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Zero Actions Energy Functions
for Perfect Crystals

By

Timothy H. BAKER*

Abstract

We give a combinatorial description of the action of the crystal operators e~b, /o

on certain perfect crystals of U'q(C^}), U'q(D^]] and U'q(D
(*l^, by means of Dynkin

diagram automorphisms and Schensted column insertion. Also, for certain level 1

perfect crystals of these algebras we give a definition of a combinatorial "charge"

related to the energy function on homogeneous paths in such crystals.

§1. Introduction

The theory of perfect crystals, initiated in [KMN1, KMN2] has provided
the impetus for numerous investigations in various areas of science. Indeed,
crystal base theory has turned up in areas as diverse as soliton cellular au-
tomata [HKT, FOY], and even the genetic code [FSS]! Its main application
however, has been in the area of solvable lattice models. Rather than provide
a comprehensive synopsis of role of crystal base theory in this area, we merely
refer the reader to [HKOTY], where such a treatment is given, along with a
large list of modern references.

For our purposes, it is enough to recall one of the defining characteristics
of crystal bases, namely their nice behaviour under tensor products, given by
the rule
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where 0t(6) = max^/,)* 6 + 0}, £- , (&) = max{/c|(ez)
A' 6 ^ 0}. It follows from

this rule, that

0t(&i ® M = max(^(62) , & (62) + 0i (61) - £1(62))

(1.2) e,(bi <8> 62) = max(e t(&i) , e f (&i ) + e t(62) - 0»(&i))

These formulae, along with the description of the crystal bases of irreducible
representations of t/g(0), where 0 is one of the classical Lie algebras, given by
Kashiwara and Nakashima [KN] will be the main ingredients we shall require
to present our results.

The purpose of this article is two-fold. In the first part, we consider the
level / perfect crystals of U'q(%) where 0 is one of Cn , Dn and Dn_li' Let
0o be the classical part of 0, so that 0o is given by Cn, Dn and Bn respec-
tively. Specifically, we consider the UQ(Q) crystals which are isomorphic to
jB(7An) (and J5(/An_i) in the case 0o = Dn) when considered as a C/q(0o) crys-
tal. In reference [KMN2], the zero action (action of the crystal operators CQ,
/o) on such crystals was defined in terms of a Dynkin diagram automorphism,
say a (we use the same symbol to denote the action of the Dynkin automor-
phism on the roots of 0 as well as on the crystal elements). The image of a
crystal element 6 under such an automorphism was computed by choosing a
sequence of raising operators such that b' = e?1 • • • elp b was a highest weight
element for a certain subalgebra of 0o- The subalgebra was chosen such that the
highest weight elements were multiplicity- free, in which case cr(bf) is uniquely
determined from weight considerations alone. One can then reverse the above
traversal so that cr(b) = fa(ip] ' ' ' fa(ii] &(b'} can then be computed. Here, we
shall give a more combinatorial approach using the Schensted (column) inser-
tion procedure. Knowledge of the action of the Dynkin automorphism then
allows one to compute the zero action since CQ b = cr~1ea-(0) °"(&) an(i similarly

for /o. For the U'q(C
(n]] and U^D^) crystals, we shall take advantage of the

embeddings Cn, Bn
 c-> A^n-i, while for the Uq(Dn ) crystals, we can compute

the automorphism directly.
In the second part, we shall study the local energy function H on certain

level 1 crystals B of the same types. In the case of the Uq(An ) perfect crystals1

use the notation of [HKOTY] with regards to the crystals J3r's
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B1'1 and B1'1 it was shown by Nakayashiki and Yamada [NY] how to associate

to each classically restricted (in)homogeneous path (i.e. annihilated by e? for

1 < i < n) p = bi &> • • • (8) bL where each b% E B, a semi-standard tableau T(p).

Moreover, they were able to show that the Lascoux-Schiitzenberger charge [LS]

of such a tableau was directly related to the energy of the corresponding path.

This was subsequently generalized to the crystals Bk'1 by Schilling and Warnaar

[SW] and Shimozono [Shi]. In this article, we consider the level 1 perfect crystals

B11'1 of U'q(c£]), Uf
q(D

(n}] and U'q(D
(^) and show how to associate to each

finite, classically restricted, homogeneous path p in (Bn-l)®L, a tableau T(p).

To such an object T(p), we can define a charge such that charge (T(p)) is related

to the energy E(p) of the path p.

§2. Dynkin Automorphisms

§2.1. CW

In reference [Kas], it was proven that certain I7g(g) crystals can be embed-

ded into a Uq(tj) crystal where g is a subalgebra of f). In this section, we aim to

describe explicitly the embedding of Uq(Cn} crystals into Uq(A2n-i) crystals.

This in turn, will allow us to compute the action of the Dynkin automorphism

on the U ' q ( C ( n ] ) crystal Bn>1.

First, let us introduce some notation for ordered sets. By an ordered set, we

mean a set A := {ai, . . . , ap} such that a\ < • • • < ap. Let \A\ = p denote the

cardinality of A, and let Ac denote the complement of A in the set {!,... , n}.

For an ordered set A, let A := {o^,... , oT}. Given two ordered sets A and

B, define a partial order A < B to mean that \A\ > \B\ and that az < bl for

1 < i < \B\ i.e. writing the entries from top to bottom, the two columns A\B

constitute a semi-standard tableaux in the usual sense.

Consider A2n-i tableaux on the alphabet

(2.1) A :={!,... , n , n , . . . ,T}, l< • • • < n <n < • • • <l

and let BA(^A) be the A2n-i crystal with highest weight

rc-l

? , and /-

then by defining

~(2.2) S ( f ) =
(f(A}\2
(In I

If /? , and /- denote the A^n-i crystal operators which act on this crystal,
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Cn

Figure 2.1. Dynkin diagrams for A2r^_l and Cn •

~(c^\
then the crystal generated by acting with the lowering operators S(fl ) on

the highest weight element u\A of BA(^A), is isomorphic to the Uq(Cn} crystal

BC(\C) with highest weight AC = X^- ra^Ai . Jn other words, we have an

embedding E : BC(^C) ^ BA(^A}- The explicit description of the Uq(A2n~i)

and Uq(Cn) crystals we shall be using here, along with the action of the crystal

operators ez, fa can be found in [KN].

To describe this embedding explicitly, let us first begin with the one-column

case, so that AC = A& for some fixed k, with 1 < k < n, and hence A^ =

A & -f A^q-j- for 1 < k < n and \A — 2An for k = n. Thus, the elements in

the Uq(Cn) crystal BC(\C] are given by tableaux consisting of one column

of length k, satisfying the conditions specified in [KN], while the elements in

the Uq(A2n-i] crystal ^(A^) are given by the usual 2-column semi-standard

tableaux with column lengths 2n — k and k.

Given a Cn column P say, let P+ (resp. P_) denote the set of unbarred

(resp. barred) elements appearing in b. Following [She], we define two new sets

Q± as follows. Let

K := P+ H P_, J := max{A C (P+ (J P-)c \ \A\ = \K\ and A < K}

Here, the maximum is taken with respect to the partial order on ordered sets,

and Pc := {!,... ,n}/P. Note that J is well-defined, since the fact that at

least one such set A exists is equivalent to the fact that the set P obeys the

one-column condition (ICC) for Cn tableaux (see (2.9)). Having calculated J

and K, set

Q±~(P±/K)UJ

The construction of the sets Q± can be visualized in the following way: con-
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sider two parallel vertical lines with the entry i £ P+ (resp. P_) denoted by
"particles" at position i on the left (resp. right) line, and all other positions
are considered "holes" . Starting with the highest pair of particles on the same
level, move the particles downwards into the highest "pair" of holes. Repeat
this for the remaining pairs of particles from top to bottom. The left (resp.
right) vertical line now gives the entries in Q+ (resp. Q-}.

Note the following useful properties

Lemma 2.1. We have

1. If P := {ii, . . . ,ip,jq, . . . ,Ji} E Bc(^k) then for any m, I, we have

m + l < max(zm, ji)

2. If Q := {ii, . . . , zp, jg, ... , jj} is defined as above, then for any ra, /, we
have

m + l > (miu(zm, ji) - 1 + (p + q) - ri)+ + 2

where (z)+ = max(x,0).

Proof. I is given in [KN, Lemma 4.3.1], while 2 follows from the definition
of Q, using a similar argument. D

Using this Lemma, we can now prove the following

Proposition 2.2. Define a map ip by

(2.3) _
(Q+ Q-

Then ^ : Bc(Ak) c~> BA(^U + ^2n-k) i>s a crystal embedding.

Proof. We first show that ijj(P) is a well defined A^n-\ tableau. Certainly
the strictly increasing vertical condition is satisfied by definition. For the weakly
increasing horizontal condition, note that |P^| = P+j +n — k > |P+|. We shall
first show that the subtableau P^_ P+ satisfies the horizontal condition. Let
P+ = {ii, . . . , i p } . Given im E P+, we shall show that the ra'th entry of P^, call
it (P^.)m say, satisfies (P^)m < im. Let j\ be the largest integer < m appearing
in P_, if such an integer exists (if no such j\ exists, then {!,... , m} C Pf and
so (Pf. }m = m < im and we are done). From Lemma 2.1 we have

m + I < max(zm,jj) = im
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Hence we have

(Pl)m = m + #{j e P_ | j < m} = m + I < im

Let us now show that the tableau (Q+}C\Q~ satisfies the horizontal con-
dition (the result will then follow as in the tableau (2.3), the column (Q+)c

is shifted down by n — k positions, which preserves the horizontal condition).
Let Q_ = {jg, . . . , ji}. Given jh let x be the entry immediately to its left in
the column (Q+)c. That is, x is the (q — /) 'th entry of (Q_)°. We must show
x < Ji or equivalently x > ji. Let im be the smallest integer > n — (q — l] which
appears in Q+ (again, if no such im exists, then {n — g + / , . . . , n} C Q^ and
so x = n — q -f / > ji and we are done). Now Lemma 2.1 gives

m 4- 1 > (ji - I + p + q - n}+ 4- 2

Thus

x = n — q + l — #{i E <2+ \i > n - q - 1}

hence the result.
It remains to show that

(2.4) V'(/,(C)
JP)

~( (~* \
where 5(/7 ) is defined in (2.2). For i such that 1 < i < n — 1, one must
consider the 16 possible cases corresponding to the presence or absence of i,
i -T 1 in P+ and P_. Similarly there are 4 cases to consider when i = n. As a
representative example, let us choose the case where 1 < i < n — 1 and

P = {... , z , i + l , . . . ,; + !,...}

in which case, we have

Q = { . . . , £ , . . . }
~( C~*}where i is in the /c'th position in Q. Apply /z we have

and so

Q' = { . . . , i + 1,. . .}
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The point is that, from the definition of Q, the entry i + 1 in Qf is also in the
/c'th position, and all other entries remain unchanged. Thus, we have

i z + 1

and all other entries not displayed are the same in both i/j(P) and i/j(Pf). Thus
(2.4) is indeed satisfied. The other cases are proved in a similar manner. D

Remark. In the course of verifying each of the separate cases in the above
proof, it can be checked that we have the following relations

and similarly for £;C)(6).
Let us now turn to the general case. Recall the notion of a tableaux

product [Ful]. Given two semi-standard (i.e. type A) tableaux 5, T, define the
tableaux product

(2.6) 5 * T = (• • • ((5 <- ai) «- a2) • • • ) <- ap

where w(T) — aia% • • • ap is the Japanese/Chinese reading of T (i.e. reading
the columns from top to bottom, and right to left). It is well-known that *
induces an isomorphism of Uq(An-i) crystals. Suppose we are given an element
b G BC(X) where A = A7r?1 + • • • + Am p , where mi < • • • < mp. Then we can
write 6 = 61 (8) • • • (8) 6p, where bl G Bc(^m, ) is the f th column of the tableau b
reading from right to left.

Proposition 2.3. Define a map E on BC(\] by

£(&):= V ( b i ) * V ( & 2 ) * " - * t f ( M

where ip is defined in (2.3). Then we have

(i) E : BC(X) ^ B A ( X ) where A' = Sf=i(^( + A27 , -m , ) is a crystal embed-
ding.
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A(^) (E(b)) = ̂ (E(b)) l<i<n

i — n\. 2

similarly for e\ (b).

Proof. In order to prove (i), we must show

(i') E(e, b) = 3(6,) E(b), for 1 < i < n.

(i") If E(b) is annihilated by all S(el), then £"(6) is the (unique) highest weight

element of

We prove (i'), (i") and (ii) simultaneously by induction on p, noting that the

case p — 1 follows from Prop. 2.2 and (2.5). Write b = b' (8) bp where bf =

61 (8) • • • 0 frp-i. Note that for 1 < z < n - 1, we have from (1.2), (2.5) and the

induction hypothesis

tiC) (b' ®bp} = ^A] (E(b'} ® ̂ (bp)) = <t><;A} (E(b' ® bp))

where the last equality follows from the fact that * is a crystal isomorphism. A

similar argument holds for the case i — n (since the function max is linear with/ /"»\
respect to scalar multiplication), as well as for the cases for £\ (b). Hence (ii)

holds. To show (i'), we use the tensor product rule (1.1) twice and note from

the induction hypothesis that c/r \E(b'}) = <j)^—^(E(b')) etc for 1 < i < n, so

that

E(b'®etbp) ^C}(b')<e[C}(bp)

= E ( e z ( b f ® b p ) )

where the second line also follows from induction. The case i = n follows

similarly. Finally, to show (i"), recall [Nak, Prop. 3.2.1] that

(2.7) e, (u®v) = 0, Vz <^ ^ (u) = 0, and e,(v) < (h^ wt(u)) Vz

Thus, if 3(6,) E(b' (g) bp) = 0 Vz, then 5(ez) (E(bf) (g) i/j(bp)) = 0 Vz, and hence

(a) S(el)E(b') = 0 => e, b' = 0 by (i') and the fact that E is injective, (b)
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) < (h[A\wt(E(V))) => e[C)(bp) < (h[c\wt(b')) by (ii) and the fact
that (h^.w^E^1))) = (h[C\wt(b')) = m%. Hence by (2.7) again we have
that b' ®bp is a highest weight element of the Cn crystal BC(\], A = Y^=i ̂ rn,
(i.e. the tableau with the entries 1,. . . , ml in the z'th column reading from
right to left). Explicitly computing E on this tableau then gives the required
result. D

Example. Let n = 6, and consider the C6 tableau

r =

2

4

5

6

5

3

2

4

6

5

T

4

6

5

4

We first compute the image of each column under i/j. For the first column,

P = {2,4, 5,6,5,3}, Q = {1, 2,4, 6, 3, T}

and hence
/,

2 1

The action of i/j on the second and third columns can be computed similarly.
Combining these, we have

E(T) =

2

3

6

1

6

5

3

3

4

5

2

4

6

5

1

2

4

5

6

3

1

2

3

4

5

6
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Turning to the perfect case, i.e. the crystal Bc(l&n}, we shall see there are
some simplifications. First note that in this case, we have

(2.8) (P~)C = Q+

To prove this, define the sets K := P+HP_, H := P^nP^ and S := (P+/P_)U
(P_/P+). Thus K, H and S denote the positions of the pairs of "particles",
"holes" and the "singlets" in the description of P± given earlier. Certainly we
must have \K\ -f \H\ + \S\ = n. Also, in the case of single column tableaux of
length n, we must also have 2\K\ + \S\ = n. That is, \K\ = \H\. For a set A,
let A<x := {y £ A \ y < x}, and similarly for A>x. The ICC for Cn tableaux
is equivalent to the statement that

(2.9) !#<*!> |Ax*| Vxe {! , . . . ,n}

Returning to the proof of (2.8), first note that we have Q+ ^ P- (this is true
in the non-perfect case also) since if x E Q+, then either x E P+\P_, or x E
P+ H P^_, and hence in both cases x E P^. Conversely, let us assume P^ 2 Q+-
and find a contradiction. In such a situation, there exists y £ H such that after
constructing Q±, the holes at level i/ remain unoccupied. In particular, this
means that \K>y+i < \H>y+i\. Thus, since \K>y+i\ + Ijff^-i = |lf| = |U| =
1+ lf>y+i| + |^<7y-i , we have \K<y^i\ > l + \H<y-i , which contradicts (2.9).
Hence (2.8) does indeed hold.

Recall [Con, She] that the Cn tableaux of Kashiwara and Nakashima have
another description in terms of certain "double" tableaux of De Concini. More
precisely, it was shown in [She] that a Cn tableau of K-N has column form
p(i) |p(2) | . . . |p(0 if and only if the tableau

(2.10)
(i)

7/D
Q Q.

P

(2) ! p(2)

+ QZ
Pw

F}'
^C)

is a valid A^n-i tableau. It follows from the definition of Schensted column
insertion, that in the perfect case when (2.8) holds, the image of b E Bc(lkn]
under E is precisely (2.10).

Having described the embedding E for Uq(Cn] crystals into Uq(A<2n-i)
crystals, we can now use this to compute the Cn Dynkin automorphism and
hence the zero action on perfect Uf

q(Cn ) crystals Bn*1. From the correspon-

dence S (see (2.2)) between the Dynkin diagrams of A2r^_l and Cn , we have
that (TC — a\. Now, it is known [Shi] that for rectangular type A tableaux,
the automorphism a A is given by the promotion operator pr defined on an AN
tableau T by the following procedure
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1. replace all entries N in T by empty boxes and reverse slide them into the
north-west corner of the tableau using jeu-de-taquin.

2. Place the entry 1 in these empty boxes and add one to all other entries
in the tableau (for the alphabet {!,... , n, n, . . . , 1} this means i — >• z + 1,

- > i f o r l < i < n — 1 and n \->n ).

Thus we have (TC = E~l (pr}n E acting on the crystals Bn-1. Moreover, to
ction of /Q on t

5(/0) = a^1 5(/n)

compute the action of /Q on this crystal, we have

§2.2.

In this subsection, we consider the perfect crystals Bn'1 (resp. B11"1'1)
whose non-affine part are the Uq(Dn) crystals B(lAn), (resp. B(lAn-i)). First
recall [KN] the crystals of the fundamental spin representations of Uq(Dn). The
elements of the crystal B(An) (resp. B(An-i)) can be represented by a single
column tableaux b of length n on the alphabet (2.1), subject to the condition
that the entries are strictly increasing down the column, and that the entries i
and i do not appear simultaneously for each z, 1 < i < n. Also, let the column
reading of b be (QI, ... , an). Then if the entry otk — n then n — k is even (resp.
odd) and if a^ = n then n — k is odd (resp. even). Note that since the column
length is n, the set of barred and unbarred elements are complements in the
set {!,... , n}.

For the level / crystals B(lAn), B(lAn-i), we follow [KMN2] and consider
such crystals as being embedded inside B(An)®

1 (resp. B(An-i)®
1). As such,

we have the following description

Proposition 2.4. The crystal B(lAn) (resp. B(lAn-i)) is isomorphic
to the set of semi-standard tableaux on the alphabet {!,... , n} whose shape
is contained in the rectangle ( l n ) , and whose column lengths are even/odd
(resp. odd/even) if n is even/odd, with the following action of ely fl

1. for I < i < n — 1, the action o/e?, fl is the same as for the An-\ case

2. if i — n, then reading the columns from right to left, assign an opening
(resp. closing) parenthesis "(" (resp. ")") if the column contains both
(resp. neither) n — I and n. After computing the reduced word by recur-
sively eliminating matching brackets "()", en (resp. fn) acts on the column
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° Q P "\ /\ /\
, ?~~?\\\

O -

Figure 2.2. Dynkin diagram for Dn •

corresponding to the rightmost ")" (resp. leftmost "(") by appending (resp.
deleting) the entries n — 1 and n.

Proof. If b is an -An_i tableau with even/odd column lengths for n
even/odd, whose shape is contained in the rectangle (P), then we can asso-
ciate a unique element &i ® • • • ® &/ G B(An)®

1 such that unbarred entries of 6^
are given by the z'th column (reading from right to left) of b. That such ele-
ments b are closed under the action of &i, fa described above and are connected
by raising operators to the highest weight element of B(lAn) follows by similar
arguments as given in [KN]. The case of B(lAn-i) is similar. D

Note that in the above description of B(lAn), the element of B(An) with reading
( n , . . . ,2,1) corresponds to an empty column, so if the number of columns p of
b is less than /, then the last I —p "empty" columns correspond to such lowest
weight elements of B(An) (such a situation doesn't arise for B(lAn_i) since in
that case, the lowest weight element of B(An-i) has reading (n, n — 1 , . . . , 1)).

Let us now consider the automorphism of the Dynkin diagram for Dn
which sends a.i i—>• ctn-i- Using the above description of the crystals B(lAn-i)
and B(lAn) we can compute the image of such an automorphism using Schen-
sted insertion.

Proposition 2,5. If bj G B(An) or B(An-i), let I = ( n , z 2 , - - - ,ip) be
its column reading (of the unbarred entries) and let Ic = ( z ^ , ^ , . . . ,i'q) be its
complement in {1,... n}. Define a map uj by

u ; ( H , Z 2 , . . . ,ip) = (n+ I — i'q,... , n + 1 - i'2, n -f 1 - i^)

For b G B(lAn) or B(lAn-i) write b = bi ® • • • ® bi and define

aD(b) — Lu(bi) * • • • * uj(bi]
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where * denotes the An-\ tableaux product defined in (2.6). Then <JD satisfies
o~ofi — fn-iO~D for 1 < i < n — 1, and similarly for el. Moreover, <J2

D — 1.

Proof. We proceed by induction on /. For I = 1, fix an integer i such
that 1 < i < n. Then by considering the 4 cases corresponding to whether b\
contains i and/or i + 1, the result follows directly from the definition.

Now assume the result holds for perfect crystals of level < I. Then for such
crystals, we certainly have

(2.11) &(*D(&)) = 0n-,(&), £i(<rD(b)) = £*-*(&), l<i<n

By using the tensor product rule (1.1) along with (2.11) the fact that * is a
An_i crystal isomorphism and Prop. 2.4, the result follows. D

Example. Let n = 8, and consider the following element in

b = (8, 7,6,5,4,3, 2, T) 0 (3,6, 7,8, 5,4,2, T)

2,4 ,5 ,7 ,8 ,6 ,3 ,1)0(1 ,3 ,4 ,5 ,6 ,8 ,7 ,2)

This corresponds to the Aj tableau

b =

1
3

4

5

6

8

2

4

5

7

3

6
7

8

By the above proposition, we have

[T

4

1
2

3

4

5

6

7

8

1

2

6

7

3

5

7

8

4

8
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One can now use the automorphism <JD to calculate the action of CQ and
/o on the crystals Bn*1 and Bn~1'1 , by means of CQ = cr^1 en <JD, and similarly
for /o.

§2.3. £>£>!

In this subsection, we consider the case of crystals Bn*1 of type Dn+i, which
are isomorphic to the Bn crystals B(lAn) when considered as a classical crystal.
It turns out that in this case, we can use either of the approaches of the previous
2 sections: use the embedding Bn <— >• A^n-i and compute the Dynkin automor-
phism via the promotion operator; use the embedding B(lA.n)

 c-^ B(A.n)®
1 of

Uq(Bn] crystals and compute the automorphism directly. Comparison of these
2 methods leads to an interesting combinatorial identity.

Let us begin with the embedding approach. As for in Section 2.1, consider
A<2n-i tableaux on the alphabet (2.1) and let BA(^A) be the Uq(A2n-i) crystal
with highest weight

72-1

A A = J^ rn, (A, + A^) + mn An
1=1

Then by defining the crystal operators

(2.12)

the crystal obtained by acting with the lowering operators S(f^ ) on the high-
est weight element UA of the Uq(A<2n~i) crystal BA(^A) is isomorphic to the
Uq(Bn) crystal B(\B) with highest weight XB = Y^=i rn^ ^ [Kas]. As for the
Cn case, we shall describe this embedding explicitly.

Let us begin with the case of the crystals B(u^) of the fundamental tensor
representations of Uq(Bn], where Uk = Ajt for 1 < k < n — 1 and un = 2A77.
The elements of such crystals are described by one-column tableaux of length
k on the alphabet

subject to certain conditions which are described in [KN]. Representing such a
crystal element by the column tableau P, let P+, P_ and PQ denote the set of
unbarred, barred and zero elements of P respectively. Define the sets

K : = (P + nP_)UP 0 ,
(2.13)

J : - max {A C (P+ (j P_)c | \A\ = K\ and A < K}
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Here, the partial order < is considered with respect to sets of the alphabet
{!,... , r?,0} with the order 1 < • • • < n < 0. From these sets, define Q± :=
(P±/K)UJ. Again, we can visualize the construction of Q± in terms of particles
and holes on a pair of vertical ladders. The position 0 is located above position
77, and we begin with |Po| particles at position 0 on both the left and right
lines of the ladder. One then proceeds as before, starting with the particles at
position 0, moving them to holes located below, and continuing until all the
pairs of particles in the initial configuration have been moved in this way. The
final configuration represents the set Q±. Note that the set Q := Q+ U Q_
contains no zeroes, and |Q| = P\ + PQ\.

The crystal Bs(^n} of the spinor representation of Uq(Bn) is generated as
a set by elements bsp which can represented by one-column tableaux on the al-
phabet {!,... , n, n , . . . ,1}, subject to the condition that the entries are strictly
increasing vertically, and the entries i and i never appear simultaneously. The
action of en /7 is given as in [KN].

We have the following result, proved in much the same way as Prop. 2.2

Proposition 2,6. Define a map ipt ' BB(UI<} ^ -#A(AA- + A2n-A-) by

(2.14) ^(P
(Q+Y Q-

and let ijjsp : j3#(A7?) —>• BA(^U) be given by the identity map. Then i/jt, and
i/jsp are crystal embeddings under the map (2.12).

Examf

P =

>le.

2

4

7

0

0

7
4

For n = 8, let

Q -

2

3

5

6 - i/>t(P) =

3

For the general case, we distinguish between tableaux which form the crystals
of tensor representations of Uq(Bn) with highest weight

At = o;mi H h u;m/), mi < m2 < • • • < mp
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uv

Figure 2.3. Dynkin diagrams for ^n-i an<^ ^n+i-

and those of the spinor representations with highest weight

Xsp = u;mi + h ump + An, mi < ra2 < • • • < mp

For b G BB(\t), (resp. B B ( X s p ) ) , write 6 = 61 0 • • • <g) 6p(®6sp), where ^ G
BB(uJml), bsp G BB(Kn}. Then we have

Proposition 2.7,, For 6 G BB(Xt)(resp. BB(Xsp)), define a map E by

where * zs defined in (2.6). TTien we have

(i) E : BB(\t) "-> ^A(A') where X' = ^f=1 Am.-hA2n-m l(
resP- ^ : BB(Xsp] ^

BA(X"} where X" = 5^=1 ^^ + A2n_m . + An) is a crystal embedding.

(ii)

and similarly for e\ (b).

Let us now turn to the problem of computing the action of CQ, /o for the
perfect crystals Bn'1, which is isomorphic to BB(I^U] as a crystal for £?n. Ex-
amination of the Dynkin diagrams of D^^ and A2^_l reveals that the Dynkin

(r)\
automorphism <JB denned on the diagram of D^+i by crB(ai) = a n _j is re-

lated to the ^2n-i automorphism (given by the promotion operator pr) by
OB — E~l (pr)n E and hence the action of /o on this crystal is

S(fo) = vs1 S(fn) oB - E~l (pr)-1 ~f[A] pr E
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and similarly for S(eo).
For the Bn crystal BB(lAn), we can consider a different version of the

above embedding in the following way. Consider an element b = b\ 0 • • • (8) bi £
BB(lAn) <-> BB(An)®

1. In other words, 6^ G BB(An), for each 1 < i < I. By
writing such an element b as a tableau whose z'th column (reading from right to
left) is given by 62, then one can show, as in Prop. 2.4, that the crystal BB(I-^TI)
is isomorphic to the set of such tableaux of shape (/"), whose subtableau of
unbarred entries is a valid tableau on the alphabet {!,... , n}, and where the
action of the crystal operators is given by (2.12). One can then compute the
action of o~B using the promotion operator as before. Alternatively, we have
the analog of Prop. 2.5

Proposition 2.8. If b3 G BB(Kn), let I = (n , . . . , i p ) be its column
reading of unbarred entries, and let Ic = (i'i, . . . ,i'q} be the set of barred entries
of bl , without the bars. Defining

Then o~B(b) is the unique tableau whose unbarred subtableau is given by

Example. Let

b = ^L_L^__o_ aB(b] =pr6(b) =

Alternatively,

J_

0(6) = LA
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Remark. The fact that prn and Schensted column insertion are related for
this special type of rectangular tableau (where within each column, the barred
and unbarred entries are complements of {1,... , n}) is shown here using crystal
base theory. It would be interesting to have a direct combinatorial proof of such
a relationship.

§3o Energy Functions

We now turn to the problem of computing the energy function of a finite,
homogeneous path of elements in the crystals mentioned in the introduction.
Let us recall the fundamental facts about such energy functions. Suppose JBi,
BI are finite U'q(%) crystals of level I such that B\ (8) B<2 is connected and
BI eg) B% — B<2 0 BI . Suppose that under this isomorphism bi 0 62 "-» b'2 0 b[ .

It is known [KMN1, HKKOT] that there exists a function (local energy
function) H : BI x £?2 — >• Z which is determined (up to an overall additive
constant) by the rule

(3.1)

> 62) + 1 if i = 0, 0o (61) > £0(62),
H(el(bl®b2))=

otherwise

Consider the set PL of finite inhomogeneous paths of length L in the crystal
BI 0 • • • 0 BL. i.e. PL = {p = bi®b2®--®bL\b3 tB3\<j <L}. The
crystals B3 are such that a local energy function exists on B3 eg) BJ+i for each
1 < j < ^ — 1. For each z, 2 < z < L, define crystal elements b[ ,6; , . . . , b[
through the successive isomorphisms

bi (g) • • • (g) bl ^ bi 0 • • • (g) 6^-1) (g) 6^_x i-> • - • i-^ bi 0 6?
(2) (g) 63 (8) • • • 0 b(_l

Using these elements, define

4-1 L

indp(z) -

111 the homogeneous case when all B3 are equal, 67 = 6J+i and the energy
becomes
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L-l
(3.2)

Since the local energy function H is constant on connected components of PL •>
when decomposed as a t/g(0o) crystal, it is sufficient to be able to compute E
on the p £ P which are highest weight elements when PL is considered as a
Uq(Qo) crystal i.e. p is classically admissible.

In the following subsections, we shall give a procedure for associating to
each classically admissible path p a semi-standard tableau T(p) for certain level
one perfect crystals of Dn , D^^ and Cn • For such combinatorial objects,
we can associate a charge such that charge (T(p)) is related to E(p) defined in
(3.2).

§3.1.

In this subsection, we shall compute the local energy function for the
U'q(D

(n}) crystals (B"'1)®2 and (JB"-1'1)®2, and explicitly describe the decom-
position of such crystals regarded as Uq(Dn] crystals. Let us recall some no-
tation: let (jk = ei + • • • + tk for 1 < k < n and uo^ = t\ + • • • + tn-i ± en
be the usual weights for the fundamental tensor representations of Dn. These
are related to the fundamental dominant weights by uj2 = Al? 1 < i < n — 2,
ujn-i = A r7_i + A77, uj~ = 2An_i and uj+ — 2An. For simplicity we write B+
(resp. B-) for the Uq(Dn] crystal B(Kn) (resp. 5(An_i)). For an element
6 6 £?-£, we often write b — [ii, . . . , zp, J9, . . . , ji] if the "spinor" tableau cor-
responding to b has column reading i\ • • • ip jq • • • j\. Moreover, since such an
element is uniquely specified by its barred or unbarred entries, we also write
b= [z i , . . . ,y + = [ j g , . . . , j i ] ~ .

Firstly, recall that there is a decomposition of B± ® B± of the form

[n/2]

(3.3) B±®B±~ B(u±) 0 0 B(un-2k)
k=i

where [x] denotes the largest integer less than or equal to x. In this decompo-
sition, the highest weight element of B(UJ^} is given for fc < n — 2 by

+ f l , 2 , . . . ,ral 0 [1, . . . , f c , r a , . . . ,fc +1] for +
vf •= < L J L 1 J

k I [1 ,2 , . . . ,n-l,n] 0 [1,... , f c , n , n - l , . . . ,fc + l] for -
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and

± f [1 ,2 , . . . , n ] ( g ) [ l , . . . ,n] for

Using the tensor product rule (1.1) we have for k < n-2 for + (resp. k < n-4
for -)

_ I [1,. . . , n] ® [3 , . . . , k + 2, n , . . . , fc + 3, 2, T] =: w+ for +
~ | [1 ,2 , . . . ,n - l ,n ] (g) [3 , . . . ,fc + 2,n,rT^T,.. . ,/c + 3,2,I] =: w~ for -

For the special case of v~_2, we have

(/2 ' ' ' fn-2)fn(fl ' ' ' /n-2)^-2 = [1, - - - , n-1, n]®[3, . . - ,71-1,71, 2.1] =: W~_ 2

By the action of /o described in [KMN2], we have fou^ = v£+2- Thus, if we
fix H by setting H(b\ 0 62) = 0 for 61 (g) 62 G #(0;^), we have

(3.4) H(6i 0 62) = -fc if bl

So, given 61 (8) 62 G B^2, to compute the value of #, it is sufficient to deter-
mine in which component bi (g) 62 lies in the decomposition (3.3). This can be
achieved through the explicit description of (3.3), which we now give. From
[KN], the one-column Dn tableaux appearing in (3.3) have column reading
(HI, ... , it r,ai, . . . , az,?JJ, . . . ,?7r), where (QI, . . . ,az) is a sequence of consec-
utive n's and n 's.

Proposition 301D Suppose b\ = \jq,... , ji]_ and 62 = [ i i , . . . , ip]+- £fy
letting WQ := ( J 9 , . . . , j i ) , define w^ by successively inserting i^ into w^-i =
( H I , . . . , u r, Q I , . . . , az, 14,. . . ,TJi"), using the rule
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I , . . . ,ur,ik,oii,... , O L z , v 8 , . . . ,vi) ik £ {vi,. . . ,va}

k = p, n ^ J, z even, or n E J, 2;

where J = {ji, ... , jg}. T/ien ^e isomorphism (3.3) zs ̂ ?;en 6i/ b\(&b<2 ^ wp.

Proof. First note that w£(&i (8)62) = wt(wp) (the last case in the definition
of wp ensures that (1^^(61(8)62), en) = (wt(wp), €„) . ) To show that the above map
respects the tensor product rule (1.1), one must consider for each z , l < z < n — 1
the 16 possible cases according to the presence or absence of i, z-h 1 in the sets I
and J. We omit the details. Finally, to show such a map is a bijection, one must
show it's invertible. To this end, consider the set Dp := (HI, ... , ur, QI, . . . , ay)
of all elements strictly less than n — I in wp. By checking the 4 cases according
to whether n or n belongs to &i, 62, the last insertion (of ip) was an (R$)
insertion iff "\DP is even (resp. odd) and ay = n" or "\DP\ is odd (resp. even)
and ay — n" in the cases n even, B^ or n odd, B- (resp. n odd, B+ or n even,

B-).
Set /p := {}. If the last insertion was done by (#5), then ip must be

the largest barred integer s say, no^ appearing in Wp. Thus, let Ip := {5},
^P — ̂ p U {^}. Hence or otherwise, for each az G Dp for 1 < z < y, do

1. Dp_ t :=,Dp_4+i/{a t},
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2. / := IU{s}, where s is the largest (as unbarred entry) integer not appearing

in wp-1+i

3. Wp-, := wp-l+i/{al} U {s}

This reverses the insertions by (Rz) and (#4). To reverse the remaining inser-

tions by (Ri) and (#2)? then for each u r+i_z G Dp_y, 1 < z < r do

1. if Ur+i-, ^ Wp-y-j+i, then Dp^y^l := JD jD_y_?+1/{u r+i_?}, wp^y-% : =

Wp-y-t + i/far+i-t}, I := I U {wr+i_7}

2. if u r+i_? G Wp-y-f+i , then Dp-y-l := Pp_y_ l+i/{iir+i_?}, wp-y-2 :=

wp-y-ljril'{ur+i_7}, / := //{iir+i_z} U {s}, where s is the largest (as

unbarred entry) integer < i£r+i_? no£ appearing in K;P_?+I

Example o For n = 10, let

61 = [1,3,4,8,10,9,7,6,5,2], 62 = [3,6,7,10,9,8,5,4,2,1]

Then

(10,9,7,6,5,2) 4 (3,10,9,7,6,5,2) A (3,8,10,9,8,7,5,2)

A (3, 8, 10, 10, 9, 8, 5, 2) ^ (3, 8, TO, 10, 9, 8, 5, 2)

Thus, given 61 0 62 G 5f 2, the quantity #(&i (g) 62) is simply (\wp\ -

n)/2. Let us view this in terms of a "winding diagram" in the spirit of

Nakayashiki and Yamada [NY]. Consider two parallel vertical ladders with

the positions 1, ... , n,n, . . . ,1 labeled from top to bottom. Given b\ ® b% G

jB^2, place particles at positions i i , . . . , z p , j g , . . . ,ji on the left ladder, if

bi — [ i i , - . . , i p , J 9 , - - . ,ji], and likewise for 62- Starting with the topmost

particle s of 62, locate the first particle in b\ whose position is lower than or

equal to s, which is not connected by a line. If no such particle exists, locate the

topmost unconnected particle in b\. Connect these two particles by a line. Call

such a line a "up" H-line if the particle in 61 is lower or equal than the particle

in 62, a "down" (or winding) H-line if it is higher. Repeat this procedure for

the remaining particles in 62, in descending order. Call such a diagram the

H-diagram of bi ® 62. It was shown in [NY] (in a much more general situation)

that the number of down JJ-lines is independent of the order you connect the

particles.
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Proposition 3020 Let u be the number of winding H-lines and let c de-
note the number of particles x G 62 which are connected to a particle y G 61 .
Then

(3.5) -2H(bi <g> 62) = u + S(c G 2Z + 1)

where 6(\) = 1 ?/ \ ?'s £rz/e, and 0 ^s \ ?s false.

Proof. Suppose 61 = [ i i , . . . ,ipj(n... ,ji] and 62 = [ ^ i , - - - , Ip',™^, ••• ,
Then if we compute the Image of 61 (8) 60 using the rules (.Ri) — (#5), we have

q + \{k\lk inserted using RI or E2}| - 5(/p/ inserted using R$).

Examining the rules (Ri) and (Rz) carefully, we see that l^ is inserted using
( R i ) or (#2) iff there is an up line connecting l^ G 62 with some ih G &i. It
follows from Lemma A.I (but applied to H-diagrams instead of LS-diagrams)
that the only winding lines in the diagram of 61 0 62 which may occur emanate
from particles in {m^, . . . , mj} and connect to particles in {ii, . . . , ip}. Let
/ be the number of such winding lines, and let d be the number of up lines
connecting particles in {/i, . . . , lp>} to {ii, . . . , ip}. Then certainly p = d + /.
Since p + q = n, we have

wpf = q + d — 5(lpf inserted using R$) = n — f — 6(lp* inserted using

Thus the stated formula (3.5) will follow if we can show the last term in the
above equation is equal to 5(c G 2Z+1). This follows from Prop. 3.1 by checking
the 4 cases according to whether n or n belong to bi or 62- D

We remark here that Okado [Oka] has previously given a formula for the
value of H on the crystals of the spinor representations of Uq(Bu] and Uq(Dn),
derived by taking the q —> 0 limit of the corresponding ^-matrices.

Since the value of the local energy function H(b\ 0 62) is related (up to a
factoi of —2 and possible addition of 1) to the number of winding lines in the
H-diagram of b\ (8) 62? it suggests we can modify the definition of the charge of
Lascoux and Schiitzenberger to give a direct relationship between charge and
energy for these level 1 Du crystals.

To this end, we first set up a bijectioii between Dn highest weight vectors
in PL and certain semi-standard tableaux of content ( n L ) . P.ecall [Nak] the
criterion for a vector &®&i0- • -®&L to be a Dn highest weight vector, where each
bi G B±. If 6 is a highest weight vector, one can associate a generalized partition
AlS = ( A J , . . . , A*) where each A, G |Z+ for i < i < n, Xu G ^Z and AJ > • • • >
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^n-i > |A* |. If bi G B± then b®bi is a Dn highest weight element iff Xs -e(bi)
is a dominant weight. Here e(b) — Y^=i ^i(b}^%- Similarly 6 ® &i ® • • • <8> &L is
a highest weight element iff A5 + wt(bi) + • • • + wtfa-i) — efa) is a dominant
weight for each 1 < i < L. This then implies that Xs H- wt(bi) + • • • + wt(bz) is
a generalized partition for each 1 < i < L.

Example0 Consider the highest weight element

T ) = 4 ( £ ) 4 Q 9 4 Q $ ) i > ( & ) t ) l 2 9 Y

T]
_2_
3
4 <g>
5

_6_
7

JJ

T
2
3
T
_s_
7

J.
_5_

0

1
2_
_3_
4

_5_
6
7
8

|T

(8)

2
3

_5_
6
7

JL
LU

0

1
2
4
5
6
8

JL
J.

®

j^_
3
4
7

JL
6.

_5_
]2_

This corresponds to the sequence of shape changes

Here, each square represents a "half-box", so that the final shape represents
the partition (3222111).

Alternatively, given a highest weight element p £ PL we can associate
a semi-standard tableau T(p) of shape v — A + JJL recursively as follows. If
p' £ VL-I is given, and p — p' (8) &.L, then for each z^ G &L, place the entry
L in the sVth column of T(p'}, and for each j/ G &L, place the entry L in the
(2n 4- 1 — jf/) ' th column of p'. It is clear that the shape A of the subtableau
in the first n columns, and the shape IJL of the subtableau in the second n
columns are complements in the shape (nL). Indeed, their conjugates are also
complementary partitions in (Ln) and thus related by

IJL( = L- A^+1_z , 1 < i < n

The tableau T(p) has content (Ln) and is distinguished by the fact that for
each i with 1 < i < L, the entry i occur either in column j or column 2n + 1 — j
for each 1 < j < n. In other words, the j'th and (2n + 1 — j)'th columns
are complements in {!,... ,£}. Hence the tableau T(p) is uniquely specified
by the subtableaux on the shape A;. Moreover, if p G PL is associated with a
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generalized partition Xs as discussed above, then it follows by a simple induction
on L that

A' = As + L/2

Example. For the example given above, we have the tableau

T(p) =

1
2
3
4
5
6

1
2
3
4

|5_

1
2
3
4
6

1
2
3
5
6

1
3
4
5

1
3
4
5

1
3
4
6

1
3
5

2
4
6

2 2 J2J4|5 |6
5 6 6J

Here, we have Xs = (322111), A' = (65554443) and // = (3222111).

Similar to the notion of H-diagrams, Nakayashiki and Yamada introduced
the concept of LS-diagrams, which are related to the computation of the Lascoux-
Schiitzenberger charge of a semi-standard tableau. Again, one represents the
elements of 61 and b% as particles on a ladder. Given a particle x £ 61 one
selects the first unconnected particle y £ 62 which is greater than or equal to
x, is such a particle exists and connects them with an "up" LS-line. If no such
particle exists, connect x with the lowest unconnected particle in b^-, calling
such a line, a "down" LS-line. The LS-diagrams of B±2 have the following
properties, proved in Appendix A.

Proposition 3.3. Given an H-diagram (with top-to-bottom order) H of
bi (8) 62 £ B^2 and an LS-diagram (with order J) L 0/61® 62 we have

(i) there exists at least 1 order J such that the diagram L coincides with the
diagram H.

(ii) the number of down LS-lines in L is independent of the order J.

(iii) the number of up LS-lines connecting x £ 61 with y £ 62 is independent of
the order J.

Remark. From the definitions of H- and LS-diagrams, it is clear that
the LS-diagram of b\ (8> ^2 is identical to the H-diagram of b[ (8> b'2 obtained
by rotating through 180 degrees, where if 61 = [ i i , . . . , % , , . ? < ? , • • • ,ji], &2 =
[ f c i , . . . , f c r , / a , . . . , / i ] , then&i = [ / i , . . . , / s , f c r , . . . , /ci] ,6 '2 = [ j i , . . . , j g , z p , . . . ,n
Hence, for any statement about LS-diagrams there is an equivalent statement
about H-diagrams.
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Following Nakayashiki and Yamada, we define the local index indj(6i (
of the LS-diagram 61(8)62 with respect to the order J as being the quantity given
by the RHS of (3.5). From Prop. 3.3 we have indj(6i <g) 62) = -2H(bi fc> 62).
For a path p = b\ (8) 62 (8) • • • <8> 6^ £ PL , drawing the LS lines in the diagram
of 61 (8) 62 with order J\ say, induces an order J% on the LS diagram of 62 (8) 63
and so on. For the initial order Ji, we take the bottom-to-top order (to be
consistent with the definition of LS charge). Define

(3.6) ind(fc) = ind^ (61 <g> 62) + • • • + indj^ (6 fc_i (8) bk)

Then

k=l

We now define a "local index" and "charge" for the tableau T(p) consistent
with the above definitions. Introduce a set of auxiliary counters vz, I < i <
L — 1, initialized to 0. In the usual manner [Mac], attach subscripts to the
entries of T(p) recursively as follows: begin with the rightmost entry 1 in
T(p) and attach the subscript 0. Given an entry i with subscript c, search
the tableau along the rows, using the order right-to-left and top-to-bottom
(the Hebrew/Arabic order) until the first entry i -f 1 is encountered. If i + 1
is encountered before reaching the beginning of the bottom row (i.e. i 4- 1 is
strictly south and weakly west of i in the tableau T(p)), then attach c as the
subscript of i -f 1. Otherwise, wind around to the end of the first row and
continue the search until the first i -f 1 is encountered (such i + 1 will be located
weakly north and strictly east of z), attaching the subscript c+ 1. If i is located
among columns n + 1, . . . , 2n and i -f 1 is located among columns 1, ... , n, let
Vi ^ vz + 1. Continue this process for each z, 1 < i < L. Then repeat the
procedure ignoring all entries with subscripts. The local index ind'(/c) is just
the sum of all the subscripts attached to the entries fc, and we define

k-l

indT(p) (fc) = ind'(fc) + ^ 5(v3 G 2Z -f 1)
j=i

The quantities v3 just count the number of up lines from barred to unbarred
elements in the LS diagram of b3 (8) 6J+i. Finally, define the charge

k=l

From Prop. 3.3, we have indT^(k) — 'md(k) and hence c(p) — —2E(p).
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Example,, Continuing with the running example, we have the following
values of -2H(bj <8> 6J+i) for 1 < j < 5: (4,0,2,1 + 1,2). Here 1 + 1 indicates
that u=l and c £ 2Z + 1 in (3.5). Hence

ind(l) = 0 ind(2) = 4 ind(3) = 4 ind(4) = 6 ind(5) = 8 ind(6) = 10

Computing the local index of T(p) we have

lo

3o

4o

5o 5o

20

40

3i
3o
5i

lo
3i 3i

5i

lo
3i

62

lo 2i 2i
5i

ind;(l) = 0 ind'(2) = 4 ind'(3) = 4

hid7 (4) = 6 hid'(5) = 7 hid'(6) = 9

= (0 ,4 ,0 , l , 0 ,0 )

Hence ind r (p)(/c) = ind(fr) and c(p) = -2E(p) = 32.

In this subsection, we repeat the analysis of the previous section for the
I rj\

Z^Y+i perfect crystals. Let o;^ = e\ + • • • + e/t be the weights of the fundamental
tensor representations of B71 , which are related to the fundamental dominant
weights by LJ, = A, for 1 < i < n — 1 and u;?? = 2An . We begin with the
decomposition of the Bn crystal

(3-7)

The highest weight element of B(LJ^) is given by v^ := [1 ,2 , . . . , ??](g)[l, ... , k, rf,
. From the rule (1.1) we have for k < n — 1,

Using the action of the D^^ /o operator [KMN2], we have /o I^A^ = ^A-+I^ and
hence we have

(3.8) H(bi (8) 62) = -fc, if 61 (8) 62 e B(un^k)

where we have normalized the energy function such that H(b\ (8) 62) — 0 if
61 = 62 = [1 , . . . ,n].

To proceed further, we recall the Bn analogue of Prop. 3.1 which was given
in [Bakl].
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Proposition 3«,40 Suppose bi = \jq,... ,ji]- and b% = [ i i , . . . ,ip} + -
Let UQ :— ( j q , . . . , ji) and given Uk-i — ( ^ i , - - - ,vi,w^,... ,uT), define Uk,
I < k < p inductively as

i , . . . ,vi,c,wm,... , w;s+i, c, t o s _i , . . . , uv+i,uv-i, • • • ,)

Os+1 >c = ws + l (52)

A- = wr, w;r+J = n - m + r + j, I < j < m - r (53)

T/ien 61 (g) 62 h^> ̂ p ^ t/ie crystal isomorphism which realizes (3.7).

It follows that for 61 062 € ^(An)®2 , we have F(&i (g)62) = up -n, where
Up is given by the algorithm above. Using Prop. 3.4, we have analogously to
(3.5), the result

(3.9) -H(bl®b2) = u

where u is the number of down lines in the H-diagram of 61 (8> 62 •
As in the Dn case, p = b($bi ® • • -(8) &L is a Uq(Bn] highest weight element

iff As 4- wt(bi) + • • • 4- iut(6x_i) — e(&7) is dominant for each 1 < z < L, where
As = iL/t(6) is the generalized partition associated to the highest weight element
6.

To such a highest weight element we can associate a semi-standard tableau
T(p) in exactly the same manner as in the Dn case. The only difference will
be that in the subtableau formed by the first n columns, the number of entries
equal to i for any 1 < i < L is not restricted to being even/odd.

Using (3.9) we then have the result that c(T(p}} = -E(p) where c(T(p)) =
X]A'=I mdx(^), with the local indices ind^fc) being defined as in the Dn case.

§3.3. CW

Finally, we turn to the case of crystals of Uq(Cn ) studying the energy
functions associated to highest weight paths in the space B®L , where B = Bn"1 .
This crystal is part of a family of level 1 crystals jET'1 introduced in [HKOTY].
As Uq(Cn) crystals, they are isomorphic to the crystal B(Ar) and hence the
elements of such a crystal can be represented by one-column tableaux of length
r. These crystals are not perfect, unless r = n. For 1 < i < n, the action of ez,
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fl are given in [KN], while for i — 0, we have

(Mi, . . . , i r_i) if ir = 1
n ,,
0 otherwise

~ /. - x J fe,.-- ,V,T) if ii = 1
e 0 ( z i , . . . ,zr = < v

I 0 otherwise

To compute the value of the local energy function H on fT1'1 0 J3 r2 i l
5 let us

first decompose this as a Uq(Cn) crystal

(3.10) 5 (A r i )®S(A r 2 )~ 0
0<s<f<n

+r2, s+t=ri+r2(mod 2)

The highest weight element of B(A.t + As) is given by

Note that p is a positive integer. Using these highest weight elements, we can
show the following

Lemma 3.5. The value of the local energy function on BTl'1 (8) BT2'1 is

given by

H(bi (8) 62) = — (min(ri, r2) — s), z/ 61 0 62 G -B(At + As).

where we have normalized H to be zero on the component B(Kri + A7-2).

Proof. Let £TM be the value of H on the Uq(Cn) crystal 5(At + As). We
shall show

(i) Hi+M+i = Ht,s + 1, 0 < s < t < n - l .

(ii) #t-i,s+i = ^t,s + 1, 0 < s < t - 2 < n - 2 .

from which the result will follow with the normalization Hr^^T2 — 0 (resp.

Hr-2,n — 0) if n > r2 (resp. r2 > TI) .
To show (i), note that if

/ £ £ \ ( £ £ \ ( £ £ \
Wl '-= ( / I '" Js)( / l ' ' ' J s ) ( j s + l '"It) Vt,3

= ( l , . . . ,n) 0 ( 2 , . . . ,s + i,n + 1,. . . , p ,p , . . . ,FT2,T)
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then /0 wi = IY+I^+I. Also we have

wi i - > ( l , . . . , r2) 0 ( 2 , . . . ,s + I,r2 + 1, . . . ,p ,p , . . . , t + 2,1)

under the isomorphism B7"1'1 ® 57"2-1 ~ Br<2'1 (8) 5 r i i l
3 since both vectors are

mapped to the 2-column Cn tableau with column reading (2, • • • , s+1, 2, • • • , t+
1) under the tableaux product (2.6) using Cn insertion [Bak2, Lee]. The result
now follows from the definition (3.1).

To show (ii), we first prove it in the special case when t + s = r\ + r2.
There, defining

W2 := ( 2 , . . . , ri + 1) ® ( 2 , . . . , s, TI + 2 , . . . , r\ + r2 — s + 1,T)

we have

( ~ ~ \ / ~ ~ \ / ~ ~ \ / ~ ~ \ / ~ ~ \
g . _ i _ i * " " 6 - _ i _ i ) ( C ' " " 6 i ) ( 6 i * * * 61 ) (C i _ i _ 9 ' ' " 6 )(C i " * * 61 ) 1/̂ 9

However, we also have

^r!+r2-s,s = (eri+7.2_s • • • e r i+i)(e r i • • • ex) /0 w2

Noting that

w2 i-> ( 2 , . . . , r2 + 1) 0 ( 2 , . . . , s, r2 + 2 , . . . , n + r2 - s + 1,1)

again, since both vectors are mapped to the same 2-column tableau under the
Cn tableaux product, the result now follows in this special case. For arbitrary
t, s we then use (i) to show that (assuming rl > r2 without loss of generality)

- £r ( r i + r 2 +^_6 ) /2. ( r i + r 2 + a_o/2 ~(ri+r2-t- s ) / 2 + 1 = Ht^8 + 1

D

Let us now show that in the case r\ — r2 = n, the value of H can also be
computed using the embedding i/j of Prop. 2.2. First, some preparatory results
are needed.

Proposition 3.6, Suppose bL G Bc(Ak,), for some / r z , i = 1, . . . ,4.
Then



ZERO ACTIONS AND ENERGY FUNCTIONS 563

Proof. We can use an inductive proof similar to that used in the proof of
Prop. 2.3 (i') to reduce this to the case when bi (8) 62 and 63 (8> &4 are highest
weight elements. Such a case can then be proved by explicit calculation using
the vectors (3.11). D

Corollary 3070 ^(bi *c M = ^(bi) *A

Proof. Suppose 61*0^2 = 64^3 as a two-column Cn tableau. Then
and so by definition i/j(bi * ch) = ^(^3)* A

For an element 6 with column reading P, define

so that -0(6) = 0z,(fr) *A ̂ R(O)- We now have the main result in this section

Proposition 3880 Let p = b\ (8) • • • (8>&M ^e a Pa^ ^n ^e U'q(Cn ) crystal

m the ^ ( - i ) cr?/5^a/ (^^^ )®2M_ r/ien T^ ls ciassicauy admissible and

indp(i) — indr(p)(2i — 1) = indT^(2i) I < i < AI

and hence E(T(p)) = {2E(p).

Proof. First note the fact that T(p) is classically admissible follows from
Prop. 2.3 (ii). Next, let us first show that for any bl G J371'1, i — 1,2 we have

(3.12) Hc(bi ® b2) = HA(il>R(bJ ® ^L(62))

When n = r% = n, then in the decomposition (3.10) we have s — t. Suppose
fri*c^2 £ B(2AS) for some s, so that by Lemma 3.5 we have Hcfii^bz) = — (n —
s). Using Corollary 3.7 we can construct 0(6i*c^2) — '0(^i)*A'0L(^2)
by column inserting ^(^2)? and then ^#(62) into 0(6i). Suppose

+ A27 i-u) f°r some 0 < y < n. From [Shi, SWT] we have
0L(&2)) — — (^ — v). We must show u = 5. It is clear that

#(Al? + An + A 2 ^_ L , ) - If we now insert i/Jp^) into this
tableau, the resulting tableau will have shape A/,^ + A l J+^2 + A7l+^3
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From the Column Bumping Lemma [Ful], and the fact that ^(b\ *c ^2) £
BA(2AS + 2A2n-s)5 we must have k\ = v, k% — n — v, k<2 = k^ = 0 and v = s.
Thus (3.12) holds.

To complete the proof, note that

HAWM ® 0ft(M) - 0 Vz, 1 < z < M

since ^L(^) *A V>fl(M = ^fl(&i) ^L(^) as a 2-column C/9(A2n-i) tableau.
Hence the result follows. n

Now, having defined the classically admissible Uq(A2n-i) path T(p) we
can construct a semi-standard tableau (also denoted T(p)) in the usual manner
[NY], and the above Proposition tells us that charge(T(p)) = 2 E ( p ) .
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Appendix A

In this Appendix, we give a proof of Prop. 3.3. Of course, the statements
(i) and (ii) are well-known and have been proved (in a much more general
situation) in [NY, HKKOTY]. However, we include proofs since they will be
used to prove (iii) (which is only true when 61, b% belong to the crystal of the
spinor representations of Uq(Bn) or Uq(Dn)).

Proof of Proposition 3.3(i). Referring to Fig. A.I, let A be the lowest
particle which is the beginning of a down line in 61, and B be the highest
particle which is the end of a down in 62- Then [NY, Lemma 5.11] A lies above
B. Let C be the first particle above A which is the beginning of an up H-line,
ending in D. If we draw the LS-line for such a particle, it must coincide with
the H-line, since there are no particles in 62 between A and D (if there were,
there would be a up H-line occurring between A and C, contradicting the fact
that C is lowest). Thus we let J(l) be the order of C. We continue in this
manner with the next occurring up H-line above (7, letting it be J(2) and so
on. All LS-lines constructed in this manner coincide with the H-lines. Such
a process exhausts all the particles above A in 62, since there are no down
H-lines emanating from particles in 62 above A (since A is above B). Next, we
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10

Figure A.I. Correspondence between LS and If-diagrams

continue ordering the particles in 61 by letting the next particle in the order
J be A itself. Such an LS line from A must connect to the lowest particle in
62, since all particles above ^4 in 62 are already occupied by LS lines, and the
down LS line from A is the first one. We then continue to draw down LS-lines
for the remaining particles above A in 61 - these must coincide with the down
H-lines since none of the down H-lines cross (since the H-diagram was drawn
with top-to-bottom order). Finally, we continue the order J from the lowest
particle in bi, continuing upward towards A. These up LS-lines must connect
with particles in 62 located between A and B, and hence must coincide with
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the H-lines. D

Proof of Proposition 3.3(ii). Suppose that for a given L5-diagram, we
have 2 different orders J and J' which differ by a transposition i.e. J ' ( i ] =
J(i + 1), J'(i + 1) = J ( i ) and J(k) = Jf(k) for all fc / z, i + 1. We must
show that the number of down lines remains the same with respect to either
order. There are 4 possible cases to consider, depending on whether the lines
emanating from the particles labeled J ( i ) and J(i -f 1) are up lines or down
lines. The possible configurations are shown in Figs. A.2-A.5. Let us give a
detailed explanation for Fig. A.3.

In Fig. A.3, in subcases (i), (ii) and (iv) J(i -f- 1) is above J ( i ) , while
in subcase (iii) it is below. The particle at the end of the line coming from
J(i + 1) is either below the particle at J ( i ) (corresponding to subcases (i) and
(ii)), or above the level of J ( i ) (corresponding to subcases (iv)) in which case it
must also be located above the end of the line emanating from J(i). Also the
subcases (i) and (ii) correspond to whether the particle on the right connecting
to J ( i ) is above or below J(i + 1). These exhaust all possibilities and in all
subcases it is clear that the number of down lines remains the same. D

Proof of Proposition 3.3(iii). The statement follows from the fact that
for two orders J and J' = sq J, the number of such lines in the LS-diagram of
61 (8) &2 with order J remains unchanged when going to order J'. This in turn
follows from an examination of the diagrams in Figs. A.2-A.5 and the following
lemma. D

Lemma A010 For bi, b2 G B(An) for Uq(Bn] or Uq(Dn), or bi, b2 6
jE?(An_i) for Uq(Dn), the LS-diagram of bi ® 62 does not contain any subdia-
grams of the form appearing in Fig. A.6

Proof. First note that the LS-diagram of any order J can be obtained
from the diagram for some fixed order JQ by a sequence of elementary transpo-
sitions, the results of which appear in Figs. A.2-A.5. By examination of these
diagrams, one sees that the result will follow from an induction argument, once
we can prove it for some fixed order JQ.

Let us fix the order J0 to be the bottom-to-top order. As such, we only
have to consider Figs A.6(a),(b) and (d). Let us first consider Fig. A.6 (b).
In such a case, let the particle on the left be located at level 5, and the one
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on the right at level a. We consider two subcases, according to whether the
first particle on the right appearing below level b is connected to a particle on
the left or not (see Figs. A.7(i) and (ii)). In the first case, locate the lowest
particle connected such that all particles above it are also connected (it must
appear above a), and suppose such particle is at level c. Suppose further, it
is connected to a particle on the left at level d. Clearly there are no particles
(connected or unconnected) on the right between d and c— I (since, if there were
any such particles, choose the highest - if it is connected, it would contradict
the assumption that the connected particle at c was lowest; if it is unconnected,
the particle on the left at d could not connect with the particle at c). By the
assumption all particles on the right appearing above b (including particles at
unbarred levels) are connected to particles on the left between c and b. In
particular, the particles on the right between d and 6, and those between b
and d are all connected and there are b -f 1 — d such particles (due to the fact
that the columns represent "spinor" tableaux). However, these particles must
connect with particles on the left which can only lie in the set {d,... , 6—1}, of
cardinality at most b — d, whence a contradiction.

In the second subcase, suppose the highest particle on the right below b
is unconnected and located at level c (certainly c ^ 6, otherwise the particle
on the left at b would connect horizontally, and not downwards as assumed).
Again, from the spinor condition, there are particles on the right at all levels
c + 1,. . . ,6 and they must connect with particles between c+1 and 6—1, and
so by cardinality considerations, there is a contradiction. A similar argument
with two subcases can be used to show that the configuration in Fig. A.6 (a)
cannot appear.

Let us conclude by examining Fig. A.6 (d). Using the bottom-to-top order,
there are two possibilities for the particles with order J ( i ) and J(i + 1), namely
the particle of order J ( i ) is at some level a (1 < a < n) and that of order
J(i +1) is at level n, or J ( i ) is at level n, and J(i +1) is at level a (I < a < n).
We consider the first case only, as the proof of the second is similar.

Let the up-line from a end at a particle at level c, and the down-line from
the particle at n, end at a particle at level 6. As in the paragraph above, we
subdivide into two subcases, in accordance with whether the first particle on the
right below a is connected or not. If it is connected, locate the lowest connected
particle below a such that all particles above it are also connected. Suppose
this particle appears at level e and is connected to a particle at level d on the
left. We further subdivide into 3 cases according to whether (i) c < d < a (ii)
d < c < a or (iii) d < a < c. For all cases, we note that there must be no



568 TIMOTHY H. BAKER

particles on the right at levels 1, . . . , c— 1, hence all levels 1, . . . , c—1 on the
right have a particle. Also, in all cases we must have b below d.

Beginning with case (i) (refer to Fig A.8(i)), we see that the set of particles
on the right between d and a and between a and d are all connected and such
a set has cardinality a + 1 — d. But such a set must connect with particles on
the left lying between the levels d and a—1, which is a contradiction.

In case (ii) (see Fig A.8(ii)), since all the levels below c on the right have
a particle, the particles between d and c—l are connected by horizontal lines.
As such, all particles between c and n, and between n and c on the right are
connected to particles on the left between c and a — I. Since we know a < n — I,
we have another cardinality contradiction.

In case (iii), all levels on the right between a —I and d have particles, which
must be connected by horizontal lines to particles on the left at the same levels.
However, there must also be a particle on the right at level a, and this must be
connected on the particle on the left at level a, contradicting the fact that the
latter particle is connected to a particle at c on the right.

As mentioned above, we must also consider the case when the first particle
on the right below a is unconnected, in which case we have another 3 subcases,
but the details are similar and are hence omitted. D

Figure A.2. J ( i ) down, J(i + 1) up

Figure A.3. J ( i ) up, J(i -h 1) down
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Figure A.4. J ( i ) down, J(i + 1) down

Figure A.5. J ( i ) up, J(i + 1) up

Figure A.6. Configurations not appearing in LS diagrams for spinor reps.



570 TiMOTm H. BAKER

Figure A.7.

Figure A.8.
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