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Singularities at Infinity and their Vanishing
Cycles, II. Monodromy

By

Dirk SiERSMA* and Mihai TIBAR**

Abstract

Let / : Cn —>• C be any polynomial function. By using global polar methods,
we introduce models for the fibers of / and we study the monodromy at atypical
values of /, including the value infinity. We construct a geometric monodromy with
controlled behavior and define global relative monodromy with respect to a general
linear form. We prove localization results for the relative monodromy and derive a
zeta-function formula for the monodromy around an atypical value. We compute the
relative zeta function in several cases and emphasize the differences to the "classical"
local situation.

§1. Introduction

We study a polynomial function / : C" -4 C aiming to describe the varia-

tion of topology in the fibration induced by /, at atypical fibers. The topology

of polynomial functions became a challenging topic after the paper of Broughton

[Br] since applying local methods encounters obstructions from the non proper-

ness of / and from the asymptotic nongenericity. In two variables, the interest

increases by the reduction of the Jacobian Conjecture to the following state-

ment: iff has singularities at infinity then the singular locus Sing (/, g) is not
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empty, for any polynomial function g [LW], [ST]. The problem raised by such
a statement is how to control the so called ''singularities at infinity". As we
show in this paper, they represent a new type of singularities, their behavior
being different from the one of local singularities. In several variables, the term
"singularities at infinity" is well defined only under specific conditions and pos-
sibilities of study are limited because these singularities can be non isolated.
In two variables, only isolated singularities at infinity can occur and one may
define them in several equivalent ways.

In case / has isolated singularities at infinity (in the sense that the proper
extension p : X' -> C, defined in §2, has isolated singularities with respect
to a Whitney stratification of the space X;) we have introduced in [ST] the
"vanishing cycles at infinity" and proved that they generate the homology of
the generic fiber together with the cycles vanishing at critical points in the
affine. It appears that there is an interaction between the two types of cycles
and that this interaction is of a new type, different from the one between cycles
vanishing in the affine.

Starting from our previous results [ST], [Ti-3], [Ti-4]. we develop in this
paper a method for studying the monodromy of / via the relative monodromy.
The motivation for looking to relative monodromy is that, by slicing, we get
a polynomial in less coordinates and with less singularities (at least those at
infinity), see the proof of Proposition 4.8.

There are recent papers which contain results on some invariants of the
monodromy, usually under certain restrictions on /. Different points of view are
adopted: Newton polyhedra [LS], Hodge theory of families of algebraic hyper-
surfaces [GN], Fourier transform of P-modules [Sa], resolution of singularities
[MW], [ACD], [GLM], relative monodromy in case of two variables [Ha].

Our approach is via the construction of geometric monodromies along loops
in C and has been announced in [ST-2]. We first recall from [Ti-4] the construc-
tion of a model of a fiber of /, which uses a tomographic method, the slicing
with generic hyperplanes. Repeating this procedure in lower dimensions, one
arrives at a generic skeleton. This idea was first used by the second author
for proving that a certain asymptotic equisingularity condition is controlled by
global polar invariants, in case of a family of affine hypersurfaces [Ti-4].

Then we define a global geometric monodromy, i.e. a representation p :
7Ti(C \ A/) -» Diff(F), where A/ is the set of atypical values, F is the general
fiber of / and Diff(F) is the group of C°°-diffeomorphisms of F. In case of
a monodromy at an atypical value (including the value oo G P1) we define
a certain vector field, controlled at infinity and tangent to the polar curve
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]?(/, /) := closure{Sing (I, /) \ Sing /} of / with respect to a general linear form
I. The construction yields a refined filtered structure of the affine fiber F,
reflecting the dynamic behavior of each piece in the decomposition of F, when
turning around the atypical value.

This also represents a globalization of the local carrousel construction of
Le D.T. [Le-1], [Le-2]. We prove localization results for the relative monodromy
which lead to a zeta function formula for any /. We emphasize on the new fea-
tures that occur in the neighbourhood of infinity: there are certain loops around
infinity which enter in the description of the relative monodromy. These loops
are in particular the cause of the error in the main result of Ha H.V.'s paper
[Ha, Theorem 3.4]. Namely, in case n = 2, at a singular point at infinity with
A = 1 (called "Morse singularity at infinity" in loc cit) the local monodromy
can effectively be either -hid, or —id, see Examples 6.1 and 6.2. This does not
happen in the local case: the monodromy of a local Morse curve singularity is
allways -hid. Examples of computations of the relative monodromy are included
at the end.
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§2. Models of Fibers

Let / : C" —» C be a polynomial function of degree d. A value £Q £ C is
called typical if / is a trivial C°°-fibration at t$. It is known that the set of
atypical values, denoted A/, is finite (because of algebraicity) cf. [T], [Va], [Vej.
It includes the critical values of / but also other values, the fibers over which
have singular asymptotic behavior. Under certain conditions, one can localize
the variation of topology at atypical values, thus obtaining "singular points at
infinity", cf. [Ti-3]. We need for that a support at infinity, to contain all the
"ends" of fibers of /.

We consider the closure of the graph of / in F? x P1, namely the space
X = {[XQ : xi : • • • xn] G P", [s : t] E P1 sf - teg = 0} C P" x P1, where / is
the homogenized of the polynomial /. Here and in the following XQ denotes the
variable at infinity, defining the embedding Cn C F7. Denote by p : X -> P1

the second projection and by X°° := Xf! {x0 = 0} the hyperplane at infinity of
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X. Since the graph of / is diffeomorphic to the domain, we have an embedding

i : Cn ~ Graph(/) <->> X. The map / is the composition Cn A X A C. So the
study of / is equivalent to the study of the restriction of p to the graph of /.

There is a finite set A C P1, A D A/, minimal with the property that the
restriction p| : X\p~l(A) ->• P1 \ A, resp. p; : X\ (p"l(A) UX°°) -» P1 \A, is a
C°, resp. C°°, locally trivial fibration [T], [Ve]. We take by definition [0 : 1] =
oc G A. We consider the polar locus F(Z, /) := closure{Sing (/, /)\Sing /} C Cn

of / with respect to a linear form / : Cn —>• C and denote by A := (/, /)(F(/, /))
the polar image in C2. Denote by IH the linear form associated to a projective
hyperplane H G IF1"1. We first prove the following key result.

Lemma 2.1. There is a Zariski-open set £1 C F1"1 such that, for any
H e f t :

(a) the polar locus T ( l n , f ) is a reduced curve or it is empty.

(b) the map ( /# , / ) : C71 -> Cx C is a C°°-trivial fibration over (Cx (C\A#)) \
A, where A# is some finite set in C.

Proof, (a) is a slightly improved version of the Polar Curve Theorem,
see [Ti-3, Lemma 2.4]. That the polar curve is reduced follows from standard
Bertini type arguments. We prove (b) in the following. Take a finite complex
stratification W := {W?}ze/ of X' := Xn(P77 xC) satisfying Whitney conditions
and such that Cn C X7 is a stratum. (The embedding of C into P1 is given by
making 5 = 1 and the embedding of Cn into X' comes from the isomorphism
Cn ~ Graph(/) and the embedding of the graph of / into X, as defined above.)
There is a canonical Whitney stratification with this property, cf. [Te].

We take two copies of C, denoted Cr and Q, of variables r, respectively t.
Let M := {(r, [x0 : z] , f ) £ Cr x P" x Q [ 1H - rx0 = 0} (notice that t is free).
Consider X7 as subset of P71 x Q. Note that M is nonsingular, whereas X; can
have singularities on X00. Define the space:

(1) Y := (Cr x X7) RE C Cr x Pn x Q

and consider the projection (r, t) : Y —>• Cr x Q. This is a proper extension of
the map (/, /). It follows that Y\ Y°° is non-singular (since it can be identified
with Cn), where Y°° := Yn (Cr x {z0 = 0} x Q), and that the critical locus of
the restriction (r, £)|Y\Y°° is Sing (/, /). It remains to understand the situation
at infinity.
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We first return to the space X' and the map p : X' —>• C. Denote by
p := Uyy^wSingpiy^ the singular locus of p with respect to the strati-

fication W. It is a closed analytic subset of X7.
For a fixed stratum W; C X' n X00 C F1"1 x Q, we consider the projec-

tivized relative conormal FT^Wt C P71"1 x Q x F1"1. For the definition of the
relative conormal, we refer to [Te], [HMS]. Let us just emphasize that there
is a unique hyperplane within P77"1 which is tangent to a given non-singular
point of some fiber of p\y\;l and we identify it with an element of IF1"1.

We remark that, if p is not constant on Wz, then dimPT^yy = n — 1. By

using a Bertini type argument for the projection YT*^^ —>• F1"1, it follows

that there exists a Zariski open set Q C Wl~l such that, for any H £ 0, the
map p|w? restricted to W? H (H x Ct) is a submersion at all points except of the
singular locus Sing wp and except of at most a finite set AH, for any i £ I. We
may and shall assume, without loss of generality (after eventually intersecting
with a Zariski open set), that the set Q also verifies the point (a) of our lemma.

Now let us construct a Whitney stratification of Y. We take Y\Y°° ~ Cn

as a stratum and start to stratify Y°°. Consider the product stratification
Cr x W of Cr x X', where W C X' n X00. This is a Whitney stratification
too. The intersection of Cr x Wl with H is transverse within Cr x F1 x Q
if and only if the intersection (Cr x W?) Pi (Cr x H x Q) is transverse within
Cr x P77"1 x Q. This latter is indeed transverse for any i, at all points except
of the set Cr x AH, if H £ Q. Leaving aside the exceptional set Cr x AH,
the transverse slices become Whitney strata of Y at infinity, since Whitney
property is preserved by transverse cutting.

Next we have to see whether the fibres of the map (r, t) are transverse
to the above defined Whitney strata of Y. Namely, the map (Cr x Wi) fl

(Cr x H x Q) A Cr x Q is a submersion whenever the second projection
VK fl (H x Q) —> Q is a submersion. This situation is treated above, since the
map t coincides with the map p. The result is that, if H G Q, then the fibres
of (r, t) are transverse to the Whitney stratification of Y except at the points
of the following set:

ZH := T(1H, /) U (Cr x (Sing wp U AH}}.

Note that t(Cr x Sing wp) is a finite set. Moreover, for H £ Q, T(ln, /) U (Cr x
AH) is a curve (or empty). Denote by Ajy (r, t) C Cr x Q the image of £# by
(r, t). We have thus proved that the map:

(2) (r ,f) | :Y\(r,tr1(*H(r,t)) ->• (Cr x Q) \ AH(r,i)
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is a locally trivial, stratified fibration. Restricting it to Cn, yields the desired
statement (b). We may therefore define A# as t(Cr x (Sing wp U AH))- Note
that the set of critical values A/ and the set of atypical values A are contained
in A#. D

When focusing to a certain (atypical) value a E C, we need to look at the
special set of points F(7//, /) n Fa, where Fa denotes the fibre f~l(a). If such a
point is a smooth point of Fa then / is locally trivial at this point but the map
(In, /) is not. We need to change H in order to have transverse intersection of
F with Fa at the point. This is possible as shown in the next lemma, which is a
supplement of Lemma 2.1. If so, then we have a better situation along Fa since
transverse intersections provide local stratified product structures with respect
to (///,/), see Remark 4.6(b).

Lemma 2.2. Let a E C. There is a Zariski-open set Oa C O C IF1"1

such that, for any H E Oa? we have:

(c) as a hyperplane of the hyperplane at infinity P1"1, H is transverse to all
the strata at infinity of the canonical Whitney stratification of the projective
hypersurface p~l(a) C P1.

(d) the polar curve T(ln,f) has no component included into f ~ 1 ( a ) .

(e) the restriction in|/-1(a) : f~l(a) ~* C has only stratified Morse critical
points outside the one point strata of the stratification considered at (c).

Proof. Condition (c) is an open condition and implies condition (d). Con-
dition (e) is known to be locally open, hence open. D

Convention 2.3. When a = oo (that is a = [0 : 1] E P1), we define
QOO to be just O (the Zariski-open set from Lemma 2.1).

The following is an immediate consequence of the definition:

Corollary 2.4. Let H E 0. If Fa has an isolated singularity at c E Fa

then c E F(//f, /). More generally, if the restriction oflff on Fa has an isolated
stratified singularity at c E Fa, then c E F(£#, /). D

We recall from [Ti-4, 3.6] the description of the "tomographic" model
of Fa :— f~l(a). According to Lemma 2.2, for H E Oa the linear function
IH '• Fa —* C is a fibration without singularities at infinity. The only critical
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points of 1H ' Fa -> C are the intersection points F(/jy, f)r\Fa = {ci, . . . , Ck}.
By Lefschetz-Morse-Smale theory, the hypersurface Fa is built from the slice
Fa D H by attaching a number of cells of dimension n — 1 only. In case Fa is
singular, this result is still true by using the theory of functions with isolated
singularities on stratified spaces, see [Le-3]. To each point there corresponds
an attaching of a number of (n — l)-cells equal to the (n — 2)th Betti number
of the local Milnor fiber MH,CI of the germ IH '• (Fa,c7) -» C.

2.5. Fibres with isolated singularities: the generic skeleton
Let us be more explicit in case when Fa is non-singular or it has only

isolated singularities. By Milnor's Theorem, the Milnor fiber MH,Cl is homo-
topically a bouquet of spheres and by Le's Theorem [Le-3], their number is
equal to the intersection multiplicity intCi (]?(£//, /), {In = IH(CI)})-> which in
turn is equal to the multiplicity multCir(/H, /) of the polar curve at c% (by our
assumptions in Lemma 2.2). We deduce, see e.g. [Ti-4, Theorem 3.6], that if
dim(SingFQ) < 0, then:

(3) 6n-2(AfH,rJ=mtC |(r(/H,/) ,Fa)-^a,C l) ,

where intc? (F(l//, /), Fa) denotes the intersection multiplicity at cl and //(Fa, c2)
is the Milnor number of the hypersurface singularity (Fa,cl). (If Fa is non-
singular at c?, then /^(Fa,c?) = 0.)

After the second author's paper [Ti-4], there is the following homotopy
model: Fa is built from the generic hyperplane section Fa Pi H to which one
attaches 7™"1 - ii(Fa) cells of dimension n - 1, where p,(Fa) is the sum of
the Milnor numbers of the singularities of the hypersurface Fa and 7™"1 is
the generic polar intersection multiplicity. We recall from [Ti-4] the defini-
tion of 7™~1 and of the set of generic polar intersection multiplicities 7* :=
f n-l n-2 1 01 .
\ 'a i la •>••••> /a' 'aJ •

where int(F(//f, /), Fa) denotes the sum of the local intersection multiplicities
at each point of the finite set r(/#, /) D Fa. Next, take a hyperplane H G Ofl

and denote by 7^~2 the generic polar intersection multiplicity at a E C for
the polynomial function f\u : C""1 -> C, where H is identified to Cn~l . By
induction, we define in this way 7^~z, for 1 < i < n — 1. By definition,
7a°:=deg/.

By a standard connectivity argument, the set of polar intersection multi-
plicities is well-defined i.e., it does not depend on the choices of generic hyper-
planes.
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The generic skeleton Ska(/) of Fa is defined as the CW-complex obtained by
successively attaching to 7^ points 7* cells of dimension 1, 7^ cells of dimension
2, ..., 7a~2 cells of dimension n — 2 and finally 7J"1 — n(Fa) cells of dimension
n - l .

By the above, the generic skeleton does not depend on the choices of generic
hyperplanes. We refer to [Ti-4] for the details and an application of 7* to
equisingularity at infinity. Computations of 7* can be found in the Examples
at the end.

One of the consequences of the above model is the following:

Corollary 2.6. Let H <E 0. IfT(lHJ) n Fa = 0 then H3(Fa,1) = 0,
for j > n — 1. D

§3. A Global Geometric Monodromy

We proceed to construct a geometric monodromy of a polynomial function
by using the key lemma 2.1 and the generic skeleton Skc(/) of a typical fiber
of Fc. Let H E O and let A C A# C C be the finite set A := ^(Singyyp),
in the notations of 2.1. For any simple loop within P1 \ A U {00} we may
define a geometric monodromy as follows. By the proof of Lemma 2.1, the
map p : X \ p~l(K U {oo}) —> C \ A is a locally trivial stratified fibration. In
particular, the restriction of p on the open stratum C77 is a C°° locally trivial
fibration. As in the proof of the Thorn-Mather Isotopy Lemma (see e.g. [Ve])
one can produce a trivializing vector field tangent to the strata at infinity. We
therefore get a geometric monodromy representation

piTr^P1 \AU{oo})->Diff(F) ,

where F is a general fiber of / and Diff(F) is the group of C°°-diffeomorphisms
of F. We may replace A by the set of atypical values A. This induces an
algebraic monodromy representation paig : yr^P1 \ A U {CXD}) -» H*(F,Z).

3.1. Monodromy at an atypical value and at infinity
Some more structure on the trivializing vector field could allow to find

results on monodromy. We therefore focus on defining a geometric monodromy
of a general fiber of / along a small circle in the base space P1 \ A U {00}. We
recall that AH = t(Cr x (Sing wp U AH)) is a finite set containing A.

Take a small closed disc Da at a 6 A U {CXD} such that A# fl Da — {a}. We
assume that H E Qa- By Lemma 2.1, one can lift the unitary vector field u on
the circle dDa to a vector field w in the tube f~1(dDa) such that w is tangent
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to t~l(dDa) H Y°° in a stratified sense and tangent to T(1H, f)nf~l(dDa): for
some general H G f2a. Note that the set F(7#, /) n f~l(dDa) is a finite union
of circles.

Moreover, one can construct a vector field w by lifting u in two steps:

(4) f~ (dDa} ^4 C x dDa -^ dDa.

This idea was used in the local case by Le D.T. [Le-1], [Le-2]. In the global
setting, we may decompose the monodromy flow in regions where the local
carrousel construction of Le can be used. Let F(7//,/) denote the closure of
F ( l n , f ) in X. There is a "carrousel" associated to each point q G F(/#,/) n
p~l(a), including the case where q G X00 Plp~1(a), as follows. We use the
notations from 2.1. We have defined at (1) the space Y C Cr x F x Q
with projection (r, t) : Y —> Cr x Q. We now consider the closure Yr of Y
in F x pi x Q and denote by r : Yr -» P1 the projection which extends
r : Y —>• Cr. First we lift the vector field u by pr2 to a vector field v on
Cr x dDa with the following properties. There is a small closed disc 6 at each
point r(q) of P1, q G F(///, /) n t~1(a), such that v is the carrousel vector field
on 6 x dDa, for small enough Da. In particular, the lift v of u to Cr x dDa

is tangent to the discriminant A(///, /). By definition, the vector field v is the
identical lift by the projection pr2 : {b} x dDa —» <9Da, for any point b G dd;
moreover, this is the case for any point 6 G P1 \ ujL-^, where 52 is a small
enough disc centered at dl and the set {d\,... , d k } G P1 is the image by r of
the set F ( 1 H J ) Hp'1 (a).

This special vector field v is now lifted to f~l(dDa) via the stratified
fibration (2) giving rise, by integration, to a geometric monodromy, denoted by
ha. Note that, for some point b G P1 \ uf=1^, this monodromy restricts to a
monodromy of the slice fibration:

The action of the monodromy ha on the pair (Fc, Fc O ̂ 1(6)), where c G dDa,
is called relative geometric monodromy and will be denoted by h™1.

Note 3.2. Let H G Oa. If q G T(1H, /) H p ~ l ( a ) HX00 then r(q) = oc G
ml

§4. Localization of Monodromy

Localizing the change of topology from a typical fiber to an atypical one
is a problem that cannot be solved for any polynomial / : Cn —>• C, since its
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singularities at infinity (at least in the meaning of this paper, see bellow) may
be non-isolated.

Definition 4.1. We say that / has isolated W-singularities at a G C
(or at Fa) if dim Sing >vp Hp~l (a) = 0.

Notice that isolated W-singularities at a G C implies that the hypersurfacp
Fa has isolated singularities. Under this isolatedness condition we nave proved
a structure result for the general fibre.

Theorem 4.2 [ST]. /// : Cn -» C has isolated W-singularities at all
fibers then its general fibre is homotopy equivalent to a bouquet of spheres of
dimension n — 1. The number of spheres is equal to IJL + A, where JJL denotes the
total Milnor number of the isolated singularities of f and X denotes the total
"Milnor number at infinity" of the isolated W-singularities at infinity (defined
in loc cit). D

Following [Ti-3, Section 4], we say that the variation of topology of the
fibers of / at a G C is localizable if there is a finite set {ai , . . . , a^} G p~1(d)
such that the restriction /( : (Cn \\J^=lBl)nf~l(Da) —)• Da is a trivial fibration,
where Bt C X is a small enough ball centered at a%. In this case, we also say
that the monodromy ha is localizable at the points a i , . . . , a f r , in the sense
that the geometric monodromy ha is trivial on the complement of the balls
Fc \DjUBi.

Proposition 4.3 [Ti-3]. /// has isolated W-singularities at a G C then
the variation of topology of the fibers of f at a is localizable at the points of the
finite set p~~l(a) Pi Singwp. In particular, the monodromy ha is localizable at
the isolated W-singularities. 3

Our scope is to show that certain localization results for the relar; r MO:
odromy /ia<rei hold without any assumption on the W-singularities of /.

First localization of relative monodromy

We shall keep using the notations in the previous section. Recall that
di, d<2, • • • ,dk were the points where the closure A(/// , /) C Pj; x Q of the
discriminant A (/#,/) cuts the projective line {t = a} C P* x Q. We consider
small discs Si C Pj at di and fix some points st G cWn for i G {1,... fc}. We
denote Si := Si if di G Cr and Si := Si \ ai if di = oo, where al is the radius
from di to a point on the circle dSi different from st.
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By construction, ^ x {c} contains all the points of A, (I//,/) n P* x {c},
where c G dDa and A4(/#, /) denotes the germ of A(/#, /) at (d,, a) G P1 x C.
The structure of the generic skeleton Skc(/) implies that the relative homology
H*(FC, Fc Pi lffl(b)) is concentrated in dimension n - 1, where 6 G P1 \ U^J,.
We have the following.

Proposition 4.4. The relative homology splits into a direct sum:

Hn^(Fc, FC n j^(&)) = efUtfn-i^c n #(£), Fc n #(s,))

the relative monodromy splits accordingly:

where (hr^1)*^ denotes the monodromy acting on 7/r?_i(FcD^1(4), FcC\l]f
l(sl)).

Proof. The geometric monodromy h1^1 constructed above acts on the ex-
act sequence of the pair (Fc, Fc D ljjl(b)). By an excision argument applied to
the projection IH • Fc — > C, we get the homology splitting. Next, the geometric
monodromy h1^1 acts on the pair of spaces (Fcn^1(J?), Frr\l^l(sl)) if and only
if d1 G C. Nevertheless, in case the center dt is the point oo G P1 , the alge-
braic monodromy still acts on the relative homology Hn^i(Fc Pi ̂ 1((5?),FC D
tf(8t)). a

Second localization of relative monodromy

We further localize the relative monodromy in the source space. Let a G C.
By Lemma 2.2, for H G $1Q, the map IH • Fa — > C has isolated critical points
(in the stratified sense), which points are exactly the set F(7#, /) D Fa and has
no singularities at infinity. It follows that the map IH '• Fc — > C has the same
properties, for any c G Da, for small enough disc Da. If a is oc then the map
IH "• Fc — » C also has these properties, for any c G C within a small enough
neighbourhood of oo G P1 .

Let {pl J}J<EI, denote the set of points T(1H- /) H Fc Pi ljjl ( 6 , ) . Take Milnor
data for the germs IH • (Fc,pl^J} —> C. which means: small enough discs D^3 C
5L centered at IH(PI.J) and small balls B,^ C Fc Pi 1^(6^ centered at pl%]. We

assume that DlfH = D^J2 if IH(PI.JI) — ^#(p?,j2)- Note again that, by 2.1 and
2.2, these are germs of complex Morse singularities. We get the following result:

Proposition 4.5. Let a G P1 and let i be fixed. The homology of the

pair (Fc D l~fjl(Si), Fc fl ̂ (s?)) splits into a direct sum
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where slf3 G dDzj are some fixed points. The restriction of the relative mon-
odromy ha^e\ acts on the set of all pairs (FcnlJI

l(Di^)r\Bl^^FcnlJjl(slj)nBi^)
by permutations, via diffeomorphisms (i.e. /ia.rei sends a pair to another one,
diffeomorphically) .

Proof. First we get by excision the following splitting:

tfn_i(Fc n iffl(St), Fc n tfM) = ®Hn^(Fc n IH\D,J),FC n rH
l(s^3}},

where the sum is taken over the distinct discs DM» with fixed i. Next, by the
above arguments, the map:

H \

is a trivial fibration, for any JQ G Z7. It is indeed so since this map has no
singularities at infinity and its fibers are transverse to the spheres dB^j. The
splitting of homology follows. The second statement is a consequence of the
fact that our vector field is tangent to the polar curve. D

Remarks 4.6.

(a) In general, the relative monodromy does not split following the direct sum
of Proposition 4.5. There are interactions among the relative cycles which
depend on the global carrousel motion and also on the action of ha on the
fiber Fc H l'fj1(sl^J). Moreover, it may happen that one or more branches
of the discriminant locus at d7 are multiple, since being the image of more
than one branches of the polar curve.

(b) Let H G na. Let p G Fa n T(1H, /) such that p 0 Sing Fa. By Lemma 2.2,
since p is a Morse point of the map IH\FQI the polar curve is nonsingular
at p and it cuts the nearby fiber Fc at a single point p^i within a small
neighborhood of p. Then the relative monodromy acts on the pair (Fc PI
lJ[l(Dlfi) n B^i,Fc D IHI(SZ,I) n B^i) as the identity. Indeed, the maps
/! : f-l(D)nlHl(8ltl)nBltl -> D and /, : rl(D)nlJI

1(Dlil)nBtml -> D are
trivial stratified fibrations for small enough l\i, the strata being r(/#, /)
and its complement.

When 5l C Cn, the relative monodromy (/^el)*,x from Proposition 4.4 can
moreover be localized at the points of intersection r(/#,/) fl Fa n I f j 1 ^ ) —
{61,. . . ,6PI}.
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Proposition 4.7. Let 67 C Cn, for some i £ {!,.. . ,&}. Then there is
the following splitting:

^rel\ _ ff^Qz fhre^}
(na Ki — ̂ j = l(nbj )* '

where (/4el)* denotes the local relative monodromy of the germ /| : (Cn,6J) — > C
u^/i respect to the linear function IH •

Proof. Since the map IH : Fc Pi l^J
l(8l) — > <5Z is trivial at infinity, for all c

close enough to a, we may excise the exterior of some small enough polydiscs
P3 ;= Bj x Si centered at 6J5 for j £ {1, . . . ,^}, and get the splitting:

The monodromy splits accordingly. The right hand terms are just the local
relative homology groups of the germs /| : (C77 , b3 ) — >• C with respect to the
linear function IH - d

Proposition 4.8. Let H G OQ. // / ftas isolated W- singularities at a
(see Definition 4.1), £/ien ^/ie restriction ha*lHr of ha to a general hyperplane
Hr \— {In = r} can be chosen to be the identity.

Proof. The second author has proved in [Ti-3, §5] that, if H £ O, then
the Whitney stratification W attached to / induces canonically a Whitney
stratification W#r attached to the restriction f\nr- Then one proves, see [Ti-3,
Lemma 5.4], that dim Sing VVH p' < dim Sing wp— 1, where p' is the extension of
f\Hr (as P is the one of / defined in §2), under the condition: dim Sing wp > 1.
It turns out that, by choosing H £ Qa, one can easily drop this condition
completely when referring to only the fibre over a. The same proof works with
minor changes, so we skip it:

Lemma (cf. [Ti-3]). If H G OQ then

dim Sing wHrp
; Hp /~1(a) < dim Sing wp Dp"1 (a) - 1.

Now, if dim Sing y^p — 0, then it follows from this lemma that f\Hr has
no W-singularities on the fibre over a, hence this fibre is typical for f\Hr and
therefore the monodromy of f\Hr around a is isotopic to the identity. D
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§5. Zeta Function of Monodromy Via the Relative Monodromy

The relative monodromy is part of the monodromy of / around an atypical
value a G P1 . We show the precise meaning of this at the zeta function level.
Let us first give the definition we work with.

Definition 5.1. Let /i* be the algebraic monodromy associated to a
fibration over a circle S1 and let Hl denote the ith homology group, over C, of
the fibre. One calls zeta function of fo* the following rational function:

As a consequence of the localization of the relative monodromy, we prove
the following general zeta function formula for the monodromy (/ia)*, with no
restrictions on /.

Theorem 5.2. Let f : Cn -* C be any polynomial function. Let a G P1

and let H C Oa- Then

7 = 1

where F1 is a general fiber of the map (/#,/) and by CreuCO we denote the
zeta-function of the relative monodromy (h™1)*^- The index i runs over the
points A(//f , /) D {t = a}. For di = oo we have:

Crel,t ( * ) = & * ( * ) >

where £<$* is the zeta function of the monodromy acting on the space Fcnlftl(6*),
with 5* := 8* denoting the pointed disc centered at oo G P1 .

Proof. The monodromy acts on the homology sequence of the pair (Fc, FcPl
ljjl(b)). We get the 4-term exact sequence:

0 ->• ffn_i(Fc) ^ Hn^(Fc,Fcnl^(b)) -> fl-n_2(FcnZ^(6)) ->• ffn_2(Fc) -> 0

and, for j ; > 3, the isomorphisms:

0 -> ffn_j(Fc n lffl(b)) -* Hn-3(Fc) -> 0.

By Proposition 4.4 the action of h™1 splits and therefore the zeta-function
decomposition follows. To prove the last assertion, we start by decomposing
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C into the union of a big disc D with the pointed disc at infinity £*, their
intersection being a thickened circle A. A Mayer- Vietoris argument shows that
£ha (t) = CoCO'Cs* (£)• Next, D retracts to the union of the discs Sl C C together
with simple paths connecting all those to one exterior point p £ C. Excising
now l^(l] in the relative homology, we get the formula:

Comparing to the previous formula for 0^ , we get the claimed relation. D

Zeta function formulae have been proven for special classes of polynomials
/: in terms of Newton polyhedra — under nondegeneracy conditions [LS], in
terms of the projective compactification of / — when this is non-singular [GN].
In a recent preprint [GLM], a general zeta function formula is presented, using
the fact that the zeta function is a constructible function.

Let us now focus on isolated W-singularities case. Proposition 4.3 tells
that, if / has isolated W-singularities at the fiber Fu then the variation of
topology is localizable and the monodromy ha is splitting. To make a pre-
cise statement about zeta function, let {qs \ s — l , . . . , i / } C Fa be the W-
singularities of / at Fa. According to [Ti-3, 4.3], at each point qs there is a
complete system of ball neighborhoods Bs^£ within the space X, such that the
map

is a trivial fibration, for small enough £ > 0, 0 < 6 « £ and D$ is centered at
a. Moreover, for any s, the restriction

(6) /, : C" n BS,E n f-1 (DS \ {a}} -+ D5 \ {a}

is locally trivial, cf. [Ti-3, 4.4]. Let us denote by C/?a.s(0 tne ze*a function of the
monodromy induced by the local fibration (6) on the pair (C" nBs,£r\f~l(Ds\
{a}, Fc n -Bs,e), where c E dD&. We then have the following decomposition into
local zeta functions:

Proposition 5.3. /// has isolated W-singularities at a G C, then:

(7) c^w^a-o-^
s=l

where qi , . . . , qv are the isolated singularities on Fn or at infinity.
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Proof. From the homology exact sequence of the pair (FDS,FC) we get

that OiaW ~ ^FDs(t) • C(~p^ F\(t)- Since by excision we have the direct sum
decomposition:

we get (,(FD F \(t) = Ils=i C/T^W- Now, since the monodromy acts on FDS

as the identity and since \(.Fbd) = ^(Fa), we get our formula. Note that the
relative homology H@(F^S,FC) is concentrated in dimension n — 1, [ST]. D

Remarks 5.4.

(a) The above result holds in particular for polynomial functions / : C2 — > C,
at any reduced fiber Fa. See the Examples.

(b) If / has isolated >V-singularities at all fibers, then it follows from [ST, 3.5]
that x(Fa) = 1 + ( — l)""1^ + A - na - Xa). where /^, resp. A, denote
the total Milnor number, resp. the total Milnor number at infinity, of /
whereas /xa, resp. Aa, is the sum of the Milnor numbers of the singularities
of Fa. resp. the sum of the Milnor numbers at infinity of Fa (as defined by
Ha and Le [HL] in case n — 2 and by the authors in general [ST]).

(c) For those isolated singularity qs £ Fa (not at infinity), the space FDS

is contractible and therefore we may replace in the formula (7) the factor
C/T1

S(^) by (1 — t ) £ q i t ( t ) , where Cg,(0 is the zeta function of the germ of /
at qs.

(d) A'Campo's local result [A'C] on the Lefschetz number says that the Lef-
schetz number of a singular holomorphic germ is zero. As a consequence
of formula (7), there is the following generalization to the global setting, in
case of an / with isolated W-singularities:

where L f ^ ( h a ) denotes the Lefschetz number of the monodromy acting on
the pair (Cn 0 Bs,£ n f~l(D6 \ {a}),Fc n B8,E) and the sum is taken over
those s such that the point qs is at infinity.

Section 6 contains several examples where / has a singularity at infinity
but L°° is non-zero (unlike in the local case).
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§6. Computing the Relative Monodromy at Infinity

To compute CreLz(^) and C<5*(^) we maY use the method developed by the
second author in [Ti-1] based on a Mayer-Vietoris argument for an annular
decomposition of the carrousel disc. This works reasonably well for a carrousel
with only first order smaller carrousels (i.e. when the branches of the germs of
A have only one Puiseux pair), but computations are very hard in general. We
refer for the theoretical treatment to [Ti-1].

We show in the following examples what is the influence of the vicinity
of infinity upon relative monodromy. This in turn influences the (absolute)
monodromy at an atypical value. WTe consider first the case of an isolated
singularity at infinity with A = 1: the local relative monodromy action on the
unique relative cycle can only be +id or -id. When dimension is fixed, both
cases are possible and we show this by the first two examples (n — 2). This
behavior is new: in the local case, the monodromy of the unique (n — l)-cycle of
a Morse singularity only depends on the dimension; for n — 2, it is the identity.

Example 6.1. / : C2 -> C, f ( x , y) = x + x2y.
This came into attention due to Broughton [Br], as the simplest polynomial
with a noncritical atypical fiber (see also [ST], [Ti-3] for further comments on
it). The point [0 : 1] E P1 is a W-isolated singularity at infinity for the fiber
FQ, with A = 1.

For a general /, say / = x + y, the polar curve T ( l , /) intersects a general
fiber Fgen in 3 points and the fiber FQ in 2 points, transversely. We get 7gen = 3,

7gen = 7o = 3 and 7o = 2' therefore x(^gen) = 0, \(FQ) = I (which is of

course clear, since Fgen ~ S1 and F0 ~ CJJ51). The zeta-function of the
monodromy hQ around the value 0 is equal, by Proposition 4.8 and Theorem

5.2, to CF'(*) ' Ilf=i Crei,»W- Let S '•= si be tne disc centered at oc E P1 and
let £2,^3 be the other two discs in C. Then, by Remark-4.6(b), Crei,2(£) =
Crei,3(0 — (1 ~ t). To get Crei,i(0 we use Theorem 5.2 and compute f*(t)
instead, as follows.

We use the setting and notations of Proposition 4.5. The carrousel £*
centered at oo G P1 contains only one little disc D centered at the unique point

p E An5*. Let s E dD. Then &-(*) is equal to CD,S(^ tne zeta function of the
carrousel monodromy acting on Hi(FcnlJI

1(D)nB, Fcn^1(s)n5) ~ Hi(I, dl).
Now the carrousel monodromy of the space Fc Pi ljfl(s) Pi B is isotopic to the
monodromy of this space along a loop around both the center of 5* and the
center of D. We decompose it into a simple loop around oo E S followed by a
small loop around p. Since p is an Ai-singularity of IH restricted to Fc, the Iff-
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monodromy of Hi(I, dl) around it is —id, since dime Fc = 1. The monodromy
around the point oo is also —id, by the following reason: the compactified curve
Fc has an A2 singularity at [0 : 1], if c / 0 (and an A3 singularity if c = 0). The
loop in Fc around this point is nothing else but the complex link monodromy
of the germ of Fc (i.e. the monodromy of a general linear function on Fc).
We refer to [GM] for definitions and basic results about complex link. By a
straightforward computation one finds:

Lemma. The complex link monodromy of the germ of a A^-type curve
singularity is (— I)*'"1 id. D

It then follows that Crei,i(£) = (!—£)• Therefore Oi0(0 = 1> since (h0 |F ,(^) =

(1 — t)~3. The monodromy is itself the identity.

Example 6.2. / : C2 -> C, f ( x , y) = x2y2 + xy + x.
This is contained in the classification list of polynomials of small degrees, with
respect to their singularities including those at infinity, of the first author with
Smeltink [SS]. There is a Morse singularity at (0, -1), on the fiber F0 and a
singularity at infinity at [0 : 1] € P1 for the fiber F_i. Hence JJL = 1 and A = 1.
The general fiber is homotopy equivalent to Sl V S1. We may take I — x + y
as general linear form. Then F(/,/) = {2xy2 + y + I - 2x2y — x = 0} and
its intersection with Ft is 4 points, if t = 0 or t = — | and 5 points for the
other values of t. The fiber F' = Fgen ft {x + y — s} is 4 points, for generic
s. We get 7gen = 7Q = 5 and 7^ =4. We now compute the zeta- function of
the monodromy h_i. By the localization result Proposition 5.3. this is equal
to £<$*, since the other contributions are trivial. Now, in the carrousel disc
S* centered at q\ = f( / , / ) n F_i, the situation is similar to that in the first
example. The only difference is that the complex link monodromy in cause
is this time the one of an A% curve singularity (instead of a A^ singularity).
Using the above Lemma, this shows that our monodromy is the composition
(-id) o (-id). Finally, by Theorem 5.2, we get:

We may deduce that the monodromy h_i acts on a certain basis of absolute
cycles by switching those.

The zeta function C^ is easier to compute since it is localizable at the
Morse singularity (0, —1) and the local monodromy is the identity (acting on
the local cycle 51). Therefore, by Proposition 5.3 and the remarks following it:



SINGULARITIES AT I N F I N I T Y . . . . II. MONODROMY 677

ht
since Fa ~ 5 and C(o.-i)(^) = 1- By using the next Remark and Example, we
find the zeta function at infinity: £hx(t) = 1 — t2.

Remark 6.3. The family of polynomial functions fd = % + dxy + x2y2

is a (// + A) -constant family (for d = 0 we have A = 2 and fi — 0). For such
a family the monodromy fibration at oc G P1 is constant for d G C, by [Ti-2].
Nevertheless, the monodromy group (i.e. the group generated by loops around
atypical values) is not the same. For d / 0, it is the example above. We shall
investigate the case d = 0 in the next, within a whole series.

Example 6.4. Series Fa.6 : ga.b = x+- xa+lyb, a > 1, b > 0.
Let a, b be fixed. There are no singularities in the affine, IJL — 0. We may
consider y as general linear function, y £ OQ, even though it is not a "most
generic" one. Then, for generic s, the intersection Ft fl Hs consists of (a + 1)
points, for any t. The intersections with the polar curve T(y, ga.b) are F^nF = b
points, for t ^ 0 and F0nF = 0. Hence A = b and there is a single W-singularity
at the point at infinity [0 : 1] e P1, corresponding to the fibre F0. The carrousel
at infinity is governed by the polar image &(y,ga,b) = {fa = Kzb] C C2, where
z — l/y and K is a constant. Let c = gcd(a,6). The effect of a 2?r turn in /
is a |27r turn in z. Therefore we have b points in the carrousel disc J* and the
carrousel monodromy cyclically permutes the points within c cycles of length
b/c. Hence for each cycle we find the relative monodromy matrix:

0 - - - • ±1
1 0 - 0 , , . , 1 , , . ,

, where the sign ± has to be determined.

0 - - - 1 0

The total relative monodromy matrix is a block-matrix having on the diagonal
c matrices of type AI (and 0 in the rest). The ± sign is determined by studying
a ^27r monodromy in z of one relative vanishing cycle, hence of its boundary.
We embed the boundary cycle in the full slice z = l/y =const. in Ft (t / 0).
The ^-monodromy on Ft (t ^ 0) is isotopic to the ^-monodromy of FQ, hence
we study the complex link monodromy of XQ := Xf!p~1(0) which has local
equation {xza+b + xa+l = 0}. The slice z =const. consists of (a + 1) points:
x — 0 and the solutions of xa = za+b. On x = 0, the ^-monodromy works as
the identity. On the other points, the effect of a 2?r turn in z is a ^2?r turn in x.
Now we have to take the a/c power of this, which is a ^2?r turn in x, hence the
identity! The sign determination is complete: it is +1. For the zeta function,
we get: £<** = (1 — t ^ } c - This coincides, by Theorem 5.2, with the zeta function
of ha and also with the one of hx (since A = {0}).
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