:

_ r
3 ~ I

te - y2 - p(xl/2,xz)/xb'-1 =0

u2 + t + Ayx2^1^-1-6'/2 + q(xzl/2)/zb'-rl = 0
- y2 - ^zz1/2, z)/^'-1 =0

,0,l ,0) ,

_ / u2 + 2 + Xyx2a+lta-l-b'/2 + q(xtl/2)/1*'+l =01
~~ I * - 2 - a:*1/2 ^^ ' - i ^0 J

We see that the origin Qi of U\ is at worst canonical. If (5.24.1) holds, then at
least one of the defining equations of U\ has non-zero constant or linear terms,
and we see that Q\ $ Ef or Qi G X' is an isolated cDV point. Otherwise
Qi G X1 is non-terminal.

The origin Q$ of U$ is isomorphic to (x,y, /u)/Z26'(l,6 / — 1,6' + 1). We
always have aw(JT) > b1 and the equality holds if and only if Q3 £ E' . If Q3 £
E' , then Qa is at worst terminal of type (cD/2) with axial weight aw(X) — b1 .
Singularities of X' other than Qi, Qa and Q$ are all isolated cDV points.

Since E' is irreducible and d(v') = 1/2, we see that KX> = Kf*(Kx) +
\E'. D

Proposition 5.26. // 2a > 6', 6' zs e?;en and gr'-wt=b'(x,z}z is not a
square, then there are exactly [| min{2a, 6 + 1}J prime divisors with discrep-
ancies 1/2 over X . Furthermore, there are exactly two (resp. one) divisorial
blow ups of X with discrepancies 1/2 ifb' > min{2a — 2, b — 2} and b > 3 (resp.
6' < min{2a - 2, b - 2} or 6 = 2).

Proof. In the case -A = 0, we have to estimate the number of prime
divisors with discrepancies 1/2 over X. Since b' = 2, we have x4 G g(x, 2) so



BLOWING UPS OF TERMINAL SINGULARITIES II 449

that 6 = 6'. We can use the ^-blow up TV : X -> X in (5.22) as the first blow
up. The origin Q4 of t/4 is isomorphic to (x, y,z)/Z3(l, 1, 2). By (2.9), there
is a projective birational morphism z/ : Z —>• X such that KZ — v*(Kx) +
T^FI -\-1^2 where FI •+• F<2 is the exceptional divisor of v. Since E is defined by
y2z+gT'.wt=2(x,z) = 0 near Q^ we see that z/*(E") = z/~1[£?]+|Fi + |F2. Hence
we have a(Fi,X) = 1/3 + 1/2 • 4/3 = 1, a(F2,X) = 2/3 + 1/2 • 5/3 = 3/2 by
using (2.10). Thus we see that E is the unique prime divisor with discrepancy
1/2 over X. Thus we know that (5.5) is true even if A = 0.

On the other hand, as in the proof of (5.14), E in (5.22) and E' in (5.25)
are both different from E\ in (5.4). Hence there are exactly |_| min{2a, 6 + l}j
prime divisors with discrepancies 1/2 over X.

The last stetement follows from (5.4), (5.22) and (5.25). D

5.27. We shall continue our study on the case 2a > 6' and 6' is even.
The rest is devoted to the case where 6' < 6—1 and gT'-wt=b'(x,z)z is a
square. We can write gr'-wt=b'(x,z) = —h(x,z)2z. Let x± '- (x,y,z,u)/Z2 ->

be the automorphisms defined by

and let j± = x± ° j '• X ^ (£1,2/1,21,iii)/Z2(l, 1,0,1) be the embeddings.
Then we have

j±:X~ {u\ + y\zi =F fyizi ft(^i^i) + Ai/ix?a+1 + ^i(xi,zi) = 0}/Z2 (1,1, 0,1)
c (xi, 1/1,2:1,^1)^(1, 1,0,1)

where gi(x,z) = gT'-wt>b'+i(x,z). We define v\ — |(1,6' + 1,2,6' + 1), then
we have v± = (j±, tri) G Wi/2- We again consider the condition (5.24.1) which
is now equivalent to one of the following 5 conditions:

Proposition 5.28. Under the notation and assumptions (5.27), the v±-
blow up TT-j- : X± -> X are both pre-divisorial with discrepancies 1/2. Further-
more, TT± are both divisorial with discrepancies 1/2 if and only if (5. 24.1) holds,
and we have ^QGx±(aw(Xd-,Q) — 1) = max{aw(-X") — 6' — 1, 1} if (5. 24.1) holds.

Proof. Since

E± ~ {ul?p2y

CP(1, 6' + 1,2, &'
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we see that E± is Cartier outside {Q2, Qs}^E± and that Sing(£±) C {ui = 0}.
Since Q4 ^ E±, X± is covered by three affine open sets as follows:

[/! = {u2 + xfz T 2yzh(l, z) + \yxa~b '/2 + 9l(x
1'2 ', xz)/xb>+1 = 0} C C4 ,

f/2 = {u2 + yz^ 2zh(x, z) + Xya-b'/2x2a+1 + 9l (xy1/2, yz)/yb>+1 = 0}

[73 = {u2 + fz T 2y/i(i, 1) + Xyx2a+lza-b'/2 + g^xz1'2 ,z)/zb'+l = 0}

l, 1 ,0 ,1) .

We first assume that (5.24.1) does not hold. Then U\ (resp. C/2) has
singularities along i/-axis (resp. x-axis), which are canonical. We always have
&w(X) > b' -h 1 and the equality holds if and only if Q% £ E±. If Q% £ E±, then
Qa is at worst terminal of type (cD/2) with axial multuplicity aw (X) — b' — 1.
Other singularities of X± are all isolated cDV points. Thus we see that X±
has only canonical (non-terminal) singularities.

Next we assume that (5.24.1) holds. In this case, singularities of X± are all
islated. The origin Q^ of C/2 is terminal of type (cA/br + 1) with axial weight 2,
the origin Q% of L^ has the same properties as above, and other singular points
of X± are all isolated cDV points. Hence we see that X± has only terminal
singularities and that ^QGx±:(

aw(^±'Q) ~ 1) = max{aw(X) — b' — 1, 1}.
Since E± is irreducible and d(v±) = 1/2, we have K%± = n±*(Kx) -f*

\E±. D

Proposition 5.29. //2a > b1 , b' is even and gT'-wt=b'(x, z)z is a square,
then there are exactly [^ min{2a + 2, 6 + 3}J prime divisors with discrepancies
1/2 over X. Furthermore, there are exactly three (resp. one) divisorial blow
ups of X with discrepancies 1/2 ifb1 > min{2a — 2,6 — 2} (resp. b' < min{2a —
2,6-2}).

Proof. If b' = 2, then gr'-wt=2(x,z)z — ^2,o^4^ which is not a square.
Hence A ^ 0 in this case. As in the proof of (5.14), E± in (5.28) are both
different from E\ in (5.4). We also see that E+ and £L are distinct prime
divisor over X. Therefore there are exactly |_| min{2a+2, 6+3}J prime divisors
with discrepancies 1/2 over X. The last part follows from (5.4) and (5.28). D

5.30o By using propositions above, we complete the proof of (3.1), (3.2)
and (3.3) if 2a > b' and b' is even.
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§5-D. Case: 2a = b'

5.31. In the case 2a = &', we first assume that ^-x4a+2 — gr'-wt=b'(x, z)z

is not a square. In this situation, we define a = |(1,6' - 1,2,6' + 1), then
v = (j, cr) £ Wi/2 where j : X ^-> (x, y, z, u)/Z«2(l, 1,0,1) is the standard
embedding.

Proposition 5.32. Under the notation and assumptions (5.31), the v-
blow up TT : X —> X is divisorial with discrepancy 1/2 and we have

w(X,Q) - 1) = max{aw(X) - b' - 1,0}.

Proof. Let E be the exceptional divisor of TT. Since

E ~ {y2z 4 Ayx2a+1 4 ^.^=6' (z, z) - 0} C P(l, &' - 1, 2, &'

we see that E is Cartier outside {Q2, Qs, Qi} fl £. Then X is covered by four
affine open sets as follows:

Ui = {u2x 4 fz 4 A£ + <?(x1/2, xz)/x6/ - 0} C C4 ,

U2 = {u2y 4 z 4 Ax2a+1 4 (/(xj/1/2, yz}/f = 0}/Zb/_i(l, -2, 2, 2),

C/3 - {^2^ + £2 + Ap2a+1 4 ^(xz1/2, z)/zb' = 0}/Z2 (1, 1, 0, 1),

C/4 = {^ 4 fz 4 Ayx2a+1 4 g(xul/\ zu)/ub/ = 0}/Z6/+1(1, -2, 2, -2).

The origin Q2 of U2 is isomorphic to (x, ̂ , u)/Z f e/_i(l, -2, 2) and the origin Q4

of C/4 is isomorphic to (x,y, z)/Zb'+i(l, -2,2). We always have aw(X) > 6'
and easily see that Q3 £ E if and only if aw(Jf) = b' . If Q3 G E, then
Q3 is at worst terminal of type (cD/2) with axial weight aw(X) - b' . Other
singularities of X are all isolated cDV points. Hence we see that X has only
terminal singularities and that X^gex(aw(^' Q) ~~ 1) = max{aw(X) — 6' — 1, 0}.

Since ^x4a+2 — gr'-wt=b'(z,z)z is not a square, we see that E is irreducible.
Thus TT is divisorial with discrepancy 1/2. D

Proposition 5.33. // 2a = 6' and ^x4a4"2 — gr'-wt=b'(x, z)z is n°t a

square, then there are exactly a prime divisors with discrepancies 1/2 over X.
Furthermore, there are exactly two (resp. one) divisorial blow ups of X with
discrepancies 1/2 if a > 2 (resp. a = 1).

Proof. In the case A — 0, we have to estimate the number of prime
divisors with discrepancies 1/2 over X. This can be done exactly the same
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way as in the proof of (5.26) and we know that E in (5.32) is the unique prime
divisor with discrepancy 1/2 over X. Thus (5.5) is true even in the case A — 0.

On the other hand, as in the proof of (5.14), E in (5.32) is different from
EI in (5.4). Hence we have exactly a prime divisors with discrepancies 1/2 over
X.

The last part follows from (5.4) and (5.32). D

5.34. In the case 2a = 6', we next assume that ^-x4a+2 —gr
/-wt=b/(^^ z)z

is a square. Let

Then we have gr'-wt=bf(x, z) = —Xx2a+lh(x, z) — h(x, z)2z and

j:X~{u2 + (y-h(x,z))(yz + h(x,z)z + Xx2a+l)+gi(x,z) = Q}/Z2(l, 1,0,1)
C ( Z , J / , 2 , U ) / Z 2 ( 1 , 1 , 0 , 1 )

where g\(x,z) = gr'-wt>b'+i(x,z). Let x '- (x,y,z,u)/J^ ->• (x^y^z
be the automorphism defined by

X*(xi) = x, x*(Ui) = y-h(x,z), x*(zi) = z and x*(^i) = u-

Let ji = x° j '• X ^ (xi, yiiZi, UI)/%Q(I, 1,0, 1) be the embedding. Then we
have

ji:X~ {u\ + i/JZl + 2j/izih(xi, zi) + Ai/ix?fl+1+ (/i(xi, zi) - O}/^ (1, 1, 0,

l , 1 ,0 ,1 ) -

We define cri = |(1, 6; 4- 1, 2, b' -h 1), then it is easy to see that v\ = ( j i , & i ) ^
Wi/2- We also need another embedding j% :X<-^(x\^y\^ zi,uiiti)/1v(1, 1,0, 1, 1)
such that

i) =0

We define cr2 = 1(1,6'-!, 2, 6' + 1,^+3), then we see that v2 = (^2,^2) ^ W(/2.

Proposition 5.35. Under the notation and assumptions (5.34), the v\-
blow up -KI : Xi — > X is divisorial with discrepancy 1/2 and we have

aw(^i, Q) - 1) = max{aw(X) - 6' - 1, 1}.

Proof. Let EI be the exceptional divisor of TTJ . Since

E! ~ {u2 + 2yzh(x, z) + Xyx2a+1 + gi,T>-wt=b'+i(x, z) = 0}

CP(1,6' + 1,2,6' + 1),
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we see that E\ is Cartier outside {Q2, Qa} H E\. Since Q4 £ E±, -X"i is covered
by three affine open sets as follows:

= 0} CC4 ,

U2 = {u2 + yz +2z/i(z, z)+Az2a+1 +gi(xyl/2,yz)/tf>'+1 = 0}/Zv+l(l, -2, 2, 0),

? Q, 1).

The origin Q2 of t/2 is terminal of type (cA/bf + 1) with axial weight 2. We
always have aw(X) > 6' + 1 and the equality holds if and only if Q3 $ EI. If
Q3 E J5i, then Q3 is at worst terminal of type (cD/2) with axial weight aw(X) -
b' — 1. Hence Xi has only terminal singularities and ^ge^l (aw(Xi, Q) — 1) =
max{aw(X) — br — 1, 1}. Since EI is irreducible and d(^i) = 1/2, we see that
TTi is divisorial with discrepancy 1/2. D

Proposition 5.36. Under the notation and assumptions (5.34), the v%-
blow up 7T2 : X2 -> X is divisorial with discrepancy 1/2 and we have

aw(^2,Q) ~l) = max{awpO -b1- 2,0}.

Proof. Let £"2 be the exceptional divisor of 7T2 . Since

u2 + 2/* + ^i,r'-^=6'+i(x, z) - 0

we see that E-2 is Cartier outside {<22><23,<?5} H ^2- Since <54 $ E?, X^ is
covered by three affine open sets as follows:

IT _ / u2 + ^~+ffl(x1/2,5f)/Sfc '+1=0 I r5

'"I tx -yz -2z / i ( l , z ) -A = 0 J ~ '
i =0

+ y + Sl (xi1/2, Ii)/?'+1 = 0

The origin Qa of t/2 (resp. Q5 of C/s) is isomorphic to (x, y,u)/Zb'-i(l, -2, 2)
(resp. (x, z, u)/Z6/+i(l ,— 2,2)). We always have aw(X) > b' + 1 and the
equality holds if and only if Q3 ^ £2. If Q3 e £^2, then Q3 is at worst terminal
of type (cD/2) with axial weight aw(^f) — &'-!. Other singularities of X^ are
all isolated cDV points. Hence X? has only terminal singularities. Since E2 is
irreducible, we see that -^2 is divisorial with discrepancy 1/2. D
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Proposition 50378 //2a = b' and ^x4a+2 — gT'-wt=b'(x, z)z is a square,
then there are exactly a + 1 prime divisors with discrepancies 1/2 over X.
Furthermore, there are exactly three divisorial blow ups of X with discrepancies
1/2.

Proof. If 2a = b1 = 2, then ^x6 — gr'-wt=2(x, z)z = ^-x6 — a^^x^z is not
a square. Hence A ^ 0 in this case. As in the proof of (5.14), we see that EI
in (5.35) and E% in (5.36) are both different from EI in (5.4). By considering
the Q-Cartier Weil divisor D on X defined by y = 0, we see that

D + b-LE1 and

Thus DI and D% are distinct prime divisors over X. Therefore there are exactly
a + 1 prime divisors with discrepancies 1/2 over X. The last part follows from
(5.4), (5.35) and (5.36). D

5.380 By using propositions above, we complete the proof of (3.1), (3.2)
and (3.3) if 2a = b' .

§60 Gorenstein Resolutions of Terminal Singularities

In this section, we shall give a proof of the following theorem, which we
already stated in (3.5).

Theorem 6.1. Let X be a germ of a 3-dimensional terminal singularity
of index m > 2. Then there is a sequence

-\f- T N. ~%7~ . . ~\r T! -*r -*r

AN > AJV_I > • - • > AI > AQ = A

such that
(i) Xi has only terminal singularities (i = 07 1,... , N) and furthermore

XN has only Gorenstein terminal singularities, and
(ii) TTZ is a divisorial blow up at PI-I G Xi-i with discrepancy I/rrii, where

rrii is the index at PI-I (i = 1,... , N).

The proof will be done by induction on axial weights. The following lemma
treats the case where the axial multiplicity is one and this is easily deduced
from [Kaw96] or [Reid87]:

Lemma 602, Let X = (x,2/,z)/Zm(a,-a, 1) (0 < a < m, (a,m) = 1)
be a germ of a cyclic quotient terminal singularity of index m > 2 and let
TT : X —> X be the divisorial blow up with discrepancy 1/ra. Then singularities
of X are all cyclic quotient terminal singularities of index < m.
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Proof. Since TT is given by the ^(a, ra — a, l)-blow up of X, we easily
see that there are at most two singular points on X. These are both cyclic
quotient terminal singularities. One of them is of index a, and the other is of
index m — a. D

Proof of (6.1). Let X be a germ of a 3-dimensional terminal singularity
of index m > 2. We shall prove this by induction on aw(X).

If aw(X} = 1, then X is a cyclic quotient terminal singularity. By using
(6.2) and induction on the index, we can construct a sequence of blow ups as
required.

If &w(X) > 1, then there is a divisorial blow up ?TI : X\ —»• X with
discrepancy 1/ra and we have

0™? v /o"\ i "\ <^ *™( y\ iaW^-Aj^WJ — ly _ cLW^-A J — 1

by (3.4). If the inequality (*) is strict, we have aw(Jfi, Q) < &w(X) for each Q £
X\. By induction on aw(^sT), we can construct a sequence of blow ups for Xi.
Thus we complete the proof when the inequality (*) is strict. If (*) holds with
equality, then we shall study -K\ more closely. In this case, X is of type (cD/3)
and there is a unique non-Gorenstein point Qi £ X\ which is of type (cAx/4) by
[Hay99, 4.5, 9.4]. There is a divisorial blow up 7r2 : X2 -> X\ with discrepancy
1/4 over X\ and this satisfies ^2R^X2(diw(X2,R) — 1) < aw(Xi,Qi) — 1. Thus
we have X^JRex2(aw(^2'^) ~ -0 < aw(X) — 1. We again use the induction
hypothesis on X% and get a sequence of blow ups as required. D
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