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Morphisms of Certain Banach C*-Modules

By

Fabio BAGARELLO* and Camillo TRAPANI**

Abstract

Morphisms and representations of a class of Banach C*-modules, called CQ*-
algebras, are considered. Together with a general method for constructing CQ*-
algebras, two different ways of extending the GNS-representation are presented.

§1. Introduction and Preliminaries

Along the theory of topological quasi*-algebras, in [1, 2], we undertook
the study of a particular class of Banach C*-modules, called CQ*-algebras for
they provide a bridge between C*-algebras and quasi *-algebras. In [2], in par-
ticular, a number of structure properties of CQ*-algebras were derived, mainly
concerning the subclass of *-semisimple CQ*-algebras. For their behavior,
these latter seem to be a reasonable generalization of the notion of C*-algebra
in the framework of partial *-algebras. In the most general set-up a CQ*-
algebra consists of a Banach space A with involution *, and two C*-algebras
Ap[\\ | | b , t > ] and A$[\\ | | f l , j j ] changed one into the other by *. Recently, A. Inoue
and the authors have shown [3] the existence of a close link between certain
CQ*-algebras (called standard HCQ*-algebras) and the Tomita-Takesaki the-
ory (and this is, in a sense, very natural). This fact opens the problem of the
classification of (semisimple) CQ*-algebras, which should be based on a theory
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of representations into families of operators. This is the main motivation of
this paper where we consider (and in certain cases, reconsider) the possibility
of constructing concrete realizations of abstract CQ*-algebras.

The paper is organized as follows.
In Section 2, we prove, via a constructive proposition, the existence of several
and intimately different kind of CQ*-algebras.
In Section 3, the basic properties of morphisms and representations are dis-
cussed; it turns out that the natural notion that leads to a reasonable definition
of representation is, in this case, that of bimorphism.

Finally in Section 4, we prove the possibility of extending the well-known
Gelfand - Naimark - Segal construction (GNS) to CQ*-algebras in two different
ways: in the first, the starting point is a positive linear functional satisfying cer-
tain admissibility conditions; in the second, the cornerstone of the construction
is, as it is natural in the framework of partial*-algebras, a positive sesquilinear
form with certain invariance properties.
Before going forth we give, for reader's convenience, some preliminaries.

Definition 1.1. Let A be a right Banach module over the C*-algebra
A\>, with isometric involution * and such that A\> C A. Set A% = (A)*- We
say that {A, *, A\>, b} is a CQ*-algebra if

(i) A\> is dense in A with respect to its norm || |j

(ii) Ao '.= A* n A% is dense in A\, with respect to its norm

(iii) (ABY = BM*, V A , B e A >

(iv) ||B||b = sup^pn^ \\AB\\, B e A-

Examples of this structure have been discussed in [1, 2].
Since * is isometric, the space A% is itself, as it is easily seen, a C*-

algebra with respect to the involution X^ := (X*)b* and the norm || X \\f=
II v* II
II X l i b -

A CQ*-algebra is called proper if A$ = A\>. When also b = f), we indicate a
proper CQ*-algebra with the notation (A, *,./4o)i since * is the only relevant
involution and AQ — A% = A\>.

From a purely algebraic point of view, each CQ*-algebra can be considered
as an example of partial *-algebras, [4], by which we mean a vector space A
with involution A -+ A* [i.e. (A 4- A5)* = A* + A£* ; A = A**] and a subset
r C A x A such that (i) (A,B) G F implies (B*, A*) G T ; (ii) (A,B) and
(A, C) G F imply (A, B + AC) 6 F ; and (iii) if (A, B) G F, then there exists
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an element AB G A and for this multiplication (which is not supposed to be
associative) the following properties hold:
if (A, B)eT and (A, C)eT then AB + AC = A(B + C) and (AB)* = B*A*.

Among all CQ*-algebras a relevant role is played by the so called *-
semisimple ones.

Definition 1.2. Let {A, *, A, b} be a CQ*-algebra. We denote as S(A)
the set of sesquilinear forms 0 on A x A with the following properties:

(i) Sl(A,A)>0 VAeA;

(ii) Sl(AB, C) = Q(E, A*C) VA e A, VB, C € A;

(iii)

The CQ*-algebra (A *, A*, b) is called *-semisimple if fi(A, A) = 0, VQ G
implies A = 0.

The definition of *-semisimple CQ*-algebras was given in [2] for arbitrary
CQ*-algebras. There, among other things, some results on functional calculus
were derived, and possible refinements of the multiplications were discussed.
However, the most interesting results have been obtained for the proper case.
For instance, in the abelian case, *-semisimple CQ*-algebras have been fully
described. [5].

§2. Construction of CQ*-algebras

§2.1. Constructive method and first examples

The next proposition extends the constructive Proposition 3.2 of [1].
Therein it was proved that the completion of a C*-algebra AQ with respect
to a norm || || weaker than the C*-one, |! ||o, for which the involution is iso-
metric and such that || AB \\<\\ A \\\\ B \\Q for each A,B G AQ is a proper
CQ*-algebra with b = * = fl.

Proposition 2.1. Let A\, be a C* -algebra, with norm \\\\\, and involu-
tion b; let || || be another norm on A\>, weaker than \\ \\\> and such that

(i) | |AB||<|M||| |B||b VA Be A

(ii) there exists a \\ \\\>- dense subalgebra AQ of A\, where an involution * (which
makes of AQ a *-algebra) is defined with the property
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then, if A denotes the \\ \\-completion of A},, (A, *,,A|,,b) is a CQ*-algebra.

Proof. Since AQ is || ||b-dense in A^ then the || ||-completions of AO and
A^ can be identified with the same topological quasi *-algebra A which is also
a Banach space. Now, for X G A\>, put

(1) || X \\~b= sup || AX || .

Because of (i) we have

To show the converse inequality, we recall that as a consequence of Eqn. (1),
At with || H£ is a normed algebra. This follows from the estimate

Let X = X^ £ A\) and let M(X) denote the abelian C*-algebra generated by
X. Since every norm that makes an abelian C* -algebra into a normed algebra
is necessarily stronger than the C*-norai [6, Theorem 1.2.4], we get the equality
|| X ||jj=|| X l |b , \/X = Xb G A\>. For an arbitrary element Y e A), we have

V" l|2 _Y —_ _b— b- b
But || Yb ||f<|| Fb ||b and so || Y \\%<\\ Y ||b|| y | |b~ and this implies that

| | ^ | | b< | | ^ | l b - This concludes the proof. D

Corollary 2.2. Let {A, *, A^} be a right Banach C*-module and BQ
any *-subalgebra ofA\,r\A$ which is also b-invariant. Let M^ (Bo) be the closure

of BQ in A\? and Ad (Bo) the closure of BO in A. Then (M(Bo), *,-Mb(^o)5 1) is
a CQ*-algebra.

Proof. We notice that Aib(^o) is a C*-algebra, with respect to the invo-
lution b and the norm || | |b, since BQ is an involutive algebra also with respect
to b. The statement then follows from the previous Proposition. D

Let us now give some explicit applications of Proposition 2.1.

Example 2.3. Let S be an unbounded self- adjoint operator on a Hilbert
space H with domain D(S) and with bounded inverse S"1 E B(7-i), US"1!! < 1.
We define the commutant of the operator S"1,

(2) C(S~l) := {X € B(H) : XS~l = S~1X} .
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It is straightforward to check that C(S~l) is a C*-algebra (indeed, a von Neu-
mann algebra), being a norm closed *-subalgebra of B(H). Moreover, if S has
not simple spectrum, C(S~l) is not abelian [7, II, Ch.VI, n.69]. If we define
on C(S~l) a norm weaker than the norm in B(W), |].||, via

(3) \\X\\0 := \\S~1XS-1 \ = \\S~2X\\ = \\XS~2\\,

then Proposition 2.1 ensures us that (C[I|. |J0], *, C(S~1)[||.||], *) is a proper non
abelian CQ*-algebra. Here we have called C the ||.||0-completion of C(S~l).
The non triviality of the construction follows from the fact that ||.||0 is not
equivalent to ||.||, as it is easily checked. We now prove the *-semisimplicity of

First we observe that any sesquilinear form of the following type

belongs to S(C) for any (p <E U with \\p\\ < I. Therefore, if Sl(A.A) = 0 for
all Q G S(C) it follows that, in particular, ft^A, A] = 0 V^ G U. This implies
that S-lAS~l = 0 and, therefore, that A = 0.

bounded be an spectral that function operator C(S~l). Let us C(S~l). in
general. It is also easy 2.1 are C. We now describe a CQ*-algebra arising from
a triplet (scale) of Hilbert spaces generated in canonical way by the operator
5.

Example 2.4 (Operators on scales of Hilbert spaces). Let H be a
Hilbert space with scalar product (., .) and 5 a selfadjoint operator, with 5 > I,
with dense domain D(S). In what follows it is essential that 5 is unbounded.
The subspace D(S) becomes a Hilbert space, denoted by W+i, with the scalar
product
(4) (

Let H-i denote the conjugate dual of %+i. Then *H-\ itself is a Hilbert space.
With this construction, we get, in canonical way a scale of Hilbert spaces

(5) U+l-^U^U-i

where i is the identity map i of H+i into H and j is the canonical embedding
of 1-L into J-L-i (both these maps are continuous and with dense range).

With obvious identifications, we can read (5) as a chain of topological inclusions
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By duality 5 has an extension from H into H-i which we indicate with
the same symbol. Let BCH+i,l-L-i) be the Banach space of bounded operators
from H+i into T-i-i with its natural norm || • ||+i,_i.
In Bffl+iil-L-i) define an involution A H-> A* by:

Then A" € B(U+l.U--i) and || A" ||+1,-i=|| A \\+1,^ VA e B(H+i, ft_i).
Let B(H+i) be the C*-algebra of all bounded operators on H+i . Its natural

involution is denoted here as b and its C*-norm as || • |||>.
Furthermore, let B(H-i) be the C*-algebra of all bounded operators on

T-L-i with involution denoted as fl and C*-norm || • ||^.

Then B(U+i) and B(H-i) are (isomorphic to) subspaces of B(H+\, H-i), and
A E B(W+i) if, and only if, A* e B(H-i).

There is a distinguished *-algebra of B(H+\, 'H-i) is

B+(7Ui) = {A E

Clearly, if A & BCH+i.'H-i) and B 6 B(H+i), then AB is well-defined
and AB e B(H+i,U-i). Analogously, if C 6 B(U-i), CA is well-defined and

Then B(H+i,'H-i) is a r^/i^ Banach module over the C*-algebra B(H+i).

Now the question arises as to whether (B(H+\,'H-i), *, B(H+i), b) is a
CQ*-algebra. In contrast with the original claim in [1] this can be proved [8]
not to be true for any choice of the operator 5 (this also solves, in negative
sense a conjecture, made in [9].)
Nevertheless, Proposition 2.1 provides a canonical way of constructing a CQ*-
algebra of operators acting in the given scale of Hilbert spaces.
Indeed, since S+(H+i) C B(7-L±i), we may consider the largest *-subalgebra BQ
of B+(T-L^.i) which is also invariant with respect to the involution b and define
Sc(H+i) as tne C*-subalgebra of B(H+i) generated by BQ. The non triviality of
this set is discussed in [8]. Then the conditions of Proposition 2.1 are fulfilled,
by choosing the weaker norm on Bc(H+i) as equal to || • | |_ |_i t_i. Therefore
if we denote with Bc(H+i,H~i) the subspace of BCH+i,H-i) obtained by
completing Bc(H+\) with respect to the norm || • ||+i,-i we get, in any case, a
CQ*-algebra (Bc(H+i,H-i), *,Bc(7Ui), b).
It is worth mentioning that in [8] the *-algebra BQ has been fully described and
also a characterization of Bc(H+i,T-L-i) has been given.
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Example 2.5 (CQ*-algebras of compact operators). The same ap-
proach can be repeated starting from any C*-subalgebra Q of Bc(H+i), since
conditions i) and ii) of Proposition 2.1 are satisfied whenever the weaker norm
|| • || is just || • ||+i,_i and the adjoint is the one in B(H+i,T-L-i). In particular,
we give now an example in which all the spaces can be explicitly identified.

We start introducing the following sets of operators

A= {X G B(ft+i ,f t_i) : S-1XS'1 is compact in U] ,

A, = {X G B(H+i) : SXS'1 is compact in U} ,

AI = {X G B(H-i) : S~1XS is compact in U] .

These sets are non empty: for instance A contains any operator of the form
SZS, with Z compact in T~L. As in the previous example, we indicate with the
same symbol, 5, both the operator from H+i into *H and its extension from H
into H-I. The sets above coincide with the following ones:

A= {X G B(f t+i , f t_i) : X is compact from U+i into H-i} ,

At = {X G B(ft+i) : X is compact in U+i] ,

Al = {X G B(U-i) ' X is compact in U-i] .

It is easy to check that A\> is a C*-algebra w.r.t. the involution b and to the
norm || • \\\> = \\S • S^1!!- Analogously A% is a C*-algebra w.r.t. the involution
j( = *b* and to the norm || • \\$ = ||5-1 • 5|| while A is a Banach space w.r.t. the
involution * and to the norm | • || = US"1 • S"1 1|. The norms || • ||b and || • || coin-
cide with those defined in the Banach C*-module (6(^+1, ?/_i), *,B('H+i),b)
and the involutions b and * are the ones defined respectively in B(H+i) and

Iii order to prove the density conditions, let us consider the family of
projection operators P^, (p G H+i with ||^|| = I (the norm^in H) defined by

Each operator P^ has an obvious extension to H-\, which we still call P^.
It is straightforward to prove that P^ G B(ft+i), P^ G B(H-i) and P^ G
A\>. Let AQ be the subalgebra of A\, generated by all the operators P^, (p G
T~L+i. This is closed with respect to the adjoint * and it is also || • |||, -dense
in A\) since any compact operator is the norm limit of operators of finite rank.
Moreover, it is also || ||-dense in A. Applying Proposition 2.1 we conclude that

L *A[ | | - l lb] 5 t > ) is a CQ*-algebra of operators.
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§2.2. Constructions with families of forms

In a previous paper, [2], we proposed an extension of the *-semisimpIicity
of the C*-algebras to CQ*-algebras, and we showed that several consequences
of this definition, mainly in the field of the functional calculus, can be obtained.
Here we introduce a different definition of semisimplicity, the b-semisimplicity,
that allows to define a new norm satisfying the assumptions of Proposition 2.1.
The application of this Proposition leads to the construction of a new CQ*-
algebra whose norm closely reminds the characterization of a C*-norm in terms
of states given by Gel'fand.

Definition 2.6. Let {A, *, A^ b} be a CQ*-algebra. We denote as Sb

the set of sesquilinear forms 0 on A x A with the following properties:

(i) tt(A,A)>0 \/AeA,

(ii) Q(AB, C) = Sl(A, CBb) VA, C £

(iii) \tt(A,B)\< \\A\\ \\B\\ \/A,BeA;

(iv)

The CQ*-algebra (A, *, A\>, b) is called b-semisimple if ft(A, A] = 0, VO e
implies A = Q.

It is worthwhile to remark that while conditions (i) and (iii) were already
present in the definition of the family S(A), condition (iv) is peculiar of this
family of forms, and (ii) is a natural modification of that for S(A). The non
triviality of this definition is a consequence of the results obtained in [3], where,
among other results, it is shown how the Tomita-Takesaki theory naturally
provides an example of a sesquilinear form of this kind.

In very similar way, we could speak of ft-semisimplicity, simply starting
with a family of sesquilinear forms S$(A), where (ii) is replaced by the specular
condition

, C) = 17(5, A*C) VB, C e A, VA e A$,

while the other conditions are kept fixed. However, due to condition (iv) and
to the equality (JTb)* = (X*)$, for each X 6 A\>, it is easily seen that the two
families S\,(A) and S$(A) coincide. By the way, it is also interesting to remark
that without condition (iv) in the definition of the two families this equality of
sets is replaced by a weaker, but still interesting, result: there is a one-to-one
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correspondence between forms of the two families, and this correspondence is
given by the map Q -+ Q*, where:

It is easy to check that O £ S\)(A) iff £1* £ S$(A). It is evident that, either
if condition (iv) is assumed or not, b-semisimplicity and ft-semisimplicity are
equivalent .

One of the main reasons for the introduction of the S\,(A) is that it allows,
by means of the constructive Proposition 2.1, to build up examples of CQ*-
algebras starting with a given b-semisimple CQ*-algebra {A,*,A\,,b}. First,
we introduce on A a new norm

(6) \\A\\s = sup Sl(A,A) l/*

It is not difficult to see that this is really a norm. In particular the t>-semisimplici-
ty implies that \\A\\ $ — 0 iff A = 0. Property (iv) of the family S\,(A) implies
that \\A\\s = \}A*\\s. Furthermore, condition (iii) implies that ||^4| s < Mil for
any A £ A- In order to apply Proposition 2.1 we still have to check that the
following inequality holds:

(7) \\AB\\s< \\A\\s\\Bl V.4 ,BEA-

Indeed, defining uu(X) = ft(X,l) for X G A\>, we get u(X*X) > 0. This implies
that uj is also continuous and that the following inequality holds,

VX, Y E Ab.

Now, inequality (7) is an immediate consequence of the definition of || '15.
Applying Proposition 2.1 we can conclude that {As- * ,^4bi ^1 ig a CQ*-

algebra, containing {A, *,^4t>^}- Indeed A C AS since both A and AS are
completions of the same C*-algebra A^ with respect to two norms. || || and
j| ||s satisfying condition || \\s < || || and which are compatible in the sense
of [10]; this means it is possible to extend by continuity the identity map
*' := A [II ||] ~> A[\\ \\s] to their completions: z := ^4[|| |j] -> ^15[|| ||5], preserving
its inject ivity.

Let us now prove the following

Lemma 2.7. Let {A, *,^b^} be a b-semisimple CQ*-algebra. Then
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Proof. Let Q G S\,(As)- We call Qr the restriction of O to A x A. Since
|| ||s is weaker than || ||, then Or belongs to <St>(A-

Conversely, if Q G 5b(^4), then, because of the following bound, |fi(4, J3)|
< Sl(A, A)l/2Sl(B,B)^2 <\\ A \\s\\ B ||5, ft can be extended to As x AS and
still satisfies all the required properties. G

It is evident from the proof that the equality of the two sets must be
understood as the possibility of associating to a form of S\>(A) a form of S\,(As)
and viceversa.

Proposition 2.8. The CQ*-algebra {As>*i A>k} is b-semisimple.

Proof. Let to(X,X) = 0 VO G Sb(As)- Then, due to the above Lemma
and to the b-semisimplicity of {A *, At, b}, we conclude that X = 0. G

With the previous construction, one can always construct, starting from
a b-semisimple CQ*-algebra (A,*,A\>,\>) a new CQ*-algebra, whose norm has
the form (6), a property that closely reminds what happens for C*-algebras.

We now give another similar construction, starting this time from a family
of sesquilinear forms on the C*-algebra A\>. Let (A, *, A^, b) be a CQ*-algebra.
We denote with E(, the family of all sesquilinear forms fi on the C*-algebra A\>

satisfying:

(c.l) Sl(A,A)>0, WlE A

(c.2) ft(AB, C) = fi(A, CBb), VA, B, C G A

(c.3) £2(IJ)< 1

(c.4) o(>i,5) = n(5*,A*), V A , B G A H A -

Furthermore, assume that (^4, *, A > b ) satisfies the following condition:

[S] If n(A, A) = 0, VQ G Eb, then 4 = 0.

Since, for each A G A the linear functional

uA(B) = Sl(AB,A), BG A

is positive, one can easily prove the inequality

, A}\ < Sl(A, A)\\B\\,, \/A, B e A
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and then

\to(A,B)\ = \tl(AB*,l)\ < \\AUB\b, VA,B € A-

Then we can define a new norm on A\> by

This norm defines in A\> a topology coarser than that of the original norm.
With the help of the previous inequalities and of (c.4), we can prove that

\\AB\\v <

and

Thus Proposition 2.1 applies and if A denotes the completion of A\>[\\ HE] , then
(A*A»b) is a CQ*-algebra.
Now, it is easy to see that if O e Sb(A) then Q\A> 'ls an element of Eb.
Conversely, if QQ ̂  ^b? since

then, fl0 has a continuous extension to A denoted as fi. It is easy to check that
n e 5b(>4).
However, in spite of this very close relation between the two families of forms,
(A, *./4b,b) need not be b-semisimple.
The interest of this construction relies on the fact that, if condition [S] holds,
it is always possible to define a new CQ*-algebra where each element of 1^ is
bounded.

§3. ^-Isomorphisms of CQ*-algebras

In this Section we introduce the notion of isomorphism between CQ*-
algebras. We will also show that there may exist non equivalent norms which
make the same C*-module into topologically different CQ*-algebras.

Definition 3.1. Let (A,*,A\>,\>) and (B,*,B\,,\)} be two CQ*-algebras.
A linear map $ : A »-> B is said to be a *-homomorphism of (^4, *,*At>5 b

MA e A:
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(ii) <I>t, := $["^b maps A\> into B\> and is a *-homomorphism of C*-algebras;

(iii) *(AB) = $(A)$(B), VA e A, £ € Ab.

A bijective *-homomorphism $ such that 3>(A\>) = B\, is called a ^isomorphi-
sm. A *-homomorphism <£ is called contractive if || $(A) \\<\\ A ||, VA G
A. A contractive ^isomorphism whose inverse is also contractive is called an
isometric *-isomorphism.

Remark. If $ is a *-homomorphism, then || $\>(X) \\\><\\ X ||b, VX 6
A\) since each *-homomorphism of C*-algebras is contractive. Analogously, if
% is a ^isomorphism, then it is necessarily isometric.
Of course, a *-homomorphism <£ can be continuous without being contractive.
Finally, we notice that, if $ is a *-isomorphism, then, by (iii), $(E) = I.

Taking into account that a continuous isomorphism of Banach spaces has
a continuous inverse, we get

Proposition 3.2. Let ^ be a contractive * -isomorphism of A onto B.
Then there exists 7, 0 < 7 < 1 such that

<|| A| | , VAe A.

Proposition 3.3. Let $ be a * -isomorphisms of (A, *,^4b, b) onto
A(B, *,B\), b). Then it is possible to define a new norm \\ ||$ on B such that
(6, *,B|,,b) is still a CQ*-algebra and 3> is isometric.

Proof. We define

It is very easy to prove that

(i) B[\\ ||$] is a Banach space;

(ii) ||B*||*=||B||*, VBG5;

(iii) B\> is || ||<i>-dense in B.

Let us now define the new norm || X \\f:= suP||A||<i><i II AX ||$ . We prove that
II Y" II _ II Y 11^ W V ^r Y2
II A l ib — 1| A l ib 5 VA E Of



MORPHISMS OF CERTAIN BANACH C*~MODULES 693

Since <3>~1 is necessarily an isometry between A\, and Bb, for A G B and X £ B\j
we have

AX * = Q-lAX <

Therefore || X ||f <|| X ||b, VX E Bb. This inequality together with the inverse
mapping theorem already imply that the two norms are equivalent. To show
that they are exactly equal we can proceed as in the proof of Proposition 2.1
after checking that || \\f makes of B\> a normed algebra; i.e. we need first the
inequality || XY \\f<\\ X \\f\\ Y \\f , VX, Y E 8b. But this can be easily derived
from the definition of || ||f itself. The equality || Xb \\f = \\ X \\f , VX E Bb is
easy to prove. D

From the previous proof one can also deduce the following

Proposition 3.4. Let (A,*,A\>,\>) be a CQ*-algebra and (B, * ,B b ,b ) a
right module on B\> with involution and such that B\> C B. Let $ be an injective
linear map from A into B with the properties:

*-(ii) ^ := ®\A, 'maps A\, into B\> and is a *-homomorphism of C*-algebras\

(iii) 3>(AB) = $(A)*(B), VA E A, B E A-

Let us define a norm || ||$ on <&(A) by the equation:

Then (3>(A)[\\ | |$],*,Bb ,b) is a CQ*-algebra.

Now the following question arises: are there non equivalent norms on a
rigged quasi *-algebra which produce different CQ*-algebras on the same C*-
algebra? The following explicit construction shows that the answer is positive.
In particular, we will give a general strategy to build up different proper CQ*-
algebras over the same C*-algebra and, after that, we give an explicit example.

Our starting point is a proper CQ*-algebra (,A[j| !],*.*Ao[|l l l o j . * ) -

Proposition 3.5. Let T be an unboundedjnvertible linear map from A
into A such that: TAo = AQ, T(X*) = T(X)* and \\T(XY)\\ <
for all X,Y in A(). Then, defining \\X\\t := \\T(X)\\, X E A, (A[\

|o]?*) is a Proper CQ*-algebra with norm \\ ||i non equivalent to ||
i ,
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Remark. It is worth noticing that, in this construction, the two Banach
spaces coincide while the two norms, || ||i and || || differ for all those elements
belonging to A but not to AQ, and for this reason they are not equivalent. This
result is a consequence of the constructive proposition for proper CQ*-algebras,
see [1]. In particular, it is evident that the || ||i-completion of AQ is exactly A
since, on AQ, \\ ||i and j| || coincide.

An explicit example of operator T can be constructed by means of the
Hamel basis of the Banach spaces A and AQ.
Indeed, let ea{aejj. be a Hamel basis for A which contains a Hamel basis for
•A)j ea{ae/}- We can always choose ea such that ea = e* . In order to simplify
things, we suppose that the set J is a subset of the positive reals with no upper
bound. We define T trough its action on the basis vectors ea: Tea = en if
a £ I and Tea = a\ea if a £ J\7. With this definition, it is clear that T
is unbounded and invertible. Moreover, since T is the identity map on AQ, it
is also evident that T(X*) = T(X)* for all X £ AQ and that the inequality
\\T(XY)\\ < ||rpO||||y| o holds for all X, Y in AQ. However, it is also clear
that the norm || ||i is not equivalent to || ||, as one can check considering the
values of these norms on the basis vectors. In this way we have constructed an
operator T satisfying all the properties required above.

Proposition 3.6. Let (A, *, A9, b) and (B, *, B\>, b) be CQ*-algebras. Let
$b be a ^-isomorphism of Ay onto B\> such that

Then <&\, can be continuously extended to a contractive ^-isomorphism $ of A
onto B.

Moreover, if \\ &t(X) \\B-\\ X \\^ for all X £ A\>, the extension is isomet-
ric.

Proof. First of all define a ^isomorphism ^ of A% onto B% by 3>tt(^0 ~
$l,(y*)*, VY e A%. For A e A there exists a sequence {An} C A\> converging
to A. Then one defines

|| ||B lim
n-^-oo

and

It is now easy to see that $ is a contractive ^isomorphism.
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The proof in the second situation is identical. D

In the rest of this Section we discuss briefly the problem of *-semisimplicity
of CQ*-algebras and its relation with *-isomorphisms. To begin with, let
(v4, *,^4(?5I?) and (B, * ,Bb,b) be CQ*-algebras and let $ be an isometric *-
isomorphism of A onto B. Using Definition 1.2 it is easy to prove that

where
(J) o 3>'1) (A, B) = Sl($-l(A), 3>~l(B)), VA, E e B.

If $ is not isometric but only contractive, then {Q o c^"1; Q e S(A)} C
S(B}. Therefore we get

Proposition 3.7. Let (A, *, ̂ b? b) and (B, *, Bb, b) be CQ*-algebras and
let <£ be a contractive ^-isomorphism of A onto B. Then, if (A, *,*4b5 ^) ^s *~
semisimple, (B, *,B|,,b) zs also *-semisimple.

Corollary 3.8. Let (A,*,A\>,\>) and (B, * ,Bb ,b) 6e CQ*-algebras with
B C A and B\, C. A^. I f B i s continuously embedded in A and A is *-semisimple,
then B is also *-semisimple.

Proof. Follows immediately from the inclusion <S(B) C S(A). D

In a previous paper [1], in order to construct representations, the following
notion was introduced

Definition 3.9. Let (A, *,A\>,\>] and (B, * ,Bb 3 t > ) be rigged quasi
*-algebras. A *-bimorphism of (^4, *,A> b) into (B, * ,Bb,b) is a pair (TT,^)
of linear maps TT : A^- B and TTb : At i->- Sb such that

(i) ?Tb is a homomorphism of algebras with 7Tb(Ab) = 7Tb(A)b A G -4b

(ii) TT(^) = v(AY VAeA

(iii) „(

In general, the restriction of TT to A\> is different from TT^. For this reason,
*-homomorphisms and *-bimorphisms are different objects. Of course any *-
homomorphism defines, in trivial way, a *-bimorphism, but the converse is in
general not true. If (TT,^) is a *-bimorphism then 7r(A) = 7r(I)7T[,(A), for each
A e A},', but, in general, TT(!) is different from I. Obviously, if TT(!) = I, then TT
is a *-homomorphism.
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Lemma 3.10. If (TT^TT^) is a *-bimorphism of (A, *,*/4t», b) into (B, *,

7r(BA) = 7rt(B)<K(A) \/A G A, MB G ^

where 7r$(B) = TTJ, (£?*)*. Moreover TT$ is a homomorphism of A% into 13$ pre-
serving the involution JJ of

The proof is straightforward.

Definition 3.11. A * -representation of a CQ*-algebra (.4, *,./4|>, b) in
the scale of Hilbert spaces H+i C H C 'H-i is a *-bimorphism (TT,^) of
(A*,A» into the Banach right C*-module (S(H+i,H_i), *, B(U+i), b) of
bounded operators in the scale. The representation TT is said to be faithful if
Ker TT — Ker TTI, = 0.

§4. Representations of CQ*-algebras

In this Section we will explore the possibility of constructing a GNS-like
representation for a CQ*-algebra. We will give two different constructions: the
first is done starting from a *-positive linear form and appears to be more ad-
herent to the usual GNS-construction for *-algebras; the second one is obtained
starting from a positive sesquilinear form, following in this way the usual path
for constructing representations of partial *-algebras.

§4.1. GNS-like construction with linear forms

Let (A, *,^4t>, b) be a CQ*-algebra (with unit I). A continuous linear func-
tional LJ on A is called a q-state if

(i) uj(X*X) > 0, \fX G A\>

(ii) u(X*AY) = u(Y*A*X), VA G A, VX, Y G A

(iii) cj(I) = 1.

Since uJ is continuous on A, it turns out that it is also continuous on A\> with
respect to || |||>; then by condition (iii) it follows that u is b-positive, i.e.

u(XbX) > 0, VX G A\,

and thus it is a state (in the usual sense) on the C*-algebra A\>.
A q-state LU is said to be admissible if
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(iv) VA 6 A,^KA > 0 : u(X*AY)\* < KAu(XbX)u(YbY),
MX,Y G Ab

(v) {Xn} C A\> sequence s.t. lim^oo uj(X^Xn) = 0 and
u((Xn - X^^Xn - Xm)) -> 0 => \im^^uj(X^Xn) = 0.

It is worthwhile to remark that condition (v), though being a closability

property, is not a consequence of the other conditions (i)-(iv) on the continuous
state uj.

Proposition 4.1. For each admissible q-state uj on a CQ*-algebra

(A, *,A>5 ̂ ) there exists a triplet of Hilbert spaces

a vector & £ 7^, a linear map:

and a b -representation TT\, : A\> —> B(T-l\,) of A^ in H^ such that:

i ) 7T(A*)=7T(4)* , V ^ L G ^

ii) Tr(^X) - 7r(A)7rb(X), VA E A, X G A

m)u(A) = (ir(A)t]n&), VA £ A
where (., .) denotes the (extension of the) inner product of HO
iv) ^ is cyclic in the sense that

(iv.a) 7r(^4b)^ ^ <ien5e m H|,[|| | |b] ,
(iv.b) 7r(^4)^b is dense in H$[\\ \\$}.

Moreover this representation is unique up to unitary equivalences.

Proof. Since u is b-positive on A^, then there exist a Hilbert space H^

with scalar product { , ) [ > and a cyclic representation TTJ,, with cyclic vector &,
such that

(8)

It is worth recalling how TT^ is defined. One begins with considering the set

JC = {X G A : u;(XbJO - 0}

which is a left ideal of A\>. Then A\>/K, is a pre-Hilbert space (the class corre-
sponding to X is denoted as X\,(X)) with respect to the scalar product

(9) <
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Then H\, is the completion of A\>/JC with respect to the scalar product (9) and
7T[> is defined by

(10) 7rb(x)(Ab(y)) - Ab(*y), X,Y e Ab

and extended by continuity to ?4- The cyclic vector £b is simply £b = Ab(I) .
The two conditions of admissibility (iv) and (v) imply that

JC = {XeAt: u(X*X) = 0}.

By (iv) and (v) it follows also that ?4 can be identified with a subspace of the
completion H,§ of A\>/K, with respect to the scalar product

(11) <A b(X),A b(F)} 0 = u;(y*X), X,YeAb.

Indeed, if 0 G ?45 then 0 = limn_*oo X\}(Xr)), Xn G A\, with respect to ( ,}b ,
so that we can associate to <j> the element 0 of HQ, which is the limit of the
same sequence X^(Xn) with respect to ( , )o (by (iv) {X$(Xn)} is also a Cauchy
sequence in this topology). Making use of (iv) once more we can prove that
0 does not depend on the particular choice of the sequence {X\)(Xn}} approxi-
mating (f>. On the other hand (v) implies that this map is one-to-one.
Now, since uj is also jj-positive on A$, then there exist a Hilbert space !~L% with
scalar product ( , ) j j and a cyclic representation TT^, with cyclic vector ^ such
that

(12) u;(Y) =

Then we define a new representation of A\, by:

The b-positivity of u> on A\, implies that u>(X") — ui(X). Taking this fact into
account we get, for each X £ A},:

This implies that TT and TT^ are unitarily equivalent; i.e. there exists a unitary
operator [/, U : Hb -+ U§ such that U^ = ^ and U'l7f(X)U = 7rb(X) for each

Xe A-
By means of U we may define a sesquilinear form on 7-^ x H% by

(13) (<t>, F)B = (Ud>, F>8, 0 e Hb, F e W8.
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From (13) it follows that each element of %$ can be identified with an element
of the conjugate dual H( of 7-^- Indeed, if <p G ?4 and F E ti% one has:

thus {.,F)o is continuous on "Kb. Conversely, if F £ H^ there exists F G
such that

Indeed, since F is bounded, there exists / £ ?4 such that

If we put F = Uf we get the statement. An obvious consequence is that, on
%, ( . , .)o coincides with {., .)o- We now define the representation TT on A by
means of the following sesquilinear form on ?4 xH\>- For each A G A we put

Condition (iv) implies the boundedness of Q^; thus, from the previous discus-
sion it follows that there exists a bounded operator TT — (A) from ?4 into H%
such that:
(14) (7r(^)AbpO, Xb(Y})0 = u(Y* AX), VX, Y e A-

Now we have:

therefore 7
Moreover

Hence Tr(A*) = ir(A*).
Finally, one has:

with 4 = Ab(I).
The inclusion
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is now clear. Indeed after having proven the first one, the second inclusion is
only a consequence of the identification H'^ = H%.
To conclude the proof, we need only to prove the cyclicity conditions (iv).
(iv.a) has already been discussed.
In order to prove that 7r(A)X^(I) is dense in H$, we assume that there exists
</) £ ?4 such that

I),0)o = 0, VAe A.

In particular if A G A\> we have ir(A) = 7r(I)7rb(^4). Then we get

<7T(A)Ab(I),0)0 - (7Tb(A)Ab - (I),7T(I)0)0 - 0, VA G

and by (iv.a) this implies that ?r(I)0 = 0. Thus,

But, from equations (11) and (14), ?r(I) = I and so (/> = 0.
The statement of the uniqueness (up to unitaries) can be proven as follows.

Let (TT, ?rb) be another representation in the triplet of Hilbert spaces

with cyclic vector £b G 7-4, satisfying the same conditions as (TT, TT&) . Then the
relations

define, as is easy to check, unitary operators from H^ onto 7-{b and from H%
onto ?iy, respectively. D

Example 4.2- Let (.4, *, ̂ 4b, b) be a CQ*-algebra of operators in a scale
of Hilbert spaces, as discussed in Example 2.5. For each £ 6 % with ||£|| = 1
and 5-1^ = £, we put: u;(A) = (A^,^), A £ A. Then a; is an admissible
q-state on (A, *, *4b, b).

As a consequence of the essential uniqueness stated above we have:

Corollary 4.3* Letuj be an admissible q-state on the CQ*-algebra (A, *,
4-tnb) and $ a *- automorphism of (A, *,4b, b)
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Then there exist uniquely determined unitaries V and V\> in the triplet of Hilbert
spaces of the cyclic representation (TT,^) constructed in Proposition 4.1 such
that

V-K(A}V~l = 7r($(A)), MA e A

and

VA 6

The following proposition, which is very easy to prove, states that q-
admissibility is preserved by *-isomorphisms.

Proposition 4.4. Let $ be a * -isomorphism of the CQ*-algebra (*A, *,
A\>, b) onto the CQ*-algebra (B, *B\>, b) and uj an admissible q-state for B. Them
uj o $ is an admissible q-state for A.

§4.2. GNS-like construction with sesquilinear forms

As already done in [1], we consider here the possibility of constructing
a representation of a CQ*-algebra starting from sesquilinear forms. Our aim
is to give a method which should be more natural than the one proposed in
[1], where the construction was based on two states related among them by a
certain admissibility condition. In this new GNS, on the contrary, we will use
only one sesquilinear form, loosing, maybe, some freedom but gaining in clarity.

Let (^4, * , ^4b ,b ) be a CQ*-algebra (with unit I). Let us consider a sesquilinear
form H satisfying the following conditions

(si) fi(A,A) > 0, VAeA

(s2) Sl(YA, B) = fi(A, Y*B), VY" eA^A.BeA

(s3) |0(-A,B)| < Mi!!lB||, VA£ E A.

We define

Then uj$ is a positive linear form on A$. Therefore there exists a Hilbert space
T^^J and a cyclic Jt-representation 7r$ of A$ into BCH$), with cyclic vector ^ such
that:
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We now define

Since

the functional uj\> is positive on A\>. Then there exists a Hilbert space ?4 and
a cyclic b-representation TT^, of A\> into B(T^), with cyclic vector ^, such that:

Now put, following an analogous path as the one in the previous Section,

then TT is a cyclic b-representation of At, in H% and, for each X G A\>, we get

Therefore TT and TT^ are unitarily equivalent; i.e. there exists a unitary operator
U,U :H\,->Ht such that U& = £,% and U~l^(X}U = Kb(X) for each X e A-
We may then define a sesquilinear form on ?4 x HD by

(15) (</>,F) = (U<l>,F)i, ttU^FtUt

and in the very same way as in the proof of Proposition 4.1, we can identify
H$ with the conjugate dual H^ of ?4-
By Riesz's lemma, any (/) € ?4 can be identified with a functional F$ G Hjj. So
we get a Hilbert space T~Lo which is the completion of 1-L^ with respect to the
scalar product

<^</>}0 = <V,^).

So we have obtained the triplet

7"4 C HQ C Hjj.

Assume now that the following condition holds:

(s4) VA e A 3KA > 0 : Q - (AX, AX) < K A u j b ( X b X ) , MX e A
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then, to each A £ A, it corresponds a sesquilinear form TJA on % x 7^ defined

by
**), X,Ye A,.

Indeed, making use of the Cauchy-Schwarz inequality, we have:

= \Q(AX

< Sl(AX,

Therefore T]A determines an operator IT (A) from H\, into H( = H$ such that

(ir(A)\(X], Xb(Y)) = fl(AX, Yb*), VX, Y e A-

Now the equalities

= tl(AXZ, Fb*)

imply that ?r(AX) = ^(^Tr^X), VA € A,X € A\>. In general TT is not a
*-representation. But if we add the assumption:

(s5) tl(A,B) = n(B*,A*), VA,BeA

we have:

= n(Ax, y*8) = n(Y*Ax, i)

And so 7r(,A*) = ?r(A)*. We have then proved the following

Proposition 4.5. Let 0 6e a sesquilinear form on A satisfying the con-

ditions (sl)-(s5). Then there exists a triplet of Hilbert spaces

a vector £\, G H\>\ a linear map:
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and a b -representation TT^ : A\, — » BCH\>) of A\> in H\> such that:

i) 7r(A*)-7r(A)*, VAeA

ii) n(AX) = 7r(A)7rb(X), \/A e A, X e Ab

Remark 4.6. (1) The first remark is a consequence of condition (s5)
which allows to write condition (s2) in the following equivalent form:

(s2') Sl(AY, B) = Q(A, BYb), VF G A, A, B e A,

which will return in the next Section.
(2) In [3] we considered faithful sesquilinear forms on a CQ*-algebra sat-

isfying conditions (sl)-(s3) and (s5) in order to construct from it a left Hilbert
algebra. CQ*-algebras that allow this construction are called standard, because
they provide a link between CQ*-algebras and the Tomita-Takesaki theory.
Here the additional condition (s4) has been required just to permit the con-
struction of operators representing the given CQ*-algebra.

We end this Section noticing that the two GNS-like constructions proposed
in this paper are really different: it is not difficult to see that there is no
immediate relation between a general admissible state and a sesquilinear form
satisfying (sl)-(s5). What we can prove, for instance, is that a sesquilinear
form satisfying (sl)-(s5) and n(I,I) = 1 defines a state u(A) = fi(A,I), A £ A,
satisfying conditions (ii)-(iv) of the previous Subsection. Property (i) can be
proved if we further assume that fi(A*, A*) > 0 for all elements is A\>, which is
a property already discussed in reference [3].
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