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Longo-Rehren Subfactors Arising from
a-induction

By

Jens BOCKENHAUER, David E. EVANS* and Yasuyuki KAWAHIGASHI**

Abstract

We study (dual) Longo-Rehren subfactors M ® M°PP C R arising from var-
ious systems of endomorphisms of M obtained from a-induction for some braided
subfactor N C M. Our analysis provides useful tools to determine the systems of
R-R morphisms associated with such Longo-Rehren subfactors, which constitute the
“quantum double” systems in an appropriate sense. The key to our analysis is that
a-induction produces half-braidings in the sense of Izumi, so that his general theory
can be applied. Nevertheless, a-induced systems are in general not braided, and thus
our results allow to compute the quantum doubles of (certain) systems without braid-
ing. We illustrate our general results by several examples, including the computation
of the quantum double systems for the asymptotic inclusion of the Eg subfactor as
well as its three analogues arising from conformal inclusions of SU(3).

§1. Introduction

There are various constructions analogous to the quantum double con-
struction of Drinfel’d [8] in subfactor theory. The first of such constructions is
Ocneanu’s asymptotic inclusion (see e.g. [10]) which produces MV (M'NM.) C
M, from a given hyperfinite II; subfactor N C M with finite index and finite
depth. That is, if we compare the system of M-M bimodules (or N-N bi-
modules) arising from N C M and that of M-M,, bimodules arising from
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MV (M'NMy) C My, then the latter can be regarded as a “quantum double”
of the former due to its categorical structure. This viewpoint was noticed by
Ocneanu in connection to topological quantum field theory of three dimensions,
and the categorical meaning of the construction has been recently clarified by
Miiger [23]. (A general reference for the asymptotic inclusions and topological
quantum field theories is [10, Chapter 12]. We actually need a connectedness
assumption of a certain graph for the above interpretation of “quantum dou-
ble.” See [10, Theorem 12.29] for a precise statement.) Popa’s notion of a
symmetric enveloping algebra in [26] also gives a construction of a new subfac-
tor from a given one, and if the initial subfactor N C M is hyperfinite, of type
T4, of finite index, and of finite depth, then this construction gives a subfactor
isomorphic to the asymptotic inclusion.

Later, Longo and Rehren introduced in [20] another construction of a sub-
factor from a given system A of endomorphisms, which is now called the Longo-
Rehren subfactor. Masuda [22] has proved that the asymptotic inclusion and
the Longo-Rehren subfactor are essentially the same constructions, though the
constructions arise from very different viewpoints and appear rather unrelated
at first sight. Izumi [14] has developed a general theory on the structure of
sectors associated with Longo-Rehren subfactors. He introduced a notion of
half-braiding and showed that the structure of the quantum double system
D(A) is closely related to half-braidings. Namely, any morphism in D(A) is
given by certain extensions of morphisms defined by means of a half-braiding.
This extension will be called n-extension in this paper. Moreover, he presents
various interesting applications in [15] with calculations involving Ocneanu’s
tube algebra handled in the setting of Longo-Rehren subfactors.

Longo and Rehren also introduced an extension formula for endomor-
phisms of a smaller net to a larger net for nets of subfactors in the same paper
[20]. Xu [30], [31] obtained various interesting results by using essentially the
same construction in connection to conformal inclusions. Two of us [1], [3]
systematically analyzed the extension formula of Longo and Rehren for nets
of subfactors. It was named a-induction in [1], [2], [3] in order to emphasize
structural similarities with the Mackey machinery of induction and restriction
of group representations and to distinguish it from the different sector induc-
tion, nevertheless. We have further studied a-induction in the very general
setting of braided subfactors in [5], [6]. We identified it with Ocneanu’s graphi-
cal construction of chiral generators and obtained several results by making use
of his graphical methods of double triangle algebras. Izumi’s work [14] shows
that the study of Longo-Rehren subfactors using a half-braiding is somewhat
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similar to the study of a-induction. Moreover, a-induction produces interest-
ing systems of endomorphisms which come with various half-braidings, as we
will demonstrate in this paper. So it is quite natural to study their quantum
doubles by means of associated Longo-Rehren subfactors and applying Izumi’s
general theory, and this is what we propose in this paper.

To be more specific, we start with a subfactor N C M with a finite braided
system of N-N morphisms allowing us to apply a-induction. Then the two
chiral a-inductions arising from the braiding produce chiral systems of M-M
morphisms, and together they generate the full induced system. We define
a system A to be (subsystems of) either the chiral or the full induced sys-
tem and study their associated Longo Rehren inclusions M ® M°PP C R(A).
We construct half-braidings with respect to such systems A for certain classes
of endomorphisms, and this enables us to apply Izumi’s theory for analyzing
the structure of the quantum double system D(A) which can be given by 7-
extensions. The important point is that a-induced systems are not braided
in general. (They can even be non-commutative [30], [31], [2], [3] and gen-
eral criteria for non-commutativity were given in [5], [6].) Thus our analysis is
aimed at going beyond the computation of quantum doubles of braided systems
which has been carried out in [24], [9], and avoiding at the same time complex
constructions like the tube algebra used in [15].

In fact, the rich structure of a-induced systems allows to derive fairly
concrete results concerning the structure of the quantum doubles. Namely,
we derive concrete formulae for the (dimensions of the) intertwiner spaces be-
tween various 7-extensions. It is crucial that we allow the braiding on the
N-N morphisms to be degenerate. However, the situation simplifies consider-
ably whenever this braiding is non-degenerate. For example, in this case the
quantum double of the full induced system is given as the direct product of
the original N-N system with itself. As a corollary we obtain a new proof of
Rehren’s recent theorem on “generalized Longo-Rehren subfactors” in a typi-
cal case arising from a-induction. Similarly, the quantum double of the chiral
system is given by the direct product of the original N-N system with the am-
bichiral system in the non-degenerate case. However, in the general, degenerate
case the situation is more involved. More precisely, the subsystem of degenerate
morphisms arranges the direct product of the N-N system with the ambichiral
system into orbits whose elements have to be identified whereas fixed points
split, so that the quantum double is now some kind of orbifold of the one we
would have obtained in the non-degenerate case.

An orbifold phenomenon has been encountered earlier in computations of
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dual principal graphs and bimodule systems of asymptotic inclusions of SU (n)j,
subfactors which correspond to degenerately braided systems [24], [9]. Our
results show that the same phenomenon shows up for quantum doubles of (in
general not braided) systems arising from a-induction and having its origin in
degeneracies of the braiding of the original N-N system. We illustrate this
by computing the quantum doubles of several examples arising from conformal
inclusions of SU(2) and SU(3). They correspond to the asymptotic inclusions
of subfactors with principal graph Eg and Eg as well their three analogues from
SU(3) conformal inclusions.

This paper is organized as follows. In Section 2 we recall basic facts on
a-induction, state our main assumption and review the results of [14] we use
in the sequel. In Section 3 we consider the quantum doubles of full induced
systems. We introduce half-braidings for the induced morphisms af and obtain
formulae for the intertwiner spaces of their n-extensions and finally consider
the non-degenerate case. In Section 4 we propose the same analysis for the
quantum doubles of chiral systems. Finally we treat examples arising from
conformal inclusions in Section 5.

§2. Preliminaries
§2.1. Braided systems of morphisms and a-induction

Let A and B be type III von Neumann factors. A unital *-homomorphism
p: A — Bis called a B-A morphism. The positive number d, = [B : p(A)]'/?
is called the statistical dimension of p; here [B : p(A)] is the Jones index [16] of
the subfactor p(A) C B. If p and o are B-A morphisms with finite statistical
dimensions, then the vector space of intertwiners

Hom(p,0) ={t € B : tp(a) = o(a)t, a € A}

is finite-dimensional, and we denote its dimension by (p, o). An A-B morphism
p is a conjugate morphism if there are isometries r, € Hom(ida, pp) and 7, €
Hom(idp, pp) such that p(r,)*7, = d,'1p and p(F,)*r, = d,;'14. The map
¢p: B = A, b r;p(b)ry, is called the (unique) standard left inverse and
satisfies

(1) 0p(p(a)bp(a') = ad,(b)a’, a,a' €A, beB.

We work with the setting of [5], i.e. we are working with a type ITI subfactor
and finite system yXy C End(N) of braided morphisms which is compatible
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with the inclusion N C M. Then the inclusion is in particular forced to have
finite Jones index and also finite depth (see e.g. [10]). More precisely, we make
the following

Assumption 2.1. Let N C M be a type III subfactor together with a
finite system of endomorphisms y Xy C End(N) in the sense of [5, Def. 2.1]
which is braided in the sense of [5, Def. 2.2]. For a given subsystem yYy C
NXny we assume that @ = & € X(ny)y) for the injection M-N morphism
t: N — M and a conjugate N-M morphism ¢.

Here ¥ (n)n) denotes the set of finite sums of morphisms in yYn, and we
will use a similar notation for other systems.

With the braiding € on yXy and its extension to X(yXn) as in [5], one
can define the a-induced morphisms o € End(M) for A € ¥(yXy) by the
Longo-Rehren formula [20], namely by putting

af =77 o Ad(e* (), 0)) 0o NoT,

where ¢ denotes a conjugate morphism of the injection map ¢ : N < M. Then
oz;f and o) extend ), i.e. af ot =t o\, which in turn implies daf = d) by the
multiplicativity of the minimal index [19]. Let v = ¢7 denote Longo’s canonical
endomorphism from M into N. Then there is an isometry v € Hom(id, y) such
that any m € M is uniquely decomposed as m = nv with n € N. Thus the
action of the extensions af are uniquely characterized by the relation af (v) =
e (), 0)*v which can be derived from the braiding fusion equations (BFE’s, see

= ozfai if also p € ¥(nyXy), and

e.g. [5, Eq. (5)]). Moreover, we have ay, i

clearly aiN = idps. In general one has

(2) Hom(\, ) C Hom(af,ai) C Hom(eA, tp) , A\p € X(nAN).

The first inclusion is a consequence of the BFE’s. Namely, ¢ € Hom(\, i) obeys
te*(0,\) = e*(0, 1)0(t), and thus

ta?\:(v) =teT (N, 0) v = e (1, 0)*0(t)v = T (1, 0)*vt = af(v)t.

The second follows from the extension property of a-induction. Hence a;\i
is a conjugate for ai as there are ry € Hom(id, \\) C Hom(id, a;\iaf) and
7a € Hom(id, \\) C Hom(id,afoz;\i) such that A(ry) 7y = A(7a)*ry = dy'1.

We also have some kind of naturality equations for a-induced morphisms,

(3) 2™ (p, A) = ™ (p, ), ()
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whenever z € Hom(A, tph), p € E(nXn).
Recall that the statistics phase of wy for A € y X is given as

d)\(ﬁ)\(i-?—i_()\, )\)) = w)\l .

The monodromy matrix Y is defined by

wHrw
(4) Yiu= Y ; ENS dp, A€ NKN,
P

PENXN

with Nf‘u = (p, \u) denoting the fusion coefficients. Then one checks that YV’
is symmetric, that Y3 , = Yy, as well as Yy o = dy [27], [12], [11]. (As usual,
the label “0” refers to the identity morphism id € yXxn.) Now let Q be the
diagonal matrix with entries €2y , = wx0y, . Putting

(5) Ly = <0‘;\ra0‘;> ) Ap € NN,
defines a matrix subject to the constraints

Zapn=0,1,2,..., and Zoo =1,

)

and commuting with Y and € [5]. The Y- and Q-matrices obey QY QY Q = 2V
where z = Y, djwy [27], [12], [11], and this actually holds even if the braiding
is degenerate (see [5, Sect. 2]). If z # 0 we put ¢ = 4arg(z)/m, which is defined
modulo 8, and call it the “central charge”. Moreover, S- and T-matrices are
then defined by

S =27y, T = e™ime/12Q

and hence fulfill 7STST = S. One has |z|? = [[yXx]] with the global index
[[NXn]] = >, d3 and S is unitary, so that S and T are indeed the standard
generators in a unitary representation of the modular group SL(2;Z), if and
only if the braiding is non-degenerate [27]. Consequently, Z gives a modular
invariant in this case.

Let p Xy C End(M) denote a system of endomorphisms consisting of a
choice of representative endomorphisms of each irreducible subsector of sectors
of the form [tA7], A € yXn. We choose id € End(M) representing the trivial
sector in p; Xy Then we define similarly the chiral systems MXA%[ and the
a-system ,,X3; to be the subsystems of endomorphisms 3 € »; Xy such that

o
(Note that any subsector of [afa;] is automatically a subsector of [wv] for

[3] is a subsector of [af] and of [afa;], respectively, for some A\, u € nXy.

some v € yXy.) The ambichiral system is defined as the intersection ,,X 0 —
w7 0 X, so that X0 C X5 C X% C Xy Thus their “global
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indices”, i.e. the sums over the squares of the statistical dimensions of their
morphisms, fulfil 1 < [, 28] < [y XE] < [y Agl] < (X)) = (vl
(Throughout this paper we denote the global index of a system by use of double
rectangular brackets.)

Let us now consider the subsystem n)Yn appearing in Assumption 2.1.
If the inclusion yYn C nyAXn is proper, then we may play the same game
considering a-induction for exclusively A € y)Yy. This way we will obtain a-
induced systems which are contained in the a-induced systems associated to
~NXy, i.e. we have the following scheme of inclusions:

XY C o XE X C Xy
U U U U
V% C Vi € Vs C mVu

We will use these systems for the construction of Longo-Rehren subfactors and
for the analysis of sectors associated to them. We are particularly interested in
examples where (at least) the braiding on the subsystem y)y may be degen-

deg

erate. Let ), ° denote the system of degenerate morphisms, i.e.

NINE={v e NIN |7 (vp) =€ (v,p) forall pe NIy}

Clearly, the braiding on y )Yy is non-degenerate (in the sense of [27] or [5, Def.
2.3]) if and only if y Vo = {id}. Note that since 6 decomposes by Assumption
2.1 only into morphisms of x )y and since ozf (v) = si()\, 0)*v for any A\ € y X

we find o} = a; whenever p € NV Finally we introduce

P
NVRT = he nAy [T (\p) = (\p) forall pe ndn}

and call it the relative permutant of y)n in yXn. Clearly, a:'\' = o), whenever
Ae NIV

§2.2. Longo-Rehren subfactors, half-braidings and n-extensions

Let M be a type III factor with a finite system A C End(M) of endomor-
phisms. Let M°PP denote the opposite algebra of M and consider M ® M°PP,
By constructing a “Q-system”, Longo and Rehren showed in [20, Prop. 4.10]
that there is a (type III) subfactor B C M ® M°PP with canonical endomor-
phism © € End(M & MP°PP) decomposing as a sector as

0] = P (5 5"].

BeEA
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Here 3°PP = joBoj ! where j : M — MP°PP is the anti-linear isomorphism. The
subfactor B C M ®M °PP is now called the Longo-Rehren subfactor. For reasons
of convenience, we consider in this paper the dual subfactor M ® M°PP C R
and call it the Longo-Rehren subfactor as well. (This convention is compatible
with [17].) That is, B C M ® M°PP C R is a Jones extension and © is then the
dual canonical endomorphism of M ® M°PP C R.

The following is a slight variation of Izumi’s definition [14, Def. 4.2] of a
half-braiding.

Definition 2.2.  Let ® be a system of morphisms in End(M) and A C
® a subsystem. For o € X(®) we call a family of unitary operators &, =
{€+(B)}pea a half-braiding of o with respect to A if it satisfies the following
two conditions:

1. £,(B) € Hom(op, Bo) for all 5 € A.
2. Whenever (31, 82,33 € A then

XE:(B3) = B1(E5(B2))E0 (B1)o(X)
holds for every X € Hom(fs, 41/32),

Two pairs (0,&;), (¢/,E,) of morphisms 0,0’ € X(®) with respective half-
braidings &,,&!, are said to be equivalent if there is unitary v € Hom(¢', o)
such that

Es(B) = B(u)E;(B)u”
for all g € A.

Note that our definition of equivalence is slightly more general than the
one in [14, Def. 4.2] because we choose the ¢’s from a generically larger set
® O A. We then define an extension 7(0,&,) of the endomorphism o ® id of
M ® MP°PP to R as in the following definition, which is just the dual version of
Izumi’s definition of ((;,:‘,’_;) in [14, Def. 4.4]. This extension is somewhat similar
to a-induction. Izumi’s important observation is that we need only “half” the
properties of a usual braiding for this extension. We need some preparation.
Let Wg € Hom(8 ® B°PP,0), § € A, be isometries so that WiWg = 551
and > 5 WWj5 = 1. (Note that for a Longo-Rehren subfactor with given
© each Wp is unique up to a phase.) Let (g : M @ M°PP — R denote the
inclusion homomorphism so that the dual canonical endomorphism is given by
© = ILr!LR, and then I" = (,grirR is a canonical endomorphism. Then there is
[18] an isometry V € Hom(id,T") such that W5V = [R : M @ M°PP]~1/21, and
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note that [R : M ® M°PP] = 37, d3. Moreover, for each X € R there is a
unique a € M ® MP°PP such that X = aV.

Definition 2.3. For o € X(®) with a half-braiding &, = {£5(5)}sea,

we define an extension 71(o,&,) € End(R) by putting
(6) n(0,€)(a) = (0 ®@id)(a), a€ M & MPP,
(0, &) (V) =U(0,&)"V,

where the unitary U(c, &, ) is defined as

(7) U(0,80) = > Ws(E,(B) @ 1) (0 @id*PP) (W)
BeA
Using
(8) UPP(0,6,) = Y Ws(1® j(E,(8)))(id @ 0°PP) (W)
B

we similarly define an extension n°PP (¢, &,) € End(R) of id ® o°PP.

Let D(A) be the system of irreducible endomorphisms of R arising from
a choice of representative morphisms of irreducible subsectors of (g 0 8’ ®
B°PP o 7 g for B, 4" € A. Following [14, Def. 4.4], we call D(A) the quantum
double system of A. (Note that Izumi’s notation D(A) for the quantum double
includes reducible morphisms and thus corresponds to £(D(A)). Also note that
the system D(A) may be strictly larger than that arising from the Longo-Rehren
subfactor M ® M°PP C R in the usual sense, i.e. arising from the decomposition
of all powers of I'. See Remark after [14, Thm. 4.6].) Izumi has proved in [14,
Lemma 4.5, Thm. 4.6] that n(c, ) gives an endomorphism in X(D(A)) if we
consider o € ¥(A) only, and then any endomorphism in ¥(D(A)) arises in this
way. Note that this will no longer be true if we consider generic o € X(®).

The following is nothing but Izumi’s [14, Thm. 4.6 (ii)]. We only provide
a proof for the reader’s convenience and in order to demonstrate that the ar-
guments are the same though we work in a picture dual to Izumi’s and extend
o € X(P) D X(A).

Theorem 2.4.  Let 0,0’ € X(®) with half-braidings £, = {€;(8)}pen,
&, ={€.(B)}sean. Then we have

(9) Hom(n(c, &), (e’ &)
={X®1| X € Hom(o,0"), E..(8)X = B(X)E,(B) for all B € A}.

In particular, n(c,E;) and n(o’,EL,) are unitarily equivalent as morphisms of R
if and only if pairs (0,E;) and (o', E.,) are equivalent in the sense of Definition
2.2.
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Proof. Let T € Hom(n(o,&,),n(0’,EL,)). Then it is decomposed as T =
aV with a € Hom(0O o (6 ®id°P?), ¢’ ®id°P?). Consequently aWg € Hom(Bo @
B°PP, o’ @ id°PP) can be non-zero only for § = id. Hence a = bW} with

b= aWiy € Hom(o ® id°*®, 0’ ®1d°"P) = {X ® 1 | X € Hom(c,0")}.

Since W4V is a (non-zero) scalar we have found 7' € {X®1 | X € Hom(o,0”')}.
For such a T = X ®1 the condition TU (¢, E,)*V = U(o’,EL,)*VT is equivalent
to O(X ® 1)U(0,&,) = U(o',€,,)X ® 1. Sandwiching with W3 and (0 ®
id°PP)(Wp) gives the desired intertwining relations for all 3 € A. Conversely,
any T = X ® 1 with X € Hom(o, o) satisfying these relations intertwines
n(o,Ex) and n(o’,EL)). O

Since n(o,&,) is an extension of o ® id°P? and since [R : M ® M°PP] <
oo we also find that its statistical dimension is d,, i.e. n preserves statistical
dimensions. We have even more than that. Namely, for pairs (o, &,) as above,
we have natural notions of addition and multiplication extending those of the
endomorphisms o. Let o; € ¥(®) with half-braidings Eé_i, 1 =1,2,...,n. Let
{t:}"_, be a set of isometries in M satisfying the Cuntz relations and let o €
YX(®) be given by o(m) = ), tioi(m)t; for all m € M. Tt is routine to show
that putting

E,(8) =) _Bt)E, (B, BeA,
i=1
defines a half-braiding for o. Similarly, putting

£ (B) =&, (B)o1(E5,(8)),  BeA,

defines a half-braiding {€’,(5)}seca of products o’ = o102, as used [14]. It is
straightforward to show that we have exact multiplicativity for the n-extensions,

77(0/, g(r’) = 77(017 5(}_1)’[7(0'2, 832) )

with this product half-braiding. Finally, conjugates were defined in [14, Thm.
4.6 (iv)] as follows. For a pair (o, &,), operators

E}(B) = daR:;&(ga(/B)*ﬁ(Ro)) ) /8 € A;

where R, € Hom(id,50), R, € Hom(id, &) are isometries with R:o(R,) =
R:5(R,) = d;!, give a half-braiding for the conjugate morphism &. The half-
braiding {€5(3)}sea depends on the choices of R,, R, in general, however, its
equivalence class does not [14]. Then Izumi’s results give the following
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Proposition 2.5.  The extension map n : (0,E,) = n(0,&,), regarded
as a map from equivalence classes of pairs to sectors of R, preserves the oper-
ations of addition, multiplication, and conjugates.

Proof. The preservation of addition and the multiplication is a straight-
forward corollary of Theorem 2.4. The statement for the conjugates is derived
in the same way as [14, Thm. 4.6 (iv)]. O

Next, [14, Prop. 6.4] gives the following

Proposition 2.6.  For a pair o € X(A) with a half-braiding {€,(8)} gea,
the extensions n(o,E,) and n°PP(5,E5) are unitarily equivalent.

Note that we have to assume o € £(A) here instead of o € X(®), since if
we have o € 3(®), then the corresponding ¢ in [14, (6.1), (6.2)] would not be
in A and the proof of [14, Prop. 6.4] does not work any more.

Finally, [14, Thm. 4.1] and the remark at the end of [14, Sect. 4] give the
following

Proposition 2.7.  Let G be the bipartite graph with odd vertices labelled
by A and even vertices labelled D(A), and the number of edges between a vertex
labelled by B € A and a vertex labelled by Q € D(A) such that [Q] = [n(o, Ey)]
for o € B(A) with some half-braiding &, is given by (B, 0). Then the connected
component Gy of G containing id € A is the dual principal graph of the inclusion
M ® M°PP C R.

This completes our review of [14].

§3. Quantum Doubles of Full Induced Systems

In this section we study Longo-Rehren subfactors M ® M°PP C R(A)
arising from the system A = ,,)4§;, the full a-induced system associated to
the subsystem y)Yn C yXn. In order to proceed with n-extensions we first
introduce some half-braidings.

For 8 € ,, X% choose an isometry 7" € Hom((3, a;f a,) with some v,/ €
NAXN. (These exist by definition.) For any A € X(nyXn) we now put

(10) EL(B) = T e (N v)ai (T).

We then have the following
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Lemma 3.1.  The operators Ef(ﬁ) are independent of the choice of T
and v,V in the sense that, if £, € NXny and S € Hom(ﬁ,ag'ag,) is an
isometry, then EE(B) = S*e* (N, €€)ai(S). Moreover, for each X € (v Xn),
the family {Ef\E (8)}seo is a half-braiding for the morphism ozf with respect to
the system ® = ,, Xp;.

Proof. Note that if 8 € ,, X, v,v/ € yXy and T € Hom(B, o} ar),)
is an isometry, then TT* € Hom(wv',wv') since afa;,c = wv'. Hence
TT* e *(\,v) = si(A,yy')af(TT*) for any A € X(nyAXy). With this it is
easy to check that Ef (B) is unitary. The first inclusion of Eq. (2) together
with [1, Lemma 3.24] imply that e*(\, /) is an intertwiner from aiafa,,
to afa,,ai. With that it is easy to check that £5(8) € Hom(afg, fai)
(cf. the proof of [3, Lemma 3.20]). Next, for 3; € /X%, vj,v; € nAn and
T; € Hom(ﬁj,aj‘ja;;) isometries, j = 1,2,3, and X € Hom(f33,102) one has

ot a,, (T2)T1 X Ty € Hom(wwsvh, tvivery), and hence we can compute

XE5 (B3) = XT3e* (A, vavs)ay (Ts)
=Ty o a, (L T)IXT5 e (), vavh)ai (Ts)
=Tra} a,, (To) vy (e (N, varh) )e® (N, ylyi)af(a; ag, (Tx)Th X)
=Tra; a,, (To) vy (eE(N, vavy))a a;{af (To)e* (N, viv))ai (T X)
= Bi(T5e* (N, varh)ai (To) TTe™ (A, vivt)ay (Ti X)
= B1(Ex (B2)Ex (Br)a (X),

establishing 2. of Definition 2.2. Finally, putting vo = v» = id so that conse-

quently B2 = id and T = 1, and choosing X = 1 gives the desired invariance
properties of £)(8) with 5= 31 = (5. O

Restricting the half-braidings to A = ;, Vi, C Xy = ®, i.e. putting
Ef = {giz(ﬁ)}geMygj, we conclude that there are extensions n(ai, £5) when-
ever A € ¥(nyXy). Note that

EX (B)ax (Er(8) = T e* (A v )ax (TT)A(™ (1, 1)y, (T)) = €5,(5)
for all 8 € ,, X}, and consequently
(11) n(ay,, Ex,) = nley, EXmlag, EF)

for all A\, u € X(yXn).
We now state an inclusion of intertwiner spaces which is similar to the first
inclusion in Eq. (2).
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Lemma 3.2. We have

(12) Hom(\, ) ® 1 € Hom(n(af, L), n(at, £5))

woCu

for any A\, p € B(nXn).

Proof. Thanks to Izumi’s result, Theorem 2.4, and due to the first inclu-
sion in Eq. (2), all what we have to verify is the relation ﬂ(alc)é'/\i B) = Ef (B)x
for all § € ,,V5; whenever x € Hom(\,u). For g € ,,V{; there is some
isometry T' € Hom(f3, a;f ;) with some v,/ € yYn. Then this is just

B(2)E5 (8) = B(x)Te* (N, v oy (T) = T*wv' (x)e* (X, v )ay (T)
= T"e* (v )zay (1) = T (nvv)ay (T)z = €5 (),
thanks to naturality. O

Immediately we obtain the following

Corollary 3.3. The map A — n(af,é'f), A € X(nXy), preserves
sums, products, and conjugate sectors.

Recall from [4, Sect. 4] that Hom(id,aF) = {wjv : w, € hF} where
b C Hom(p, 0) is the Hilbert (sub-) space

f)pi = {w, € Hom(p,0) : w;7(v) = w;5¥(9, 0)y(v)}

for p € yXy. Note that by Assumption 2.1the spaces Hom(p, ) and in turn f)pi
can only be non-zero if p € yYn. For any A\, u € yXn, p € NYN, We may choose
orthonormal basis of isometries t(ﬁ,x)i € Hom(u, pA), i = 1’27"'7N;i>\ and
Wy it € f)ff, where r = 1,2,...,Z, 0 = (id, af) respectively r = 1,2,..., Zy , =
(id,a,).

Lemma 3.4. A basis of Hom(ozf,a:f) is given by
(13) {t(s iw)av: pE NN, i=1,2,.. Nt r=1,2,...,(id,a})}
for any \,u € NXN.

Proof. 1t follows from w, .+ € hpi and the first inclusion in Eq. (2) that
t( \)iw, av € Hom(a3, o). The elements are clearly linearly independent
as t(4 o, )\) w} o . are orthonormal isometries in N. Now the statement follows

since (o, o £ = >, N (d, o +) by Frobenius reciprocity. O
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Next we define a subspace £()\, 1) C Hom(aF, osz) by putting

(14) LA, )
= span{t() \)jw, .4v: p € Nyldveg, i=1,2,.,NJ'\, 7=1,2,..,7Z,0}

Note that there is no distinction between “+” and “—” anymore because

+ — 4 deg
a, =a, whenever p € yYVy°.

Lemma 3.5. We have

(15) Hom(n(ay, €5), n(ay, €5)) = LA p) © 1

o Cp

and consequently (n(af,f,’)\i),n(ai,c‘,’j)) = EpeNy]cbeg N/ \Zpo for all A\, p €
NXN.

Proof. By Theorem 2.4 we have to show that

L\ p) = {X € Hom(af,ak): £5(B)X = B(X)EL(P) for all B € 4V}

So first we assume that X is in the right-hand side, and such an X € Hom

(af,af) satisfies Eui(ﬁ)X = B(X)EF(B) in particular for all B € ,,Vi; C

uY5- So choose an isometry T' € Hom([3, oz,jf) with some v € yYVn. Then, by
Eq. (3),
+ _ mx_t +
EL(B)X =T e (n,v)a;, (T)X
=T (u,v)Xai (T) = T*aF (X)eE (\,v)ai(T)
whereas

B(X)EE(B) = BX)T e (N, v)ai (T) = T*aE (X)e (N, v)ai(T).

Equating these and multiplying by 7" from the left and T* from the right we
obtain, using again Eq. (3),

TT*aF (X)ef(\,v) = TT o (X)eE(\,v).

Since this is supposed to hold for any 3 € Myg; we may now take the sum over
full orthonormal bases of Hom(3, ") so that we find o, (X) = ajf (X) for all

v € vYn. Now recall that X € Hom(ozf, at

,;) is a linear combination

NE | (id,af)

X = Z Z Z Cp,i,rt(g,,\)?w;,r;:tv

pENYN =1 r=1
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with (, 4, € C. But

0 (10T ) = V()T )0, )0 = Wt ) )ET (p,)00 s0.

Therefore, using nv = 0 implies n = 0 as well as orthonormality of the w, ,.+’s,
we find that o), (X) = of (X) for all v implies

Z Gt D) E () (vip) — 1) = 0

for all v,p € yYn and all r =1, ..., (id, a;ﬂ. Taking the adjoint and applying
the left inverse ¢, yields

ZC < = 1) (P)\)Z—O vaENyNa 'r‘:l’...,<id,013:>,

as the monodromy matrix Y is obtained [27] [12], [11] from d,d, ¢, (eT (p,v) x

et(v,p))* =Y, ,1. Hence we have (¥, (Y, , — d,d,) = 0 for all v, p,i,r. But

Y,, =d,d, for all v € NyN if and only 1f pE Nydeg by [27]. Consequently
Cp,i,r = 0 whenever p ¢ NyN , so that indeed X € L(A, u).
Conversely, if we start with X € L(\, p), i.e

1da

Z Z Z Cp,z,r P, )\ ;,r;:l:va Cp,i,r € (C,

PE N ydEEz 1 r=1

then we find o, (X) = o} (X) for all v € yYn. Hence, if § € ,,V5 and
T € Hom(B3, o;f ) is an isometry with some v, " € yYn, then

EX(B)X = T*e* (p, v )t (T)X = T*e* (p, v ) Xoi (T
= T*aZ, (X)e* (A w/)aE (1) = "oy (X)e(\, vv/)ad (1)
= BX)T*e* (A, v')ay (T) = BX)EY (B)
by Eq. (3). Thus X satisfies the desired intertwining relations. O

Next we compare n-extensions with different signature.

Lemma 3.6. We have

(16) Hom(n(af, &), n(a,, &,

D O ES B
{0} . otherwise

for all \,p € yXn.
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Proof. Again by Theorem 2.4, we only need to show that for \,u €
~Xn the linear space of intertwiners X € Hom(ay, ;) satisfying 7 ()X =
B(X)EF(B) for all B € ;Y5 is given by L(\,n) whenever A, € Nyf’er and
vanishes otherwise. Thus suppose that X € Hom(a3, af) satisfies £F(8)X =
B(X)EE(B) for all B € V5. Then in particular

T e (p,v)af (1) X = B(X)T* e\, v)at(T)

whenever T' € Hom(0, o} ) is an isometry and v € yYn. Sandwiching this with
T and o5 (T)* yields by use of Eq. (3)

¥ (m,v)af (TT)X = of (X)e™ (A, )i (IT7),

and since this is supposed for any subsector [5] of any [o;f] we can sum over
orthonormal bases of Hom(3, a;f) so that we arrive at

eT(u, )X = af (X)et(\,v) = (u,v)X  forall ve NIy

If X # 0 then X = t*v with ¢t € Hom(u, 0)\) some necessarily non-zero multiple
of an isometry. Therefore we have found that e ¥ (u, v)t* = e~ (u,v)t* forallv €
~Yn implying i € VR Now note that if X®1 € Hom(n(of, £), (e, €7))

then X* ® 1 € Hom(n(ay,, &), n(al, &) so that our calculation also yields

A € yIN". We conclude that the intertwiner space on the left-hand side of
Eq. (16) is zero unless A\, p € yV3™. But if p € yVR™, then of =, as well

as & = &7, so that clearly Hom(n(a,&F),n(a;,€;)) = Hom(n(af,EY),

(oz;f, &,F))- Then the conclusion follows from Lemma 3.5. O

For A € y XN conjugate half-braiding operators are given by
EX(8) = darRax (X (B)B(ry), B € n sy,

where r) € Hom(id, A\\) and 75 € Hom(id, A\\) are the R-isometries, i.e. satis-
fying A(73)*7x = A(7a)*ry = dy'1. (Recall that these isometries also serve as
R-isometries for the a-induced morphisms due to the first inclusion in Eq. (2).)

Lemma 3.7. We have EF(8) = EF(B) for all B € X5 and all A €
NXN.

Proof. Let T € Hom(3, a;f a,) be an isometry, v,/ € yXy. Then
&)

=drriay (€5 ()" B(ra)) = dariay (a5 (T) e (A, vv') T(rx))

= d\T*FNeT (v, v/ (r2))ai (T) = daT* AN T (v, \)*)ra)ai (T)

=d\T e (A, v )P (ra) o (T) = EE(8),
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where we used the BFE ry = A(eT (vv/, NeT (vv/, Nwr/(ry). O

Considering only 8 € ,,;V5, Lemma 3.7 yields with Proposition 2.6 the
following

Corollary 3.8.  We have [p°PP (o, L)) = [n(axi,gf)] forallh € NYn.

We are now ready to state the main result of this section in the following

Theorem 3.9. We have

D) (lad, EDm(ay, €, m(aX, Emlag:, £2)
= Z Z N%’,ANﬁ’,ﬂNup‘gzp,O,

RSN o PENyifeg

for all \, N, p' € v XN

Proof. Using Proposition 2.5 and Lemma 3.7, we can compute
(n(a, ENn(a,, E0)n(a, En(a, E2))
= (e, ELIm(ay, EX)snlag, E)nlag, E7))
= Zu,feNXN N;{/,)\NE’@O](OGT) (C/‘;r), 77(045_7 8{)) )

and now the result follows by Lemma 3.6 and since dimL(v, &) = Y,
N? Zpo.

PENVIE

Theorem 3.9 has some simple consequences in the non-degenerate case.
Let us review a bit of category language first. A system S C End(Q) for some
type I1I factor @ gives a strict C*-tensor category (with conjugates, subobjects,
and direct sums) in the sense of [7], [21], whose objects are in X(S). There is
a natural notion of equivalence of such categories, and two such categories C
and C" are equivalent [13, Prop. 1.1] if and only if there is a C*-tensor functor
F : C — C' such that any object in C’ is isomorphic (unitarily equivalent)
to an object in the image of F, and the arrow functions F,, : Hom(p,o) —
Hom(F(p), F(0)) are isomorphisms for any p and ¢ in C. We also have a notion
of direct product for two such strict C*-tensor categories. That is, if we have
two systems of irreducible endomorphisms of two (type III) factors @ and R,
we have a system of irreducible endomorphisms arising as tensor products of
pairs of irreducible endomorphisms on Q ® R. Moreover we can pass from
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one system of such endomorphisms on R to another “opposite” system on the
opposite algebra R°PP naturally.

Note that the right-hand side of Eq. (18) collapses dramatically in case that
~Yn = nvXn and if the original braiding is non-degenerate, i.e. if Nyi,eg = {id}:
Then we are simply left with Kronecker symbols 0 x/0,,,/. As shown in [5], non-
degeneracy of the braiding implies ;, X}, = s X, and then the global index
of A = ,, X% is equal to the global index y Xy, [[A]] = [[nXn]]- Theorem 3.9
and Corollary 3.8 imply that {n(ay, £ )n°PP(ay, €7 ) Iauenxy gives a system
of irreducible R-R morphisms. Note that each of the morphisms in this system
gives a sector arising from D(A), and with a suitable choice of representatives
in D(A) we may assume that this system is a subsystem of D(A). As the
statistical dimension of n(ay, £ )n°PP(ay;, £7) is dad,,, we know that its global
index is equal to [[yAn]]>. But since [[D(A)]] = [[A]]?, it follows that our
system is in fact the entire D(A). With non-degeneracy, Theorem 3.9 implies
that (n(af, &), n(a;f, EF)) = (A, p) for any A, u € L(yXy) and consequently
Lemma 3.2 gives equalities

Hom(\, ) ® 1 = Hom(n(ay,EY),n(af,EF)) forall A\, pue T(nAn)-

wop

A similar statement holds for Hom(n°PP(a,, &,),n°PP(ay;,€;)) and we thus

have
Hom(N, p') ® Hom(\°PP, 1,°PP)

= Hom(n(a,, E5)nPP(ay, €3) nlegl, E5)nPP (e, £7))
for all N, p/, A\, u € E(nXn). Let now C be the strict C*-tensor category aris-
ing from the direct product of Xy and (yXn)°PP and C’ be the one arising
from D(A). We may now introduce a functor F' : C — C’ which maps any
pair (A, \°PP) to the R-R morphism n(ai,,£)n°PP(ay, £y ), and with arrow
functions F(x: xopv), (ur orr) Mmapping z ® y € Hom(X', p') @ Hom(APP, u°PP) to

TRy E Hom(n(aj,,E)J\r,)n"pp(a;,c‘,’;),n(a:,,c‘,’;)n‘)pp(a;,5;)), which is obvi-
ously a (rather trivial) C*-tensor functor. It is similarly clear that any object
in C' is unitarily equivalent to some object in the image of F, and that the

arrow functions are isomorphisms. Therefore we have the following

Corollary 3.10.  If the braiding on yXN is non-degenerate, then the
strict C*-tensor category given by the system of irreducible R-R morphisms
for the Longo-Rehren subfactor M @ M°PP C R arising from the system p;Xns
and that given as a direct product of those arising from the systems yXn and
(nXN)°PP are equivalent.
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By Izumi’s result, Proposition 2.7, we find that the irreducible M & M °PP-
R morphisms arising in our system are labelled with g € A = ,, X} and the
multiplicity of the edges between this morphism and n(ay, & )n(ey,&y) is
given as (ﬁ,a}faﬁ), A\ € yXn. Consequently the canonical endomorphism

I' € End(R) for the subfactor M ® M°PP C R decomposes as

= @ Zu ol & (0,60,
MUENXN

as Iy, = (id,a}\"a;) and by Corollary 3.8. Using the isomorphism of the
tensor categories of Corollary 3.10 gives another

Corollary 3.11.  Assume that the braiding on Xy is non-degenerate.
Then @) ey xn ZaulX ® p°PP] is the sector of a canonical endomorphism for
some subfactor of B C N ® N°PP.

This is a special case of a recent result of Rehren [28, Cor. 1.6], and our
method gives a new proof of this statement by looking at the dual of the
usual Longo-Rehren subfactor arising from ,,;Xf;. (Note that a canonical en-
domorphism does not determine a subfactor uniquely. So our construction and
Rehren’s might produce non-isomorphic subfactors, while they give the same
canonical endomorphism. We expect that these two subfactors are related by
an “E-twist” in the sense of Izumi as in the remark after [14, Prop. 7.3].)

§4. Quantum Doubles of Chiral Systems

In this section we study the Longo-Rehren subfactors arising from chiral
subsystems A = ,, Vi C ,,As = ®. Recall from [3, Subsect. 3.3] that for
B+ € MXAj/E[ the operators

E(Br, B-) = 8%, (T)"et (A, p)a (S)T

are unitaries in Hom(343_, 3_3;) whenever A, u € y Xy and T € Hom(B,, )
and S € Hom(f_, a;) are isometries, and they do not depend on the special
choices of A\, u and S, T which realize 51. Moreover, they constitute a “relative
braiding” between the chiral systems ;;X 1& and ,,&,,. Recall that the am-
bichiral system is defined as ;XY = ;X5 N 3, Xy, For any 7 € X(;,XY,) we
now put

()= E(B,7)  forall e Af,

EX(B) =& (T, B) forall ge X, .

Then the following lemma plays the role of Lemma 3.1.
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Lemma 4.1.  For each 7 € X(,,Xy;), the family {EF(B)}pes is a half-
braiding with respect to the system ® = MXA%[.

Proof. Immediate from [3, Prop. 3.12]. O

The restricted half-braidings EF = {£F(8)}pea with A = ,, Vi C ,, XL =
® will provide n-extensions. Thanks to the composition rules of the relative
braiding operators we have multiplicativity for the n-extensions,

(18) n(rr', €250) = (7,5 )n(r', €5)

» YT/

for all 7,7 € X(,,;XY). Let us now consider such n-extensions using only
T € ;XY (rather than in X(,,XY)). Then it is trivial by Theorem 2.4 that

Hom(ﬁ(ﬂ Ef), "7(7—/7 85)) = 67,7’(:;

so that all such n-extensions are irreducible and disjoint. Note that for R =
R(A) with A = M)(ﬁ we also have extensions for af, A € yXy, using the
restrictions of their half-braidings {£3 (B)}pe,, xz of Section 3 to the subsys-
tems MXAi/I. By a slight abuse of notation, we also denote them by n(af, 5%)
In order to avoid too confusing =-indices, we now better focus on the case
A= MXAJ/“[. The other case, A = ;;&,,, is of course completely analogous.
The following lemma is the analogue of Lemma 3.5, now addressing the exten-
sions n(ay, &) for A=, X5

Lemma 4.2. We have

(19) Hom(n(of, &), n(af, &) = L p) © 1

o

and consequently (n(a¥,&F),n(a}, &) = ZPGNyﬁreg NJ'\Zpo for all \,p €

NXN'
Proof. Literally the same as the proof of Lemma 3.5, apart from the
simplification in the second half that we now only have to consider v/ =id. [
Next we compare our different kinds of n-extensions.
Lemma 4.3. We have

Hom(r, a}'\') @1 : Ae N

(20) Hom(n(r,&;)), n(a;\r"g;» = { {0} . otherwise

for all T € ;XY and all X € yX.
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Proof. Using once again Theorem 2.4, we first show that if a non-zero
X € Hom(r,aY) satisfies £ (8)X = B(X)E7(B) for all B € ,,V;, then this
implies A € yYX". So suppose we have such an X # 0. Since 7 € ;XY
there will also be some p € yXy and an isometry ) € Hom(7, ;). Then the
intertwining condition reads

T et (A v)a{(T)X = B(X)T 0, (Q)"e™ (1, v)ay (T)Q

whenever v € yYy and T' € Hom(3, o)) is an isometry. Multiplication with T’
from the right yields

et (A v)ay (T)X = o (XQ")e™ (1, v)a, (T)Q = e~ (A, v)al (T)X,

where we exploited XQ* € Hom(a;, o) C Hom(us, tA) to apply Eq. (3). Now
we can multiply by 7(T')* from the right, and then we may use a summation
over full orthonormal bases of Hom(3, a;}') to obtain et (\,v)X = e~ (\,v)X
for all v € yYn. Now note that a non-zero X € Hom(r, a}\") is necessarily of
the from X = ¢*v with ¢ € Hom(\,77¢) a non-zero multiple of an isometry.
Hence we find e*(\,v) = e~ (\,v) for all v € yVy, proving that the left-hand
side of Eq. (20) is zero unless A € y Y&

On the other hand, if A € VX" then a;\“ = «a, . Hence, for an arbitrary
X € Hom(7,a)) we find X* € Hom(a, 7), and therefore the naturality of the
relative braiding of [3, Prop. 3.12] gives us &(3,7)5(X)* = X*& (6, a, ) for

any 3 € MXAJ;[. By taking adjoints this reads
BX)EL (B) =T~ (\v)a, (1)X =TT (A v)a(1)X = & (A)X,

so that the desired intertwining relation is automatically fulfilled in particular
for g € My;g. This completes the proof. O

Conjugate half-braiding operators are given for 7 € ,, XY, by
E7(B) =d:Rir(E2(B)"B(R-)), B E mXyy,

with R-isometries R, € Hom(id, 77) and R, € Hom(id, 77) satisfying (R, )* R,
= 7#(R,)*R, = d:'1.

Lemma 4.4.  We have £ (8) = E7(B) for all B € X} and all T €

0

Proof. We compute

gT_ (ﬁ) = dTR:T(gr(ﬁarf)ﬁ(Rr)) = d.,—R;k_T(’fi(gr(ﬁ,T)*R.,—) = gr_ (ﬁ)7
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where we used the BFE for the relative braiding [3, Prop. 3.12], R, =
T(&:(B,7)E(B, T)B(R). O

Considering only g € My;\t[, Lemma 4.4 yields with Proposition 2.6 the
following

Corollary 4.5.  We have [n°°?(1,E7)] = [n(7,E5 )] for all T € 1, VY.

Recall from [6] that b, = (7,aF) denote the chiral branching coefficients
for ambichiral 7 and A € y X .

Theorem 4.6. We have

(21)
(el &N ) (et EDm €0 = Y. > NILNLbE,

TE N XN PENVRT

for all \,p € NXn and all T,7" € 1, XY,

Proof. Analogous to the proof of Theorem 3.9, this is reduced to Lemma
4.3 by use of Proposition 2.5. O

Let Y C D(,,Y;;) denote the subset of morphisms Q € D(,,Y;,) which
correspond to subsectors of [n(a, £ )n(r,£7)] considering A € yYVy and 7 €
1V only. Now the question arises whether T is a proper subsystem or whether
it may exhaust the entire quantum double system and therefore we would like
to measure its size. For this purpose we compare the global indices [[Y]] and

(D YiD]] = [ Vi)
Proposition 4.7.  The global index of Y is given by
ZpeNy;‘;’g dpZp,0

e (PG

(22) ()=

Proof. Let R. ), T € Myjow, A € NV, denote matrices with entries
RY\e = (M. En(r.67),2), Q.2 €.

Further let d denote the column vector with entries dg, Q € Y. Then dis a
simultaneous eigenvector of the matrices R, y with respective eigenvalues dd).
We define another vector ¢ by putting

v = Z Z de)\<Qa 77(03\‘_75;_)77(7'7 g-r_>> ) QeT.

TE VY ANENYN
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Then we have R, ¥ = d,d\7, as we can compute

(RT.)\E)Q = ZQ/G’I‘ ZT,GJ\/IyE\)I ZMGNJJN <Q77(a;\ra 5;)77(77 g‘r_>7 Q/>
Xd'r’du <Q/a 77(a+ 5+)n(7—lv g;»

TR
= ZT'eMygl ZHENyN d'r’dp«<Q7 77(04;5;)77(04:[7 53)”(7/7 5;)77(7_'7 g‘;»
= ZT’,T”GAI))R4 Z'U,,VGNXN dT/dHN;\V,NNvT’I:'?<Q7 77(04;’_7 EJ)W(T”’ 5;,,)>
- ZTHGJ\lyJO\J ZVGNXN de}‘dT”dV<Qv n(aiv EJ)U(T”v g—;’» = deXUQ :

Because the sum matrix ZT’ y Br » is irreducible it follows ' = {d_: ¢ € R, by
the uniqueness of the Perron-Frobenius eigenvector. Note that

de)\ = Z <Qa n(ajv 5;)77(77 g‘r_)>dQ s
QeY
and hence [[NIYN)[[ VY]] = D vada = ([[Y]]. We next notice that ¢ = viq
as diqg = 1. But v;q can be computed as

va= Y, Y. deda(n(7E7), (e, EY))

TE VS AENYN

=Y Y = Y &

AENIVNE TEMVR AENVYE

where we used Lemma 4.3. Hence [[T]] = [[NYn ][ YY)/ [[xYocg]], and now
the claim follows since [[;;V%]] = (ZpeNyﬁjeg dyZ, o) V]2 v Y]] by [4,
Prop. 3.1]. O

Similar to Theorem 3.9, the degenerate morphisms p appearing in Eq. (21)
are responsible that some of the n(a;, £ )n(r, £, )’s will be equivalent or are re-
ducible, and this will cause some kind of orbifolding as we will show in Section 5
by examples. Note, however, that also the right-hand side of Eq. (21) simplifies
considerably if the original braiding is non-degenerate and if we have y Xy =
~nYVn: We are just left with Kronecker symbols dy ,0- . Since the statisti-
cal dimension of n(7,&7) is d, and as [[NXN]]|[; X0 ]] = [ Xa7]]? thanks to
[6, Thm. 4.2], we conclude that the family of morphisms n(a;, £ )n°PP(r, £7)
serves as a system D(A). In the non-degenerate case, it is derived similarly
from Theorem 4.6 and Corollary 4.3 that then

Hom(\, ) ® 1 = Hom(n(ay,EY),n(af, EF)) for all A\ pue X(nvAN),

won
as well as
1 ® Hom(7°PP, 7/°PP) = Hom(n PP (1, £ ), n°PP (7', &)
for all 7,7" € B(,,XY).
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By the same arguments which lead to Corollary 3.10 this gives the following

Corollary 4.8.  If the braiding on yXy is non-degenerate, then the
strict C*-tensor category given by the system of irreducible R-R morphisms
for the Longo-Rehren subfactor M & MP°PP C R arising from the system MX]&
and that given as a direct product of those arising from the systems yXn and
(s X )PP are equivalent.

This corollary seems to be a precise statement of an announcement by
Ocneanu. Namely, at the Taniguchi Conference in Nara, Japan, in December
1998, he announced as a part of his “big sandwich of theorems” that “the quan-
tum double of a quantum subgroup® of a non-degenerately braided quantum
group is equal to the quantum group x ambichirals” (in whatever sense).

Note that the braiding on the “quantum double” system of R-R morphisms
is given by the direct product of the original one on Xy and the one on ;,; XY,
in the above theorem. Since [14, Thm. 5.5] implies that this braiding is non-
degenerate and since we assumed non-degeneracy of the original braiding on
~Xn here, Corollary 4.8 implies that also the braiding on the ambichiral system
XY, is non-degenerate, in perfect agreement with our result [6, Thm. 4.2].

The A-D-E cases studied in [25], [30], [2], [6] provide the following exam-
ples.

Corollary 4.9.  As strict C*-tensor categories, the quantum double sys-
tems of the chiral systems Eg, Es, and Da, are equivalent to Aqq X (A3z)°PP,
Agg X (A§Y™)°PP and Ayp—_3z X (DSYER)OPP, respectively.

By the same arguments used in Section 3 we now find for the non-degenerate
case and y Xy = yVn that

=@ @ vl bl e

AENAN TE )\ XY

is the canonical endomorphisms sector of M ® M°PP C R arising from A =
yXa;. However, if one considers the Longo-Rehren subfactor arising from
A = Myj;[ where )Yy is now a proper and degenerate subsystem of y Xy,
then the computations for the structure of D(A) and the dual principal graph
become more involved. In that case one needs the whole general machinery of
this section which takes care of possible degeneracies. Such situations will be
handled in Section 5.
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§5. Quantum Doubles of Color Zero Subsystems of Chiral Systems

Subfactors with principal graphs Eg, Eg are basic and important examples
of subfactors arising from a-induction [30], [2]. The Longo-Rehren subfactor
arising from the subfactor with principal graph Eg has been studied and the
principal and the dual principal graphs have been computed, as well as other
information, by Izumi [15]. Note that this subfactor is different from the Longo-
Rehren subfactor arising from the chiral system for the conformal inclusion
SU(2)10 € SO(5)1 as studied in Section 4. The reason is that Izumi considers
in [15] the quantum double system of the endomorphisms corresponding to the
even three vertices rather than all nodes of the graph Eg. This is more natural
from the viewpoint of the usual theory of type II; subfactors, since we obtain
this quantum double system of the system of the three M-M bimodules, if we
apply the construction of the asymptotic inclusion M V (M' N M) C M4, to
the hyperfinite II; subfactor NV C M with principal graph Eg and compute the
system of My.-Ms bimodules. So we will study the Longo-Rehren subfactors
arising from a-induction corresponding to this type of asymptotic inclusions
in this section. That is, from the view point of the a-induction, the chiral
system ,, Xy, for the subfactor N C M arising from the conformal inclusion
SU(2)10 C SO(5)1 has a natural “coloring” for irreducible objects with colors 0
and 1, inherited from the coloring of the SU(2)1¢ system coming from the even-
odd parity of the spins. More precisely and generally, thanks to Wassermann’s
work [29], we know that there are (non-degenerately) braided systems X, =
{An A€ A, 1}, where A, i, denotes the SU(n) level k Weyl alcove, such that
the morphisms Ap € End(N) satisfy the SU (n), fusion rules and have statistics

2miha - where ha are the conformal dimensions, for any n,k =

phases wp = e
1,2,.... The Weyl alcove has a natural coloring (“n-ality”) ¢t : A, x — Z,, and
the color zero subsystems ), C X, are given by VY, r = {\a : t(A) = 0}.
Now let N C M be a subfactor arising from a conformal inclusion SU(n), C G4
for some Lie group G, as treated in [6]. We put yXn = X, ;. Note that then
the ambichiral system ,, X J(\J/[ corresponds to the positive energy representations
mp of Gy, and the chiral branching coefficients are the well-known branching
coefficients of the conformal inclusion at hand bfb ay = bea and the modular

invariant matrix is given by

ZAn = Z be,abe, s -
¢

We now set & = MX]& and A = My;\}, where My]\t[ arises from the color
zero subsystem yYVn = YV, . Note that y)Vy will in general be degenerate
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though we have always non-degeneracy for yXn here. Here we will study
Longo-Rehren subfactors M @ M°PP C R with R = R(A) and illustrate that
the degeneracy of y)n causes naturally a certain orbifold procedure by means
of Theorem 4.6. The examples we cover correspond to subfactors with principal
graph Eg and Eg, and all the three analogues arising from conformal inclusions

Example 5.1. We start with the subfactor N C M arising from the
conformal inclusion SU(2)19 C SO(5);. The irreducible endomorphisms in
A\; € NXn are labelled with j € {0,1,...,10} as usual and those in ,, X}, are
labelled with 74, £ = 0,1,2 as the vertices of As. (Such that 79 = id.) The
morphisms 7, obey Ising fusion rules, [r171] = [r9] @ [r2], the non-vanishing
branching coefficients b;;‘ \ = b, ; are given by

boo =bos =b13=br7=0bya=by10=1,

and the Eg modular matrix is given by Z; ;» = 2520 be,jbe i (cf. [2, Example
2.2]). With xYn = {); : j = 0,2,4,6,8,10}, we study the Longo-Rehren
subfactor M ® M°PP C R arising from the system A = My;; whose irreducible
morphisms correspond to the three even vertices of the graph Eg. Note that
Ao is degenerate in y)Yy, in fact we have Nyfveg = v YN = {Xo, 10} Since
Z10,0 = 0 we find by Proposition 4.7 that the set Y is only provides half of
the quantum double system D( My]\f[). Thus, as considering even j and even
¢ only will not exhaust D(,,;);;), we now consider n(a;“,c‘,’f), n(re, &, ) with
j€{0,1,...,10} and ¢ € {0,1,2}, where we write a; for a; as in [2, Example
2.2]. These extended endomorphisms of R may not decompose into direct
sums of irreducible morphisms in D(A) any more, but n(aj,c‘,’f)n(n,é’[) do
decompose into direct sums of irreducible morphisms in D(A) if j + £ is even,
since then ajn decompose into a direct sum of morphisms in My;[. Now
Lemma 4.2 yields easily irreducibility of n(ozj*,é';r) for j € {0,2,4,6,8,10}.
Lemma 4.3 yields similarly

<77(O‘T0a 5%)7”(72a 52_)> =1 ’

and by Theorem 4.6 we find more generally
<77(O‘j+v gj+)77(7—0: 8(;)7 n(airO—ja 8;67]')77(7'27 85» =1

for 7 =0,2,4,...,10. We similarly compute

<77(afv 81+)77(7—1: 8;)7 n(afv 81+)77(7—1: 8f)> =1,
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(n(ag, & )n(r1, €7 ), nlaz, € )n(m, €0)) =1,
(n(ag, & )n(r1, €0 ) mlad, E5n(m, €7)) =2,
(a7, & )n(r1, €7 ) m(ad , € )n(m, €7)) =1,
(n(ag, £ )n(r1, &) mlag , € )n(m, €7)) =1,
(o, & )n(r1, €7 ), mlag , € n(m, €7)) =1,
(n(ag, & )n(r, €0 ) m(ad, € )n(m, €)= 1

We have a decomposition of n(ad, S )n(r1, ;) into two irreducible, mutually
inequivalent endomorphisms Q, ' € End(R) which must belong (up to equiv-
alence) to D(A). By Izumi’s result [14, Lemma 4.5] we conclude that there are
morphisms 0,0’ € X(,,;YV;;) with half-braidings &,, !, such that Q = (o, E,)
and Q' = n(o’,&,). But since we have [aF][r;] = 2[a;] and since n-extension
preserves the statistical dimension we must have dg + dor = dsd;, = 2ds.
(Recall d+ = d;.) Moreover, Theorem 2.4 implies that [a]] is a subsector
of both, [é] and [0'], and in turn dg = d, > dy, doy = dy» > dy. This

dg = dy and consequently [af] = [0] = [0], i.e. the prod-

forces dg
uct n(ad,EFn(m1,E;) decomposes into two irreducibles of equal statistical
dimension. So we have (at least) the following 8 irreducible, mutually inequiv-
alent, endomorphisms (o, &), n(ad, &), n(ag, &), nlad, &), nlad, &),
n(afy, &), n(ad, &N n(r, E7), nlad, E5)n(r,E) and two more irreducible
endomorphisms 2, of R arising from n(ag, & )n(m1, 7). Counting the
global index, we conclude that these are all the R-R morphisms in the sys-
tem D(A). Thus, with Proposition 2.7 and recalling that n(« j’,é’j‘) (1e,&;)
is the n-extension of a;' o 1y with the composed half-braiding, we can compute
the dual principal graph of the subfactor M ® M°PP C R which we display in
Fig. 1. Of course it is the same as the one first computed by Izumi [15] by
direct computations of the tube algebra involving 6j-symbols. In the graph, we
used an obvious notation for the vertices labelled by morphisms in My;;, and
we simply wrote (j,€) for the pair n(c; ,8] )n(re, €, ) with j € {0,1,...,10}
and ¢ € {0,1,2}. The labels (5,1); and (5,1)2 stand for the two irreducible
endomorphisms ,Q' corresponding to the subsectors of n(ad, (i, E).
The procedure yielding the R-R morphisms here is an orbifold procedure of

order 2 for the (4, ¢) with j 4+ £ € 2N with symmetry (j,¢) < (10 — 7,2 — ¢).

Example 5.2. We next study the Longo-Rehren subfactor arising from
the four even vertices of the graph Eg and compute the dual principal graph,
which is new. The subfactor N C M now arises from the conformal inclusion
SU(2)2s C (Gz2)1 as in [2, Example 2.3]. Analogously to Example 5.1, the
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(070) (670) (371) (270) (870) (171) (571)1 (571)2 (470) (1050)

Figure 1. The dual principal graph for the Longo-Rehren subfactor arising from
Eg

full system is given nXn = {\; | 7 = 0,1,2,...,28}. We label the ambichiral
morphisms in ,, XY, with 7, k = 0, 2, corresponding to the extremal vertices of
the two long legs of Eg. They 7¢’s obey Lee-Yang fusion rules, [ram2] = [10] D [72]
which is the fusion of the even vertices of A;. The non-vanishing branching
coefficients bj—;,xj = bg,; are given by

bo,o0 = bo,10 = bo,18 = bo,28 = ba g = b2, 12 = b2 16 = ba22 =1,

determining the modular invariant Z as before. The color zero subsystem is
NYN ={)\;j | j=0,2,4,...,28}, and then y V3 = {\o, Aas}. We will study the
Longo-Rehren subfactor M ® M°PP C R arising from the chiral induced system
A =, Vi;. The system ® = ,, X}, corresponds to the labels of vertices of Eg
in [2, Fig. 8], and the subsystem A = My;[ to the even ones. As the ambichiral
vertices are both even we find ,; X3, = ;,)%; here. Note that the degenerate
morphism \og appears in the vacuum column and row of Z this time. Therefore
Proposition 4.7 tells us that T = D(A), i.e. in contrast to Example 5.1 we
do not need to consider the odd spins at all in order to produce the entire

D(A) by our method. Lemma 4.2 gives [n(a}',E;‘)] = [n(a%‘s_j,é';s_j)] for

j=0,2,4,...,12 and it similarly implies that n(a}", Ef)’s are irreducible and
mutually inequivalent for j = 0,2,4,...,12, due to the fusion rules Nfg, =0

for 7,7/ =0,2,4,...,12. But we obtain

<77(O‘1~_4’ 512)7 n(aitb Eitl» =2

since N7§ 1, = 1. Since [a};] = 2[af], we conclude by the same argument as

used in Example 5.1 that the endomorphism n(aj;, &) decomposes into two
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mutually inequivalent irreducible endomorphisms with equal statistical dimen-
sions. We conclude that the system

(23)
(el &) 17 =0,2,4,.. .14} U {n(af, & n(m2,E5) 17 =0,2,4,...14}
U {ﬂ(aﬂ Eitl>17 77(“?47 gitl)% (n(a_ltb gitl)n(T% 82_»17 (n(aﬂ’ 5ﬂ)W(T2a 52_))2}

gives the entire D(A), where n(aj,, £,)1 and n(afy, &) are irreducible endo-
morphisms arising from decomposition of n(aj,, &), and (n(ay, Ef)n (2, €)1
and (n(afy, E54)n(T2, £5))2 are irreducible endomorphisms arising from decom-
position of n(aj,, &5)n(r2, ;). We can then draw the dual principal graph of
the subfactor M ® M°PP C R as in Fig. 2, where we use a similar convention

(0,0) (2,0) (4,0) (6,0) (8,0) (10,0)(12,0) (14,0)1(14,0)2(0,2) (2,2) (4,2) (6,2) (8,2) (10,2)(12,2) (14,2)1(14,2)2

Figure 2. The dual principal graph for the Longo-Rehren subfactor arising from
Es

for labeling vertices to the one in Fig. 1. The procedure to get the labels for
the R-R morphisms here is again an orbifold procedure of order 2 for the labels
(7,¢) with =0,2,4,...,28, £ = 0,2 with symmetry (j,¢) + (28 — j,¢).

Example 5.3. We next study the subfactor N C M arising from the
conformal inclusion SU(3)s C SU(6)1, as treated in [2, Sect. 2.3 (iv)]. The 21
irreducible endomorphisms in the full SU(3)s system are labelled as yXy =
{Ap.) | 0 < ¢ < p < 5} as usual. Those in the ambichiral system ,, X7,
are labelled with the six circled vertices of the graph £®) in [2, Fig. 11] and
obey Zg fusion rules. We label them as 74, £ = 0,1,...,5 such that the fusion

rules read [7¢][7e] = [T¢4¢'(mod 6)]. The non-vanishing branching coefficients
+ —
Tg,A(p’q) - b[,(p,q) are

bo,0,0) = bo,(4,2) = b1,(2,0) = b1,(5,3) = ba,(3,1) = b2 (5,5 =

= b3,(3,0) = b3,(3,3) = ba,(3,2) = bs,(5,0) = bs5,2,2) = b5,(52) = 1
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The colour zero subsystem is given by

NIN = {X0,0), A3,0)> AM2,1)5 A(5,1), A(4,2)> A(3,3)> A\(5,4) } -

The situation is particularly simple as this system is still non-degenerate, i.e.
NYWE = {id}. (Note that a degenerate subsystem must be the dual of a group.)
Then ,, Y}, consists of four endomorphisms ozE'E) 0y’ ozEE 1) aEE ne a@‘%l)) labelled

as in [2, Fig. 11], where we write o
(p.a)

Rehren subfactor M ® M°PP C R(A) arising from this system A = ,, V5.
Again, Proposition 4.7 implies that we only need to consider n-extensions of

for aj(m). We study the Longo-

color zero morphisms to obtain the entire D(A). But in fact, due to the non-
degeneracy Corollary 4.8 applies and yields that D(A) is equivalent (as C*-
tensor categories) to y)Vn X Z as the subsystem of ,, )%, C ;X% of color
zero ambichirals consists of 7y, 73, obeying Zs fusion rules. In particular, here
is no orbifold procedure. Alternatively, one checks by Theorem 4.6 easily that
{n(al, ENn(mi, &) | X € NYn, k = 0,3} constitutes as set of 14 irreducible,
mutually inequivalent endomorphisms, hence yielding the entire quantum dou-
ble system D(A). The subfactor ozao)(M) C M is a natural analogue of the
subfactors with principal graphs Eg or Eg, and our Longo-Rehren subfactor
corresponds to the asymptotic inclusion of (the corresponding hyperfinite Iy
subfactor of) this inclusion. From [2, Fig. 11], it is easy to extract the dual

principal graph of the subfactor O‘?_l,o) (M) C M, drawn in Fig. 3. Using Propo-

@
@ @
*

Figure 3. The (dual) principal graph for the subfactor aao) (M)yc M
sition 2.7 it is now a straight-forward calculation yielding the dual principal
graph of the associated Longo-Rehren inclusion, displayed in Fig. 4. Here we
used the short-hand notation (p, ¢; ¢) for n(az;‘q),é'(;q))n(rg,g[) and an obvi-
ous notation for the vertices labelled by morphisms in My;g. It seems that the
system D(A) is equivalent to the system of Qno-Qo bimodules arising from
the asymptotic inclusion @ V (Q' N Q) of the hyperfinite II; subfactor P C @
with principal graph A7 of Jones [16], but we have no proof.
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(0,0) (5,1) (5,4) (3,0)V

(0,0;0)(3,0;3)(3,3;3)(5,1;0)(5,4;3)(4,2;0)(2,1;0)(2,1;3)(4,2;3)(5,4;0) (5,1;3) (3,0;0) (3,3;3) (0,0;3)

Figure 4. The dual principal graph for the Longo-Rehren subfactor arising from
£®)

Example 5.4. We next study the subfactor N C M arising from the
conformal inclusion SU(3)9 C (Eg)1, as treated in [3, Sect. 6.4]. The 55 ir-
reducible endomorphisms in yXy are labelled with A, ), 0 < g < p <9 as
usual. The chiral system MXAZ corresponds to the vertices of the graph £('?),
and the ambichiral system ,,; X}, to the three vertices marked with circles in
[3, Fig. 12], obeying the Z3 fusion rules. We label them as 74, £ = 0, 1,2, so
that [Tg][Tgl] = [TZ—&-Z’(mod 3)].

The non-vanishing branching coefficients b’

Ay — Dl(p.g) AT€

bo,0,0) = bo,(5,1) = bo,(5,4) = bo,(8,4) = bo,(9,0) = bo,(9,9)

= b1,(4,2) = b1‘(7,1) = b1,(7,7) = b2‘(4,2) = b2,(7,1) = b2‘(7,7) =1

The color zero subsystem y)y is given by those 19 morphisms A, 4) €
~NAXN subject to p + q¢ € 3Z. It now contains the simple currents, and as a
consequence [3, Lemma 6.11] we have Nyf;g = {X0,0): A9,0)> A\(9,0)}- Then
the system My;\} consists of four endomorphisms a?B,O) = 719, aal), T1, T2, SO
that in particular ,, X% = ,,V%,. (We use labels as in [3, Fig. 12], apart from
denoting the ambichiral n; by 7; here, j = 1,2, as 7; is obviously no suitable
notation when considering n-extensions.) As usual, we study the Longo-Rehren
subfactor M ® M°PP C R(A) arising from A = ,,V5;. Since the degenerate
morphisms appear in the vacuum column of the modular invariant, we only need

to consider n-extensions of ai and 7 with A € yYy and 7 € Myzow only, thanks
+

(1,0
of the subfactors with principal graphs Eg and Eg. From [3, Fig. 12] it is easy

to Proposition 4.7. The subfactor « )(M ) C M is again a natural analogue

extract the dual principal graph of the subfactor a?’l 0) (M) C M, drawn in Fig.
5. By Lemma 4.2 we find that n(aE‘é’O),E(‘E’O)), 77(0‘?—2,1)78(—;,1)>7 77(0‘?;’),0)’ 5(—15),0))7

n(aas),géﬁ)), n(aaz),f&m), and 77(0‘?%,1)’8(2,1)) are irreducible and mutu-
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Figure 5. The (dual) principal graph for the subfactor a(l 0) (M)yc M

ally inequivalent endomorphisms of R. We similarly obtain

(00 5 e €)= 3,

and find that n(« e, 3),5(+ )) is disjoint from the others since A 3) is a fixed
point of the simple currents. Consequently, the decomposition of [n(az%b,),
5&; 3))] yields three new irreducible sectors. Next, Theorem 4.6 yields

(e, EX)on(re,E,7)) = 0 for A € yYy and £ = 1,2, because [r1] and [r2]
do not appear as subsectors of [af] for A € NydOg. Similarly we find that
n(af, ENn(re, &) are disjoint for different ¢ = 0,1,2. We now have a set
of irreducible, mutually inequivalent endomorphisms of R consisting of 27
endomorphisms, which can be considered as yYn/Zs x Zsz. Here for the
orbifold yYn/Zs, 18 objects collapse into 6 objects by identification arising
from a Zs symmetry, and the fixed point of the symmetry splits into 3 ob-
jects. The total number of the irreducible objects is therefore (6 + 3) x 3 =
27. Let the statistical dimensions of the irreducible morphisms appearing in
the decomposition of n(« (6 3),5+ ) be dy,ds,d; respectively. We then have
dy +ds +d3 = dg 3). The square sum d3 +d3% + d3 attains the minimum d%s 3) /3
with di = dy = d3 = d(g,3)/3 under the constraint d; +dy +d3 = d(g3) Assume
for contradiction that we are off the minimum. Then d + d3 + d% > d? 6,3) /3,
and in turn the global index of the system nYn/Zs X Zs is strictly bigger

than [[yYn]]. But then it exceeds [[D(A)]] = [[,;Vi;]]? because [4, Prop.
3.1] tells us that [[,,V5,]]> = [[NyN]][[My]Ow]]/ZAENy;eg dxZx,o which ob-
viously yields [,;Yi7]> = [[NYn]] here; contradiction. We conclude that

di = dy = d3 = d3)/3 and that the above set of morphisms gives the en-
tire system D(A).

Example 5.5. We finally study the subfactor N C M arising from the
conformal inclusion SU(3)2; C (E7)1, as treated in [3, Sect. 6.4]. The 253
irreducible endomorphisms in y Xy are labelled with A¢, oy, 0 < g < p < 21,
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as usual. The morphisms in MXI\; correspond to the vertices of the graph
Y and those in the ambichiral system ,, XY, to the two encircled vertices
in [3, Fig. 13], the latter obeying the Z, fusion rules. We label them as 7y
here, ¢ = 0,1, so that [r1][r1] = [10]- (Note that our 7 is denoted by e in[3,
Fig. 13].) The color zero subsystem n)Yn is given by those 85 morphisms
A(p,q) € NXn subject to p + ¢ € 3Z. It now contains the simple currents, and
as a consequence we have )8 = {2 0,0)s A\@1,0)s A21,21)}- The system ,,V;;

. . . +,(1)  +,(2
consists of eight endomorphisms O‘?E),o) =79, O‘(+2,1)v oz(4‘(2)), a(4’(2)), a(+3’0), oz(+3‘3),

a(t)’ (11)), and 7. We study the Longo-Rehren subfactor M@ M°PP C R(A) arising
from this system A = My;}, which corresponds to the asymptotic inclusion of

the subfactor oz?'l 0)(M ) C M as the natural analogue of the subfactors with

principal graphs Eg, Eg. From [3, Fig. 13] we extract the dual principal graph

of the subfactor a?‘ )(M) C M, displayed in Fig. 6. Since the degenerate

1,0

Figure 6. The (dual) principal graph for the subfactor aao)(M) cCM

morphisms appear in the vacuum column of the modular invariant, the situation
is similar to Examples 5.2 and 5.4. Their Z3 symmetry has A147) € NIN
as a fixed point, and the other 84 endomorphisms give 28 orbits under this
symmetry. We then have (n(aaéu),EH‘M)),n(aa4‘7),5(+14‘7))> = 3. Along the
same lines as in Example 5.4, we conclude that the system D(A) contains
(28 4+ 3) x 2 = 62 irreducible endomorphisms, corresponding to yYVn/Z; X
Zs. Namely, the 28 irreducible endomorphisms n(ai, E;) where we select one
A € yYn of each Z3 orbit together with the three irreducible endomorphisms
of equal statistical dimensions arising from decomposition of 77(0‘?_14,7)’ 5("1477))
correspond to yYn/Zs, and the blowing up by Z, arises from multiplication
with 7(7,&;7), £ =0, 1.
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