
Publ. RIMS, Kyoto Umv.
36 (2000), 491 509

Invariant Sheaves

By

Masaki KASHIWARA *

§0. Introduction

The sheaves of tangent vector fields, differential forms or differential oper-
ators are canonical. Namely they are invariant by the coordinate transforma-
tions. We call such sheaves invariant sheaves.

More precisely for a positive integer n, an invariant sheaf on n-manifold
is given by the data: coherent Ox -module FX for each smooth variety X of
dimension n and an isomorphism /?(/) : f*Fy —> FX for any etale morphism
f : X —> Y. We assume that /3(f) satisfies the chain condition (see §1 for the
exact definition).

The purpose of this paper is to study the properties of invariant sheaves
on n-manifold.

The first result is that the category I(n) of invariant sheaves is equivalent
to the category of modules over a certain group G (with infinite dimension). Let
us recall that the category of equivariant sheaves with respect to a transitive
action is equivalent to the category of modules over the isotropy subgroup. In
our case, manifold may be regarded as a homogeneous space of "the group"
of all transformations, and the category of invariant sheaves is regarded as an
equivariant sheaf with respect to this action. Let us take an n-dimensional
vector space V and let G be the group of (formal) transformations that fix the
origin. Hence G is a semi-direct product of GLn and a projective limit of finite-
dimensional unipotent groups. This G plays a role of the isotropy subgroup
and we have

Theorem. The category of invariant sheaves are equivalent to the cate-
gory of G-modules.
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The category I(ri) of invariant sheaves has other remarkable structure:
filtered rigid tensor category. The group G contains GL(V) as a subgroup and
it contains Gm as its center. With respect to Gm, any G-module M has a
weight decomposition M = 0M/. For any I let us set W/(M) = ©/ '</M// .
Then it turns out that Wi(M) is a sub-G-module of M. Since the category
of G-modules is equivalent to /(n), any object F of I(ri) has also a canonical
finite filtration W, that we call the weight filtration. Thus, I(ri) has a structure
of filtered category. We say that F G I(n) is pure of weight w if Gr™ F = 0 for
I ^ w. Then the category of pure invariant sheaves of weight w is equivalent to
the category of GL(V)-modules with weight w (with respect to the Gm-action).
Hence any pure invariant sheaf is semisimple.

Moreover I(n) has a structure of tensor category by (F\ ®F2)x = ^i ®o\
F2. Thus I(ri) is a rigid tensor category.

The weight is preserved by the tensor product: Grf\F-\_ ® F2) = ©/=/1+/2

Gr^(Fi) (8) GrJ^ (F2). This structure is very similar to the category of mixed
Hodge structures or motives. In particular, we can see easily

(0.1) If Fv is pure of weight wv (y = 1,2), then

ExtJ (Fi, F2) = 0 for wi-w2< j.

We conjecture

(0.2) ExtJ(Fi, F2) = 0 for j ^ wl - w2 and j < n.

This is translated to a conjecture of Lie algebra cohomology (Conjecture A.8
for Theorem A.3 in [F]. Hence (0.2) is already known for 2j < n ).

The group Ext1(O,O1) is one-dimensional, and its non-zero element is
given by the extension 0 -> O1 -> ftn®~1 ®pM (On) -+O -> 0. Here P^ ( f t n ) x

— Pi*((OxxX/I2)®P2®<x} where / is the defining ideal of the diagonal of XxX,
and pi and p2 are the first and the second projection. Note that O has weight
0 and O1 has weight —1. When n = 1, Ext1((9, O1®2) is non zero. Its non-zero
element gives an extension

(0.3) 0 ->• ft1®2 ̂  K ^ O -»• 0.

This is connected with the Schwartzian derivative. Namely, if we take a coordi-
nate / of X then the sequence (0.3) splits. Hence there is an element s(f) £ K
such that !i?i(s(f)) = 0. if we take another coordinate g, then there exists u G

such that <poM = s ( g ) - s ( f ) . Then LU is given by {<?; f}(d})®2. Here {<?; /}
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is the Schwartzian derivative (d3g/d3 f ) / ( d g / d f ) - 3 ( d 2 f /d2g)2 /2(df /dg)2 . This
explains the cocycle condition of the Schwartzian derivatives:

{ft; g}(dg}®2 + {g; f}(df)®2 = {h; f}(df)®2.

For any n, the extension group 0"=0 ExtJ((9, OJ) has a structure of ring
by

(0.5) ExtJ (0, OJ) (

There exists a canonical element c^ G ExtJ(O,O-7) such that

Here fc[ci, • • • , cn]' = A;[CI, • • • , cn]/ {degree > n}. This follows from a theorem of
Lie algebra cohomologies (cf.[Fj). This c3 is connected with the Chern classes.
Namely for any n-manifold X, we have the homomorphism

and the image of c3 give the j-th Chern class of X.

§1. Definition

We shall fix a positive integer n. Let S be a scheme. Let us first define the
category Sn(S) as follows. The objects of Sn(S) are smooth morphisms X-^-T

over S with fiber dimension n. A morphism 99 from X—>T to X'—>Tr in £„ (5)
is a pair (</?s, (^5) where 9?s : X -^ Xf ,(pb : T ^- Tf are such that

commutes and that X —> X' x T is an etale morphism.
T'

An invariant sheaf F is, by definition, given by following data:

(1.1) To any object X^T in 5n(5),

assign a quasi-coherent Ox -module F(X—>T),

(1.2) To any morphism (p : (X -> T) -> (X1 -> T') in 5n(5),

assign an isomorphism /3(<£?) : p*F(X' —> T1} ^> F(JT —> T).
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We assume that these data satisfy the following associative law:

(1.3) for a chain of morphisms (X -> T)-^+(X' , T'}^(X" -> T"),

the following diagram commutes

> r )

((p'a o vaYF(X" -> T") T F(X -> T).

In the sequel for an object X^T in 5n(5), we write FX/T for F(X -» T)
if there is no afraid of confusion.
The invariant sheaves form an additive category in an evident way. We denote
this category by I(n)s- If there is no afraid of confusion we denote it by I(n).

The category I(ri) is a commutative tensor category. For objects F\ and
F<2 in /(n), F\ (8) FI that associates FIX/T ®ox FZX/T f°r any objects X — >• T
in Sn(S) is evidently an object of /(n). Moreover FI 0 F2 = F2 (8) ^i- Let us
give several examples of invariant sheaves.

Example 1.1. The object O E /(n). This associates to any X — > T the

sheaf Ox-

Example 1.2. The object Ofc E /(^)- This associates to any X —> T,
the sheaf O^ /T of relative &-forms.

Example 1.3. The object 9 E I(n). This associates to any X —> T the
sheaf QX/T of relative tangent vectors.

Example 1.4. Sm(Qfc). This associates 5m(O^/r).

Example 1.5. For any object X -> T in Sn(S), let A)?/r be the ra-th
infinitesimal neighborhood of the diagonal of X x X. Namely if we denotes by

r
/ the defining ideal of the diagonal X ^ X x X, then A^r is the subscheme

T

of X x X defined by /m+1. For z = 1,2 let pt be the composition
T

X x J^ —>• X where the last arrow is the i-ih projection. Then p(m) associates
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pi*OA(7n) . More generally, for any invariant sheaf F, p(m)(F) that assigns
AX/T

is an invariant sheaf. Then there exists an exact sequence

0 -+ S771^1) 0 F -> P ( r n ] ( F ] -> p(m

Example 1.6. Wm(P). This associates the sheaf Wm(Px/r) °f the
(relative) differential operators of order at most m. We regard this as an Ox-
module by the left multiplication.

Example 1.7. Wm(Dop). This associates the same sheaf Wm(Dx/T]

but we regard this as an Ox-module by the right multiplication.

§2. Finiteness and Flat Conditions

§2.1. Finiteness condition

For the sake of simplicity, let us assume that

(2.1.1) 5 is Noetherian.

We keep this assumption in the rest of paper. An invariant sheaf F is called
coherent if FX/T is of locally finite type for any X/T in Sn(S}. Then FX/T is
necessarily locally of finite presentation. In fact there exists locally in X and
T a morphism X/T to An x S/S in 5n(5). Since An x S is locally Noetherian,
^A"x5/5 is a coherent OA™ xs-niodule. Hence the pull-back FX/T is locally of
finite presentation.

Let us denote by Ic(n) the full subcategory of I(n) consisting of coherent
invariant sheaves. Then we can see easily that Ic(n) is an abelian category.

§2.2. Flat condition

An invariant sheaf F is called invariant vector bundle if FX/T is flat over
T and locally of finite presentation over Ox for any X/T in Sn(S).

Proposition 2.2.1. // F is an invariant vector bundle then FX/T is
locally free of finite rank for any X/T in Sn(S}.
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Proof. It is enough to show that F&n xs/s 'ls a locally free O&n xs-module.
Since this is flat over 5, it is enough to show that for any s £ 5, FA^XS/S is
locally free. Thus we may assume that S = Spec(k) for a field k. Since F&n is
equivariant over the translation group G and G acts transitively on A71. Hence
F is locally free. D

Let us denote by Ib(n) the category of invariant vector bundles. If S is
Speck for a field k, then Ib(n) and Ic(n) coincides. The functor (g) is an exact
functor on /6(n), and a right exact functor on Ic(n). For F in J6(n), let F*
be the invariant sheaf that associates Homox (Fx/r, Ox) with X/T in Sn(S).
With this, J6(n) has a structure of rigid tensor category.

§3o Main Results

§3.10 Infinitesimal neighborhood

Let f : X <—> Y be an embedding and let / be the defining ideal of f ( X ) .
Then for m ^ 0, Spec((9y//m+1) is called the ra-th infinitesimal neighborhood
of X (or of / :X^Y).

§3.2. The group G

Let us fix a locally free O5-module V of rank n, (e.g. V = Of1). Let V
be the associated vector bundle Spec(50s(V*)). Then V —> S is an object of
Sn(S). Let i : S —> V be the zero section and let us denote by Wm(V) its ra-th
infinitesimal neighborhood. Then 5 = Wo(V) C W^i(V) C • • • is an increasing
sequence of subschemes of V. Let us set

G(m) = {g& Auts(Wm(V)); g fixes W0(V)}.

Then G(m) is an affine smooth group scheme over 5 and we have a canonical
smooth surjective morphism G(rri) —> G(m — 1). Let G be the projective limit
of {G(ra);ra G N}. Then G is an affine group scheme over S. Let Wm(G) be
the kernel of G —> G(m). Then

(3.2.1) W°(G) = G,

(3.2.2) G/Wm(G) = G(m),

(3.2.3) G/Wl(G) = GL(V).

For ?T? > 0, l/F?77(G)/^777 + 1(G) is an abelian unipotent group scheme corre-
sponding 5 7 7 7 (V*)(g)V (e.g. Wm(G)/Wm+l(G) = Spec(S((Sm(V*) (g) V)*) ) ) .
Note that G is a semi-direct product of GL(V) and Wi(G).
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§3.3. Statement

A G-module A/ is by definition a quasi-coherent (9s-module with a struc-
ture of TTvC^G-comodule, where TT : G —> 5 is the canonical projection. A
G-module AI is called coherent if it is coherent over Os-

If M is a coherent G-module then the action of G on M comes from a
G(ra)-module structure on M for m >> 0. Our main result is the following.

Theorem 3.1. The category Ic(n) of coherent invariant sheaves is equiv-

alent to the category Modc(G) of coherent G-modules.

Remark. Let X —> S be a smooth morphism of fiber dimension n and let

i : S —» X be its section. Let Wm(i) be the ra-th infinitesimal neighborhood of
i. Let G(m)l be the group of automorphisms of Wm(i) that fix W$(i) = i(S).

Then G7 = HmG(ra)7 is isomorphic to G locally in 5 with respect to the Zariski
777

topology. Moreover the category of G-modules is equivalent to the category of
G i-modules.

§4. The Weight Filtration

§4.1* Definition

The group G contains Gm as the homothetie subgroup by Gm x V 3

(t,x) H->- tx G V. Any coherent G-module M has a weight decomposition

(4.1.1) M= 0 All.
fez

Here Gm acts on At? by

tu = teu for u G Mf, t G Gm.

We set

(4.1.2) Wi(M) = 0 Mm.
m<£

We call this the weight filtration of At.

§4.2. Weight filtration

We shall prove that W^(M) is a sub-G-module of M. We shall embed Gm

into A1. Let Gm x G —^->- G be the modified adjoint action <p(t,g) — t~lgt.

We can see easily the following lemmas.
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Lemma 4,2.1. (p : Gm x G — >• G extends uniquely to a morphism (p :
A1 x G^G.

Lemma 4.2.2,, For any I > 0, (p : A1 x Wi(G) ->> Wi(G) is equal to
the second projection modulo tf , i.e. the composition Wi-i(A1} x W*(G) — >
A1 x W^(G) — > W^(G) equals the second projection. Here W^

These lemmas imply the following result.

Proposition 4.2.3. Le£ M be a G-module.

(i) W^(M) is a sub-G -module.

(ii) For# G W™(G),(0- 1) sends W*(M) mto Wt-m(G).

Here # G Wm(G) means g G Homs(T, Wm(G)) for an S-scheme T. In the
sequel, we use the similar abbreviation.

Proof. For any g G G, 6 E Z and u^ G M^ let us write gub — Tig^u^
with Qab^b G Ma. Then ip(t,g)ub — TJt

b~agabUb. Since this is a polynomial in
t,gabUb = 0 for a > 6. This implies (i). If g G Wm(G), then the coefficients of
tc in Yitb~agabUb (0 < c < m) vanishes. Hence ^G6^6 = 0 for b > a > b — m.
Thus gub — Ub G © Afa. This shows (ii). D

a<b — m

Since M is coherent, W(M) is a finite filtration of M. For a, 6 G Z with
a < 6, we say that M has weights in [a, 6] if Wb(M] = M and Wa_i(M ) = 0.
For w G Z, we say that M is pure of weight w if M has weights in [iu, w].

Corollary 4.2.4. If M has weights in [a, 6], then the G-module structure
of Ad comes from a unique G(b — a)-module structure on M.

§5. Functor $

§5.1. Definition

Let F be a coherent invariant sheaf in Ic(ri). Let i : S — >> V be the zero
section of the vector bundle V -> 5 (c.f. §3). Set $(F) = z*Fr/s. Then $(F)
is a coherent (9s-module. In the sequel we shall endow a G-module structure
on
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§5.2. Weight decomposition

The group GL(V) acts on V and hence on i*Fy/s- Therefore <3>(F) is
evidently a GL(V) -module. Since Gm is contained in GL(V) as the center,

has a weight decomposition

(5.2.1)

where t G Gm acts on $(F)/ by tl .
As in §4, we set

(5.2.2)

Then W is a finite filtration on $(F). We call it the weight filtration of
).
Similarly to the G- module case, we say that for a < 6, F is with weight in

[a, 6] if W6($(F)) = *(F) and Wa_i($(F)) =0.
Let X — >• T be an object in Sn(S) and i : T —> X its section.

Proposition 5.2.1. Let f and g be morphisms in Sn(S) from X —> T
to X' — >• T' . Let i : T —> X be a section and let T^ be its m-th infinitesimal
neighborhood.

Let F be a coherent invariant sheaf with weights in [a, b\. We assume

(5.2.3) The diagram T1'777) — >• X commutes.

X ^ X'

(5.2.4) m>b-a.

Then the following diagram commutes:

i*Fx/T.

The proof will be given in §5.4.
Admitting this proposition for a while, we shall give its corollary.
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Let T be an S-scheme and T^ a T-scheme. We assume that locally
in T, T^m^ is isomorphic to the ra-th infinitesimal neighborhood of a section
T -> X of a smooth T-scheme X -> T with fiber dimension n.

Corollary 5o2«,2= Let F be a coherent invariant sheaf with weights in
[a, b] and m > b — a. Then there exists a OT(rn) -module FQ satisfying the fol-
lowing properties (5.2.5) and (5.2.6).

(5.2.5) For g : T1 -> T, let X' -> T' be an object of Sn(S] and let j' : T'^ =
T' x T^m) <^-» X' be an embedding by which T^m) is the m-th infinitesimal

T
neighborhood of i1 : T1 <—> T'^ ^ X' . Then there is an isomorphism j ( j ' ) '

(5.2.6) 7(j') satisfies the chain condition. Namely let f : (X" -> T"} — >•
(X1 -> T'} be a morphism in Sn(S), j" : T" x T<m) --> X/x a morphism over j'

and i" the composition of T" <->• T/7 x Tm and j" . Then the diagram
T

x,/T, -

commutes.

Since the proof is straightforward we omit the proof.

§5o30 Deformation of Normal cone

In order to prove Proposition 5.2.1, we use the deformation of normal cone.
Let us recall its definition. Let X be a scheme and Y C X a subscheme defined
by an ideal /.

Let t be an indeterminate and consider the ring

0 rrn cOx[t,t-1}.
n£Z

Here we understand /" = Ox for n < 0.
Set Cy/x — Spec(®/r7t~ n) and let q : Cy/x — > X be the projection. This is

called the deformation of normal cone. Then t gives a morphism CY/X ~^ A1.
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Then p~1(0) is isomorphic to the normal cone NY/x — Spec( © In/In+1)
n>0

and p-^A^IO}) - X x (A^jO}). The homomorphism ®Int~n

n

OYtn gives the embedding F x A1 C CY/x-
n>0 n>0

If X and Y are smooth over T, then CY/X is also smooth over T. If there

is a smooth morphism X' — >X and f~~lY = Y' , then there is a Cartesian
diagram

•y f -\r

If X is a vector bundle over T and if Y is the zero section of X —> T, then there
is a unique isomorphism X x A1^—>Cy/x such that X x Al-^Cy/x -^ X is

given ( x , t ) —> tx and X x A1 = CY/X—^A1 is the second projection.

§5.4. Proof of Proposition 5.2.1

Let us prove Proposition 5.2.1. By [EGA], we may assume T to be Noethe-
rian. By replacing T with 5 we may assume T — S. Locally in F, there exists
a morphism from Y —> S to V —> S in Sn(S) such that the composition
5 —» X —> Y —» V coincides with the zero section. Hence replacing Y —> S
with V —> S we may assume from the beginning that

(5.4.1) Y = V

(5.4.2) S —>• X —> Y coincides with the zero section.

Hence CS/Y = YxAl as seen in the preceding section. Thus we obtain a
diagram of schemes over 5 x A1.

Cs/x

f .x td .xid
41-

Y x A1 ^ CS/Y > Y x A1

Note that fs and gs are etale and hence fs and ps give morphisms / and
g from (Cs/x -> 5 x A1) to (C5/y -> 5 x A1) in 5r?(5

f).
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Lemma 5.4.1. fs and gs are equal modulo tm, i.e.

=

commutes (i.e. the two possible compositions are equal).

Proof. Let Ix C Ox and IY C OY be the defining ideal of S C X

and S C y. Then by (5.2.3), Oy =4 Ox -> Ox/I^~m commutes. Hence

/y =4/x -> Ix/Ix+m commutes. Thus IY=^IX -> fx/f
l
x
m commutes for

l> I.

Hence ® IYt~l =* ® Il
xt~

l -> Ods/x/tOcs/x = 0<f<m(Ox/Il
x)t

m-1®

© (Il
x/I

l+m)t-1 commutes. D

Now let j : S x A1 — > Cs/x be the canonical embedding. Let jY be the
composition fs o j = gs o j.

Then we obtain the homomorphism (p\

x A1 -»• 5 x A1) ->• j^F((7s/y -»• 5 x A1)

:F(Cs,Y ^Sx A.l)0M~rF(Cs/x -+ S x A1)

fls*F(C's/y -> 5 x A1) - fiF(CSIY -» 5 x A1)

jyF(Y x A1 ->• 5 x A1).

Let us denote by (p the composition

Fx ^ fg*FY

Then outside t ^ 0, (p coinsides with t~1(pt. Thus t~l'-pt extends to t = 0, and
equals to the identity modulo tm by Lemma 5.4.1. Now let us write

for u

with ( p v u ) E

Then ^(tt) = ^t-j/(pt/tJL(tu) = Y^tf*~"(Pi'n(u)- We have ^(u) = ^ mod t™-
Hence ^v^(u] = 0 for /i - z/ < 0 and ^^^(u) = 0 for m > // - z/ > 0, ̂ ^^(u) = w.
They imply that <^(M) — it e V^Ai_m(<l>(F)). Therefore we obtain (^ = id by
(5.2.4). This completes the proof of Proposition 5.2.1
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§5.5. The G- module structure on

Let F be a coherent invariant sheaf and let us take b > a such that

a<l<b

Let us take ra > b — a. We shall endow the structure of (^(raj-module on

as follows. For g £ G(ra), locally on 5, there exist a morphism / : V —> V

such that the diagram

Wm(S) -A Wm(S)

V - V

commutes. Hence / is etale on a neighborhood of i(S). We define the action of

g on $(F) — i*F as the inverse of the composition

• * T~i / _f* '\* 7~n •* J** T~i \j •* T~lz Fv = (f oi) Fv ^ i f Fy^4i Fv.

This definition does not depend on the choice of / by Proposition 5.2.1. This

gives evidently the structure of G(m) -module and hence the structure of G-

module via G —> G(m). Thus we obtain the functor $ from Ic(n) to the category

of coherent G-modules. Evidently $ commutes with the tensor product.

§6. The Functor B

§6.1. Jet bundle

Let us construct a quasi-inverse B of $. We shall use a standard technique

that uses jet bundles. Let us recall the definition of a jet bundle. Let X — )> T be

a smooth morphism with fiber dimension n. Let &X/T ^e ^e ra-th infinitesimal

neighborhood of the diagonal X in X x X. Let pi : A ™,T — >> X x X — >• X be
r ^/J- T

the first projection and p% : A^^ —> X x X —>• X the second projection. The
T

jet bundle J^?^ of order ra is the scheme over X that represents the functor

X' M> {<£?; (p is an isomorphism from X' x VF^A7"1) to

Here X' x A^r is the fiber product via A^^-^X. Hence there exists a
.X"

canonical isomorphism
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Moreover the action of G(ra) on Wm(An) induces the action on

TT : JX/T ~^ ^ *s a Principal G(m) bundle. Note that JX/T ~^ ^ '1S

trivial with respect to the Zariski topology of X.

§602. Construction of the functor B

Let M be a coherent G-module. Let us take ra^>0 such that the G-action
on M comes from a G(ra)-action on M.

For a morphism X —> T, let B(M}x be the associated bundle of M with re-
spect to JX/T- Namely let q : JX/T ~^ $ and TT : JX/T ~^ X be the projections.
Then B(M)x is the subsheaf of ir*q*Af consisting of the sections invariant un-
der the action of G(ra). Here the action of G(ra) on ?r*q*M is induced by its
action on M and the one on J™/T> This definition does not depend on ra. In

fact for m' > ra, there is a canonical G-equivariant morphism J^T —> J£/T-
Then X \-> B(M}x is evidently an invariant sheaf and we shall denote it by
B(AI). This definition does not depend on the choice of ra and it gives an exact
functor from Modc(G) to Ic(ri).

§6.3. B and $

We shall prove that B and $ are quasi-inverse to each other. We can
see easily that <&B(M) = AI for M G Modc(G). In the sequel we shall show
M> (F ) = F for F E Ic(n). Let us set M = &(F) and let us take b > a such
that Wb(M] = M and Wa-i(M) = 0. Then for ra > b - a, G(ra) acts on M.
Let us take X —> T in Sn(S] and let us consider the diagram

f

A 1

4-
T(m)

Then TT gives a morphism / from JX/T
 x X

and hence an isomorphism
- ~ m

Let i : JY/T ^ ^X!/T x ^^ anc^ ^ ' ^X/T °~^ ^xyr x ^ denote the embeddings.
Then by Corollary 5.2.2 we have a canonical isomorphism

(6.3.1) i*F (m} x A , I / t /(»o ~^*F („) , (m, .
J X A J J A J
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We have z*F 7 (m ) A71 , 7 ( m ) = g*M where q : Jy^L — > S is the canonical projec-
JX/TXA /JX/T A/J-

tion and i'* F 7(m) v/ T(™) = f * F x / T - We can see easily that the isomorphism
JX/T * A / J Y / T ' '

q* M ~ f*Fx/T is Cr(ra)-equivariant and hence B(M) = FX/T- This completes
the proof of B o <3> = zd

§7. The Weight Filtration

We established the equivalence Modc(G) and Ic(ri). Since any object of
Modc(G') has a weight filtration W , any object Ic(n) has a weight filtration W .

The corresponding properties of W for Modc(G) imply the following prop-
erties.

(7.1) F !->• Wi(F) and F *-> Gr]v(F] are exact functors from Jc(n) to /c(n).
(7.2) For invariant sheaves FI,FI G /c(n), we have

Wi^/^Wi^Fi) ® W«2(F2)) = Wi^FO ® Wl2(F2).

(7.3) For Fi,F2 G /c(n) and / G Z, the above isomorphism induces an
isomorphism

©z=/1+z2Gr^ (FO 0 Gr^(F2)-^Gr^(F! 0 F2).

(7.4) For F E /6(n), M/_/_i(^(F)*) = 0 and Gr^ (F^) = (Gr^(F))*.

Thus Ib(n) has a structure of a filtered rigid tensor category.

Example 7.1. O is pure of weight 0. B is pure of weight 1 and £lk is
pure of weight — fc.

Example 702, P(m) is of weight [-m,0] (c.f. Example 1.5) and
for 0 < / < m.

Example 7.3B Wm(P) is of weight [0, m] (c.f. Example 1.6) and
Wi(Wm(D)) = Wi(V] for 0 < / < m. We have Wm(D) = (7> (m))*.

§80 Lie Derivative

§8=1. Definition

Let F be a coherent invariant sheaf, X — > T an object in Sn(S) and i; a
relative tangent vector on X/T. Then we can define a Lie derivative L(v) :
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FX/T —* FX/T that satisfies

(8.1.1) L(v)(au) = aL(v)u 4- v(a)u

for a G Ox and u G FX/T-

Let us set T" = T x Spec(Z[e]/e2Z[5j) and A" = X xr 71' and define an
automorphism / : X' —> X' over T' by x •-> x -f et'(x). Let p be the projection

(X' — > T') to (X — » T). Then we have a homomorphism

^ : p*3Fx/T - FX'/T' — > FX'/T' = P*3FX/T.

Since ps*PlFx/T — Fx/T®eFXjT, we define ip(v) by 0(u) = u(&£L(v)u. Then
L(i>) satisfies the relation (7.1.1). Moreover we have

-1.2)

for Vi,v2 G &X/T-

Note that for any 5 G FX/T-> v t~> L(v}s is a differential operator from

T to FX/T-
This definition coincides with the usual definition of the Lie derivative on

^e derivative acts on VF777(D) by the adjoint action.

§8.2o The infinitesimal action

Let g be the subsheaf of p* (Qy/s) consisting of tangent vectors that van-
ishes at the zero section. Here p : V — > S is the projection. Then we have

(8.2.1) Q = S+(V*)®os V

where S+(V*) = ®/>o^(V*). Set Wi(g) = 0i-z'<z5r(V*)(»V. Then W0(0) = fl
and 9/^-777-1(9) is the Lie algebra of G(m). Hence for F G /(n), 9 acts on
4>(F) as its infinitesimal action. This action coincides with the action through
the Lie derivative.

§9» Characteristic Zero Case

In this section 9, let us take Spec(/c) as S for a field k of characteristic

0. Then V may be regarded as an n-dimensional vector space over k. In this
case, the Lie algebra 9 in §8.2 coincides with S+(V*) (8) V where 5+(F*) =

@i>oSl(V*). It contains the Lie algebra F* 0 V of GL(V). Therefore the
category of G-modules coincides with the category of (9, GI/(F))-modules.
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Set W-I(Q) = ®i-i'<-iS1'(V*)®V. The action homomorphism g®M ->• M
preserves the weight filtration W for a (0, GL(V))-module M. Hence if AI is a
pure module, W-i($) annihilates AI and hence AI is a GL(V)-module. Thus
we have

Proposition 9.1. Any pure invariant sheaf is semisimple.

This implies the following result by a standard argument.

Proposition 9.2. Let F^ be a pure invariant sheaf of weight wv (y —
1, 2). Then we have

(9.2.1) ExtJb(n)(Fi,F2) = 0 for wi - uu2 < k.

As stated in the introduction, we conjecture
Conjecture ExtJb^^Fi,/^) = 0 for w\ — w? / k and k < n.
Since the category of G-modules coincides with the category of (0, GL(V))-

modules, we can translate results in the Lie algebra cohomology (e.g. in [F]) in
our framework. For example by the result of Goncharova([G]), we have when
n= I

!

k for ? = 0 and j = 0,
fc for i > 1 and j = (3i2 - z)/2 or (3z2 + i)/2,
0 otherwise.

§10. Variants

§10.1. Complex analytic case

We can perform the same construction for the complex analytic case.
Namely we take Sn the category of smooth morphisms X —> T of fiber dimen-

sion n of complex analytic spaces. A morphism / from X —> T to X' —> T'
is a commutative diagram

x -A> x1

a' i a \,
rj-if Jb ^ rj~i

such that X -^ X' XT T' is a local isomorphism. Then the invariant sheaves
are defined similarly to the algebraic case. The category of invariant sheaves
(in the complex analytic case) is equivalent to the category of G-modules with
S = Spec(C).

Hence it is equivalent to /(n)spec(C)- ^n another word invariant sheaves are
same in the complex analytic case and algebraic case.
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§10. 2o Multiple case

Instead of working on the sheaves on X, we can work on the sheaves on
X XT X. More precisely we can consider the following category J(n;2). An
object of J(n; 2) is the data:
(10.2.1) To any object X —> T in Sn(S), assign a quasi-coherent OX*TX mod-
ules FX/T whose support is contained in the diagonal set.
(10.2.2) To any morphism ip = ((p8,(pb) • (X -> T) -> (Xf -» T') in 5n(5),
assign an isomorphism

0((p) : ((ps x (ps)*Fx'/T' -^ FX/T-

Here (ps x (ps is the morphism X' XT' X' -» X XT X induced by (p.
We assume the similar associative law to the invariant sheaf case. We call

an object of I(n\ 2) a double invariant sheaf. Similarly to the invariant sheaf
case we define /c(n;2) to be the category of double invariant sheaves F such
that FX/T are locally of finite presentation. For an object X — >> T in <Sn(S),
let pi : X XT X — > X be the projection. Then for a double invariant sheaf

\-> pi*Fx/T is an invariant sheaf. Thus we obtain the functor

Let us denote by O^(m] the double invariant sheaf that associates OA(,n) to
.Y/T

X — > T in Sn(S). Here AX/T is the m-th infinitesimal neighborhood of the
diagonal embedding X c-> X XT X. Then for a double invariant sheaf F, there
is an action O^(,n) ®O\XT\ FX/T ~^ FX/T if we take m sufficiently large. It in-

duces pi*(C?A(m) ) ®PI*(FX/T] ~^ PI*(FX/T)- Thus we obtain a homomorphism

in I(n]

We can see easily

Here p : W rm(V) -> 5 is the projection. We have p*OWm(v}

5(V*). Here W_/(5(V*)) = 0r>/5z /(V*). Thus we obtain

Proposition 10,2,1, /c(n;2) is equivalent to a category of G -modules
with the structure of 5(V*) -modules M such that 5(V*) 0 M -> M Z5 G-
equivariant (more precisely W r_/(5(V*))M = 0 /or / > 0 and 5(V*)/W_/
(5(V*)) (g) M ->• M zs G-equivariant}.
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