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Asymptotic Expansion of Singular Solutions
and the Characteristic Polygon of Linear Partial
Differential Equations in the Complex Domain
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Abstract

Let P(z, d) be a linear partial differential operator with holomorphic coefficients
in a neighborhood Q of z = 0 in Cd+1. Consider the equation P(z,d)u(z) = f ( z ) ,
where u(z) admits singularities on the surface K = {ZQ = 0} and f ( z ) has an asymp-
totic expansion of Gevrey type with respect to ZQ as ~Q —>• 0. We study the possibility
of asymptotic expansion of u ( z ) . We define the characteristic polygon of P(z, d) with
respect to K and characteristic indices. We discuss the behavior of u(z) in a neigh-
borhood of K, by using these notions. The main result is a generalization of that in
[6].

KEY WORDS: complex partial differential equations, solutions with asymptotic

expansion

§0. Introduction

Let P(z, d) be a linear partial differential operator with order m and holo-
morphic coefficients in a domain containing the origin z = 0 in C^+1 and

K — {ZQ = 0}. In the present paper we consider

(Eq) P(z,d)u(z) = f ( z ) ,

where u(z) and f ( z ) are holomorphic except on K. The purpose of the present

paper is to study the behavior of singular solutions near K. First we note that

for given P(z, d) we can define the characteristic polygon E with respect to K
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and exponents ^ (0 < i < p), 0 = jp < jp-i < • • • < 7i < 7o = +oc, which are
the slopes of the characteristic polygon E and called characteristic indices with
respect to K. We study the relations between behaviors of singular solutions
near K and the characteristic indices.

Roughly speaking, the main result is the following:

Consider (Eq) and suppose that the following conditions (1), (2) and (3)
are satisfied.
(1) u(z) grows at most in some exponential order near ZQ = 0, that is, there is

a 7 > 0 such that for any e > 0 \u(z)\ < C£ exp(e ZQ ~7).

(2) f ( z ) has a Gevrey type asymptotic expansion, f ( z ) ~ X^^o /r?(z/)2

\fn(z'}\ < ^4^77F(n/7-h 1), as ZQ — > 0 in a sectorial region Q(0) with respect
to z0.

(3) The traces ofu(z) on some hypersurface S have also the asymptotic expan-
sion of the same type as f ( z ) .

Then we conclude under some conditions on P(z,d), 7 and S that u(z) has
also an asymptotic expansion of the same Gevrey type as f ( z ) , as ZQ tends to
0.

In the above assertion 7 is one of jx (i = 0, 1, • • • ,p — 1). It is a gener-
alization of the main results of [5] and [6]. We treated the case 7 = 7p_i in
those papers. We studied in [5] the behavior of u(z) by analysis of an inte-
gral representation of solutions with singularities on K. In [6] we did not use
the representation but showed the possibility of asymptotic expansion of u ( z ) ,
by estimating the derivatives (d/dz$)nu(z}. So the arguments in [6] were less
complicated and completely different from [5]. In the present paper we show
the main result by the estimate of derivatives of u ( z ) , which follows [6].

In §1 we first define the characteristic polygon E. From E we determine
the indices 7, and polynomials XP<i(z/i£f) (0 — * — P ~ !)• Next we introduce
function spaces G(£l(0)) and Asy{K}(£t(6)) which are subspaces of holomorphic
functions except on K. We give the main results (Theorem 1.4) and examples.
The proof is given in the following sections. In §2 we give majorant functions
and estimate the derivatives of solutions. In §3, we give a result concerning
functions with asymptotic expansion and by combining it with the estimate
obtained, we complete the proof of Theorem 1.4.

§lo Notations and Results

In this section we give notations and definitions and state results more pre-
cisely. The coordinates of Cd+l are denoted by z = (ZQ, z\, • • • , z^) = (ZQ, z'} G
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C x Cd. z = max{|^|; 0 < i < d} and \z' = max{|z,|; 1 < i < d}. Its dual
variables are £ = (£o?£') = (£o i£ i> • • • ? £ < / ) • N is the set of all nonnegative inte-
gers, N = {0,1, 2, • • • }. For real number a, [a] means the integral part of a. The
differentiation is denoted by d2 = <9/<9z?, and d — ( < % , < 9 i , - - - ,dd) = (9o,97)-
For a multi-index a = (ao,a') E N x Nd, |a = QQ + ^ — ̂ 1=0^1- Define

9a = Y\I=Q d™' • We denote d'a = H?=i ^?a' by ^a anc^ *?/a ~ FL^i C?
a' by ^a .

Now let P(z, d) be an m-th order linear partial differential operator with
holomorphic coefficients in a neighborhood of z = 0,

(1.1) P ( z , d ) = V aa(z)da.

Let ja be the valuation of a a ( z ) with respect to ZQ. Hence if a a ( z ) ^ 0,
aa(z] = ZQ*ba(z) with ba(Q,zf) ^ 0 and for a a ( z ) = 0 put ja = +00. Let
us proceed to define the characteristic polygon E of P(z, d) with respect to
K = {z0 = 0}. Put

(1-2) ea = jn - a0,

where eQ = +CXD if aa(c) = 0. We denote by II(a,6) the infinite rectangle
{ ( x , y ) G R2; x < a, i/ > 6}. The characteristic polygon E is defined by E :=
the convex hull of UaII(|a|,eQ). The boundary of E consists of a vertical half
line E(0), a horizontal half line E(p) and p — 1 segments E(z) (1 < i < p — 1)
with slope 7t, 0 = 7P < 7p_i < • • • < 71 < 70 = +00.

Let { ( k l , e ( i ) ) G I?2;0 < i < p — 1} be vertices of E, where 0 < kp-i <
kp-2 < — • < k2 < kz-i < - - • < ko = ra. So the endpoints of E(i) (1 < i < p — 1)
are (A^_ i , e(z — 1)) and (/c7, e(i)).

Definition 1.1. The slope 7, of E(z) is called the z-th characteristic
index of P(z, d) with respect to K — {ZQ = 0}.

The definition of the characteristic indices in this paper is slightly different
from that in [4], where the characteristic indices were denoted by <j z , and 7? =
<7i - 1 (0 < i < p} holds.

Now we notice the vertices of the polygon E. So put subsets A(i) of
multi-indices and quantities lz (0 < i < p — 1) as follows:

f A(i) := {a e Nd+1; |a = ft,, JQ - QO = e(i)},

\ i, := max{|a'| : a e A(i)}.

Define a subset AQ(«) of A(i)

(1.4) A0(t) = {aeA(i
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E(0)

(m,e(0))

o (\a ,e

Figure 1. Characteristic polygon

If a G AO(Z'), jo. — e(^) — ̂  + l%. So JQ, does not depend on a for a € AQ(Z).
Hence we can define a polynomial XP,%(Z' , £ ' ) in £' by

(1.5) XP,,(Z',O = E ^(o^')r',
ceeAo(z)

which is homogeneous in £' with degree 12 and plays an important role in the
present paper.

Next let us define spaces of holomorphic functions in some regions. Let O =
O0 x ft' be a polydisk with O0 = {^o € C1 ; z0| < #} and Ox = {2' G Cd; l ^ ' j <
R} for some positive constant R. Put QO($) — {^o G OQ — {0}; | arg^ol < $}
and fi(^) = O0(6I) x Ox. O(O) (^(O7). O(n(0))) is the set of all holomorphic
functions on O (resp. Ox, £1(9)). O(£l(9)) contains multi- valued functions, if
e > TT.

We introduce the subspaces OM(Sl(9)) and A s y { K } ( f t ( 0 ) ) of

Definition 1.2. O M ( f t ( 9 ) ) (0 < « < +00) is the set of all u(z) G
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such that for any e > 0 and any 0' with 0 < 0' < 9

(1.6) \u(z)\ < Cexp(e|z0rK) for z G $1(0'}

holds for a constant C = C(e, 9f). We put O(+oo) ($7(0)) = 0(£7(0)) for « = +00.

Definition 1.3. Ast/{K}(J7(0)) (0 < « < +00) is the set of all u(z) G
0(J7(0)) such that for any 0' with 0 < 0' < 0 and any N G N

N-l x ,.

z - u*'

where un(z') e (9(Q') (n G N), holds for constants A = A(0f) and B = B(9f}.

We say that u(z) G Asy^^ (^(0)) nas an asymptotic expansion with Gevrey
exponent (or index) K. u(z] G yls?/|+00j.(O(0)) means that u(z) is holomorphic
at z = 0.

We give a condition on P ( z , d ] considered in the present paper. For fixed
i (0 < i <p- 1),

The main result is the following.

Theorem 1.4. Suppose that P(z,d) satisfies (C?) and ^p,z(0, ̂ ') / 0,
lf = (1,0, ••• ,0). Letu(z) G O(7 l )(fi(0)) 6e a solution of

(1.8) P(z,9)^) = /(z)

(1.9) d£u(zo^z")£AsyM(ft(e)n{zi=Q}) for 0 < h < 12 - 1.

T/ien ^/iere 25 a polydisk W centered at z = 0 siic/i ^/ia^ u(z) G

We considered in [6] the case i = p — I and lp-\ = 0 and obtained the
same result for this case. If (Cl) does not hold, u(z) does not have asymptotic
expansion but the behaviors of solutions become less regular. We studied in [7]
the behaviors of solutions under the condition that i = p — 1 and lp-\ = 0 but
that (Cp-i) does not always hold.

We give an example. Let us consider

(1.10) P(z, d) = df H- dfd0 -h <9^, z = (z0, zi) G C2 .
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We have

f 7o = +00, 71 = 1, 72 = 1/2, 73 = 0,

Obviously P(X 9) satisfies (C7) and \p,i(z' ', 1) / 0 for z = 0, 1, 2. Consequently
it follows from Theorem 1.4 that there is a polydisk PF centered at z = 0 such
that

i = 0 : u(z) G 0 (+3o)(n(0)), 0{X*o,0) G As2/{+oo}(n0(0)) (0 < h < 4)

/(z) G Asy{+x}(fl(0)) => u(z) G ASy{+oo}(^(^)),

z = 1 : ^(2) G O (1)(n(0)), 9^(^o,0) G ̂ s2/{i}(n0W) (0 < ft < 2) and

/(z) e Asy{l}(tt(9)) => u(z] e Asy{l}(W(0))>

i = 2: u(z] e 0 (1 /2)(n(0)), /(z) e ASy{1/2}(0(^)) => u(z) 6

§2o Estimate of Derivatives

The purpose of this section is to obtain estimates of the derivatives
d$ U(ZQ, zf). By using the obtained estimates, we show Theoreml.4 in the follow-
ing sections. So first let us study majorant functions. For formal power series
of one variable f, A(t) = £^=0 Ant

n and B(t) = E™=oBntn, A(t) < B(t)
means \An\ < Bn for all n G N. Put

for fc>0

(2.1)
for fc < 0,

which satisfy -~-(^) = 0 ( fc+1)(t) and if 0 < r < 1, i^(k] (t) < 0 ( f r+1)(t). By

modifying i/j(k\t), define other majorant functions ^^(t) ( k G Z, s G N)

(2.2) *W(f)=^y{_^_^) ( t )} where 0 < r < J R ' < l .

We have

Lemma 2.1. (1) T/ie following inequalities hold:

2.3)

R — R' k k
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(2) 7 / f c > 0 ,

(2.4) 0<a+fc>(*

(3) 7 / f c < 0 andT?' > 2r,

(2.5) 0

(4) Let \t\ < r/2. Then

(2'6)

(5) Le£ |t| < r/2, Ti^ > 2r, s > 0 and k > 0. Then there exist constants CQ
and C\ such that

(2.7)
fc!

The proofs are not difficult and we may refer it to [3] (see also [1] and [8]).
However for the convenience of the readers we give them.

Proof. (1) From the definition of (t), (R1 - t)^ (t) > 0. So (Rf -
l } ( t ) > y[°\t) > 0. By induction on s we have (R' - t)^[s} (t) > 0. It

holds that

) = Rf(d/dt)s~l((Rf - t ) - l i l j ( k + l } ( t ) + (R1 -

So we have the second inequality and the third one. The fourth inequality
follows from (R - t)~l(Rf - t)^{s} (t) = (l-(R- R f } ( R - t)-l)v[?\t) > 0.

(2) It is obvious that 0 ( s+ / c )(f) <C ̂ [s] (t) for all fc £ Z. From (1) we have
(Rf - t ) ~ l i p ( k } ( t ) < (Rr - r )~V ( f r ) W- Hence the desired inequality follows.

(3) If fc < 0, then fi'(fi'-t)-V(fc)(0 = ^Cnt
n+w/(rn+1(n+l)...

= (
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and for 0 < i < n

( n + | f c | - i + 1) • • • (n + |fc | )
(n - i + 1) • • • (n - i + | fc |) ~~ (n + 1 - z) • • • n

n

we have Cn < ̂ R' /(R1 - 2r). Hence Vk(t) < 2^R'/(Rf - 2r)^ fc )(t), from
which the inequality in (3) follows.

(4) Let \t\ < r/2. It is easy to show \ ^ ( k ) ( t ) \ < 2k+lkl/rk+l for k > 0. Let

fc<0 Thcn|^m!<f '* | f+ '*'I < 0. Then |V, (t)\ < ̂  r/+1(/ + i} (/ + | fc | )

(5) It follows from (3) and (4) that |*LajtWI < 2kR'\^a-^(t)\/(R' - 2r).
We have for s>k |^(s-^(t)| < 2s-^+1(s - k)l/rs~k+l < 2B-fc+1s!/(ra-fr+1fc!)
and for fc > s |^ ( a~ f c )(0| < 2tk-*/(r(k-s)\) < 2k+l\t\k-as\/(rk\). Hence
there exist constants C0 and Ci such that |^^(OI < C0C

k+ssl/kl D

In order to estimate holomorphic functions in a domain that is sectorial
with respect to ZQ, let us introduce a series of majorant functions {^^ (a; 2); k G

(2.8) 9[f\a.z) = ̂ l^-Jt+pZl + Z2 + ... + Zd\
\ ca J

where 0 < 2r < R1 < 1, p > 1, 0 < a < #/2 and 0 < c < 1. For a domain
/ ~ £- fp*d+l . I -v ^" t?\ / D' ^ D <^ 1 ̂  T-knf— \~ t ^L, , \Z < rtj ^-Ti <. ri ^ IJ, put

If |ZQ — ai < ca/?, then ZQ < a -j- ca/? < 2a < R and O(a, c) is a subset of O.
For formal power series -4(2) = Ea ^-a(2o — a)a°(2 /)Q! and B(z) = Ea Ba(zo —
a)a°(z')a centered at (a,0, ••• ,0) , -4(2) <C B(z) means \Aa\ < Ba for all

a G Nd+1. Define an integral operator df1 for ^(2) G O(Sl(0)) as follows:

(2.10) (9r^(^)= r* v(z0,T,z")dr
Jo

and 9f^(z) = (d^)lv(z) for / G N.

Lemma 2.2. Le^ v(^) G 0(^(0)), 0 < ^ < min{0, Tr/2} and c = sin^.
Suppose that \v(z)\ < K0^a on fi(a,c). T/ien v ( z ) <$: Kd',a(R - t)~l <C

r^ ,T,(0)/ N i , Z0 ~ a ,
-^0' a^n (a'-> z)i where t = \- pz\ + z<2 + • • • + z^.

ca
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Proof. We have by Cauchy's integral formula

(caR)a° and \dav(a, O')| < Ke> ,aa\
Since 0 < 2r < R' < R < 1,

zQ-a pzi + z2 H ----- h
caR R

<C KQI^I ( r - ( — h pzi + z2 H h
(a,0') \ \ Ca / / ( a , U ' j

a

Lemma 2.3. Let a(z) = z$b(z} (j G N) be a holomorphic function on O
<B. Thena(z) «C VBRa^R - t)~l and

ca
h pz\ + 22

Proof. We have a(z)\ < ((cR^l)a)JB < 2JBaJ on O(a, c) and by Lemma
2.2 a(z) <C VBRailR-t}-1. Since 9a^i,s)(a; z) = pai (ca)~a°^[s+|Q|) (a;z),

(a,0') *

we have (2.11) by the last inequality in (2.3) in Lemma 2.1. D

Lemma 2.4. Let w(z) be a solution of

\ d^w(zQ, 0, z") = 0 for 0 < h < I - 1.

fd' z) then uuizi <^T o NK \CL* z>
(a,0') " ' ' (a,0 ') k

Proof. The estimate of w(z) follows from 9[p-^[j)(a; 2) = ^lJ+0(a; ̂ ).
a

Lemma 2.5. Let u(z) G Asy{7}(O(6')) (0 < 7 < +00). Then d^u(z) G
As2/{7}(fi(0)) /or ^i G N and for any Q < 6f < 9 there are constants M = M(9f)
and C = C(6'} such that \d%u(z}\ < MChY(± + 1), d = 7/(7 + 1), ?n 0((9/).
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Proof. Suppose u(z) has the asymptotic expansion (1.7) with K = 7.
Then it follows from Cauchy's integral formula that d$u(z] G Asy^(^l(9})
and for any 0 < 9' < 0 there are constants A% = A2(0

f) (i = 1, 2, 3, 4) such that

\zo\»r(Z + 1) and \dftu(z)\ < + F ( £ + 1) in fl(0'). D

Now let us return to

(Eq) P(z,d)u(z) = f ( z ) .

The coefficients of P(z,d) are holomorphic in a domain containing O = {z G
Cd+1; z| < ,R}. Suppose that P(z,0) satisfies (Cl). Then ja = 0 for all a G
AO(Z) ande(z) = -k. + l^ \p^(z' , ^ ' } = Y.a^Q(i] MO, ^)Ca/ is a homogeneous

polynomial in £' with degree ^. Further suppose that ^p,z(0,|/) ^ 0, |; =
( 1 , 0 , - - - ,0). Put a(z) = (-e(z),a /(z)) G N x Nd, a'(z) = (L ( ) , • • • ,0). Then
^a(i)(0) T^ 0- Define m*(i] = max (ea — e(«)).

Proposition 2.6, Suppose that P(z,d) satisfies (Cl) and X,p,i(z' ,£'} ^ 0

on Q' = {z1 G Cd; ^ < fl}, £' = (1, 0, • • • , 0). Le^ w(^) G (9(O((9)) 6e a solution
of (Eq) wito aiu^o^,^') = 0 for 0 < / < l% - I and f ( z ) G AsyM(Sl(0)).
Let 0 < ff < min{(9,7r/2} anrf c = sin<9'. F^ M(a, c) = sup {|5^w(z)|; z G
O(a,c), 0 < n < max{— e(i),ra*(i)} }.

T/ien there are constants A = A(6'},B and p = p(0'} > I which do not
depend on a such that the following estimates hold: if 0 < i < p — 2,

(2.13)

where I/ + CXD = 0 /or i = 0, and ?/ i = p — 1,

(2.14)

/or n G N, where r,R' ,R are small positive constants with 2r < R' < R < 1.

Proo/. The assumption X/^(^£') ?^ 0 means aa^(0,zr) = b a ^ ( z f ) / 0.
So we may assume aa^(z) = 1. Putv(z) := d['u(z) and consider P(^, d}d^lL v(z).
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We decompose P(z,d)d^lt into two parts,

(2.15)

We show (2.13) by induction on n. We may assume by Lemma 2.2 that (2.13)
holds for 0 < n < N — I with N > max{— e(i),m*(i)}. By differentiating
aa(z)dad^l'v(z) (N + e(i))- times with respect to ZQ,

(2.16)
N+e(*]/AT JL f\\

nA/"+e(? ) / / \ oa o — /, / \\ \~^ / ™ "* eW \ or / \ o«' o — /, ^N+an + e i i } — r / \9 0
 ( ) ( a a ( z ) d a d 1 ' v ( z ) ) = 2^1 \d^aa(z)dndl

 I d 0
 { ) v(z).

r=0 ^ '

First let us estimate <90
 e Q(z,d)v(z). So let a be a multi-index with

ea > e ( i ) . Suppose r > ja. Then 7V+o;o+e(z)— r < N-\-e(i)—ea < N—l. Hence
by the inductive hypothesis, Lemma 2.3 and Lemma 2.4 there is a constant Co
such that

+ 00

X

ih'=0

We have, by (ea — e ( i ) ) / j l > \a — k2,

{(N + a0 + e(i) - r)(l 4- 1/7.)] +

f\/ \ -\- p( y \ — p — 7 " _ 1 _ 7UL | -r C-\L) c-n I -T Ja.

a

l/7t) - (r -
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Hence by Lemma 2.1 we have for r > ja

(2.17)

/+oo ,
hNh £ --' l ' '

+oo +oo .
- ^ ' '< M(a,c)ANpai-l'CZ+lr\

\h=0 \h'=0

Suppose 0 < r < ja. Then d$aa(z} — O(\ZQ\Ja~r). By the assumption N >
m*(i) andea-e(i) > 0, we have 0 < N + e(i)-ea < N-I and ̂ +Q°+e(l)"r =

£Q. So by Lemmas 2.3 and 2.4

+ 00

We have, by the relation (ea - e(i))/-yt > a — k,,

[(N + e(i) - ea)(l + l/7l)] + a'| + ja - r - lt

1/7,)] + (e(i) - ea) + kt - a0 + ja - r -

and

Thus we have for 0 < r < ja

(2.18) / + oo /+oo ( }

Hence, by choosing B such that 5 > 2Cb and Lemma 2.1, there are constants
AQ ~ AQ(P, c) and AI = Ai(p, c] such that



SOLUTIONS AND CHARACTERISTIC POL\GON 469

Q ( z , d ) v ( z )

« M(a,c)A0A
N I Y (N + e(l}}cr^lrl2 '0 /) \ ^ \ r /

^ ^-l-r-[Vh^l] (a^)

(a,07

\ /•=u

r+oo

+00

x

oo

I
)nm)(a"

VB'JV'I V [Ml'-+l]
2l_^ I ^_^ L j l A i

r=o

^/7=0 \^+r=/i / \/i'=0

f+00 / h
^ ' '

_ Z^
,h=0 \r=0 / \/i'=0

+oo

Next let us consider <90
 e R(z,d)v(z). We divide it into two parts,

cC+e(x)#(z, d)v(z) = R"(z, d)v(z] + flf(^, 9)^(z),

(2.19)

V V/ . / .
e a < e z r=0

,

(

E .
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where if ja > N + e ( i ) , R^(z,d}v(z] = 0. Let us estimate R?(z,d)v(z). We
have

/ -s

^h'=0

"^ D/I T\ jh I \~^ ^—^ — r / i ' / X . ,Vi ' " ' i a 5 ^ j
Z_^ I / l '+e( l)_eQ

\/i '=0 '

Since

we have

Hence we have, by choosing B with B > 2Co,

E E
j-oo /+00 1]>([Ar(1 + 1/77)]+m)

^i=0 \/i'=0

{a; ea<e

E-
+oo
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+00 +00

" - f r / e * - e i j
V Eh" Nh' '

^

+oo ^UW + l/TOl+m), x
W - * ' -

for some constants A0 — AQ(p, c) and AI = A\(p, c). As for the estimate of the
derivatives of f ( z ) it follows from Lemma 2.5 that for any 0 < 6' < 9

\d£f(z)\ <MChY(h(l + -) + !)
7z

holds for z £ Q(#'). Therefore we have

(2.20) {
1 FN(z) = -(d^e(l)Q(z,d) + R?(z,<

where there is a constant AI — A\(p, c) such that

FN(Z) < M(a,c)AiAN

(2.21) / + oo /+oo

E

Finally let us obtain the estimate of d$ v(z) by using the equation (2.20).
We have, by the assumption a Q ( 7 ) (~ ) = 1,

(2.22)

R$(z,d)v(z)
min{ja ,7V+e(z)}

= E E
|a;en<e(i)} r=0

where / is the identity operator and

' fN + e(i]
r
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Here J] means the sum with respect to (a,r) 7^ (a(i),0) with ea < e(i) and
0 < r < min{ja, N + e(z)}. Let a be a multi-index appearing in J^ . Then
e(z') — ea = e(i) — ja + ay > 0, r < JQ, and a < ^. Hence ag 4- e(z) — r > 0.
Let us show I? > a\. It holds that

/ 7 i / -\ \ 7 i 7 i • 7 i • i i i i n -^ n
h — ^? i e v^J — ^^ i ea ~ KI i Jo; ~~ C^O == ^ i Ja ~~ \Ct\ ~T \OL \ > Oi |.

So if e(i) > ea or /c? > |a| or ja > 0, we have l% > \af\ > Q.\. Let a be a
multi-index with e(i) = ea, a = kl and ja — 0. Then a = (—e(i},a'} £ A0(i)
with |a'| = l% and a 7^ GL(I). Hence a.' > ai. Thus we have l% > a.\ for a
appearing in the sum ^'.

It follows from (2.20) and (2.22) that

+ 00

(2.24) d^v(z) = Y,(~KN(Z, d))sFN(z).
s=0

Let us estimate K N ( z , d ) F N ( z } . We have from (2.21)

%aCL(z}da'd^l'd^e(l]-rFN(z}

where A\ = Ai(p,c) in (2.21). Hence, by choosing B > 2C"o, there is a constant
C = C'(c) which is independent of p such that

KN(z,d)FN(z)
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By repeating this process, we obtain

(KN(z,d)YFN(z)

(2.25)

By choosing p, A so that Cp~l < 1/2 and A > 2Ai(p,c), we have

s=0

which means (2.13) for n = N.
If i = p — 1, then ea > e(p — 1) for all a. So

and we have the estimate (2.14) by modifying a little the above arguments and
noting that the sum is taken for only a with ea = e(p — 1) in Ro(z,d) and
Ri(z,d). n

Corollary 2.7. Suppose the assumptions in Proposition 2.6 hold. Fur-
ther assume u(z) G 0(7i)(r2(0)). T/ien z/ i = 0, 1^(2) zs holomorphic at z = 0
and z/ z > 0, £/iere zs a polydisk W centered at z — 0 sitcft £/ia£ /or any £ > 0
ana7 any 0' lyz^A 0 < 0' < 61 ̂ /iere are constants C = C(9'} and ME = ME(9'}
such that

(2.26)

\d%u(z^z')\ < Af£C
nexp(e z0 ~^)T (n (^^] + l] for z G W(9')

\ \ ^ J )

and n = 0,1, • • •.
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Proof. Let \t\ < r/2. Then it follows from Lemma 2.1 that there are
constants Co and C\ such that if Q < i < p — 2,

|1T /([«(1 + l / ' y i ) ] + m ) / . x , . ~ ^n+fr+ft/ rfoU + l/7t) + 1)|W-*-[W7,+i] wl ^ G°°i r(h + i)r(
and if i = p — 1,

.

Let Wo = {z0 G C; ZQ < R/2}, W = {zf G Cd; Zl < r/2p(d+ 1), \zt\ <
r/2(d +1), 2 < i < d} and W = Wo x W'. Let 0 < a < fl/2, 0 < 6>0 <

min{0,7r/2}, c = sin#0 and |(z0 - a)/(ca)\ < r/2(d + 1). Then |— 1 +

\pz\ + 22! + "'' + Zd\ < r/2 for zf G W. Hence it follows from Proposition

2.6 that for z G {ZQ- ^—^.\ < r/2(d+ 1)} x W'
ca

\d$d{'u(z)\ < M(a,c)C0(ACl)
n+lT (n (l + -}^ l]

V V 7i / /
/ + CXD / r>/^ > / ? . / . _ i 1 \ / 7 . \ / +°° /^f/J/ \
i \—^ V£>^l I

\2^—r7
^/i=0

< M(a,c)C0(^C1)"+1C1
2

n+1exp(C<* a ~T-+i)r fn f 1 + -\ + 1
V V 7i/

for some constants €2 > 0 and C* > 0, where if z = p — 1, C* = 0. So if z = 0,
then 70 —

which means the holomorphy of u(z) at z = 0, by considering the conditions
on the traces d[u(z)(Q < I < lz) on z\ — 0. Suppose that i > 0 and u(z) G
O(7;)(O(61)). Then for any e > 0 and 9" with 00 < 0" < 9, there is a constant
K£ = K£(9"} such that M(a,c) < Keexp(e|a ~^/2). Hence

7'2 4- C* a | - ' y '+ 1 )C f oC f 3 n r n 1 4-
V V

Therefore we have from the conditions of the traces of d\u(z) (0 < / < ll) on

< Meexpfcar^'X^r ( n 1 + —
7t
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and, by putting ZQ = a,

\d%u(a,z}\ < M£exp(£\a^l)CnT (n (I + — ) +1) .
V V 7z / /

In the above we assume a > 0. If (a,z'} G W(9'), by the transformation

U(J)(ZQ, z'} — u(zQel(^, z'} (0 = arga), we can reduce this case to the preceding.

Hence we have (2.26). D

§3. Asymptotic Expansion

In order to complete the proof of Theorem 1.4 we require the following

theorem, which was given in [6],

Theorem 3.1. Let U be a poly disk in Cd+l with center z = 0 and 0 <

7 < +00. Suppose that u(z] G O(U(9}} satisfies the following estimate: for any

E > 0 and 0 < 9' < 9 there exist constants M£ = M(e,0/) and C = C(9'} such

that

(3.1)

exp(e z0 ^)Cnr n +1 /oru(z)\ i - _ , - , j ,

for all n G N. Then u(z] G Asy^(W(9}} for some polydisk W with center

Theorem 1.4 immediately follows from Corollary 2.7 and Theorem 3.1.

In [6] we showed Theorem 3.1 for rational 7, where we reduced the proof to

the analysis of some simple partial differential equation of Fuchsian type. In

this paper we show it for real 7 and give a different proof which Prof. Honda

(Hokkaido Univ.) suggested to the author. Here we use a differential operator

with infinite order and its inverse operator, which are similar to those in [2].

Only the variable ZQ is essential in Theorem 3.1. So in the following discus-

sion we treat functions in one variable and regard other variables as parameters.

First we give

Lemma 3.2. Let g(t) be a continuous function on [0,T] (T > 0) and K

be a positive constant. Suppose that there exist positive constants M and c such

that for any m G N

(3.2) \ g ( t ) \ < Mcmtmr (- + l) on [0,T].
\ K, /

Then \g(t}\ < CoA/I(ct)~K'^'2e~^ * holds for a constant CQ that is independent
of M and c.



476 SUNAO OUCHI

Proof. First we assume c = 1. Let m £ N with K/m < TK. Suppose that
K/(m + 1) < tK < K/m. Then, by (3.2) and Stiring's formula T(m/K + 1) ~
(f )m/K^2^e-m/K, there is a constant C0 such that

' r (" + 0 s ^Mf
This means |#(t)| < C0Mt~K/2 exp(-£~*) for t G [/c/(m + l),/c/m] and for all
?n £ N with tt/ra < TK. So the assertion holds for c = 1. By considering g(t/c),
we have the estimate of ^(t) for general c > 0. G

(3.3)

Now put

A
1+^nn=l

Lemma 3.38 (i) ^4(A) is an entire function with estimate

(3.4) iA(A)!<Coexp(co|Ap/^+ 1>).

(ii) 1/A(X) is holomorphic in C — (—00, —1] and there are positive constants
C\ and c\ such that

(3.5) ^(A)i"1 < Ci exp(-diA|7/(7+1)) for KA > 0

and for 0 < 9' < TT t/iere are positive constants (72 = C(^) ana7 c2 =

(3.6) |A(A)r1<C2exp(c2 |Ap /^+ 1 )) for \arg\\ <0'.

Proof, (i) Let ql+lh < |A| < (q 4- 1)1+1^ (g G N). Then
9

n
n=l

,, i 1
< exp"

+ 00

E
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-^(^1)^^^

(ii) Let 3RA > 0. Then 1 + ^7^ > 1- Hence

+°° I ^ l | ^ In i H TTT^ > SUP IT H 1.1 / > SUP
I n1+1/^ ~ z

 LL nl+l^\~ i
n=l' ' n=l '

If g14"1/7 < |A| < (q + 1)1+1/^ (g e N), then we have by the Stiring's formula

for some positive constants C ;,Ci,c and c', from which (3.5) follows.
Finally let us show the estimate (3.6). Let n(x) = [x7^7+1^] for x > 0.

Then, by integration by parts, we have

1 A,^ l ^ ^ X n X Xlog A A = / log 1 + - dn(x) = A / vy = A
(x + A)2

where ]V(x) = / -^-dt. Since JV(x) < Cx7/(T+1), there is a constant
J(Q,x] t

C2 = C2(9f) such that for A with argA| < 9' < TT

/• + oo 7

| logA(A)l < C|A| / ?
Jo \x

which means (3.6). D

It follows from (3.4) that A(X) is an entire function with exponential order
7 /(7 -h 1). So by the theory of entire functions we have

x on

,,7,

for some constants ^4 and 5. Hence we can define a differential operator A(d/dt)
with infinite order that operates on holomorphic functions: A(d/dt)u(t) =
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Define

(3-8) K(t) = -
27TZ

where argt + (p — TT| < Tr/2 and <^?| < TT.

Lemma 3.4, (i) /f (£) zs holomorphic in C(_7r/2,57r/2) = {^ / 0; — Tr/2 <
argt < 57T/2}

(3.9)

(ii) Let 0 < argt < 2?r. Then there are constants A and D such that

(3.10) (n+1)
7

(iii) There exist positive constants A, DQ and c such that

(3.11)

) I < AD™ exp(-ct-^r (n + 1) /or i > 0.

Proof, (i) It follows from (3.6) that K(t] is holomorphic in C(_7r/2,57r/2) •
It is obvious that K(t) satisfies (3.9).
(ii) For t with 0 < argt < 2?r we can choose \(p\ < ?r/2 such that arg^ + (p —

< 7T/2. Hence, 1

^ K(t]

3y Lem

1
~ 27T

ma 3.3-

r
'ii), we have

Anexp(At)
A(\)

(iii) Let t > 0. Then we have

7T/2
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So

lim (£} ( K ( t ) - ^

and

J \ / 00

r
,.

J —

+ 1)
7

Hence it follows from Taylor's expansion of (^)n(^(t) - K(te27ri] that there
are constants AS and DO such that

dtf

n+m
\T,\"~ i a \

< ™)) (0

< A2D
m+nT ((m + n + 1)

7 // \7

for any ra G N. So by Lemma 3.2 there exist positive constants A and c such
that |(ir(K(t)-K(te2™))| < ATOr((n + l)(^))exp(-et-^ for t > 0. D

Now let [/o = i>o; Pol < R}, Vo = {^o; |^o| < ^/2} and 0 < 0 < Tr/2. Let
0 < 6>0 < #, ifc(iy0) G O(C/o(0)) and z0 G F0(00). Define

1 r
(3.12) (Kifc)(^0) = 7:— I

2m Jc

where C is a closed path in Uo(0) in K;o-space, which starts at a fixed point WQ =
a, 3R/4: < a < R, encloses once the point WQ — ZQ, z$ = XQ + ^O? anticlockwise
and ends at point 1^0 = a. We may take C so that — Tr/2 < arg(w;o — £Q) < 5?r/2
for t(;o G C. We have

Proposition 3.5. (i) (Ku)(zQ) G

(A(-dZQ)(Ku)(zQ) = -
(3.13) < 11 /•

A(-dZQ)(Ku)(zQ) = — I K(w0 -
2?rz Jc
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where U(ZQ) is holomorphically extensible to a neighborhood of the origin.

(ii) I f u ( z Q ) G 0(7)(E/o(0)), then (Ku)(z0] G Asy{^}(V0(00)).

Proof, (i) It is obvious that (Ku)(zQ) G O(V0(0Q)). By Lemma 3.4-(i),

Af o wr^ / \\ 1 f — ̂ o(W())dWO / N
A(-dsJ(AX20)) = TT^ / = -u(zo)-2m Jc w0 - z0

On the other hand we have

1 r
(—dZQ)n(Ku)(zo) = / ((dWQ)nK(WQ — ZQ))u(wo)dwo

2111 Jc

1 r
= —- / K(w0 - z0)(-dWQ}nu(w0}dwQ + un(z],

2m Jc

where
n-l

un(z] = ̂ 2(dWQ)n~l~lK(wQ - z0)(-dwo)
lu(wo)\w0£dc

i=0

and dC means the boundary of C, that is, the starting point and the endpoint.

Since A(A) = Y^n=o an^n witn \an\ < ABn/T(n(j + l ) / j ) + 1), by putting

(ii) We have

Here we choose path C as follows: let ZQ = ^/a2 — y^ + iyo and C = CQ -fCi(e)

C 2(c)-Ci(e)-C 0 ,

C0 = {^o = sz0 H- (1 - s)a; 0 < s < 1},

Ci(e) = {w;o = s(20 + e) + (1 - 5)z0; 0 < s < 1},

C2(e) = {^o = £o + ee27™s; 0 < s < 1},

where e > 0 is sufficiently small constant.
We have 0 < arg(^0-^o) < 2yr for ^0 G d(e)UC2(e). Hence K(n}(w0-z0)

is bounded on Ci(e) U C^e) by Lemma 3.4-(ii). By letting c —> 0,

(3.14)

c0 -c

(K?u)(zQ) = - - {K^(w0 -

/

\
K(n\w$ - zo)u(w0)dwQ.

-Cn/
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a

C 0 + C i ( e ) + C 2 ( e ) - C i ( e ) - C o ( e )

Figure 2. Path C

We have |(^u)(^0)| < AD"n! for z0 e Vb(0o). As for (A^)Oo) it follows
from Lemma 3.4-(iii) that for small e > 0

\(K?u)(z0)\

c,(o)

Hence [9?o(Xu)(2o)i < A^T^n+l)^)) for^0 e V0(00). Thus d^(Ku)(zo)
is bounded in VQ(^O) for any n G N and has Gevrey type estimate, which means
that lim2o_,0(^T7^)(^o) exists in F0(6ru) and (Ku)(zQ) G Asy{^}(VQ(eQ)). D

Let c > 0 and AC(X) = A(cX) and define

Ac(\)

Then the similar results are valid if we replace A (A) by AC(X) and A" (A) by
Kc(\) respectively. We note that Ac(\) = Ert^a"(c)A?7 with a"(c) = c"a"
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and an(c)\ < A(cB}n /T(n(j + l)/7 -f 1), where the constants A and B are
those in (3.7)

Proof of Theorem 3.1. If 7 = +oc, (7 + l)/^ = 1 and it is easy to show
that u(z) is holomorphic at z = 0. Suppose that 0 < 7 < +00 and U(ZQ)
satisfies (3.1):

M£ exp(e|s0 ~7)C'T n + l for z £ U(0'}
d

holds for all n £ N. Let AC(X) ~ A(cX) and choose c > 0 so that cCB < 1.
Let 0 < 0' < min{7r/2,0} and 0 < (90 < 0'. Then, by the above estimate of
<90"u(z), V(ZQ) = AC(— ̂ 0)^(2o) converges and V(ZQ) G t/(7)(0'). It follows from
Proposition 3.5 that

= Ac(-dZo)(Kcu)(zQ)

= — - I Kc(w0 - z0)Ac(-dWQ)u(w0)dwQ + u(z0]
Z7TZ Jc

Since (KCV)(ZQ) G Asz/|7j.(Vo(0o)) and ii(zo) is holomorphic at the origin, we
have ^(20) £ ^sy{7}(^o(0o))- If 0 > ?r/2, we have the conclusion of Theorem
3.1 by the rotation with respect to ZQ. CH
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