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Abstract

We study Hilbert space aspects of explicit eigenfunctions for analytic difference
operators that arise in the context of relativistic two-particle Calogero-Moser systems.
We restrict attention to integer coupling constants g/h, for which no reflection oc-
curs. It is proved that the eigenfunction transforms are isometric, provided a certain
dimensionless parameter a varies over a bounded interval (0,amax), whereas isometry
is shown to be violated for generic a larger than amax- The anomaly is encoded in an
explicit finite-rank operator, whose rank increases to oo as a goes to oo.
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§1. Introduction

The M-particle relativistic Calogero-Moser system involves the commuting
analytic difference operators

(1.1) S±k^ T IT/(*.-*•) •« (#-*- *Z^ 11 ^ J I mc
. ,Af}i€/ \

l/l=fc J^

where the 'potential functions' f±(x) are given by

(1.2) f±(x) = (a(x ± ig/mc)/a(x))l/2,

with &(x) the Weierstrass cr-function. Specifically, the time and space transla-
tion generators are the Hamiltonian and total momentum operator

(1.3) ffreiEEmC^Si+S-i),

(1.4) Prei = mc(5i-5_i),

which together with the boost generator

M

(1.5) BEE-ro^Tz, ,
j=i

give rise to a representation of the Lie algebra of the Poincare group,

(1.6) [ffrel, Prei] - 0, [Frel, B] = ifiPrel, [Prel, B] - ihHrel/c
2.

The nonrelativistic limit c — >• CXD yields

(1.7) Hrel - Mmc2 + £Tnr + O(c~2),

where J^nr is the nonrelativistic Calogero-Moser Hamiltonian,

(1.8) ffmS_lfl? + £<£zft>

with p(x) the Weierstrass p-function. Moreover, one readily verifies

fi
(1-9) Prel = Pnr + 0(C-2), Pn^
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Obviously, the resulting Galilei group Lie algebra representation

(1.10) [tfnr, Pnr] - 0, [tfnr, B] = ihPnr, [Pnr, B] = iftMm,

is satisfied when p(x) is replaced by an arbitrary potential V(x). By contrast,
the replacement of the a- function in (1.2) by other functions would yield a
non-zero commutator for HTe\ and Pre\ when M > 2, precluding a relativistic
interpretation.

The integrable one-dimensional M-particle systems just described were
introduced at the classical level in a joint paper with H. Schneider [1] and at the
quantum level in our paper Ref. [2]. The main inspiration for arriving at these
systems came from the question whether a relativistic point particle dynamics
describing the solitons/antisolitons/breathers in the relativistic sine-Gordon
field theory exists. There is meanwhile considerable evidence that this problem
can be solved via the above hyperbolic systems (obtained by specializing a to
sinh), and the present paper yields in particular a further confirmation of this
scenario.

Both the classical and the quantum relativistic systems have been en-
countered in various other contexts and have been studied from a great many
viewpoints. We refer to our lecture notes Ref. [3] for a detailed survey and
bibliographical information until 1995. More recent work includes for example
Refs. [4]-[44], from which further pertinent articles can be traced.

This paper may be viewed as a sequel to our recent paper [45], where we
studied eigenfunctions of the above (reduced) two-particle Hamiltonian with
hyperbolic interactions. In the latter paper we focused on properties of an
algebraic character. Here, we consider Hilbert space properties of the pertinent
eigenfunctions and operators for a subset of the parameter space allowed in
Ref. [45]. Apart from the repulsive parameter regime, we study a closely related
attractive regime, and an extra (Dirac type) regime that has no analog in the
nonrelativistic setting.

To begin with the latter setting, the repulsive and attractive Hamiltonians
can be taken to be

i

n 19x tf(nr)_
(L12) H« - 2

Thus they are related by the crossing substitution x -> x 4- Z7r/2i/. Choosing
g G /?N, one winds up with reflectionless eigenfunctions, and in this paper
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we restrict ourselves to the corresponding choice of coupling constants in the
relativistic framework.

Specifically, the three Hamiltonians are the analytic difference operators
(from now on abbreviated as AAOs)

(1,4) H . S p̂ J

(Here and below, a formula of the form F(i)±(i — > —i) stands for F(i)±F(—i).)
The parameters are restricted by

(1.16) n,0 = 1/mc, z/ e (0, oo), g/h = N + 1 e N* ,

and T^lhf3 are the translation operators defined by

(1.17) (TZf)(z) = f(z-a), aeC.

Therefore, #a is again related to Hr by taking x -^ x + i7r/2v, whereas the
relation of He to Hr will be clarified later on.

The operators Hr, Ha and He are formally self-adjoint on the Hilbert space
L2(R, dx). As will transpire below, this formal property is a poor guide. Indeed,
an important aspect of this paper is that it makes clear (by explicit examples)
that a general eigenfunction expansion theory for analytic difference operators
must cope with new phenomena not present for discrete difference and differen-
tial operators. To date, no such theory exists, in contrast to the Weyl-Kodaira-
Titchmarsh theory for the latter operator classes. (See, e.g., Refs. [46]-[51]
for accounts of WKT theory from various complementary viewpoints.) The
special cases studied here and in our related papers Refs. [52, 53] suggest that
one should first of all try and isolate some general criteria guaranteeing that a
well-behaved eigenfunction transform exists.

The key problem with eigenfunctions of AAOs such as (1.13)-(1.15) is
that they are highly non-unique. Indeed, they can be multiplied by arbitrary
functions with period ih(3. This problem can be ignored for AAOs that can
be defined as self-adjoint Hilbert space operators by restricting attention to
eigenfunctions that are (in essence) polynomials — a property destroyed upon
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multiplication by a non-constant ih(3-periodic function. But for the above hy-
perbolic AAOs this avenue is closed. (Their trigonometric versions, however,
can be handled in terms of Askey- Wilson polynomials.)

As it turns out, the infinite-dimensional eigenfunction space of the AAOs
Hr , Ha and He can be reduced to a two-dimensional one by insisting on an
additional eigenfunction property for an AAO in their (formal) commutant.
For the g = (N + l)h case considered in this paper this operator may be taken
to be the 'free' AAO

(1-18) AEEl^+T*^.

It is these joint eigenfunctions that can be used to associate to Hr,Ha and
He, as well as to A, bona fide self-adjoint Hilbert space operators. The latter
are denoted by the same symbols, but it should be stressed that the Hilbert
space operator A depends not only on the case at hand, but also on (3 and N.
This dependence shows up in the associated 5-operator; the crux is that the
definition domain of A varies.

To describe these Hilbert space results in more detail, let us denote from
now on the even and odd subspaces of L2(R) by L+(R) and Z/?_(R), resp. Then
we obtain self-adjoint operators on the following Hilbert spaces, provided the
dimensionless product parameter

(1.19) a = h(3v e (0,oo)

is restricted as indicated:

(1.20) L2_(R,dz), a e (0,7r/JV), (ff r),

(1.21) L2(R,dx), a E (0,7r/2AT), (Ha,He).

To be specific, we obtain an isometric eigenfunction transform

(1.22) Tr^ : L2_(R,dp) -> Ll(R,dx)

onto L2_ (R, dx), conjugating Hr and A to multiplication by 2ch(3p and 2ch7rp//u/,
resp. Similarly, we obtain isometric eigenfunction transforms

(1.23) T8 : L2(R, dp) -> L2(R, dx), s = a, e,

conjugating A to multiplication by 2cli7rp/ftz/, and Ha and He to multiplication
by 2chj3p and 2sh(3p, resp. (Note Hr and Ha formally commute with parity,
whereas He anticommutes.) The operator Fe maps onto L2(R, dx), while the
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range of Ta equals the orthocomplement of N pairwise orthogonal bound states
with eigenvalues

(1.24) 2cos(fca), k = 1,.. . , JV, (Ha - eigenvalues),

and corresponding parity ( — ) N ~ k .
At this point it should be emphasized once again that the domains and

actions of the self-adjoint Hilbert space operators we associate to the AAOs
Hr,Ha,He and A are defined indirectly, via the isometrics J>,_,Ta and fe.
This is in sharp contrast to the situation for ordinary differential and discrete
difference operators, where one typically defines the operator at first as a sym-
metric operator on a dense subspace, and then studies eventual self-adjoint
extensions. The examples studied here and in our previous paper [52] strongly
suggest that the latter approach is not as fruitful and revealing in the AAO set-
ting. In particular, our results illustrate in a quite concrete way that the 'free'
AAO A (1.18) can be defined as an essentially self-adjoint operator with the
natural (AAO) action on an infinite-dimensional family of dense subspaces,
whose pairwise intersection is the zero vector. (Cf. especially the paragraph
above Theorem 2.2.)

The above 'constructive' results are supplemented by a number of 'de-
structive' ones. In particular, we prove that in the repulsive case isometry
and self-adjoint ness break down on L^_(M, dx) for generic a £ (0, oc) and on
L?_(R, dx) for generic a outside (0, Tr/JV). Similarly, these anomalies are shown
to arise in the attractive and extra cases for generic a in [?r/27V, oc). The isom-
etry obstructions are encoded in finite-dimensional subspaces whose dimension
(generically) increases as a increases.

We proceed by detailing the pertinent eigenfunctions and some of their
features. As a preliminary, we introduce weight functions

1N
(1.25) ws(y) = I Jj4sh(y+ zja)sh(j/ - ija)

N

(1.26) wc(y) = I JJ 4ch(y + ija)ch(y - ija)
V=i /

These functions can be used to conjugate the AAOs (1.13)-(1.15) to AAOs
with meromorphic coefficients. Specifically, one has

(1.27) Br =
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(1.28) Ba EE wc(Vx)-1/2Hawc(Vx)^ = T^ + (i -» -t),

(1.29) Be EE Wc(vx)

as is readily checked. The same similarity transformations on A (1.18) yield

(1-30) B = (-)N(T^/u + Tlt,/v).

(To appreciate how the factor (-)N arises, take x -> ±00.)
The Hs-eigenfunctions, s = r, a, e, are now given by

(1.31) Fr(v,p;x,p) = w

(1.32) F0(i/,/?;x,p) = w

(1.33) F f ( v , f c x , p ) = w

where the entire B.s-eigenfunctions E8, s = r, a, e, are of the form

(1.34) E^d-.x^p) =

(1.35) PW(i / ,c )=

The numbers c^n are Laurent polynomials in the phase

(1.36) q = exp(ia), a =

with coefficients in N after multiplication by ( — )

2 cin

- . m ^

l < A " i < - - - < f r m < J V

(Here, empty sums are defined to be 1; note cin is in essence a g-binomial
coefficient, cf. Ref. [54].) Moreover,

(1.39) c(°> =(-)'" CW, m,n = 0 , . . . , J V ,

(1.40) 4 e> n=(-r+«CM, m,n = 0 , . . . , 7V.
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The connection of the functions Es,s = a,e, to the function Er readily
follows from (1.39) and (1.40), resp.: We have

(1.41) Ea(v,fcx,p) = (-i)

(1.42) E e ( v , f 3 \ x , p )

The repulsive eigenfunctions were already detailed in Ref. [55] and studied in
Ref. [45]. (The dimensionless variable pair (x,p) and parameters a + , a_ ,# of
the latter reference correspond to (s, t) = (yx, 0p] and ft/3z/, TT, g/h, resp., in the
present paper.)

The above eigenfunctions have some crucial symmetry properties, which
are equivalent to symmetries of the coefficients c™n . Specifically, the repulsive
coefficients satisfy (cf. Section II in Ref. [45])

V / ^rnn N — m,N — 'n N — m.n"1

(1.44) c£i =4^,

so that one has

(1.45) \jr\y^ p\ x,p) = (jxT\y^ p\ —x^ —p) = (jr\y^ \j\ —x,p) ,

(1.46) G r(i/,/3;x,p) - G r(/3,i/;p,x), G = E,F.

From (1.39) and (1.40) we then obtain corresponding symmetries of Ga and
Ge, and in particular

(1.47) Gc(i/,)3;x,p) = Ge(/3,i/;p,x)1 G = £7,F.

The symmetries (1.46) and (1.47) are particularly striking and useful. Indeed,
from these self-duality relations important properties of the adjoint eigenfunc-
tion transforms will be immediate.

We continue by sketching the organization of this paper in some detail.
In Section 2 we work in a general framework that will be specialized to the
above three cases in Sections 3-5. The functional-analytic core of Section 2
(and of the paper) consists of Theorems 2.1-2.3, whose proofs are relegated to
Appendix A.
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In Section 2 we work with scaled (dimensionless) variables and make var-
ious assumptions that will be shown to be (generically) satisfied in each of the
three cases. Actually, we have tried to anticipate its application to a great
many special cases of the transforms associated with the generalized hyperge-
ometric function introduced in Ref. [3] (see also Ref. [56]). We will come back
to this elsewhere, as well as to the connection of the eigenfunction transforms
of Sections 3-5 with the generalized hypergeometric transforms.

Theorem 2.1 paves the way for establishing the isometry properties of
the eigenfunction transform. It reveals that an eventual isometry violation is
encoded in a non-zero residue operator. The theorem is established without
invoking any Hamiltonian. In fact, in Section 2 we need not and do not assume
that the transform kernel is an eigenfunction of a non-trivial AAO. It is, how-
ever, manifestly an eigenfunction of a 'free' AAO A\ (2.18), generalizing the
AAO A (1.18).

In Theorem 2.2 we show that a non-zero residue operator entails that one
cannot interpret the AAO A\ as a self-adjoint Hilbert space operator (or even
a symmetric one), when the action of the latter is defined in the natural way
on (a dense subspace of) the range of the generalized eigenfunction transform
f (2.21). The proof applies with obvious changes to any other AAO for which
the kernel may be an (improper) eigenfunction with real eigenvalues. Thus
Theorem 2.2 will enable us to show that self-adjoint ness (generically) breaks
down for Hr, Ha and He when a is outside the intervals (1.20) and (1.21), resp.

Assuming a vanishing residue operator, we study in Theorem 2.3 the
Hilbert space scattering theory associated with the self-adjoint dynamics A\.
Though its action is formally free, the scattering is non-trivial. Just as for
Theorem 2.2, the proof of Theorem 2.3 applies to a vast class of dynamics,
containing in particular the 'interacting' AAOs Hr, H0 and H% for the relevant
specialization. (This is a manifestation of the invariance principle for the wave
operators [57].)

It will be clear from the assumptions in Section 2 that the adjoint T* of
the eigenfunction transform T can be handled along the same lines, using the
dual 'free' AAO A^ (2.19) in the role of A\ (2.18). We refrain from doing so as
regards Theorems 2.2 and 2.3, since we do not need their 'dual counterparts'.
We do specify the analog of Theorem 2.1 for .T7*, however. (Since the repulsive
and extra regimes are self-dual, the latter result is needed only in the attractive
case.)

The general theory developed in Section 2 enables us to reduce the case
analysis in Sections 3-5 to a study of the two pertinent residue operators R<2
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(2.32) and RI (2.58). Quite surprisingly, these are finite-rank for arbitrary
a G (0,oo), and so we need only isolate pertinent linear algebra properties.
The algebraic results obtained in Ref. [45] will be crucial in this enterprise.

§2. The General Framework

As explained above, it is expedient to reduce the bulk of the analysis
associated with the above three concrete cases to results obtained in a more
general setting. To ease the notation, we use dimensionless variables (s, t)
instead of (x,p), and accordingly start from a function of the form

(2.1) E(a, t) = elsi/aP(es, e1}, a G (0, oo),
MI M2

(2-2) P(^) = £5>,y
Ml-2V^-2',

fc=0 1=0

where MI, A/2 G N and a/~/ G C. (This should be compared to (1.34) and
(1.35).)

To ensure non-triviality and a convenient normalization, we assume

(2.3) |a00| = 1-

The symmetries (1.43) and their analogs for Cmn and c^n are taken into account
by assuming

(2.4) aMi-fc,M2-J = v^kii cr G { — 1,1},

(2.5) aki = craMi-k.i — ak,M2-i-

Note that (2.4) and (2.5) amount to

(2.6) E(-s,-t) = aE(s,t),

(2.7) £(s, t) = aE(-s, t) = E(s, -t), s, t G R

Obviously, E(s, t) is a joint eigenfunction of the AAO

(2.8) BI^H^CC + T^J,

with eigenvalue 2ch(7r^/a), and of the dual AAO

(2-9) B2 = (-)">(!?„ + TLn),

with eigenvalue 2ch(7rs/a). Here and below, we find it convenient to encode
dependence on the variables s and t by using subscripts 1 and 2, resp.
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Next, we introduce the c- functions

(2.10) C l ( a ) EE

Clearly, c3(z) is an entire function, which is ZTT-periodic for M3 even and ITT-
antiperiodic for AI3 odd. Using (2.5) one infers

(2.11) cl(s) - <7Ci(-s), cj(t) = c2(-£), s,t G R,

and using also (2.3) one sees that c3(z) has A/^ zeros (counting multiplicity)
in the period strip Imz £ [0, TT). Moreover, from (2.1) and (2.2) one readily
deduces

(2.12) E(s,t) = eM2t
Cl(s)el*t/a + O(exp[(A/2 - 2)Ref]), Ret -> oo,

where the bound is uniform for s and Imf varying over compact subsets of C
and M, resp. Similarly, we have

(2.13) E(s, t) = eAhsc2(t)e
lst/a 4- O(exp[(A/i - 2)Re s]), Re s -> ex),

uniformly for f in C-compacts and Im s in E-compacts.
We proceed by defining weight functions

(2.14) w1(8) = [ac1(a)c1(-8)}-1, w2(t) = [c2(t)c-2(-t)}-1 .

Thus, Wj(z) is an z'Tr-periodic, meromorphic and even function with 2AIj poles
(counting multiplicity) for which Imz G [0, TT). Throughout this section we as-
sume that these poles are non-real. Thus they occur at points p[J , . . . ,p](y , ZTT —

p-l , . . . , in—pli in the strip Imz £ (0, TT); by convention, the points pj, denote
the zeros of Cj(— z) in this strip. Due to (2.11) and our non-reality assumption,
we have

(2.15) Wj(z) £ (0,oo), V z e R jf = l,2.

For later use we also note the asymptotics

(2.16) «;J^) = e-2M<z + 0(e-(2M '+2)Res)), Res -> oo, j = 1.2,

where the bounds are uniform in Im z.
We continue by introducing the function

(2.17) F(*,f)
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As it stands, this function has a sign ambiguity. For real s and t we choose
positive square roots throughout, cf. (2.15). Conjugating the AAOs BI (2.8)
and B? (2.9) with the respective weight functions yields

(2-18) A^T^ + TL^

(2-19) A2=T^ + TLl7r.

We are now going to use F(s,i) as the (Schwartz) kernel of a bounded
operator T between Hilbert spaces

(2.20) Hi = L2(E, ds), Hi = L2(M, dt).

To be specific, let us denote the subspace of Hj consisting of C°° -functions
whose support is compact and does not include the origin by C3,j = 1, 2. Then
we begin by defining

(2.21) T : C2 -» Hi, 6(t) •-> (27ra)~1/2 f F(s,t}(j)(t}dt.
J -oc

Though it is clear from the above that the integral is absolutely convergent,
it is not immediate that T maps C2 into HI and that JF extends to a bounded
operator (denoted by the same symbol). It is not hard to see this, however, as
we now explain.

Consider first the special case MI = A/2 = 0. Then one has

(2.22) <7 = l,a00e{-l,l}, w i ( z ) = w2(z) = 1 (A/ i ,M 2 =0) .

Hence T amounts to Fourier transformation, and so T extends to an isometry
from H2 onto HI. In the general case it is therefore clear that (J70)(s) equals
the product of wi(s)1/2 and an entire function of the form

Mi

(2-23)

cf. (2.1) and (2.2). From the bound (2.16) with j = I it then follows that we
do have f<J) £ HI (recall wi(s) is even).

A slight elaboration on the previous paragraph now shows that T is bounded:
Its kernel can be written as

(2.24)
A/! M2

k=0 1=0
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and each of the terms in the sum corresponds to the product of three bounded
operators.

At this point it is convenient to insert some observations on the adjoint T*
of J- ", which will be used later on. First, from the boundedness of f it follows
that J7* is defined on all of HI and bounded as well. Second, one easily verifies
that its action is given by

(2.25) (r*il>)(t) = (27ra)~1/2 I F(s,t)^(s)ds, i/> e Ci-
J — 00

Finally, in view of (2.7) we are free to use the equalities

(2.26) F(s, t) = aF(-s, t) = F(s, -t}.

In the following theorem we assume that all poles of w\(s) are simple. The
theorem involves a residue function denned by

MI
(2.27) K(tj) = Y,[r

k=l

Here, rk and rk_^Mi denote the residues of Wi(s) at the simple poles pk and

I-K — PJ, , resp. Now wi(s) is ZTr-periodic and even, so we have

(2.28) r(£.Ml = -r(k\ k = l,...,Ml.

Combining this with (2.6) and (2.1), we deduce

M!

(2.29) K(t, tf) = Y^ 41} [E(p? , -t)E(pP , t'}
k=i

-exp(7r(< - t')/a)E(p(»,t)Etp(», -t')}.

From this one reads off that 7£(t, tf) is an entire function satisfying

(2.30) ft(M) = 0.

Theorem 2.1. Assuming wi(s) has solely simple poles, one has

• roc /.OO _

(2.31) (T^ T^\ = (0, ̂ )2 + - / /
a J-ocJ-oc

for all 0,^ G C2, with 7l(t,t') given by (2.29).
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The proof of this theorem is relegated to Appendix A. Here we only point
out that the vanishing property (2.30) entails that the integral in (2.31) is
absolutely convergent and that in Sections 3-5 the assumption of simple poles
is satisfied for generic parameters.

Independently of the latter assumption, we may and will define a bounded
self-adjoint operator R<2 by

(2.32) R2=F*F-I2.

We assume from now on that R2 has finite rank L £ N. In contrast to the
previous requirements we made (which can be readily met), this may seem a
rather ad hoc assumption. It is however satisfied for all of the special cases
studied below. (In fact, in the concrete settings of Sections 3-5, the definition
(2.32) yields a finite-rank operator R2 even when wi(s) has some real poles.)

In order to prepare the ground for later sections we assume once again
(until further notice) that wi(s) has ony simple poles. Then it follows from
(2.32) that the residue term on the rhs of (2.31) equals ((t),R2ip)2. We now
consider two important special cases pertaining to the residue sum (2.29): In
the first/second case a single term in the sum yields a vanishing/rank-one con-
tribution to R2, resp. (The first case is relevant in Sections 4 and 5, the second
one in Sections 3 and 4.)

First, choosing k e {1,..., A/i}, suppose that we have an identity

(2.33) exp(7rt/2a)£G41},t) = akexp(-7rt/2a)E(p[l\-t), ak e {-1,1}-

Then the corresponding summand in (2.29) clearly vanishes. To be sure, in the
present general setting the parity property (2.33) seems very restrictive. Note
in particular that in view of (2.1) and (2.2) it is necessary (but by no means
sufficient) for (2.33) that p[1] be of the form

(2.34) p(
k
l} = Z7T/2 + ijka, jk e Z.

Second, suppose that E(pk , t) itself has a definite parity:

(2.35) E(p™,-t)=<TkE(p™,t), <r f ce{-l , l} .

Due to (2.1) and (2.2) this implies not only

(2.36) p(1}=ijka, J f c S N * ,

but also

(2.37) E(p(t\t) = exp[(Af2 + ip(
k
1}/a)t]Cl(p

(
k
l))

+ O(exp[(M2 - 2 + ip[1]/a)t\), t ->• oo.
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(Recall that Ci(-p^ ) = 0 by convention, so that ci(p[1}) ^ 0, cf. the paragraph
containing (2.14).) Combining (2.16) and (2.37) with (2.35), we deduce

(2.38) E(p[l\t)w2(t)
1/2 eH2 .

Moreover, from (2.6), (2.7) and (2.36) we obtain

(2.39) E(p{1},t) = (rE(p(k\t), t G R.

Therefore, the pertinent summand in (2.31) can be written as

(2.40) m-M'W^frl^^^

As a consequence, it gives rise to a rank-1 operator on %•
The two cases just considered are not the only way in which the residue

sum (2.29) can give rise to a finite-rank operator #2. as assumed above. Indeed,
we will encounter other possibilities in later sections. But we need not and will
not analyze further cases for our remaining purposes in this general section. In
fact, for the remainder of this section we drop the assumption that w-\_(s) has
simple poles.

Reconsidering the operator equality (2.32), we observe that the rank-L
assumption on R^ entails that R? has L non-zero eigenvalues belonging to
[-1,0) or (0,oo). Setting

(2.41) ^2 = ^2(^2),

it is also clear from (2.32) that T is isometric on the orthocomplement llJ^ of
the L-dimensional range 7^2-

With these Hilbert space properties at our disposal, we now study the
question whether f may be viewed as an eigenfunction transform for a self-
adjoiiit operator A\ associated to the AAO (2.18). To analyze this, let us
first denote the operator of multiplication by 2ch(?rf/a) on H2 by M2, and its
natural domain by T>(M2). (That is, V(M.2] is the maximal multiplication
domain, so that M.2 is self-adjoint on T>(M.2).) Now there are two essentially
different cases: Either R2 — 0 or R2 / 0.

In the first case T is an isometry, so Ker(.F)=0. Therefore, we may define

an operator A\ on 3~(fD(M.<2)} by requiring the intertwining relation

(2.42) A^^TM^

Whenever JF does not map %2 onto HI, this operator is not densely defined, but
AI is easily seen to be self-adjoint as an operator on (the subspace
of) the Hilbert space
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(2.43) Ul

In the second case T may have a non-zero kernel (cf. (2.32)), so there
might exist vectors 0 satisfying

(2.44) 0 G T>(M2) n Ker(JF), M20 £ Ker(JF).

Whenever such vectors exist, one is not entitled to use (2.42) to define A\ on
F(D(M<2)}. Now we cannot rule out the obstruction (2.44) in general. On the
other hand, when we restrict attention to the smaller ('Paley- Wiener') subspace

(2.45) Pi=^(Cz),

then it can be shown that (2.42) does give rise to a well-defined operator A\\
stronger yet, one has C% fl Ker(^r) = {0}.

We do not substantiate the latter claim here, since our proof is somewhat
involved and since we do not need this result here. Indeed, in the following
theorem we only assert that when H^ ^ 0 and A\ can be defined by (2.42) on
PI, then the resulting operator is not symmetric.

At this point we would like to emphasize that the action of A\ on PI
given by (2.42) is the natural one associated with the AAO (2.18): Writing

,0 G €2, as wi(s)1/2 times an entire function 0(s), (2.42) amounts to

(2.46) (Al^d))(s) = wi(s - nr)1/20(s - nr) + (i -> -z),

as is readily seen from the definition (2.21) of T . It is also important to observe
that the intersection of two subspaces F(C<2) corresponding to two distinct
weight functions wi consists of the zero vector whenever the square roots in
(2.46) give rise to branch points at distinct locations. (For example, whenever
there exists a point where one of the two weight functions has a simple pole,
whereas the other one has a finite value.)

Theorem 2.2. Assuming /t^ = 0, the operator A\ defined on PI by
(2.42) is essentially self-adjoint (viewed as an operator acting in l~i\ (2.43)).
Next, assume R% ̂  0 and assume that <p G C2nKer(^r) entails M.^ £ Ker(Jr).
Then the operator A\ defined on PI by (2.42) is not symmetric.

The proof of this theorem can be found in Appendix A. In the remainder
of this section we assume R% = 0. Thus f is an isometry, and the AAO A\
(2.18) gives rise to a self-adjoint operator A\ acting in the Hilbert space HI,
which is unitarily equivalent to .A/1 2 via the intertwining relation (2.42).
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Next, we study the scattering theory associated to the operator A\. To
this end we extend A\ to a self-adjoint operator on HI by defining A\ to be
equal to an arbitrary self- adjoint operator on (T^i)1-. This extension only serves
to let exp(— iTAi), T £ R, be a 1-parameter unitary group acting on all of 'Hi;
the following scattering theory objects are independent of the extension.

In the present context it is expedient to employ the two Hilbert space
scattering theory formalism, cf. Ref. [57]. As comparison operator between the
Hilbert spaces 1-L<2 and T-Li we choose the map

/

oo
elsi'a<t)(t)dt.

-OO

Since J amounts to Fourier transformation, it yields an isometry from % onto
HI.

Clearly, J intertwines the parity operators

(2.48) (P20)(f) = 0(-*); (P^)(S) = ^(-5), 06%, ^ e f t i .

When a equals 1, this is true for T as well, but more generally we have

(2.49) TP2 = aPiF,

cf. (2.6) and (2.21). Introducing sign functions

(2.50)

we therefore obtain

(2.51)

both for a — 1 and for a = — 1.
As a last preliminary for the following theorem we recall that 02 (t) does

not vanish for t £ R (by assumption, cf. the paragraph containing (2.14)).
Moreover, the number C2(0) is real in view of (2.11), so its sign is well defined.

Theorem 2.3. The strong limits of the operator family

(2.52) exp(iTAi)Jexp(-iTM2)i T <E M,

for T — > ±oc exist and are equal to

(2.53) W± =

Here, the sign functions cr±(t) are defined by (2.50), and the square-root signs
are chosen such that the resulting one-valued functions are continuous and equal
to I fort = 0.
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The proof of Theorem 2.3 is relegated to Appendix A. Just as in non-
relativistic time-independent scattering theory, one can obtain the 5-matrix

(2.54) 52 = W^W- = a °2^|

directly from the eigenfunction F(s,t). Indeed, from (2.17), (2.13), (2.16) and
(2.6) one infers

f2^ F(« f} J[c2(t)/c2(-t)]
l/2exp(ist/a), Res^oc,

1 j l ' } ~ \a[c2(-t)/c2(t)}
l/2exp(ist/a),Res -» -oo.

Thus the right and left asymptotics are related via the unitary multiplication
operator (2.54). Of course, the latter asymptotics comparison holds true in-
dependently of Hilbert space properties. In particular, it fails to reveal that
there is no sensible wave packet picture of scattering (indeed, of time evolution)
whenever the residue operator R2 is non-zero.

The adjoint F* (2.25) can now be analyzed in the same way as F. However,
for later purposes we only need the counterparts of (2.31) and (2.29). (They will
be used in Section 4.) An inspection of the proof of Theorem 2.1 in Appendix A
readily yields the desired formulas: Provided w2 (t) has only simple poles, one
gets

icr

[l-exp(7r(s' -s)/a)}-ln(s,sl)wl(s}l/2wl(s')l/2dsdsr,

for all 0, i/j E Ci, with

M-2

(9^7} 7?f« Qf\ — \ ^ r^2"{£.0 I J /V^o, o J — 7 It

1=1

(The extra factor a in the second term on the rhs of (2.56) as compared to
(2.31) arises from using the first equality in (2.7). Recall also (2.14) to see why
this factor does not occur in the first term.)

Introducing a second residue operator by setting

(2.58) fllEE jrjr*_i1 ?

it is straightforward to adapt the remainder of Section 2, with A2 playing the
role of AI. We leave this to the interested reader, however.
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§3. The Repulsive Regime

Our starting point in this section is the function Er(x,p), given by (1.34)-
(1.38). (We suppress the parameter dependence whenever this does not give
rise to ambiguity.) It follows from Theorem II. 1 in Ref. [45] that one has the
eigenvalue relation

(3.1) BrEr(x,p)

(cf. I.e. Eq. (2.12)), which entails

(3.2) HrFr(x,p)

cf. (1.27). Moreover, from this theorem we also have

2N

(3.3) Er(±iNh3,p)=
k=N+l

cf. I.e. Eq. (2.16), and I.e. Eq. (2.18) yields

(3.4) Er(±i(N - /)fi/3,p) = BlN\ch3p), I = 0, . . . , ,V,

where B\ (u) is a polynomial of degree < I and parity ( —)' with real coeffi-
cients; the degree equals I provided the a-restriction

(3.5) fca ^ TrN, fc = l ,2iV,

is satisfied. Finally, the polynomials obey the recurrence relation

(3.6) sin((2JV — l)d)Bl+l(u) — sm(la)Bl_l(u) = 2usin((AT — l}a)Bj (u),

I = 0 , . . . , N.

(This is simply the eigenvalue formula (3.1), evaluated for the x-values in (3.4),
cf. (1.27).)

Comparing (1.34) and (1.35) to (2.1) and (2.2), we see that the function

/o 7\ /-'Ys 1~} —- F f s / i

is of the form (2.1), with

(3.8) a = h(3v, J\/!,7\

and coefficients
(3.9) a,, = c<,' ,>,



726 SIMON X. M. RTIJSENAARS

In particular, this yields

(3.10) a00 = H) V-V+1)/2, q = e'",

so that (2.3) is obeyed. Moreover, due to (1.43), the coefficients a^i satisfy
(2.4) and (2.5) with the parity parameter a equal to 1. Accordingly, E(s,t)
(3.7) fulfils (2.6) and (2.7) with (7=1, and in addition

(3.11) E(s,t)

since (1.44) entails a/,./ = a//,.
Next, we note that (1.37) yields

(3.12) cQ = (-)m

l<k

Thus the c-function ci(s) (2.10) is given by

(3.13) Cl(a)

A;=l

and by symmetry we have C2(t) = ci(t). Recalling (2.14) and (1.25), we now
obtain weight functions

(3.14)

It follows from (1.31) and (3.14) that the function

(3.15)

is of the form (2.17). Obviously, the weight functions have simple and non-real
poles iff the a-restriction (3.5) holds true. This restriction is, in particular,
satisfied when

(3.16) flG(0, , , . . . , ,
1 V + /

and we now assume (3.16) until further notice. Then we may and will choose

(3.17) p[j} = ika, Jfe = l , . . . , J V ,
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(Recall these numbers are by convention the zeros of c3(—z] for Imz £ (0,7r).)
Moreover, we infer that the assumptions of Theorem 2.1 are met.

From (3.4) and (3.7) we now read off that the second parity assumption
(2.35) is satisfied for k = 1 , . . . , J V , with cr^ = 1. (Note that the conclusion
(2.36) is in accord with (3.17).) Furthermore, these equations entail that the
%2-functions (2.38) are given by

/ \ -1/2
/ N N

(3.18) ^\T](t} = 5z
(JV)(cbi) J| 4sh(t + ija)sh(t - ija)

Therefore, we obtain an explicit expression for the residue operator R^ (2.32):
From (2.31), (2.29) and (2.40) we have

. N-l

(3.19) #2 = - ]T rN^r\t) ^(r)(t),
a /=o

with residues given by (cf. (3.14) and (1.25))

(3.20) r?7? = [4? sin(2ma) JJ 4sin(fr + m)asm(k - m)a]~l,

In view of our standing assumption (3.16), the polynomial B\ has degree /,
and so R<2 is a rank-]V operator.

The upshot is that the operator

/

oo
F(a,t)</>(t)dt,

-oc

(3.22) F(a, t) = Ws(sY>2Er(s/v, t/0}ws(t}
l'\

is isometric on 7^2", but not on the JV-dimensional subspace 7^2 (2.41). Now
it is clear from (3.19) and (3.18) that 7^2 belongs to the even subspace %, + •
Since the operator T intertwines the parity operators (recall (2.51)), it admits
restrictions

(3.23) ft : U^^Ui^ 5-+,-.

Thus, we are now in the position to deduce that the odd restriction .F_ is an
isometry.
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It is not hard to see that T- is actually onto. Indeed, this follows from an
inspection of the adjoint J7*. It is given by (2.25). Now from the self-duality
relation (3.11) we infer

(3.24) F(s,t) = F(t,s),

so using (2.26) the adjoint kernel can be rewritten as

(3.25) F(s,t)

Hence we can repeat the above steps for F* , obtaining a residue operator

. N-l

(3.26) R, = - £ rN-rfir\s) ® ^r)(s),
a 1=0

cf. (3.19). This implies that the restriction T*_ to H\^ is an isometry into
%2.-- Thus we have relations

(3.27) FLT- = lu*.., jF_jr: = i W i _ ,

and so bijectivity follows.
When we identify HI.- and %,- m the obvious way with the Hilbert space

(3.28) U, = L2_(R,dy),

then f- is a skew-adjoint operator with a purely imaginary kernel. Indeed,
using (3.25) we may write

(3.29) (F-<t>)(y) = (87m)-1/2 /" [F(y,y') - F(y',y)]<l>(y')dyr, $ £ U-,
J -DC

and from this formula and (3.24) our assertion is plain. Since T- is also a
unitary operator on H_, it now follows that we have

(3.30) ^_=^(P + -P_) ,

where P+ and P_ are complementary (orthogonal) projections on *H_.
The above results were obtained with the a-restriction (3.16) in force. We

now summarize our isometry results and extend them to the excluded values
in (3.16) in the following theorem.

Theorem 3.1. For all a e (0, n/N) the odd restriction F- (3.23) of the
operator T given by (3.21) and (3.22) is an isometry onto HI,-. Viewed as an
operator on H- (3.28), J-- may be written as (3.30), where the complementary
projections P+ and P- are strongly continuous in a for a G (Q,7r/N}.



RKFLKCTIONLESS RELATIVISIIC POTENTIALS 729

Proof. We have already proved the first assertion for a satisfying (3.16).
To handle the excluded a- values, let us note first of all that for these values the
poles of the weight functions are no longer simple, but still non-real. There-
fore, the operator F (3.21) is a well-defined bounded operator for the excluded
values, too. Moreover, the factorization (2.24) entails that (3.21) gives rise to
a family of bounded operators F(a),a £ (0,7r/Ar), that is strongly continuous
in a. (Indeed, each of the three operator factors in (2.24) is strongly continuous
in a for a £ (0, Tr/JV), and the coefficients a A-/ are continuous in a for a £ (0, oc).)

Recalling now the bijectivity relations (3.27), it follows that J~-(CL) is an
isometry onto Hi.- for all a £ (Q,n/N). Viewing JF_(a),a £ (0,7r/7V), as a
strongly continuous family of skew-adjoint unitaries on H_ (3.28), it follows
from well-known results (see e.g. Theorem VIII. 24 in Ref. [58]) that the spec-
tral projections P^-(a) and P-(a) on the eigenvalues i and —i are strongly
continuous as well. D

Let us now return to the physical variables x,p and parameters ft, z/, /3,
fixing a — h3v £ (0, 7T/N). Then it follows from Theorem 3.1 that the operator

(3.31) Fr : L2

(27rfi)-1/2 F,(v,,3:x.p)6(p)dp

has a restriction .?>,_ to the odd subspace £'i(R, dp) that is an isometry onto
L'i.(M, dx). In view of the eigenvalue relation (3.2), the pull-back of the self-
adjoint multiplication operator 0(p) K-> 2ch(3p)(/)(p) to L?.(R, dx) defines a self-
adjoint operator #,.._ on L':_(M, dx), whose action on functions Tr.-$, with 0
an odd C^-function (for example), coincides with that of the AAO Hr (1.13).
Similarly, multiplication by Ich^p/hv) pulls back to a self-adjoint operator
Ar._ on L'i(R, dx), whose action corresponds to the AAO A (1.18).

The wave and scattering operators associated with the commuting unitary
time evolutions exp( — iTHr.-) and exp( — z'TVlr,_) can now be read off from
Theorem 2.3, cf. the remarks below the proof of Theorem 2.3 in Appendix A.
In particular, the 5-matrix is explicitly given by

(332)(6'*2)

cf. (2.54) and (3.13).
Let us next assume that a satisfies (3.16). Then it follows from the above

that on the even subspace Z/1(R, dp) the operator J>.+ and its adjoint are not
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isometric. The isometry deviations are encoded in the rank-A' operators R<2
(3.19) and R\ (3.26). multiplied by a and with t -> dp and s -> vx, resp.
For N > I the resulting obstruction to defining the AAO Hr (1.13) as a self-
adjoint operator on L'^Rdr) (cf. Theorem 2.2 and the remarks made below
its proof in Appendix A) also shows up in a concrete and illuminating way for
the 7Jr-eigenfunctions i/y (ZAT), as we now detail.

First, from (3.4) and self-duality we obtain

(3.33) Er(x, ±i(N - l)hv) = B^ }(chvx), I = $,..., N.

Hence (3.2) yields

(3.34) Hrv\r\vx) = 2cos((N - l ) a ) i b \ r ] ( v x ) , 1 = 0 .V - 1.

Now the functions i/y satisfy the same recurrence relation as the polynomials
BI , cf. (3.18). This recurrence is given by (3.6), whence we deduce

Moreover, from (3.3) and (3.18) we have

2A'

(3.36) ipQ (vx) = J| 2smka- ( ] j 4sh(z/x + ija)sh(vx — ija)
A-=7V+1

From these explicit formulas we read off that the ff,,-eigenfunctions
WQ (vx) and il'^ (vx) are either positive or negative for all x £ R (depend-
ing on a E (0,7T/AT)). For A^ > 1 they both belong to L2

+(R.dx). so it follows
that they are not orthogonal to each other. (We suspect this holds for all pairs
v['\vx). Vm(vx)< I ^ in.) Yet, they have distinct real eigenvalues for the AAO
Hr (cf. (3.34)). Clearly, this state of affairs is by itself already an obstruction
to reinterpreting Hr as a self-adjoint operator on L+(M, dx).

It remains to study the eigenfunction transform for the exceptional values
in (0. 7T/N) and for a > ir/N. In order to do so, we employ again the variables
s and t. Also, we first concentrate on the N = 1 case, since the state of affairs
can be made fully explicit for this choice of Ar, and renders the general case
more accessible. (Cf. also our recent paper Ref. [53] for further information on
the N = 1 case.)

Accordingly, we focus on the function
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obtained from (3.7) and (1.34)-(1.38). Fixing first a £ (0,7r),a / Tr/2, the
residue operator (3.19) reads

(3.38) R2 = ^g( t)i/2 Q Ws(t)
12, Ws(t) = l/4sh(* + ia)8h(t - ia),

a

where we used (3.20), (3.18) and (3.3). Now a routine calculation yields

(3.39) C?X/2)(s) = (Tr/^a)1/2^*)172,

so J?2 has a non-zero eigenvalue 7r/2a — 1, cf. (2.32).
Turning to the exceptional value a — ?r/2 (cf. (3.16)), we obtain R2 — 0,

by continuity in a. Thus F is an isometry onto L2(R, dx) for a = ir/2. This
can be easily understood from (3.37). Indeed, for a = ?r/2 it reduces to

(3.40) E(s, t) = 4elst/achs cht, a = 7T/2,

whereas (3.14) and (1.25) entail

(3.41) wi(s) = l/4ch2s, w2(t) = l/4ch2f, a = Tr/2.

Hence (3.22) yields

(3.42) F(s,t) = elst/a, a = Tr/2,

so that T amounts to Fourier transformation.
Likewise we calculate

(3.43) E(s, t) = &elst /ashs sht, a = TT,

(3.44) wi(s) = l/4sh25, w2(t) = l/4sh2t, a = TT,

(3.45) F(s, t) = ze*st/asign(s)sign(t), a = TT.

The double pole at the origin of the weight function entails ws(t)
1/2 £ L2(R, dt),

so that the rhs of (3.38) is ill defined. But from (3. 45) 'it is plain that T
is an isometry onto L2(R, ds), so that R% (2.32) vanishes for a = TT. (As a
consequence, the spectrum of R^ is discontinuous at a = TT.)

Choosing next a > TT, we first dispose of the exceptional values a =
l7r/2,l = 3 ,4 , . . . , cf. (3.5). For I odd, we obtain once more (3.40)-(3.42),
up to a sign for (/ — l)/2 odd. Similarly, for I even, we reobtain (3.43)-(3.45),
up to a sign for 1/2 even. Thus T comes down to Fourier transformation for
all of the exceptional a- values.

Finally, we study the choice

(3.46) a<E (mr, (n-hl)Tr) , a / (n + l/2)7r, n < E N * .
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Then the zero of c\(— z] for Imz € (0, TT) is given by i(a — TITT). Using

(3.47) E(i(a - TITT), i) = 2(-)n sin(2a) exp(n7rf/a),

we now calculate from (2.29) and (3.20)

(3.48) U(t, t') = -i sin(2a) exp[-n7r(t - t'}/a]

•(l-exp[(2n-hl)7r(t -£')/«])•

Substituting this in (2.31), we deduce that R<2 (2.32) is the finite-rank operator

(3.49) *2 = /-,0/,,
l= — n

(3.50) fi(t) = exp(l7rt/a)ws(t)
l/2.

(Note // G %25 since a > TITT.}
From the explicit formula (3.49) we now read off that isometry of f breaks

down both on the even and on the odd subspace of H,^. (Indeed, the restrictions
of J?2 to 7^2,+ and %,- are clearly rank-(n + 1) and rank-n operators, resp.)
Accordingly, for the a-values (3.46) we cannot associate self-adjoint operators
on L|(R,cfe), S = +, -, to the AAO Hr (1.13) with g = 2fi. (More precisely,
this cannot be done by exploiting the transforms we have available in this
paper.)

Having spelled out the special case N = 1, we supply less detail for the
general N case. Consider first the excluded a-values in (3.16), corresponding
to the presence of double poles in the weight function ws(y) (1.25). It is by
no means obvious, but true that all of the double pole factors are matched by
similar factors in E(s,t). As a consequence, the function F(s,t) (3.22) reduces
to a function of the same type, but with a smaller value of N. Making the N-
and a-dependence explicit, this reduction can be specified as

(3-51)

Thus T reduces to Fourier transformation for / = 1, as we have already seen
for N = 1, cf. (3.42). For I > 1 we have a < Tr/2/, so that T- is isometric and
R<i is a rank-(£ — 1) operator.

The reduction just detailed can be easily derived from Eq. (2.100) in
Ref. [45]. In this connection we also point out that we have

(3.52) FN(a- s, t) = iF(a, TT, (N + l)a; s, t),
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where the function on the rhs is defined in Section 3 of Ref. [45], cf. in particular
I.e. Eq. (3.41). (The above reduction may be viewed as a manifestation of the
(b —> a+ + a__ — 6)-symmetry of the function F(a+, a_,6; s,£), cf. I.e. Eq. (3.52).)

More generally, a similar decrease of N occurs for the excluded values in
(3.5). Specifically, assume that a is of the form

(3.53) a = Trl/k = Ti-s/r, / G N*,

k G {!,..., 2JV}, s , r e N * , s, r coprime.

Then Theorem II.3 in Ref. [45] applies. It entails that all of the functions
F^TTS/r; s , f ) , L £ N*, reduce to one of the functions Fn(?rs/r; s.£), n E
{0,1,. . . , Lr}, with

— I r/2 ~ 1' f 6Veri5

r ~ 1 r/2 - 1/2, r odd.

For these n-values one has 2n < r, so that the restriction (3.5) with N —> n is
fulfilled. (To be quite precise, the reduction holds true up to phases in {±1, =bi}
and sign functions; cf. the above special case N = 1 to see what is involved.)

As a consequence, we are reduced to studying what happens for a > 7T/7V,
with the a-restriction (3.5) in effect. The zeros of ci( — z) in the strip Imz £
(0, TT) are then given by

(3.55) p [ l } = ika - inkir, k = 1 , . . . , N,

with 0 < HI < • • • < nN and n^ > 0. Thus we obtain

(3.56)

From this we deduce just as in the N = I case that R<2 is given by

. N nk

(3.57) Rt> = -\^rk ^ / i ( r ) / W ® / u ) ( O iV ' -1 _ / ^ lv / ^/ " ' r u , — t \ ' • ' A l l \ /(

A.' = l l^ 7?^

It is not hard to see that the functions /^ (t) give rise to linearly inde-
pendent vectors in the Hilbert space T-/2- Also, as a increases, the number nk

increases by one whenever a passes a number in N*?r/fc. Correspondingly, we
introduce

N

(3.59) ftjv(a) = 5^ card {n G N* n?r < fca},
A-=l
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where 'card' stands for 'cardinality'. Then a moment's thought shows that one
has

(3.60) rank(/Z2,+) = N + K N ( a ) ,

(3.61) rank(#2,-) =

where R^.5 denote the restrictions of R<2 to 7^2, 6 ? £ = +, — .
Let us now summarize the above analysis. We have established that the

rafiks of the even and odd parts of R<2 are increasing functions of a on the
subset of (0,oo) defined by the a-restriction (3.5). Both ranks are generically
non-zero for a > vr/TV, entailing violation of isometry and self- adjoint ness. For
the discrete set of critical a- values, the ranks jump down to integers of the form
/ + /q(a), ttj(a), with / < N. In particular, when (TV + l)a is a multiple of TT, one
readily verifies that / = 0, and that f amounts to Fourier transformation. This
is in accordance with the Hamiltonian HT (1.13) becoming formally 'free' when
g/3v = (N + I) a equals &TT, k 6 N*. Observe, however, that the eigenfunction
transform fr (3.31) is not periodic in a, in contrast to the AAO Hr.

§4. The Attractive Regime

The operator Ba (1.28) arises from Br (1.27) by the crossing substitution
x —> x + z7T/2i/. Thus the eigenvalue equation (3.1) and the relation (1.41)
between Ea and Er entail

(4.1) BaEa(x,p] = 2ch(0p)Ea(x,p).

From (1.32) and (1.28) we then deduce

(4.2) HaFa(x,p) = 2ch(0p)Fa(x,p}.

Next, we combine (3.3) and (3.4) with (1.41) to obtain

/ ' \ 2N

(4.3) Ea(j-+iNh/3,p\=iNexp(-^) J] 2sinfca,
^ ' V k=N+l

(4.4) ^a^+^

From (1.41) and the self-duality relations (1.46) we also infer that Ba has
eigenfunctions

(4.5) Ea(x, i(N - Ofii/) - (-i)lBlN} (zshi/x), I = 0, . . . , N,
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with eigenvalues 2cos(JV — £)a, cf. (4.1).
Just as in the repulsive case, the function

(4.6) E(s,t) = Ea(s/v,t/0)

amounts to (2.1) with a = Hf3v, Mi,M2 = N, and a^i — c^. From (1.39) and
(1.43) we have

so that the assumptions (2.4) and (2.5) are satisfied with

(4.8) (j = (_)*.

Thus E(s,t) (4.6) satisfies (2.6) and (2.7) with a = (-)N.
Proceeding as in the repulsive case (cf. (3.13)), we obtain c-functions

N N

(4.9) ci(s) — TT(~ 2z)ch(s + ika), c^(i) — TT(
fc=i 1=1

Thus we get weight functions

(4.10) wi(s) = wc(s),

so that

(4.11) F(s,t) = l

is of the form (2.17), cf. (1.32). As in the repulsive case, the weight functions
have simple and non-real poles iff (3.5) is obeyed, and in particular this is the
case for

(4.12) ae (0,7r/2AT)-

Assuming (4.12) till further notice, we may and will take

and Theorem 2.1 applies. In view of (4.4), the first parity assumption (2.33) is
satisfied with a^ — 1, k = 1, . . . , N. Thus we obtain

(4.14) R2 = 0,

and so the eigenfunction transform T (2.21) is an isometry.
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Next, we use the counterpart (2.56) of (2.31) to study the adjoint F*. From
(4.5) and (4.13) we see that the (counterpart of the) second parity assumption
(2.35) is met with ak = (-)N~k. (Recall ^(A°(u) has parity (-)', cf. the
recurrence relation (3.6).) From (2.56)-(2.58) we now deduce

. N-l

(4.15) R! = l-

l = 0,...,N-l.

(Observe that ip\\ (s) is real-valued for s £ M.)
Now we have already shown that T is isometric. Therefore we have

(4.17)

where the residues are once more given by (3.20) and where

/
IN

(4.16) V,(a)(s) = (-0'B| ̂ (tshs) JJ 4ch(s + ija)ch(s - ija)

where PI is the projection on (Hf)1". (Recall 7/J is the range of J7, cf. (2.43).)
Comparing (4.17) and (2.58), we infer

(4.18) PI = -RI.
As a consequence, the subspace (Hl)^ of HI is JV-dimensional and spanned by
the functions ip\ ; (s), / = 0, . . . , N — 1. In the following theorem we summa-
rize the results just obtained and prove moreover that the latter functions are
pairwise orthogonal.

Theorem 4.1. For all a G (0, 7T/2N) the operator

(4.19)

/

oo
wc(s)l/2Ea(s/v, t/0)ws(t)

l/^(t)dt, 0&-H2,
-OO

is an isometry. The orthocomplement of its range is spanned by the functions
^(a)(s) (4.16). The latter satisfy

(4.20) (^(a)(-), ̂ }(-))i

with ^i defined by

N

(4.21) ^ = [4asin(2(JV-I)a) JJ
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Proof. We have already derived the first two results from Theorem 2.1.
To obtain (4.20), we first show that ^ is orthogonal to ipm for / ^ m. This
is equivalent to bi _L 6m in the Hilbert space L2(R, wc(s)ds), with

(4.22) & z(s)EE^ ( J V )(^shs).

To prove bi _L bm , consider the integral

r°° fch(s-iNa)1 . ,
(4.23) /,m = / — ̂ — - ^ * + ia) + (i -> -

J,^ V chs
AT

with a £ (0,7T/2JV). After cancellation of ch(s =b iNa}, it is plain that we are
free to shift contours s — > s — ia in the first contribution to Iim and s — > s + ia
in the second one, yielding

(4.24) Ilm = X b t ( s )

JJ[4ch(s + ija)ch(s - i

Recalling (1.28), (4.1) and (4.5), we now conclude that the right-hand sides
of (4.23) and (4.24) equal 2cos((7V - l)a)(bt, bm) and 2cos((JV - 77?)a)(6/ ,6m) ,
resp. Since a G (0,7T/2JV), the numbers up front are distinct, so we must have

(ft/, fern) =0.

It remains to prove (4.20) for I — m. Since we have already shown pairwise
orthogonality for I ^ m, this norm formula can be easily deduced from (4.15),
(3.20) and (4.18). D

Returning to the physical variables x,p and parameters h, z/, /3, we now fix
a = hfiv G (0,?r/27V). Then Theorem 4.1 entails that the operator

(4.25) Fa : L2(R,dp) ->L2(R,dx),

/

oc
Fa(v,(3;x,p)<l>(p)dp

-DO

is an isometry. Due to (4.2), multiplication by 2ch/3p pulls back to a self-adjoint
operator Ha on the range of ,Fa, whose action on ^(^,0 G Cg0, coincides with
the action of the AAO (1.14). The ort ho complement of the range is spanned
by the orthonormal real-valued functions
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(4.26)
N

(-0^W(*sh^z) JJ[4ch(i/ar +

which are eigenfunctions of the AAO (1.14) with eigenvalues 2cos(N - Z)a, / =
0, ... ,7V — 1. Thus we may and will extend the Hilbert space operator Ha

associated to (1.14) in the obvious way to a self-adjoint operator on L2(R, dx).
This operator has absolutely continuous spectrum [2, oo) with multiplicity two,
and a non-degenerate bound state spectrum

(4.27) crp.p. = {2 cos a, 2 cos 2a, . . . , 2 cos No}.

Likewise, the self-adjoint multiplication operator 0(p) *-»• 2ch(7rp/hi>)(/)(p)
gives rise to a self- adjoint operator Aa on the range of T whose action equals
that of the AAO (1.18). The latter has eigenvalues 2(— )N~l on the functions
b\ (x), and so we define Aa in the same way.

The wave and scattering operators associated to the evolutions ex.p(—iTHa)
and exp(— iTAa) are readily obtained from Theorem 2.3. Specifically, from
(2.54) and (4.9) we deduce

(A 9*n <? (rA TT
(4-28) 52W=n
Observe that this attractive S-matrix differs by a sign from the repulsive one
(3.32) when N is odd.

We conclude this section by studying the eigenfunction transform for a >
7T/27V, using once more the dimensionless variables s and t. Following Section 3,
we begin with the special case N = 1, where we have

(4.29) E(s,t) = -ieqst/a(eia[es^ - e'8^} - e-'a[efl~* - e~S+£])-

For the exceptional values a = &7T/2, k G N*, we calculate

< 21 l/4ch s,

achs sht, a =

f l/4c
) l/4sh2^, a = n?r,
/ l/4ch2t, a = (n

w2(t) = '

i fl =
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Thus T boils down to Fourier transformation, entailing R% = RI = 0.
Next, we choose

(4.33) a <E ( (n- l /2)7r , (n+ l/2)7r), a / TITT, n e N * .

Then the zero of c\(—z) for Imz G (0, TT) equals za -i(n — l/2)?r. Now we have

(4.34) £(m - i(n - 1/2)7T, t) = 2i(-)n sin(2a) exp[(n - l/2)irt/a],

so (2.29) becomes

(4.35) U(t, t'} = -i sin(2a) exp[-(n - l/2)7r(J - t')/a]

-(I — exp[2n7r(£ — t ' ) / a } ) .

From (2.31) we then obtain

sin(2a) n~1/2

(4.36) R<2 — >^ /_/ 0 //,
a ^—'

Z=-n+l/2

with // given by (3.50).

As a result, the even and odd restrictions of R<2 are rank-n operators.
Therefore isometry of f breaks down and we cannot associate self-adjoint op-

erators to the AAO Ha (1.14) for g = 2h and the a-values (4.33). (Just as
in Section 3, we should add the qualifier that this is not feasible with the
transforms at our disposal in this paper.)

The N > I case can now be studied along the same lines as in the repulsive
regime. The point is that the reduction phenomenon detailed there is basically
the same for the attractive regime, as we have already seen explicitly for N = 1.
This is because the pertinent functions are related by an (s —>• s + Z7T/2)-
continuation, cf. (1.32) and (1.41). Therefore we need only study R% for a-

values larger than 7T/2JV, with the restriction (3.5) in force.
Accordingly, we begin by noting that the pertinent zeros of c\(—z) read

(4.37) pJL1} = h ika - ink7r, k = 1 , . . . , N.

This entails

(4.38) E(pk , 0 ~ (~)nfc exp[7r(rifr

whence we deduce as before

. AT n f c- l /2

(4.39) R2 =
 l-
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with flfi given by (3.58). (When n^ = 0, the kth term is understood to be
absent, of course.)

In the present case the number n^ increases by one whenever a passes a
number in (N* - l/2)7r/fc, cf. (4.37). Introducing

N

(4.40) vN(a) = ̂  card {n G N*|(n - l/2)7r < ka},
fc=i

we conclude

(4.41) rank(#2,5) = VN(O), <J = +, -.

(This should be compared to (3.59)-(3.61).) In particular, the ranks are generi-
cally non-zero for a > 7T/2JV, so that isometry and self- adjoint ness break down.
Just as in Section 3, the ranks jump down to 1/1(0) with I < N whenever a
takes on one of its critical values, with multiples of 7r(JV+ 1) yielding I = 0 and
J-a (4.25) becoming essentially Fourier transformation.

§5. The Extra Regime

Using the eigenvalue formula (3.1) and the relation (1.42) between Ee and
Er, one readily verifies that the AAO Be (1.29) satisfies

(5.1) BeEe(x,p) =

Then (1.33) and (1.29) yield

(5.2) HeFe(x,p) = 2sh((3p)Fe(x,p).

Combining (3.4) and (1.42), we also deduce

(5.3) Ee(
1 + i(N

Moreover, the function

(5.4) E(s,t) = Ee(S/

is of the form (2.1), with a — h(3v, MI, M2 = JV, and a^i = c^ . Then we have
a = 1 in (2.4) and (2.5), so E(s,t) satisfies the assumptions (2.6) and (2.7)
with cr = l. Moreover, the self-duality relation (3.11) holds true.
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Proceeding as before, we calculate the c-functions

N

(5.5) ci(s) = c2(s) = J"J(-2z)ch(s + ika),
k=l

yielding weight functions

(5.6) wi(s) = w2(s) = wc(s).

Therefore, the function

(5.7) F ( S , t ) = Fe(s/

with Fe given by (1.33), is of the form (2.17). Imposing the a-restriction (4.12)
until further notice, the weight functions have simple and non-real poles. Then
we may and will choose

We are now in the position to invoke Theorem 2.1. From (5.3) we see that
the parity assumption (2.33) holds true for k = 1, . . . , TV, with o> = ( — )N~k.
Hence we deduce R2 = 0 and isometry of f. By virtue of self-duality, we also
have RI = 0, and so F maps onto HI.

Identifying HI and H2 with

we may view T as a unitary operator on H. The kernel function F ( y , y ' } is
symmetric (by self-duality), and so (2.26) with a = 1 entails

/

oo
[F(y,y')±F(y',y)]<l>(y')dy', <f> € 7i±.

-00

We are now prepared for the following theorem.

Theorem 5.1. For all a £ (0,7r/27V) the operator T on H is unitary.
Its restrictions to the even and odd subspaces H$,6 = -f-, —, satisfy

(5.11) JF+ = PJ+) -P(_+\

(5.12) J r_=i(PJ~ )-Pl~ )).

Here, P| and P_ ' are complementary orthogonal projections on Hs that are
strongly continuous in a for a £ (0,7T/27V), 6 = +, —.
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Proof. We already proved unitarity. From (5.10) we deduce that J-^

(F-) is a unitary self-adjoint (skew-adjoint) operator on H+ (%-)• Hence the
remaining assertions readily follow, cf. also the proof of Theorem 3.1. D

Fixing a G (0, 7T/27V), it follows from the above that the operator

(5.13) Fe : L2(R,dp) ->

is an isometric isomorphism. It pulls back the multiplication by 2sh((3p) and

2ch(7rp/hv) to self-adjoint operators He and Ae on I/2(R, dx), whose actions

are given by the AAOs (1.15) and (1.18), resp.
In the present case the wave and scattering operators associated to the

commuting unitary time evolutions exp(—iTHe) and exp(—iTAe) are no longer
equal. For the latter evolution Theorem 2.3 applies verbatim, yielding the 5-
matrix

+

cf. (2.54) and (5.5). But for the former we need the modification of Theorem 2.3

detailed at the end of Appendix A, cf. (A.49)-(A.52). In particular, the S-

matrix corresponding to exp(—iTHe) reads

cf. (A.52).
As before, our last topic in this section concerns the operator T for a G

[7T/2N, oo), using once more the variables s and t, and following our account in
the two previous sections. Thus we first consider

(5.16) E(s, t] = -ieLSt/a(eia[es+t + e~ s~ f] + e^a[es-* + e~s+t}).

As the analogs of (4.30)-(4.32) we then get

(517) E ( , t ) _ - , a = ( n + l / 2 ) 7 r >(5.17J t,^ t) - | 4i(_r+Vst/achs ch^ ffl =

i, a = (n + 1/2)*,(
x

S) =

(_)ne«>t/«sign(s)sign(t), a = (n
-™+1ze's t/a, a = nTr,
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yielding the same consequences as in the previous cases.
Requiring next (4.33), the formulas (4.34)-(4.36) apply unchanged to the

present case. Thus the conclusion below (4.36) holds true for He (1.15) as well.
For N > I the reduction behavior is again the same as in the repulsive

case, so it remains to consider R% for a > ir/2N with (3.5) in effect.
The relevant zeros of c\(—z) are given by (4.37), but now this leads to

(5.20) E(p(l\t) = (-)nfcxfcexp[7r(nfc - l/2)t/a]B#2fc(isht).

Therefore, instead of (4.39) we obtain, using (4.16),

. N rifr-1/2

(5.21) fl2

(5.22) /^(<)

Even so, it is obvious that (5.21) leads to the same conclusions as in the at-
tractive case. In particular, (4.41) holds true.

Appendix A. Proofs of Theorems 2.1-2.3

This appendix contains the proofs of the three theorems in Section 2, and
a few observations on how Theorems 2.2 and 2.3 can be extended to a quite
general class of operators (containing the AAOs (1.13)-(1.15) in the pertinent
special cases).

Proof of Theorem 2.1. We may write

-|

(A.I) (^,^)1 = — - lim dt
/>OO /*R

dt'K(M') / dsftM,J_00 J_R

where we have introduced

(A.2)

(A.3)

(To verify this, one need only invoke (2.7) and Fubini's theorem.) Now we
choose R large enough so that the poles of wi(s) with Ims G (0, TT) are inside
the rectangular contour F connecting —R^R^R-^-i-K^—R-^-i-K and — R. Then
Cauchy's theorem yields

(A.4)
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where the residue sum is given by (2.27).
Next, we observe that f t , r ( s ) (A.3) equals the product of an iTT-periodic

function and the plane wave expis(tf — t)/a, cf. (2.1) and (2.2). Thus we can
rewrite (A. 4) as

(A.5) / dsftM = [1- e^-^/T^z^M') ~ B*(M')1
J-R

where a R+i-K p-R \
+ / }ftA*)ds.

I J-R+inJ

We now take s — » s + iir/2 in the integrals on the rhs of (A. 6), and then s — >• — s
in the second one. Since w\ (s) is ZTr-periodic and even, this yields

(A.7) BR(t,t')=

We proceed by introducing the auxiliary function

(A.8) A(M,0 = P(ies,e-t)P(ies,et').

Using (2.6) and ZTT-periodicity of A in s, we may rewrite BR as

fR+

(A.9) BR(t,t')= /
jR-l

Now from (2.16) we have

R+lTT/2

TT/2

(A.10) wi(s + Z7T/2) =

(A.ll) r(s) = O(exp(-(2Mi + 2)Re s)), Re s -> oc,

where the bound is uniform for Ims £ M. Also, from (2.13) we readily obtain

(A.12) A(s, t, tf) = exp(2M1s)c2(-t)c2(t/) -f p(s, t, t'),

(A.13) p(s, t, tO - O(exp((2Afi - 2)Re s)), Re s -> oo,

where the bound is uniform for Ims,t and t' varying over compact subsets of
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,t') = e*<t-t'V2* I +™
JR-nr/

To exploit the above asymptotics, we expand (A. 9) as follows:

+™ \sj^b3(s,t,t'},
r/2 ±

(A.15) 61 = -i sin(s(t - t f } / a ) [ c 2 ( - t ) c 2 ( t f ) + c2(t)c2(-t
f)},

(A.16) 62 = -ism(s(t - t')/a)p+(s,t,t'),

(A.17) 63 = coa(s(t - t f ) / a ) [ c 2 ( - t ) c 2 ( t f ) - c2(t)c2(-t%

(A.18) 64 = cos(s(t - t')/a)p-(s, t, tf),

(A.19) P6(s, t, t'} = [exp(-2Mis) + r(s)}[P(s, t, t'} + 6p(s, -t, -t')}

) exp(2MlS)[c2(-t)c2(t
f) + Sc2(t)c2(-t% * = +,-.

Each of the terms in the sum on the rhs of (A.14) is a C°°-function of t and t'
that vanishes for t = t' . Thus the integrals

i rOC rOC

(A.20) I j ( R ) = -- / dt dt'K(t,i')e7r(*"*')/2a

rR+lir/2r+lir

_e*(t-t')/a]-i I dsbj(s,t,t'), j = l,... A,
J R-17T/2T/2

are well defined, and in view of (A.I) and (A.5) it suffices to substantiate the
limits

(A.21) lim / i (R) = ((/), ^)i,
R-+OC

(A.22) lim /,(#) = 0, j = 2,3,4.
R-toc

In order to prove (A.21), we use (A.20) and (A.15) to calculate

(A.23)

*R J-oo

Recalling the well-known tempered distribution limit

(A.24) lim

and using also (2.14), we now deduce (A.21). (Observe that K(t,t') (A.2) is a
(^-function.)

We continue by studying I2(R). The integral is proportional to

(A.25)

t-t'
dt dt'K(t,t]

sh(Tr(t-t')/2a) 7R_17r
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The integrand of the s-integral can be estimated by using

V ^
r ^(,-o/a

J_s
<

t — t'\\Ims\/a

(t-t')/a

(A.27) p+(s, t, t'} = O(exp(-2Res)), Res -» oo,

where the latter bound is uniform for Ims,£ and t' in compacts, cf. (A.19),
(A.ll) and (A.13). Hence we easily deduce (A.22) for j = 2.

Consider next /3(/£). This integral is proportional to

(A.28) / dt I dt'K(t,t')C°S ^ ~ /^Q[c2(-t)c2ft /)-c2(t)c2(-^)]-
J-oo ./-oo i - t

Thus its integrand equals cos(R(t — t')/d) times a function in C0°(IR2). Its
R —>• oo limit then vanishes by virtue of the Riemann-Lebesgue lemma.

Finally, we take j — 4 in (A.20), obtaining an integral proportional to

(A.29)

t-t1POC

/ ^fc
J-oc-oc J-oc sn(n(t - t')/2a) J/?_?7r/2

Now p- vanishes for t = t', so we have

(A.30)
p-(s,t,t'}

t-t'
1 f1'

t-t' Jt
 X 3P~(S' 'X)

< max \dzp-(s,

Recalling the definitions (A. 12) and (A. 8), one readily checks that the bound
(A.13) also holds for the ^-partial of p(s,t,t'}, uniformly for Ims, t,t' in com-
pacts. Thus the rhs of (A.30) is O(exp(— 2Res)) for Res — >• oo, uniformly for
Ims in compacts. Clearly, this entails that (A.29) has limit 0 for R -> oo,
completing the proof of Theorem 2.1. D

Proof of Theorem 2.2. Letting 0, ^ G C2, we obtain from (2.42) and (2.32)
the equalities

(A.32)

Now assume first R2 = 0. Then we read off from (A.31) and (A.32) that A\ is
symmetric on PI. Since C2 is a core for the self-adjoint multiplication operator
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M.2 (by virtue of Nelson's analytic vector theorem, cf. [49]), and since T is an
isometry when R^ = 0, we deduce that A\ is e.s.a. on Pi.

It remains to show that AI is not symmetric when R<2 ̂  0. In view of
(A. 31) and (A. 32), this will follow once we prove

(A.33) (M20, n2i/>)2 ^ (<t>, #2X2^)2

for suitable vectors 0, i/j E C%. To demonstrate the existence of such pairs, we
assume that the two inner products are equal for all 0,t/; G €2 and derive a
contradiction.

Indeed, we have €2 = (M.2 i 0(^2)? so the assumption just made entails

(A.34) (x, R2(M2 - i)-lv)2 = ((M2 + i)"1*, #2^)2

for all x,r] 6 C2- Therefore, the bounded normal operator (A^2 - i)~l and
the bounded self-adjoint operator R2 commute. Hence (M.2 — i)~l leaves the
L-dimensional range 7^2 invariant. As a consequence, (M.2 — i)~l has L eigen-
vectors. Since the normal operator (M.2 —i)~l has solely continuous spectrum,
we deduce L = 0, contradicting R% ̂  Q. D

With an eye on the concrete special cases studied in Sections 3-5 we add
a comment on Theorem 2.2 and the proof just given. Let us reconsider the
intertwining relation (2.42), which we used to define a Hilbert space operator
AI by starting from a specific self-adjoint multiplication operator MI- When
we now reinterpret M.2 as multiplication by an arbitrary real- valued smooth
function ra(£), then we can still use (2.42) to define an operator AI on T*L,
provided the kernel assumption in Theorem 2.2 is met when R2 =£ 0. (Of course,
the action of this pull-back operator will not generally be equal to that of an
AAO.) The point we wish to make here is that Theorem 2.2 applies unchanged
to this more general operator AI, provided M.2 has purely continuous spectrum.
(For instance, it suffices that m' (i) vanishes only on a discrete set.) Indeed, the
above proof holds true verbatim.

Proof of Theorem 2.3. It suffices to prove

(A.35) lim F±(T) = 0, F±(T) =|| (eiTA> Je^™* - W±)<t> !|1?
T— »±oo

where the operators W± are defined by (2.53), and where <p belongs to the
dense subspace C2 defined below (2.20). (Indeed, the operators involved are
isometric.) To this end we begin by noting that we have

(A.36) F±(T)2 -|i (J - 111'
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by virtue of (2.42). From the above definitions we then obtain

(A.37)
i rOO /-OO

F±(r)2 = - / ds / dt</>(t)exp(i[st/a-2T<&(nt/a)])D±(s,t)
ZTTCL J_00 J_00

with difference functions given by

(A.38)

Using the Riemann-Lebesgue lemma, one readily checks that for s fixed
the t-integral converges to 0 for T — > ±00. To exploit this, we split up the
s-integration region in three subsets, viz., s G [—1,1], ±5 G (l,oo). A rou-
tine application of the dominated convergence theorem then shows that the
s-integral over [—1,1] converges to 0 for T — >• ±00.

Consider now the s-integral over (l,oo). We have

(A.39)

where the remainder satisfies

(A.40) R(+\s,t) = 0(e~2s), s -> oo,

uniformly for t in compacts. (Recall (2.1), (2.13) and (2.16) to see this.) Sub-
stituting (A.39) in (A.38), we split up the t-integrand by writing D±(s,i) as
the sum of the leading s — > oo asymptotics

and a remainder involving R^(s,t). The uniform bound (A.40) can then be
used to dominate the pointwise convergence to 0 of the s-integrand for the
remainder function.

We are therefore left with estimating

/

OO rOO 2

ds I dtd)(t)L(+}(t)$(s,t) , 5 = +,-,
J-oo

where we have introduced

(A.43) $(s,£) = [s — 27rTsh(7rt/a)]~ldtexp(i(st/a —
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The crux is now that the above phase conventions and the definition (2.50)

of a±(t) ensure that L++)(t) vanishes for t > 0 and L(+](i) for t < 0. On
the remaining ^-interval the function in square brackets in (A.43) (with s > I)

does not vanish for T > 0 and T < 0, resp. Hence we can integrate by parts

and estimate in the obvious way to deduce that (A.42) converges to 0 for

T-> 600, S = +,-.

Finally, we can handle the s-integral over (—oo, —1) in substantially the

same way by using

(A.44) wi

(A.45) R ( ~ } ( s , t ) = O(e2s), s->-oo.

Indeed, setting

the function L+ (t) vanishes for t < 0 and L_ (t) for t > 0. Therefore the

proof of (A.35) is complete. D

We conclude this appendix with some remarks concerning generalizations

of Theorem 2.3, cf. also the comment made after the proof of Theorem 2.2.

First, when we generalize the operator M.% to the operator M^C^) of multipli-

cation by 2ch(A£), A > 0, then Theorem 2.3 and its proof can be adapted in an
obvious way to the pull-back operator A\(X) defined on PI by

(A.47) A^X)? = f M 2 ( X ) .

(As is detailed in Sections 3 and 4, for the repulsive and attractive transforms
the action of Ai(l) equals that of Hr and Ha, resp.) More generally, whenever
the multiplier function m(t) is real-valued, smooth, and satisfies

(A.48) m'(t) > 0, t > 0, m'(0 < 0, t < 0,

the above proof applies with obvious changes. Therefore, all of these dynamics
lead to the same wave maps W± (2.53) and 5-operator 62 (2.54).

Consider now the operators *M2(A) of multiplication by 2sh(At), A > 0, and
their pull-backs Ai(X) under f'. (The Hamiltonian He corresponds to ^i(l),
cf. Section 5.) Inspecting the above proof, one sees that it breaks down. Indeed,
the function $(s,£) (A.43) is replaced by

(A.49) $(s, t) = [s - 2aXTch(Xt)]~ldt exp(i(st/a - 2Tsh(At))).
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Hence the square-bracket function has different vanishing characteristics for
t <0.

In point of fact, it is not hard to see that the wave maps are different for the
latter class of dynamics, so that the above proof must break down. Specifically,
they are now given by

(A.50) W+ = .F[c2(i)/c2H)]-1/2sign(c2(0)),

(A.51) W- = J^[c2(i)/c2H)]1/2sign(c2(0)),

yielding an 5-operator

(A.52) s2 = W;W.=
C2-

To check this, one need only retrace the steps of the above proof. Then one
concludes that the leading s —> oc asymptotics L+ (t) vanishes both for t > 0
and for t < 0; similarly, L_ (t) vanishes identically; since the square-bracket
function in (A.49) neither vanishes for s > 1, T < 0, t E M nor for s < — 1, T >
0, t £ M, it supplies the necessary domination for the remaining cases.

Once more, the 5-matrix S% (A.52) can be physically understood from the
asymptotics (2.55) of the generalized eigenfunction F ( s , t ) : A particle whose
time evolution is governed by AI(\) moves from left to right not only for t > 0
(just as for ^li(A)-evolution), but also for t < 0 (in contrast to Ai(A)-evomtion.)
Therefore, the phase change (A.52) is the same as the phase change (2.54) for
t > 0, whereas it is the opposite for t < 0.
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