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The Generalized Fock Implementation of
Complex Orthogonal Transformations

By

Paul L. ROBINSON*

Abstract

We determine precise necessary and sufficient conditions for a complex orthogo-
nal transformation to admit a generalized implementing operator in a Fock represen-
tation, extending classical results due to Shale-Stinespring and Carey-Palmer.

§0. Introduction

The Fock representation determined by a compatible complex structure
on a real Hilbert space serves as the standard model of a free fermion field
and as the foundation for further fermionic models in quantum field theory and
quantum statistical mechanics. Regarding this representation as a quantization
of the original real inner product space, the problem naturally arises of deter-
mining which (classical) orthogonal transformations of the real inner product
space are represented by (quantum) unitary operators on the Fock space.

In order to be more explicit, let V be the original real inner product space
and J G O(V) a compatible complex structure: fermionic Fock space /\[V] is
the completion of the (complex) exterior algebra /\(V) relative to a natural
inner product; the Fock representation TT : V —> B(/\[V]) of V by self-adjoint
bounded linear operators on AJV1 is defined in terms of creators (multiplication
operators) and annihilators (linear antiderivations). Now, we shall say that
the orthogonal transformation g G O(V) is unitarily implemented in the Fock
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representation TT if there exists a unitary (implementing) operator U on A[V]
satisfying

v G V => UTT(V) = 7r(gv)U.

A famous theorem of Shale and Stinespring establishes that such a U exists if
and only if the antilinear part Ag = ^(g — JgJ) is of Hilbert-Schmidt class.

The real inner product on V extends to the complexification Vc to de-
fine both a symmetric bilinear form (•]•) and a Hermitian inner product ( - | - ) .
The eigenspaces V^ = Ker(Jc =F H) of the complexification J"c yield a de-
composition Vc = V+ © V~ into {• -)-perpendicular (• -)-isotropic subspaces,
whose corresponding projection operators will be written P+ : Vc —> V+ and
P~~ '• Vc —> V~. Each complex orthogonal transformation G G O(Vc) extends
naturally to an automorphism of the purely algebraic complex Clifford algebra
but need not extend to its enveloping G* algebra; accordingly, operators imple-
menting G in the (complexified) Fock representation need not be unitary and
may actually be unbounded. In fact, a theorem of Carey and Palmer exhibits
a dense ?r-stable complex subspace V C A[V] and assigns to each G G O(Vfc)
for which P+GP- + P-GP+ is Hilbert-Schmidt and (P+GP+ + P~GP-} - /
is trace-class a complex-linear automorphism U of T> such that

v G Vc => UTT(V) = 7r(Gv)U.

It is entirely reasonable to seek a context within which more general com-
plex orthogonal transformations of Vc are suitably implemented in the Fock
representation. Here we opt for what is arguably the most flexible context. To
be explicit, we consider as fundamental the Fock representation TT on the exte-
rior algebra f\V together with the induced representation TT on its full (purely
algebraic) antidual i\V comprising all antilinear functionals /\V —> C. Notice
that f\V contains as a canonical copy of A[V] the space comprising all bounded
antilinear functionals f\V -> C. In this context, we define a generalized Fock
implementer for G G O(l/c) to be a nonzero complex-linear map U : f\V —> f\V
that intertwines TT on A I/with TT on f\V in the sense

v£Vc=> UTT(V) = 7r(Gv)U.

It is relatively straightforward to see that if G admits a generalized Fock im-
plementer then the compression P~G\V~ has finite-dimensional kernel. Per-
haps surprisingly, the converse is true: if the compression P~G\V~~ has finite-
dimensional kernel then G admits generalized Fock implementers. Our proof
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that this is so proceeds by applying successive complex orthogonal reflections
to reduce the kernel of P~G\V~ to zero and then exhibiting a specific gener-
alized Fock implementer when P"G\V~ is injective. The flexible purely alge-
braic nature of this context facilitates adaptation to more restricted contexts
upon the imposition of analytic constraints: thus, it permits recovery of the
Shale-Stinespring and Carey-Palmer theorems; also, it suggests the possibil-
ity of handling further situations in which traditional implementing operators
cannot be defined.

The organization of this paper is as follows. "Complex orthogonal trans-
formations'1 presents essentially those aspects of the complex orthogonal group
O(Vc) that are directly relevant to our approach. "Generalized Fock implemen-
tation" develops and establishes the aforementioned necessary and sufficient
condition in order for an element of O(Vfc) to admit a generalized Fock im-
plement er. Finally, "Remarks" offers brief comments on matters arising from
the approach, among which we mention the following: elements of O(Vc) may
admit independent generalized Fock implementers, in contrast to the familiar
situation for traditional Fock implementers; much of the theory applies not just
to O(Vc) but to those complex-linear transformations of Vc that preserve ( - | - )
but are not necessarily surjective.

For a thorough Clifford algebraic discussion of Fock representations, see
[6]. Since its appearance in [10], the Shale-Stinespring theorem has received
numerous treatments; we mention only [1] and [2]. The Carey-Palmer theorem
appears in [4]; [3] and [5] contain related material. [7] presents an alternative
approach deserving of further study. See [9] for physical situations in which
passage beyond traditional Fock implementation is mandatory. The notion of
generalized Fock implementation was investigated for real orthogonal transfor-
mations in [8]. The ideas for (1.6) and (1.7) were adapted from [5] and [4]
respectively.

§1. Complex Orthogonal Transformations

Let V be a complex Hilbert space: denote by J its complex structure, by
(• •) its complex inner product and by (• •) the underlying real inner product;
thus, if x, y G V then

(x\y) = (x\y)+i(Jx\y).

The complexification Vc = C 0 V r = Vr + iVr carries a canonical conjugation
Y^ given by the rule that if T, y, z G V and c £ C then J^(c ® z) = c ® z and
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^(x + iy) = x — iy. It also carries both a canonical complex inner product ( - | - )
given by

a, /3 e C, x, y 6 V ==> (a <g> z|/3 (g) y) = a/3(x|y)

and a canonical symmetric complex-bilinear form ( • ] • ) given by

a,/3 G C, T,y G F => (a (g) x|/3 0 T/) = a/3(x|?/).

These structures are related by the formula

x,y E Vc => (x\y) = (Zx\y).

The complex structure J : V — > F extends to Jc : Vc — > Vc by complex-
linearity, thereby inducing an eigendecomposition

Vc = V+ 0 V~

in which the eigenspaces

V^ = Ker( Jc T i/)

are both (mutually) perpendicular for ( - | - ) and (maximally) isotropic for (• •).
Denote the projections of Vc on V+ and V~ by P+ — |(I — zJc) and P~~ =
^(J + zJc) respectively; the bijective restrictions V —> V+ : v M> v+ — P+v and
F-^y~ : v \-> v~ = P~v are then complex-linear and antilinear respectively.

Note that if xi, yi, X2, 1/2 £ V' then

We may express a complex-linear map G : Vc — > Vc relative to the decom-
position Vc = V+ ®V~ in block form

where G^ : l/± — >• l/1^1 and G±T : FT — >• F±. In practice, we prefer to express
G in the modified block form

A~+(G) C— (G)

defined by the rule that if v G V then

G± ±(y
±) = (C±±(G)i;)±

whence C^ = C±±(G) : V -+ V are complex-linear and
V -^ V are antilinear. Of course, this modified block form behaves properly
under composition.
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Theorem 1.1. // H, G : Vc — > Vc are complex-linear then

C++ _ ^++^++ i 4 + - A- +
^ HG ~ °H °G < ̂ Jf ^G

AG

Proof. Direct calculation from the definitions: for example, if v G V then

whence projection in V~ and 1/+ yields the central pair of displayed formulae.
D

Further routine calculation, based on the fact that ^ —
/ O

fied block form, establishes that if G : Vc — > Vc is complex-linear then

O I
in modi-

A+-(G), G— (EGE) =

Let us indiscriminately denote by * adjunction relative to the complex
inner product ( - | - ) on both V and Vc-

Theorem 1.2. If G : Vc —^ Vc is complex-linear then

A~+(G*) = A+-(G)*, G— (G*) = G— (G)*.

Proof. Straightforward calculation from the definitions, based on the fact
that if xi, y2,zz, U2 £ V then

D

Let us denote by T adjunction relative to the complex-bilinear form (•
on Vc: thus, if G : Vc -^ Vc is complex- linear then
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Theorem 1.3. If G : Vc —> Vfc is complex-linear then

G++(GT) = G— (G)*, A+-(GT) = A+-(G

Proof. Straightforward calculation from the definitions, based on the fact

that if zi , 2/1 , Z2 , 2/2 e

D

Our chief concern is with the complex orthogonal group O(Vc) comprising
all complex-linear automorphisms G of Vc that satisfy GT = G"1 and therefore
preserve ( - | - ) in the sense

We remark that each G & O(Vfc) is automatically bounded; its {• -)-adjoint is

As the transformation G : Vc — > Vc is complex orthogonal precisely when
GTG = / and GGT = I simultaneously, so the following theorem and subse-
quent remark are relevant to 0(Vc).

Theorem 1040 The complex-linear map G : Vc —> Vc satisfies GTG = /
if and only if it satisfies

Proof. Both directions follow at once upon combining (1.1) and (1.3). D

Similarly, the complex-linear map G : Vc —> Vc satisfies GGT = / if and
only if it satisfies
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Theorem 1.5. If G G O(Vc] then the following diagram is commutative:

Proof. The third of the identities in and after (1.4) imply that

(C^~)M£~|KerC£~ and C^~(^^+)*|Ker(C^")* are zero maps while the

second of the identities in and after (1.4) imply that (A^+)*Aj~|Ker C^~ and

Ag~(Ag+)*\Kei(C£~)* are identity maps. D

Regarding this result, we make two remarks. First, the formulae of (1.2)

enable us to rewrite the commutative diagram in the more symmetric form

Second, the commutative diagram implies particularly that KerCG and
Ker(C^~)* are equidimensional, so the index of CQ~~ is zero when it is de-
fined.

Orthogonal reflections are special elements of O(Vfc). Recall that if w G Vc
satisfies (w\w) = 1 then orthogonal reflection of Vc in the hyperplane perpen-
dicular to w is the element H G O(Vfc) defined by

v G Vfc =>• Hv = v — 2(w\v)w.

Theorem 1.6. // G G O(Vc) is such that the dimension o/KerC^" is
finite and nonzero then there exists a reflection H G O(Vfc) such that
is a hyperplane in

Proof. A particular consequence of (1.5) is the existence of u G Ker CQ~
such that A~Q~U G Ker(CQ~)* is a unit vector. If H G O(Vc) is reflection in
the hyperplane perpendicular to AQ~~U then an elementary calculation reveals
that if v G V then

CHGV = CG~V ~

As RanC^~~ and Ker(C^~)* are perpendicular, so it follows that

KerC^ = {v G KerC^" : (A+~v\A+-~u) = 0}.

A further application of (1.5) thus establishes that KerC^ C KerC^~ is
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indeed a hyperplane. D

Of course, induction on this result proves that if G G O(Vc) and
has complex dimension n then there exist n orthogonal reflections whose prod-
uct H G O(Vc) renders C^g injective.

The following result offers an alternative means of eliminating even-
dimensional kernels.

Theorem 1070 If G G O(Vc) is such that KerC^~ is even-dimensional
then there exists an even-rank antilinear endomorphism h = —h* of Vsuch that

»--'[: G O(Vc) renders CHG injective.

Proof. Taking (1.5) into account, the even-dimensionality of KerCG

enables us to choose an antilinear automorphism h = —h* of Ker(C^~)* such
that hAg~ : KerC^~ —> Ker(C^~)* is an isomorphism. Extend h by zero
on the orthocomplement of Ker(C^~)* and observe that the modified block
operator

«=
lies in O(Vc). We claim that

is injective. To see this, note first that if v G V then hA^~v and CQ~V are
perpendicular: thus, if Cj^^v — 0 then both CQ~V and hA~Q~v vanish, so the
injectivity of hA^~\Kei CQ~~ forces v = 0. D

We remark further that if RanC^~ is closed then CjjQ is an isomor-
phism. In fact, decompose v£Va,sv = x-\-y with x G Ker(C^~)* and
y G RanC^". As CQ~ : (KerC^")x -^ RanC^~ is surjective, so there exists

2/o ^ (KerC'c")"1 sucl1 that cc~y<> = 2/- As hAG~ : KerC^~ -> Ker(C^")*
is surjective, so there exists x0 G KerC^~ such that hAg~~x0 = x - hA^Ty^.
Assembling the pieces, C^(XQ + y0) = x + y = v.

Finally, we consider briefly the real orthogonal group O(V] comprising all
real-linear automorphisms g of V such that g* = g~l. Of course, complexifica-
tion embeds O(V) in O(VC).

Theorem 1.8. // g G O(V) then G = gc lies in O(Vfc) and satisfies
G^ = ^G; conversely, each element of O(Vc) that commutes with Y^ arises
in this way.
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Proof. Elementary: the forward implication holds essentially by the

complex-bilinearity of ( - | - ) on Vc; the reverse implication holds because complex-

linear endomorphisms of Vc commuting with ^ stabilize V. D

By direct calculation, if the real-linear endomorphism g of V is extended

to G = gc by complexification, then C^+ and CQ~ coincide with the complex-

linear part Cg = \ (g — Jg J) while AJ~ and A^+ coincide with the antilinear

part A9 = \(g + JgJ).

§2. Generalized Fock Implementation

The carrier space for the Fock representation of V develops from its exterior

algebra /\V. Recall that /\V is graded by degree:

f\V =

where A° V = C and where if n > 0 then f\nV is spanned by the decomposables

Vi A ... A vn for vi,.. . ,v71 G V. Recall also that /\V has a standard complex

inner product ( - J - ) for which the homogeneous summands are perpendicular,

the Fock vacuum 1 G A0^ is a unit vector and if xi,... , xn, yi,... ,yn G V

then

(xi A ... /\xn\yi A ... /\yn) = Det[(xa\yb)}.

By definition, fermionic Fock space /\[V] is the complex Hilbert space comple-

tion of AV relative to this inner product.

It is illuminating to consider alongside the exterior algebra /\V its full

antidual f\V' comprising all antilinear functionals AV —» C. The full antidual

is naturally an associative algebra: the diagonal map V —> V © V induces an

algebra homomorphism f\V —> /\(V®V) which when followed by the canonical

isomorphism /\(V 0 V) —>• /\V eg) f\V yields a (coassociative) coproduct A :

f\V —> A F 0 A F ; this determines a canonical (associative) product in /\V

according to which if <f>, ^ G f\V and 9 G f\V then

The full antidual naturally includes the exterior algebra as a subalgebra: indeed,

an algebra embedding is induced by the standard inner product, thus

f\V -^ f\V' :6^ ( - \ 6 ) .
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In fact, f\V includes a canonical version of A[V]: namely, the space comprising
all bounded antilinear functionals on AV; thus /\V d A[V] C f\V is a Gelfand
triple.

When v G V we define the creator c(v) : I\V — >• f\V to be the operator of
left multiplication by v so that

(j) G f\V => c(v)(/) — v A (/)

and define the annihilator a(v) : I\V — > AV to be the linear antiderivation
annihilating the Fock vacuum and satisfying

w G V => a(v)w = (v w)

whence in particular if VQ, . . . ,vn G V then
n

CL(V)(VQ A . . . A vn) = ^(-l)fc(v vk)vo A ... A vk A ... A vn

k=0

where : signifies omission as usual. A straightforward determinant al calcula-
tion reveals that these operators are mutually adjoint in the sense that if v G V
then

(/>,i/> £ /\V => (a(v)(/)\^) = (ct)\c(v}^}.

Accordingly, when v G V we extend c(v) and a(v) to the antidual by declaring
that if $ G AF' and i/j G /\V then

These extended operators are evidently continuous when /\V' is equipped with
the weak (evaluative) topology.

Recall that if X and Y are linear operators on a vector space then their
anticommutator is defined by

{ X , Y } = XY + YX.

Theorem 2.1L Creators and annihilator s satisfy the canonical anticom-
mutation relations on /\V and /\V : if x,y G V then

{a(x),c(y)} = (x\y)I

{c(x),c(y)} = 0.
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Proof. Validity on i\V' follows by antiduality from validity on /\V. Re-
garding validity on /\V itself, the last relation holds by aiiticommutativity of
exterior product and the first relation holds by adjunction, while the central
relation holds because if (/) £ f\V then

a(x)c(y)<t) = a(x)(y A 0)

= [a(x)y](f)-y A (a(x)(j)}

D

As a particular consequence of the canonical anticommutation relations
and the mutually adjoint nature of creators and annihilators, if v £ V and
(j) £ /\V then

whence c(v) and a(v) are bounded linear operators on /\V . It is not difficult to
verify that the continuous extensions of c(v) and a(v) from i\V to A[V] coincide
respectively with the restrictions of c(v) and a(v) from /\V to A[V].

After these preliminaries, we may introduce the Fock representation itself.
Traditionally, this associates to each v £ V the map

7r(» = c(v) -f a(u) : A|V] -+ A[F]

which is a self adjoint bounded linear operator whose square is scalar multipli-
cation by \\v ||2. Though it is not important for our account, it follows that TT
extends to define a representation of the C* Clifford algebra of V on A[V]. For
our purposes, it is important that TT extends to Vc by complex-linearity: thus,
if x, y G V then

TT(X + iy) = TT(X) + iir(y)

TT(X+ + y") = c(x) + a(y).

Passing beyond tradition, when r; G V we may regard TT(V) = c(v) + a(v)
as a linear endomorphism not only of fermionic Fock space A[V] but also of
the exterior algebra and its full antidual. Thus we obtain TT as a representation
of V on the triple /\V C A[V] C AV7 which we call the generalized Fock
representation. This representation also extends to Vfc by complex-linearity:
note that if v G Vc then

$ G AF' ,7; G AF ^ 7r(
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and that if x, y G Vc then

Implement ability in the Fock representation was initially considered for
real orthogonal transformations. The celebrated Shale-Stinespring theorem [10]
establishes that if g G O(V) then there exists a unitary operator U on A[V]
such that

v G V =4> UTT(V) = 7r(gv)U

precisely when the antilinear part Ag = ^(g + JgJ) is of Hilbert-Schmidt class.
Fock implement ability of complex orthogonal transformations is decidedly less
straight-forward. In [4] Carey and Palmer construct a 7r-invariant dense com-
plex subspace T> C A[V] and to each G G O(Vc) for which not only A^
are Hilbert-Schmidt but also CQ^ — I are trace-class they associate a linear
automorphism U of T> such that

veVc^ UTT(V) = 7r(Gv)U.

Here we shall proceed in an essentially algebraic manner, replacing fermionic
Fock space /\[V] by the exterior algebra /\V and its full antidual f\V . On the
one hand, we shall thereby develop the Shale-Stinespring and Carey-Palmer
theorems as far as may be reasonably expected. On the other hand, we shall
have to sacrifice some of their representation-theoretic aspects.

By way of preparation, it is technically convenient to introduce trans-
formed creators and annihilators. Thus, let G G O(Vc) and let v G V. We
define

as linear operators on AV. These are not generally mutual adjoints: rather,
elementary calculation involving the formulae after (1.1) reveals that if </>, 0 G
/\V then

(aG(v)(/)\ib) = (0|cEGE(?;)0).

Accordingly, we extend CG(V) and aG(v) to linear operators on AV^ by declaring
that if $ G AF' and ifj G AV" then
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These transformed creators and annihilators continue to satisfy the canonical
anticommutation relations on both /\V and f\V .

Theorem 2.2. If G E O(Vfc) and x, y E V then

{aG(x),cG(y)} = (x

{cG(x),cG(y)} = 0.

Proof. As an illustration, take the central identity: from the original
canonical anticommutation relations (2.1) and the first identity of (1.4) it fol-
lows that

(aG(x), C G ( y ) } = {c(A^-x) + a(C^x), c(C^y) + a(A'+y)}

n

The relevance of transformed creators and annihilators to Fock implemen-
tation is evident from the next result.

Theorem 2.3. // G E O(Vfc) and v£V then

7r(Gv) = CG(V) + aG(v).

Proof. Recall that if x, y G V then TT(J:+) = c(x) and ir(y~) = a(y}.
Accordingly, from

it follows that

7r(Gi;) -

a
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Now, by a generalized Fock implementer for G G O(Vc) we shall mean a
(nonzero) complex- linear map U : /\V —> f\V such that

v G Vc =» UTT(V) = 7r(Gv)U

or equivalently

iUc(v}=cG(v}U

and by a generalized Fock vacuum for G G O(Vc) we shall mean a (nonzero)
vector <1> G AV' such that

v G V => ac(v)$ = 0.

Theorem 2.40 Le£ G G O(Vfc) : £/ie rw/e $ = [71 establishes a bisection
between its generalized Fock vacua 3> G AV' and its generalized Fock imple-
menters U : /\V —* AV'; £/MS bisection has the property that if vi, . . . , vn G V

A . . . A vn) = CG(VI) . . . cG(vn)&.

Proof. In the one direction, if U is a generalized Fock implementer and
if v G V then aG(v)Ul = Ua(v)l = 0 so that Ul is a generalized Fock vacuum.
In the other direction, if $ is a generalized Fock vacuum then the canonical
anticommutation relations of (2.2) guarantee that Ul := <& and the indicated
rule

v i , . . . ,vn G V => U(vi A . . . /\vn} = cG(vi) ...cG(vn)&

together well-define a generalized Fock implementer. Of course, the correspon-
dence $ o U is bijective. D

It is an elementary fact that if $ G AV' and if each vector w in the
infinite-dimensional subspace W C V satisfies C(K;)$ = 0 then $ = 0: indeed,
if vi , . . . , vn G V then choosing a unit vector w £ W perpendicular to each
yields not only

A . . . A vn) = 3>(a(w)(w A vi A . . . A vn))

= [c(w)3>](w A vi A . . . A i;n) = 0
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but also

$(1) = $(a(w)w) = [c(w)Q](w) = 0.

This elementary fact leads at once to a necessary condition for the existence
of generalized Fock implement ers.

Theorem 285. If G G O(Vfc) admits a generalized Fock implementer
then KerC~~(G) is finite- dimensional

Proof. Let the (nonzero) vector <3> G AV"' be a generalized Fock vacuum

for G: if v G KerC~(G) then

whence the fact recorded prior to the theorem implies that A^ (G) [Ker C~~(G)]
is finite-dimensional; an application of (1.5) concludes the proof. D

As a matter of fact, this condition for the existence of generalized Fock

implement ers is not only necessary but also sufficient; to see that this is so, we
proceed by stages.

At this point, it is convenient to discuss briefly Gaussians in a generalized
sense. Thus, to each antilinear map Z : V — > V that is antiskew in the sense

let us associate the quadratic £ G /\V vanishing except in second degree and
satisfying

x, y G V => C(z A y] = Zx(y)-

The (generalized) Gaussian

ez = y Ic* G /\vz-^ nl
nGN

converges weakly since each element of A V vanishes in sufficiently high degree.

Note that if v G V then by induction

n G N => a(v)C = n(Zv)C~l

whence by summation

a(v}ez = (Zv)ez .
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With this understanding of Gaussians, we may be very explicit about gen-
eralized Fock implementers for a significant class of complex orthogonal trans-
formations.

Theorem 2M, Each G G O(Vc) for which C~~(G) is injective admits
a generalized Fock implementer whose corresponding generalized Fock vacuum
is a Gaussian.

Proof. Choose a subspace W C V complementary to RanC^~ in the
algebraic sense. Define the antilinear map Z : V —> V by the rule that if
it;, WQ G W and v, VQ G V then

Z(WQ + CC~VQ)(W + CG'V) = (CG~ VQ\A%T V) + (wQ\A^,~v) - (w\A^~Vo).

The map Z is antiskew, for the third identity of (1.4) shows that if x,y G V
then

-x) = M[(CC~)*^G~ + (A+TC^y} = 0.

The map Z also satisfies

A+-

for if w G W and v, VQ G V then

Thus, if i' G V then

and so the Gaussian ez is a generalized Fock vacuum for G. D

Fock implementers for complex orthogonal reflections may be described
explicitly using the parity operator F : f\V —> f\V which multiplies elements of
degree n G N by (-1)".

Theorem 2.7. If w G Vfc is a unit vector then 7r(w)T : /\V —> i\V is a
Fock implementer for orthogonal reflection of Vc in the hyperplane perpendic-
ular to w.
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Proof. Let H £ O(Vc) be orthogonal reflection of Vc in the hyper plane
perpendicular to it;. As 7r(w)2 = I so if i> E Vc then from

TT(W)TT(U) -f 7r(t>)7r(it;) = 2 (it; i;)/

it follows directly that

7r(w)7r(v) = 7r(2(w v)w — V)TT(W) = —7T(Hv)7r(w)

whence {F,7r(u)} = 0 implies

D

We remark that here, the implementing operator on AV extends to an
implementing operator on /\V by antiduality: if it; £ Vc then

$ £ AV', i/j £ /\V => [TT(

while F : /\V —> f\V is self- adjoint so

We remark further that by induction, each H E O(Vc) that is a finite product of
orthogonal reflections admits a Fock implementer U : I\V —> f\V which extends
to a Fock implementer U : AV' —> AV' by antiduality, thus

$ G AV', 0 E AV =

Finally, we are able to prove the following converse of (2.5).

Theorem 2«,8. Each G E O(Vc) for which Ker C~~(G] is finite-dimen-
sional admits a generalized Fock implementer.

Proof. This may be formalized as an induction on the complex dimension
of Ker C~~(G). The base step is provided by (2.6) of course. For the inductive
step, note first that (1.6) furnishes a complex orthogonal reflection H E O(Vfc)
such that Ker C~~(HG) is a hyperplane in Ker C~~ (G): now, H admits a Fock
implementer UH '• AV' — >• AV' by the first remark after (2.7) and HG admits
a generalized Fock implementer UHG '• AV —> AV' by the inductive hypothesis;
as is readily verified, the composite UH ° UHG '• AV —> AV' is a generalized
Fock implementer for H o HG = G. D
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§3o Remarks

Here we offer a number of brief comments on issues arising from the body
of the paper.

Recall that as regards traditional Fock implementation in (say) the Shale-
Stinespring context, the unitary implementers (equivalently, the displaced vacua)
are unique up to scalar multiples. By way of contrast, it is interesting (perhaps
surprising) to observe that the situation regarding generalized Fock implemen-
tation can be radically different. To take a simple example, let G G O(Vc)
be such that C~~~(G) is injective but not surjective. Let RanC~~(G) have
W C V as an algebraic complement and let z : W —>> W be any antiskew map.
A glance at the proof of (2.6) reveals that G admits as generalized Fock vacuum
the (Gaussian) exponential of the antiskew map Z + z : V —> V defined by the
rule that if W,WQ G W and V,VQ G V then

(Z + z)(w0 + CG~VQ)(W + CG~V) =

Z(WQ)(W) + (C^~V0\A^,~V) + (W0\A+-V) ~ H^T^o).

In fact, the existence of independent displaced vacua is not limited to complex
orthogonal transformations: it already occurs for real orthogonal transforma-
tions. Let V be infinite-dimensional, let K G O(V) be a quaternionic (that is,
antilinear complex) structure and let

be an orthogonal decomposition into K-invariant complex subspaces. Choose
a real sequence (9n '• n G N) such that the sequence (cosOn : n G N) is (say)
strictly positive and converges to zero. It is readily verified that if

then Cg = ® r?G]v(cos^T?)/ is injective but has zero in its spectrum.
Let us extend the notion of adjunction, declaring that the adjoint of the

complex-linear map U : /\V — >• /\V is the complex-linear map U* : /\V — >• f\V
defined by

With this declaration, if G G O(Vfc) has U : /\V -> /\V as generalized Fock
implementer then G* = ^ G~l Y^ has U* as generalized Fock implementer. To
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see this, note first that if v G V then (1.3) and the remark after (1.4) imply
that

) ~T~ Qi(./i./^i C_y ^-« _ ]_ " L 7 ) i~ C[*r±s^i j\.s-^_^U}

= c(v)

so that

whence if also <j>, rp £ AF then

Accordingly, if i; £ V then

and similarly

It is natural to ask why C~~ but not C++ should be revelant to generalized
Fock implementation. One answer to this question involves the anti-Fock repre-
sentation. For this, let V have conujugate space V: the same real inner product
space but with reversed complex structure and complex inner product; the cor-
responding eigendecomposition Vc = V+ ® V~ has V+ = V~ and V~ = V+ .
The anti-Fock representation TT of V is by definition the Fock representation of
V: thus, if v E V then TT(V) = c(v) -h a(v) where (initially) c(v) is left multi-
plication by v on AV" and a(v) is the linear antiderivation of /\V annihilating
1 and satisfying a(v)\V = (• v). Now, each G G O(Vc) may be regarded as
G G O(VC) with C±i:(G) = C=F=F(G) and A±=F(G) - A^±(G). Accordingly, it
follows from (2.5) and (2.8) that G admits generalized anti-Fock implementers
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precisely when KerG++(G) is finite-dimensional. Another answer is based on
the observation that if G G O(Vfc) then G ~ ( G ~ l ) = C--(GT) = G++(G)*
by (1.3) whence KerC~~(G~1) and KerG++(G) are equidimensional by (1.5).
Accordingly, it follows that if G G O(Vc) then G"1 admits generalized Fock
implementers precisely when KerG++(G) is finite-dimensional.

In both the Shale-Stinespring and Carey-Palmer contexts, the Fock im-
plemented orthogonal transformations constitute a group. By way of contrast,
the orthogonal transformations admitting generalized Fock implement ers do not
constititute a group in infinite dimensions. Thus, it is possible for G G O(Vc)
to admit generalized Fock implementers while G"1 does not: we need only
exhibit a G for which KerC~~(G) is finite-dimensional while KerC++(G) is
not; for example, (1.4) and the subsequent remark show that such arises upon
choosing a quaternionic structure K G O(V) and setting

G= K I e 0(VC).

Observe that this phenomenon cannot occur for real orthogonal transforma-
tions, for if g G O(V) then G++(#c) — C~~(gc) = Cg. Also, it is possible for
elements of O(Vc) to admit generalized Fock implementers while their product
does not. In fact, this phenomenon even occurs for real orthogonal transfor-
mations: if K G O(V) is a quaternionic structure then g = -4=(/ + A") G O(V)

admits generalized Fock implementers (Cg = -4^1 is injective) while g2 does
not (Cg2 is zero).

It is worth pointing out that many of the results in the paper extend
beyond the complex orthogonal group. For instance, let G : Vc — > Vc be a
complex-linear map that preserves the symmetric complex-bilinear form ( - | - ) in
the sense

but do not suppose that G is surjective: thus, assume GTG = I but do not
insist upon GGT = /, so (1.4) applies but the subsequent remark need not. As
before, define a generalized Fock vacuum for G to be a nonzero vector 3> G V
such that

v G V => CLG(V)$ = 0.

A glance at the proof of (2.5) reveals that it continues to apply in this context:
if G admits generalized Fock vacua then KerG~~(G) is finite-dimensional.
Conversely, if Ker G~~(G) is finite-dimensional then G admits generalized Fock
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vacua essentially as in (2.8); the proofs of (1.6) and (2.6) carry over without
substantial change. •
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