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On the Approximation of Blow-up Time for
Solutions of Nonlinear Parabolic Equations

By

Takeo K. USHIJIMA*

Abstract

There are many nonlinear parabolic equations whose solutions develop singularity in
finite time, say T. In many cases, a certain norm of the solution tends to infinity
as time t approaches T. Such a phenomenon is called blow-up, and T is called the
blow-up time. This paper is concerned with approximation of blow-up phenomena in
nonlinear parabolic equations. For numerical computations or for other reasons, we
often have to deal with approximate equations. But it is usually not at all clear if such
wild phenomena as blow-up can be well reflected in the approximate equations. In
this paper we present rather simple but general sufficient conditions which guarantee
that the blow-up time for the original equation is well approximated by that for
approximate equations. We will then apply our result to various examples.

§1. Introduction and Main Results

There is a large number of nonlinear partial differential equations of para-
bolic type whose solution for a given initial data cannot be extended globally
in time and develop a singularity in finite time, say T. Such a phenomenon is
called blow-up and T is called the blow-up time. In many cases, some norms
of blow-up solutions tend to infinity as t approaches T.

Blow-up is known to occur in various equations including those in combus-
tion theory, chemotaxis models and equations describing crystalline formation
involving curvature-driven motion (see [9], [39]). The study of blow-up phe-
nomena is not only interesting from the mathematical point of view but also
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important for deep understanding of the nature of the phenomena which those
equations describe.

Since the appearance of the pioneering work of Fujita [18], blow-up phe-
nomena in nonlinear parabolic equations have been studied extensively. Par-
ticular emphasis has been placed on the question as to when, where and how
the solutions blow up. Nowadays rather precise information about blow-up
solutions near the blow-up time is derived for some particular equations (see
[31], [37], [42], and references therein). However, there are many open questions
concerning blow-up.

Generally speaking, it is very difficult to numerically simulate blow-up
phenomena accurately. For one thing, one has to deal with numerical data
that grow indefinitely as the blow-up time approaches. This is obviously not
an easy task. Secondly — and more importantly — it is not at all clear if
features of such a wild phenomenon as blow-up can be well reflected in the
discretized equation which approximate the original equation. Most of the
standard error estimates become useless as t approaches the blow-up time.

There have been some attempts to establish numerical methods to cap-
ture blow-up phenomena. For example, the rescaling algorithm by Berger and
Kohn [10] and the method of MMPDE [12] by Budd et al can observe the
shape of blow-up solutions near the blow-up time. There are also some works
concerning approximation of blow-up time. Some authors studied numerical
blow-up time and its convergence. As for the semilinear parabolic equation
ut = uxx + up, Nakagawa [35] (p = 2) and Chen [13] (p > 1) studied a finite
difference scheme for this equation and proved the convergence of the blow-up
time of approximate solutions to that of the real solution. They assumed that
Lq(q = I or 2) norm of the solution diverges at blow-up time. This assump-
tion, however, does not always hold [17]. Recently, Abia, Lopez-Marcos and
Martinez [1] considered a one dimensional semi-discrete problem for this equa-
tion. Here a semi-discrete problem means the system of ordinary differential
equations which is obtained by discretizing the space variable (but not the time
variable) via finite difference approximation. They proved the convergence of
blow-up time, on the condition that the L°° norm of the solution blows up.

In this paper, we discuss the approximation of blow-up time in a rather
general framework and establish simple sufficient conditions that guarantee the
convergence of blow-up time. We will then apply these general results to various
examples.

Now let us consider the initial-boundary value problem for the following
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nonlinear parabolic partial differential equation:

ut — F(t, x,u, Vu, Au), x G Q, t > 0,
(1.1) { u ( x , Q ) = u0(x), x E O,

*) = 0, x E SO, t > 0.

Here 5 represents the boundary condition. We assume that this problem pos-
sesses a unique local solution u(-, t) in a function space X and there exists finite
time T such that this solution cannot be extended in X beyond T. Namely, we
assume that

(AO) the solution u ( - , t ) of (1.1) blows up at T.

Moreover, we assume that there exists a functional J : X — t R such that for
the blow-up solution u of (1.1) one of the following holds:

(a) lim J[u}(t) = oc,

or

(b) Hm-J[u](t) = oo.

We note that if the condition (b) holds then there exists a function H(t) such
that

(b') ~J[u](t)>H(t), UmH(t) = oo.

Various examples of such a functional J can be found in many blow-up prob-
lems. Some of them will be given in Sections 3 below.

We approximate problem (1.1) by a family of equations which is parame-
terized by h:

t>0.

Here the parameter h indicates the accuracy of approximation, which becomes
better as h tends to zero. The approximations of F, B, V, A, O, x, and UQ are de-
noted by Fh, Bft, Vh, Ah, fifc, Xfc , and UQ , respectively. The semi-discrete prob-
lem for (1.1) is an example of (l . lh)- In this case, the parameter h corresponds
to the spatial mesh size. We assume that the approximate problem (l.lh) pos-
sesses a unique local solution in a function space Xh> Moreover, we assume that
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there exists a functional Jh • Xh —> R which approximate the above functional
J.

The main result of this paper states that if the solution uh of (l.lh) con-
verges to the solution u of (1.1) in the sense of functional (assumption (A2)
below) and if the functional J and Jh satisfy some conditions (one of assump-
tions (Al), (Al'), (Al"), (Al'") below) then the following holds:

(c) the approximate solution uh blows up in finite time Th for sufficiently small
h and Th converges to T as h tends to zero.

Now we explain the conditions which should be satisfied by the functionals
J and Jh- Let us introduce two differential inequalities. The first is of the form

(II)
(JbL

where G : [0, oc) —> R is a function satisfying

( G( s )>0 f o r s > # o ,

{ f°° ds

The second is

where c is a non-negative constant.
Let u ( - , t ) £ X be a given solution of (1.1) that blows up at t = T and let

uh(-,t] G Xh be a solution of (l.lh) f°r each h. We assume that there exist a
functional J : X —> R and a family of functionals Jh : -X^ —> R such that the
functions J(i) = J ( u ( - , t ) ) and J^(£) = Jh(uh(-,t)) satisfy one of the following
conditions:

(Al) J ( t ) is a continuous function satisfying the condition (a), while Jh(t) is
a C1 function satisfying the inequality (II) for some function G.

(Al') J ( t ) is a C1 function satisfying the condition (b), while Jh(t) is a C2

function satisfying the inequality (12) for some non-negative constant
c. Moreover, there exists a finite constant M such that J(i] < M and
Jh(t) < M for all h>0.

(Al") J(i] is a C1 function satisfying the condition (b), while Jh(t) is a C2

function satisfying both the inequalities (II) and (12) for some function
G and a non-negative constant c.
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(Al"') J(t) is a Cl function satisfying the condition (b') for a function H,
while Jh(t) is a Cl function satisfying the inequality (II) for a function
G and inequality

(II') AW > Hh(t),

for a function Hh(t) which satisfies -^Hh(t) > 0.

We also assume one of the following.

(A2) The family uh approximates u in the following sense: for any e > 0,

lim sup J[u] (t) - Jh \uh] (i) \ = 0.

(A2') The condition (A2) holds and for any e > 0,

lim sup \H(t)-Hh(t)\ = 0.
h-*°te[0,T-e]

Our main results are the next four theorems.

Theorem 1.1. Assume (AO), (Al), and (A2) then (C) holds.

Theorem 1.2. Assume (AO), (Al'), and (A2) then (C) holds.

Theorem 1.3. Assume (AO), (Al"), and (A2) then (C) holds.

Theorem 1.4. Assume (AO), (Al'"), and (A2') then (C) holds.

Our main results assert that if the original problem has a functional J
which satisfies (Al) ((Al'), (Al"), or (Al"')) and if the approximate problem
well approximates this functional J then we can approximate the blow-up time.

In Section 3, we will apply the theorems above to three examples, where
semi-discrete approximations are considered.

The first example is a generalized curvature flow, which is abbreviated to
GCF. This problem is concerned with a closed convex curve which evolves with
normal velocity proportional to a power of the curvature. It is well known that
the solution develops singularity in finite time, see Section 3. We prove the
convergence of the blow-up time by using Theorems 1.1 and 1.2.

The second example is semilinear parabolic equations of the form ut =
A w + /(it), where f ( u ) — up(p > 1) or eu. It is well known that these equations



618 TAKEO K. USHIJIMA

possess blow-up solutions. By using Theorems 1.1, 1.3 and 1.4, we prove the
convergence of blow-up time. This result covers and extends the result of Abia
et al [I].

The final example is so-called quenching problem. We show the conver-
gence of quenching time by using Theorem 1.2.

Finally, we would like to emphasize that the implication of our results is
not limited to the numerical aspects. In fact, from our main theorems, we can
see that the blow-up time depends on the initial data u$ continuously. To see
this we simply have to set Fh = F, B^ = B, and O^ = O in the approximate

problem (l.lh)
The organization of this paper is as follows: in Section 2, we will prove

Theorems 1.1, 1.2, 1.3 and 1.4. In Section 3, we apply these theorems to
several examples (a generalized curvature flow, semilinear parabolic equations
and quenching problem). In Section 4, we state the continuous dependence of
blow-up time on the initial data.
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§2. Proof of the Main Results

In this section we shall prove our main theorems. We note that as a direct
consequence of the assumption (A2), the inequality liminf 7\ > T holds. Hence

h— >0

what we have to prove is limsupT^ < T.
h ->o

Hereafter, we use the symbol J' as the derivative of J with respect to t.

Lemma 2.1. Suppose a function J(i) satisfies (II), namely,

|^ J(to) = JQ > RQ.

Then there exists a finite time T such that J(i] tends to infinity as t -> T and
the following estimate holds:
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ds
T < t0 +

J Jn G(s)'

Proof. We have F ( J ( t ) ) > 0 for t > t0 since J(t) > J(t0) > RQ. Hence
J'(t)/G(J(t)) > 1 holds. Integrating both sides from to to t, we obtain

j0 s

The right hand side is bounded from above. This implies the claim. D

Lemma 2.2. Suppose a function J satisfies (12), namely,

J"(t) > -cJ'(t), t > t0.

Then we have

1 _ p-c(t-to)
(2.1) J(t) > J(t0) -I- - Jr(t0) ifc> 0,

c

(2.2) J(t) > J(t0) 4- (t - t0) /(t0) i/ c = 0.

Moreover, if J;(t0) > 0 and J(t0) < M < J(t0) + ^^- then J(t) reaches M
before t becomes tc, where we set

Proof. From the inequality we obtain (ecij'(t)}' > 0. Integrating this
inequality twice, we obtain (2.1) and (2.2). D

Hereafter J(t) will stand for J(u(-,t)).

Proof of Theorem 1.1.
Step l(Blow-up of uh). Since J(t) tends to infinity as t -> T, there exists

t0 such that 0 < t0 < T and J(t0) > 2^0- Because of the assumption (A2),
there exists h$ such that

\ J ( t o ) ~ Jh(to)\ < RO, for any h < hQ.
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Hence we have

Jh\to) ^ J(^o) — RO ^ RQ-)

for h < hQ. Since Jh satisfies (II), for h < hQ the approximate solutions uh

blow up at Th.
Step 2 (Convergence of blow-up time). For any e > 0 there exists a num-

ber R > RQ such that

ds
G(s) -

For this R there exist ti and hi such that

Jh(ti)>J(ti)-R>R,

for h < hi. By virtue of Lemma 2.1, the blow-up time Th of approximate
solutions satisfies

ds

for any h < hi. Consequently we have lira sup T^ < T. n
fr-»0

Proof of Theorem 1.2. We will consider only the case where c > 0, since

the case where c = 0 can be treated similarly.
Step I. We claim that for any 6 > 0 there exists hi > 0 such that for

each h < hi there exists ti — ti(h] which satisfies

In fact, for any 5 > 0, there exists a time t\ < T such that for any t > t\

J ' ( t ) > 25 > 0,

since J'(t) tends to infinity. Without loss of generality we can assume that
T-ti <l. Now set KI = [ti, (ti + T)/2] and denote by \Ki\ the length of the
interval KI. For z/ < ' £ , there exists /ii such that for any h < hi

sup \Jh(t)-J(t)\ <v.

By virtue of the mean value theorem, we see that for any h < hi there exist

ti = ti(h) G KI and t( 6 KI such that
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Hence we have the claim.
Step 2(Blow-up of uh). By the result of the previous step there exists hi

such that J'h(t) > 0 for any h < hi and some t. Because of the condition (Al')
we can prove the blow-up of uh by Lemma 2.2.

Step ^(Convergence of blow-up time}. Making use of Lemma 2.2 and the
first step, we have

i _ p-c(t-ti) _ \K-\\fi
Jh(t] > Jh(ti) + - 4(ti) > j(ti) - LJ^, t > ti.

C Zt

Therefore we can assume that there exists a constant ra and time t* such that

Jh(t) > m for t > t*, h < hi.

For any e > 0 and M > m there exists a number R > 0 such that

Applying the result in Step 1, we can choose a number h<2 such that for any
h < /i 2 there exists a time t^ such that T > t^ > t* and J^(?2) > ^- By means
of Lemma 2.2, for all h < h%

Consequently we have lim sup Th < T. D

Proof of Theorem 1.3. Again we will prove only in the case where c > 0.
Using the same argument as in Step 3 of the previous proof, we can assume
that there exist constants ra, hi, and ti such that Jh(t) > ra for t > ti and
h < hi.

For any positive c there exists R > RQ such that

ds e
G(s] ~ 2'

We set to = T 4- |. There exists a time t<2 <T such that

since J' (t) tends to infinity. By the same argument as in Step 1 in the previous
proof, there exists h% and for any h < h<2 there exists t<2 = ^(/i) < T such that
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By virtue of Lemma 2.2, for any h < h<2 we have

__ e-c(t0-t2)

From Lemma 2.1, we can conclude that the approximate solution must blow

up in finite time Th and for h < h<2

Th<t0+r£-<T+t.
JR ^(s)

Hence we have limsupT^ <T. D

Proof of Theorem 1.4. Since we assume that

J ' h ( t ) > H h ( t ) , H ' h ( t ) > 0

and

J'h(t) > G(Jh(f)),

we have the following estimates

(2.3) t\ — tg

and

(2.4) ti-tQ<

For any e > 0 there exists R > 0 such that

By the assumption (V) and (A2X), there exists 5 > 0 and /IQ > 0 such that for

any h < /ZQ

Let us assume that T^ > T + e/2 for an /i < /IQ. By the inequality (2.3) we
have

Jh(T + e/2) > (6/2 + 6)Hh(T - 5} > R.
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By the inequality (2.4) we obtain

rJh(Th]

jh(T+E/2) S R S

Hence we have Th < T + e. D

§3. Examples

In this section, we present three examples. The first example is a gen-
eralized curvature flow. The second is semilinear parabolic partial differential
equations of the form ut = A it -f/ (it). And the last one is a quenching problem.
We apply Theorems 1.1 and 1.2 to the first one, Theorems 1.2, 1.3 and 1.4 to
the second one, and Theorem 1.3 to the third one.

§3.1. Generalized curvature flow

In this subsection, we apply our theorems to a generalized curvature flow
problem. We first explain this problem briefly. We then introduce an approxi-
mate problem which is based on so-called crystalline approximation of smooth
curves. For this approximate problem, we show the convergence of blow-up
time.

Generalized Curvature Flow

The problem is to describe the motion of closed immersed curve C(t) =
{ X ( t ) G M2} which is evolved by the law

(3.1) V=-Ka.
a

We assume that the curvature K is positive everywhere. The symbols V and
a denote the outward normal velocity and nonzero parameter, respectively.

When a — 1, the problem (3.1) is called the problem of curvature flow.
There are many papers which study this problem (see [7], [19], [24], and ref-
erences therein). When a = 1/3, the problem (3.1) is invariant under affine
transformation [38] and attracts many researchers in recent years (see [6] and
references therein). Moreover, the evolution law (3.1) with a = 1/3 is used for a
model equation for image processing [2]. We call the problem (3.1) generalized
curvature flow problem (GCF in short).

Since the curvature K is positive everywhere, we can parameterize the
curve by the normal direction 9. Then GCF is described by the following
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initial-boundary value problem for a quasilinear parabolic partial differential
equation:

Vt = (oLV)^r(V0B + V), 9 £ R/2r?7rZ, t > 0,
V(0, t} = V(0 + 2r/7T, t), 9 G E/2r/7rZ, t > 0,

), 9 G E/2r?7rZ, t > 0,
(3.2)

Here 77 denotes the rotation number of the curve. We assume that the initial
data (p is a smooth function which satisfies f^ -^^dO — 0 and atp > 0. As
for the derivation of this equation, see for instance [5].

We explain several properties of GCF (see [3], [4], [7] for more precise
information). Firstly the problem (3.2) possesses a unique smooth local solution
which does not change sign. Secondly, GCF is a curve-shortening and area-
decreasing motion for a > 0, and is a curve-lengthening and area-increasing
motion for a < 0. Namely, j^L < 0 and j^A < 0 hold true for t > 0 if a > 0:
the opposite inequalities hold true if a. < 0. Here L and A denote the length of
the curve and the area enclosed by the curve, respectively. Thirdly, for a > 0
and a < —1 all solutions of GCF develop singularity in finite time, say T: at
t = T, L°° norm of the solution V diverges. This fact can be proved by the
comparison lemma. Finally, in the blow-up case, regional blow-up occurs (see
Proposition 3.1 bellow).

Let us introduce the notion of the blow-up set. The set

S(V) = \x G O 3xn,3tn s.t. lim \V(tn,xn}\ = oo, lim xn = x, lim tn = T \
I n—»oo n—>-oo n—>-oo )

is called the blow-up set of the solution V. When the measure of the blow-up
set is positive, we call it regional blow-up. The following proposition holds true
(see [4], [20] for more precise information).

Proposition 3.1. For any blow-up solution V, the Lebesgue measure of
the blow-up set S(V) is greater than or equal to TT.

Proof. We assume that a > 0. The case where a < -I can be treated
similarly. Suppose the contrary, then there exist intervals (a, 6), (ao,&o) and a

finite constant M such that b — a < TT, S(V) C (a0,60) C (a, 6), V(t,ao) < M,
and V(t, b0) < M. For a constant A > 0, we define (p(9) = A cos -^(x - ^jr)-

Since cos -^(b°^a°) > 0, both (/?(a0) and (/?(&o) are greater than or equal to
M for sufficiently large A. Moreover, <p satisfies p" + (p = (1 - (-^L)2)^ < 0,

hence (pt — 0 > (aV)^~ ((poe + <p)> On the other hand V is a solution of (3.2).
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By virtue of the maximum principle of parabolic type, we have V(t, 9) < (p(0)
for 9 in (ao ,&o)- ^ contradicts the blow-up of V. D

Approximate Problem

Let us consider an approximate problem which is given by the system of
ordinary differential equations for v™\

- V>T> 0 < 7 < n,

where A$ = 2rj7r/n and

This approximate problem is derived by the so-called crystalline approximation
(see [40], [41]).

Several authors studied numerical methods for problem (3.1) and related
problems. Kimura [28, 29] constructed a numerical scheme for (3.1) with a = I
and proved its convergence. Mikula [33] studied a numerical scheme for equa-
tions which are related to (3.1) and (3.2). Recently Mikula and Sevcovic [34]
developed an effective numerical scheme based on so-called intrinsic heat equa-
tion. Ishiwata and Tsutsumi [26] investigated numerical treatment for equation
(3.2) under Dirichlet boundary condition. Using crystalline approximation, we
constructed a numerical scheme for this problem and proved the convergence
of the scheme [40]. Our scheme enjoys the discrete versions of the properties of
GCF.

We note that the solution of (3.3) does not change sign. This can be proved
by the discrete comparison lemma. We assume a > 0 or a < — 1, namely V
blows up in finite time T.

We define functionals J and J^ as follows:
/•2777T

J[V](t) = — sgn(a) / (aV)~l/ad0
Jo

and
n-l

Jh[vh}(t) = -sgn(a)

Let us check that the functionals J and Jh satisfy the assumptions of Theorem
1.2 and Theorem 1.1 for a > 0 and a < — 1, respectively.
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Firstly we can prove that the convergence between the solution vh of the
problem (3.3) and the solution V of the problem (3.2).

Proposition 3*2,, T denotes the blow-up time of the solution V to (3.2).
We assume max \ip(jAO) — (p3\ = 0(1) as A9 tends to zero. For any c we have

0<j<n

lim max \V(jM,t) - v*(t)\ = 0.
n-K»te[0,T-e],0<j<n J

Proof. This result can be obtained by a discrete analogue of super and
subsolution method (see appendix).

We set v f ( t ) = V(j&9,t)±AeBtm(M), where m is a function of A0 such
that ra(A0) = o(l) and max |<p(jA0) - (p3 = o(l) as M -> 0. For suitable

0<j<n

A, B, and sufficiently large n, we can check that VJ~(t)(v~(t)) is a supersolution
(subsolution, respectively) for the equation (3.3). Therefore we can prove that
there exists a constant C€ such that for sufficiently large n

max \V(tJ&6) - v*(t)\ < Cem(A(9)

by the comparison lemma (Theorem A.I below). n

Using this convergence result we can easily check that the condition (A2)
holds.

Secondly, we can prove the following result. The continuous part of the
proposition was first proved by Gage [20] for the case of the Dirichlet boundary
condition. By this result, we can check that the inequality (12) holds for a > 0.

Proposition 3.3, We assume that a > 0. There exists a positive con-
stant c which depends only on the initial data such that

Vt(t,9} > -cV(t,9} and ^(t) > -cv*(t,0).
at J J

Proof. We set c = max{-mm0aVo(6)«((VQ)0o(8)+ VQ(9)), 0}(> 0) and
w(t, 9} = Vt(t, 9) + cV(t, 6). By the definition of c, we have w(0 ,9) > 0.

One can easily check that w satisfies

(a + l)iu2 (2av ; ' v

a J aV a

> aV~°~ wee + ( o*V~^
OL
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since V > 0 and a > 0.
For a positive number /c, we set W(t,0) = e~ktw(t,9). Then W satisfies

Wt > otV^Wee 4- (aV^ - c3Q + 2 - k] W.
\ & J

We fix a time to such that V is bounded for t G [0,to], then there exists a
positive number k such that (aV^~ — c3aj"2 — k) < 0. From the maximum
principle, we obtain W(t,9) > 0 for any t G [0,to]- Hence we have w(t,6) > 0
for any t G [0,to]- It means that Vt > —cV holds as long as V is bounded.

By an analogous argument, we can prove the latter part of the proposition.
D

Let us assume that a > 0. By means of Proposition 3.1, -^

a /o ̂  ^^ tends to infinity as t — > T. From Proposition 3.3 we can check that
the inequality (12) holds:

Functionals J and J^ are bounded from above, since V and vh are bounded
from below. Finally Proposition 3.2 ensures (A2) (see [40]). Hence we can
obtain the convergence of blow-up time by using Theorem 1.2.

Let us now assume that a < — 1. We can check that J and Jh satisfies (Al)
and (A2). Since a < — 1, J tends to infinity as t — >• T, because of Proposition
3.1. Proposition 3.2 also ensures (A2). By Jensen's inequality, there exists a
constant c = c(rj) such that

d T > c T-*~HJh > -- Jh •
dt a. h

So the inequality (II) holds with G(s) = ~~s~a- Hence the convergence of
blow-up time holds true by Theorem 1.1.

We have thus proved the following.

Theorem 3.1. We assume a > 0 or a < —1. T denotes the blow-up
time ofV. We assume max \<p3 —(p(j&0)\ = 0(1) as n tends to infinity. Then

0<j<n

for sufficiently large n, the solution vh(t) of the problem (3.3) blows up in finite
time Tn. Moreover, we have

lim Tn = T.
n— »oo
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§3.2e Semilinear parabolic equations

In this subsection, we shall treat semilinear parabolic equation:

{ ut(x,t) = Au + f ( u ) , x £ O, t > 0,
u(x,Q) = UQ(X), x £ O, t = 0,
u(z,t) =0, x £ 50, t > 0.

Here O is a bounded domain in M.N. We assume that initial data UQ is a
nonnegative smooth function and UQ(X) = 0 (x £ <9Q) . We consider the case
where /(it) = up(p > 1) or eu. The former nonlinearity is called of Fujita type
and the latter arises from combustion theory (see [9], for instance).

It is well known that for sufficiently large initial data, solution of this

problem do blow-up in finite time. See, for instance, [18] and [31].
The blow-up solutions of this problem were extensively studied and now

rather precise information near blow-up time is clarified (see [37], [42], and

references therein).
As for numerical approach, some excellent schemes were invented ([10] [12]).

Some authors studied numerical blow-up time and its convergence. Nakagawa

[35] studied a finite difference scheme for ut = uxx + u2 and proved the conver-
gence of blow-up time. Nakagawa and Ushijima [36] studied a finite element
full-discrete scheme for the semilinear heat equation of blow-up type based on a

blow-up criterion due to Kaplan and Fujita. Chen [13] also studied a finite dif-
ference scheme for ut = uxx + up,p > I and proved the convergence of blow-up
time. They all assumed that the Lq (q = I or 2) norm of the solution tends to
infinity as t approaches the blow-up time T. However, it does not always hold
(see Remark 3.1.). Recently, Abia, Lopez-Marcos and Martinez [1] considered
one dimensional semi-discrete problem for (3.4) with more general nonlinear
term /. They proved the convergence of blow-up time, on the condition that
L°° norm of solution blows up.

In this subsection, we prove the convergence of blow-up time for N-

dimensional semi-discrete problem, using our general theory, under the as-
sumption that the L°° norm blows up. Our result contains the result of [1]
as a special case (see Remark 3.3).

Blow-up Problem of Fujita Type

First we treat the case where / = up(p > 1). We define the energy / by

(3.5) I[u](t) = ^ f \Vu 2dx - —!— f up+ldx.2 Jn P + 1 JQ
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For any solution u, this / is monotone non-increasing function of t. In fact, one
7 />

can easily check that — - I[u](t) = — u^dx < 0. Let us define the functional
dt JQ

J as follows:

J[u](t) = I u2(x,t}dx.
JSl

For this J we can verify that
7 r*

(3.6) —J[u] = 2 I uutdx
dt Jsi

2(v - 1
(3.7) = -4/[u] + —v L J p+1

(3.8) >-4/[it0] + c(O)(J

Here we have used Jensen's inequality.

Proposition 3.4. We assume that the L°° norm of the solution u to the
problem (3.4) tends to infinity as t tends to T. We also assume q > %
then we have

lim \ \ u ( ' , t } \ \ q = oo.

Here, \\u\\q denotes the Lq norm of solution u.

Remark 3.1. This fact is well known for the specialists. For proof of the
proposition, we refer Giga [21] and Friedman and McLeod [17]. Friedman and
McLeod [17] also show that if fi is convex and q < ^ then there exists
initial data such that

limsup \\u(', t)\\q < oo.

Accordingly we can not always expect J tends to infinity as t tends to the
blow-up time.

Proposition 3.5. Assume 1 < p < jf^, then —I(t) tends to infinity as
t approaches T.

This result was proved by Giga [22].
Let us introduce an approximate problem. We set O = (0, l)N for simplic-

ity. We approximate the problem by the semi-discrete problem:

' iiK = (&hu)K + f(uK), K 6 /C, t > 0,
(3.9)
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Here we have introduced a square grid with mesh size h = l/n in domain $1,
the function ux(t) is defined on this grid. The set of indices K = ( j i , . . . , JN)
is denoted by JC and the set of indices K corresponding to the boundary is
denoted by /Co- Namely,

fc = {(ji i- • • JN) • 0 < j i , . . . , jN < n}

and

K-O = { ( j i , • • • JN} G /C : ji = 0 or n}.

We set Kh = (jih,J2h,... , JNh). We define a discrete Laplace operator A/j by

N

i=l

where we set

u _i — 2u

The dot in (3.9) denotes derivative with respect to t.
For this approximate problem, we can prove the convergence result by a

discrete analogue of super and subsolution method.

Proposition 3.6. We assume the solution u of (3.4) blows up at finite
time T and max \u$(Kh) — UQ K\ = 0(1) as h — >• 0. For any c we have

lim max \u(Kh, t) - un
K (t) I = 0.

-

Proof. We set u^(t) = u(Kh,t) ± AeBty(Kh}m(K), where m(h) is a
function of h such that m(h) = 0(1) as /i tends to zero and max u$(Kh} —

K^fC
uo K\ — m(ti)i ¥(x} is the first eigenfunction of —A with homogeneous Dirichlet
boundary condition. For suitable A, B, and sufficiently small h, we can prove
that u+ and u~ are super and subsolution, respectively. From the comparison
lemma, we obtain the assertion. D

Let us define functional In and Jn as follows:

- E E
=1 ^
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and

Jn[un](t)=

Here we set

f UJl, ,Jt + l ,JN~U3I' >Ji> >JN \f A -L „ f ~]1 'h , H j^ n lor all z,
0, if j% — n for some i.

Because of the definition of difference operators above, the formula of sum-
mation by parts holds. Thus we can prove the semi-discrete analogue of (3.7)

and (3.8). Namely, we have

(3.10) ~ Jn[u-} = -4In[un]

(3.11) >-4/ r lK]

since In = - T v?KhN < 0.K

Now we state our result.

Theorem 3.2. We assume that the solution of (3.4) blows up in finite

time T and max \u$(Kh} — UQK = 0(1). Assume one of the following.

1. 1 < p < ^^| or —I(t) tends to infinity as t tends to T.

2. 1 < p < 1 + 4/7V or J[u](t) tends to infinity as t tends to T.

Then for sufficiently large n the approximate solution blows up in finite time
Tn and we have lim Tn = T.

n^-oo

Proof. The first part of the theorem is proved by Theorem 1.4 and the
second part is proved by Theorem 1.1.

By means of Proposition 3.2 we can verify that the assumption (A2) holds
for J and Jn.

Proof of 1. By Proposition 3.5, —I(t) tends to infinity as t —> T. Set

H(t) = -21 (t} and Hn(t) = -2In(t) then the condition (A2;) holds. Since we
have the inequality (3.11) we obtain the conclusion by Theorem 1.4.

Proof of 2. From Proposition 3.4, the condition 1 < p < 1 + -^ ensures

that J[u}(i) tends to infinity as t tends to T. Since the inequality (3.11) holds,
the assumption (Al) is satisfied. By virtue of Theorem 1.1, we obtain the
result. D
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Remark 3.2. Our theorem is valid for more general nonlinearity /.
Firstly if we assume

(3.12) 0 < lim ^ < oo,
z— too

for 1 < p < j^~ then -/(t) tends to infinity as t ->> T ([22]). Here, for such
nonlinearity / we modify the energy / as follows:

I(i) = i f \Vu\2dx - [ F(u)dx,
2 Jo Jo

F(U)= r f(s)ds.Jo

Secondly if we assume that there exists a constant L such that

(3-13) \f(y) - f ( z ) \ < L\y - z\(\y\*~l + ^r1), /(O) = 0,

for 1 < p < 1 + 4/7V then \\u\\2 -* oo as t -* T ([211).
Thirdly if we assume that there exists positive constants c\ and c^ such

that

(3.14) u f ( u ) - 2F(u) > ci u\p+l - c2,

then we can do the calculation that are analogous to (3.7) and (3.8). These
analogues give us the finite time blow-up and the convergence of blow-up time.

Hence, the first part of Theorem 3.2 holds with / which satisfies (3.12)
and (3.14), and the second holds with / which satisfies (3.13) and (3.14).

Remark 3.3. The result of Abia, Lopez-Marcos and Martinez [1] required
strong assumption on initial data: there exists a positive constant a such that

Also they considered only the one-dimensional problem.

The Case where f(u) = eu

We employ the same approximate problem as the previous one. For the
case where f ( u ) — eu, Propositions 3.6 and 3.7 remain valid.

Let us construct the functionals J and Jn which satisfy our assumptions.
Let (p(x) and A denote a first eigenfunction of —A under the Dirichlet boundary
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condition and corresponding eigenvalue, respectively. We define the functionals

J and Jn by

f
J[u](t) = I u^pdx

Jn

and

For these functionals, we have the following: there exist positive constants c\

and 02 such that

J'(t) = -XJ(t) 4- [ eu(pdx > -\J + cie
C2 J,

Jn

and

where \n is the first eigenvalue of — A^. We note that lim \n — A.
n— >-oo

Here if we assume that lim J\u](t) — oo, then there exist a positive con-

stant ca and to < T such that J'n(i) > c^eC2Jn for all t > to- Thus we can obtain
the convergence of blow-up time by Theorem 1.1. However, we could not find
any sufficient condition which ensures lim J[u}(i] = oo (see Remark 3.4). So

in the following we will restrict ourselves to a narrow class of initial data and
apply Theorem 1.3, in order to obtain the convergence of blow-up time.

We note that if the initial data is a subsolution then the solution is mono-
tone non-decreasing function with respect to t. This fact is easily proved by
using the comparison lemma.

Proposition 3.7. We assume that

(Fl) (A/l<)K + /K K )>0 .

Then we have

un
K(t) > 0.

Hence if we assume (Fl) then we have
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If we further assume

(F2) lim / eu(pdx = oo,
t-^TJa

then we obtain the convergence of blow-up time by Theorem 1.3. Therefore we
have the following:

Theorem 3.3. We assume that the solution of (3.4) blows up in finite

time T and max\UQ(Kh) — UQ K\ = 0(1). Assume one of the following holds.

1. J[u](t) tends to infinity as t tends to T.

2. (Fl) and (F2) hold.

Then for sufficiently large n the approximate solution blows up in finite time
Tn and we have lim Tn — T.

n-^-oo

Remark 3.4. In the case where the domain is a ball and the initial data

is radially symmetric, the assumption lim J[u](t) = oo does not hold. See

Friedman and McLeod [17].

Remark 3.5. The assumption (F2) holds when N = I. In fact, we can

prove it by the same argument in Friedman and McLeod [17].
It is known that for any b £ O there exists a blow-up solution u which

blows up at (6, T) G RN x (0, oo) and whose final time blow-up profile satisfies

u(x,T) = -21n|x - b\ 4- In I n j x - 6|| 4-ln8 + o(|x - 6|),

provided 0 is a convex domain ([8], [11]). Moreover, this final profile is stable
with respect to small perturbations of the initial conditions. Hence, we may
expect (F2) holds for a wide class of solutions in higher dimensions, too.

§3.3. Quenching problem

In this subsection, we treat the following initial boundary value problem:

ut = Au - u~p, x G 0, t > 0,
(3.15) { u =1, x e SO, t > 0,

u(x, 0) = UQ(X), X E fi.
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Here O C MN is a bounded domain. We assume that initial data UQ is a
smooth function such that 0 < UQ < I. It is well known that the minimum of
u approaches zero as t tends to a finite time T provided 0 is sufficiently large.
Moreover, as t tends to T, ut tends to infinity. (See for instance [30], [14], [15],
[25], [16]). This phenomenon is called quenching. This kind of phenomenon
was first studied by Kawarada [27].

We assume that N = l,p > 1, and Q = (0,a) and a > 0. We wish to
approximate the quenching time T by the solution of the following approximate
problem:

" un)3 - (u*)-p, t > 0, 0 < j < n,
j = 1, n, t > 0,

) j , 0 < j < n .

Here, we set h = a/n and (&hu)j = U j~ 1~ ^+UJ+1. For this approximate
problem, we can prove the convergence in the quite same manner as in the
previous subsections.

We define the functionals J and Jn as follows:

J[u}(t) =

Here (p(x) denotes the first eigenfunction of —A under homogeneous Dirichlet
boundary condition. We have

lim —J[u](t) = —oo.
t—y J. CLL

This can be shown by the next proposition which is a result of Fila and Kawohl
[14].

Proposition 3.8. We assume that the solution u of the problem (3.15)
quenches at t = T. Then for a > ^jp we have

lim / u~~a(pdx = oo.
*-+TJn

Let us assume that the initial data satisfies following:

(Qi) (AM^), - K);p < o.

This assumption implies that -j^un < 0, hence we have
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So the assumptions (Al") and (A2) are satisfied. Hence we obtain the following
result by virtue of Theorem 1.2.

Theorem 3.4. We assume that initial data satisfies the condition (Ql)
and the error of initial data is of order o(l). We also assume that the solution
u quenches in finite time T. Then for sufficiently large n the approximate
solution un quenches in finite time Tn. Moreover, we have

lim Tn = T.

§4, Continuous Dependence of the Blow-up Time

As a direct consequence of our main results, we can obtain that the blow-
up time depends on the initial data continuously. In this section, we explain
this result briefly.

Let us consider equations (1.1) and (l.lh) again. We set Fh = F, B^ ~
J3,Qh = Sl,Xh = x, Afc = A, and V^ = V in approximate equations (l.lh)-
We assume that there exists a functional J which satisfies one of (Al), (Al'),
(Al"), and (Al"') and we also assume

(A3) if initial data UQ converges to UQ in some topology as h tends to zero then
the condition (A2) or (A2') holds with Jh = J.

Then we can obtain the continuity of blow-up time with respect to initial data,
by one of our main theorems.

Theorem 4.1. We assume (AO), (A3), and one of (Al), (Al'), (Al"),
(Al"') with Jh = J- Then blow-up time of (1.1) is continuous with respect to
initial data in the same topology as in (A3).

In many cases, the condition (A3) will be easily verified by the continuous
dependence of the solution on the initial data.

Let us consider the problem of Fujita type. If we assume UQ converges
to UQ in Hl topology, then the corresponding solutions uh(i) converges to the
solution u(t) in Hl topology. This fact leads the condition (A2) and (A2') for
J[u](t) = /Q v?dx and Gh(t) = - /n \Vuh\2dx + ^ fn(u

h)*>+ldx. Hence we
obtain the following result.

Theorem 4.2. We assume that the solution of (3.4) with f ( u ) = up

blows up in finite time T and \\UQ — i fcoll t f1^) = °(1) as a tends to zero. We
assume one of the following:



ON THE APPROXIMATION OF BLOW-UP TIME 637

1. 1 < p < ^^| or —I(t) tends to infinity as t tends to T,

2. 1 < p < 1 + 4/JV or J[u](i) tends to infinity as t tends to T.

Then uh(t), which is the solution starting from UQ, blows up in finite time T^
and we have lim Th = T.

Remark 4.1. The continuous dependence of the blow-up time on the initial
data for Fujita type problem has been already proved by Merle [32].

Remark 4.2. We note that we can also prove the continuous dependence
of the blow-up time on the initial data for GCF.

Appendix. Discrete Analogue of Super and Subsolution Method

In this section, we explain a discrete analogue of super and subsolution
method. By this method, we obtain some properties of semi-discrete solution
and convergence between approximate solution and continuous one.

We consider the following parabolic equation with homogeneous Dirichlet
boundary condition:

ut = a(x)Au + f ( u ) , (x, t} e O x (0, T).

Here we set Q = (0, 1)^, a(x) is a positive smooth function, and / is a smooth
function. We note that we can treat the problem under periodic boundary
condition similarly. For this problem, we introduce the semi-discrete problem:

) , J E / C , t > 0 ,
u j ( t ) -0, J e / C 0 , t > 0,

J e / C .

Here we use the same notation as in Subsection 3.2. We assume that aj > 0
for all J G JC.

For this semi-discrete problem, we introduce the notion of super and sub-
solutions.

Definition A.I Function un = { u j ( t ) } is supersolution of (A.I) if and
only if uj(t] satisfies

u j ( t ) > aj(&hu)j(t) + f ( u j ( t } } , J G /C, t > 0,
(A.2) < u j ( t ) > 0 , J e / C 0 , t > 0 ,
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Function un — { u j ( t ) } is subsolution of (A.I) if and only if uj(i) satisfies
opposite inequalities.

Theorem A.I. We assume that un — {uj} and vn = { v j } are a super-
solution of (A.I) and a subsolution of (A.I), respectively. Then for any t > 0
and J G JC we have u j ( t ) > v j ( t ) .

Proof. We fix to such that uj and vj are bounded for t in [0,to]. We set
wj = uj — vj. Then wj satisfies the following inequalities,

( wj(t) > aj(Ahw)j + cjwj J elC, t > 0,
wj(t) >

Here cj = JQ f(su3 + (1 — s)v3)ds, which is bounded provided u3 and v3 are
bounded. We set Wj = e~~ktwj(i) then Wj satisfies,

Wj > aj(&h W] j + (cj - k}Wj, J G /C, t e [0, t0].

For sufficiently large k, (cj — k) is negative.
If there exists a point (Ji, t\) E JC x fO, to] such that ^ attains its negative

minimum at this point. We can check that

__ _, < 0 and (2!

So we have

0 > Wj^ (ti) > (khW)ji (ti) + (cj - k)Wj > 0,

which is a contradiction. D
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