Publ. RIMS, Kyoto Univ.

37

(2001), 37-69

Specialization of Formal Cohomology
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Abstract

Following a work of Andronikof, we build a theory of Whitney specialization for
C*°-functions and holomorphic functions. To a R-constructible sheaf, we associate a
D-module. In particular, the constant sheaf gives the germs of functions asymptoti-

cally developable.
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Introduction

The idea of “algebraic analysis”, according to Mikio Sato, is to consider the
classical analysis with algebraic tools such as sheaf theory, homological algebra.

In this paper, we consider the notion of asymptotic expansions in the frame
work of D-modules. The idea is that asymptotically developable functions on
sector are related to Whitney functions on closed subsectors.

A first step was then to translate the Whitney functions in terms of D-
modules. However, sheaves can express only local properties, and some dif-
ficulties appear when we want to consider the growth conditions. In 1983,
Kashiwara overcame these difficulties for distributions. Constructing an in-
verse functor of RHom (-, Ox) in the Riemann-Hilbert correspondence [K], he
obtained two functors, the Schwartz functor and the functor of moderate co-
homology, its Dolbeault complex. Roughly speaking, the Schwartz functor
associates to a subanalytic open subset U the moderate distributions on U,
and to a subanalytic closed subset Z the distributions supported by Z.

Finding a functorial expression of growth conditions for distributions, it
then seems natural to look at its dual. In 1994, Kashiwara and Schapira gave
a new construction for the preceding functors [KS1]. The method used allowed
them to define their “dual”, the Whitney functor and its Dolbeault complex,
the functor of formal cohomology. Roughly speaking, the Whitney functor
associates to U the C'*° functions vanishing on the complementary of U up to
the infinite order, and to Z the infinitely differentiable functions on Z in the
sense of Whitney.

The second step is to look those Whitney functions in sectors, in other
words to specialize the Whitney functor. That was a suggestion of Schapira
for my thesis. So following the path drawn by Andronikof for the functor
of moderate cohomology [A], we adapted the specialization to the functor of
formal cohomology [C1].

In the first two chapters, X designates a real analytic manifold. In chapter
1, we recall the definition of infinitely differentiable functions in the sense of
Whitney, the construction of Whitney functor and some notations used in the
specialization of a sheaf along a submanifold M of X.

In chapter 2, we adapt the specialization to the Whitney functor. We
obtain a functor of Whitney specialization along M, which to a R-constructible
sheaf on X associates a conic sheaf on T);X. In particular, its value on the
constant sheaf on X is the sheaf wv,,(C¥) of germs of C'° functions in a normal
cone to M in X, all derivatives of which are asymptotically developable along
M, and its value on the sheaf Cx s is the subsheaf w°v,, (C5) of functions all
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derivatives of which have zero as asymptotic expansion.

In the third chapter, X is a complex analytic manifold and M is a real
analytic submanifold of the underlying real manifold of X. Then the special-
ization along M of the formal cohomology is the Dolbeault complex of the
Whitney specialization. In particular if M is a smooth complex submanifold
of X, the image wv,,(Ox) of the constant sheaf on X is the sheaf of germs
of holomorphic functions in sectors of X asymptotically developable along M,
having asymptotic expansion with holomorphic coefficients on M. In the case
where M is the origin in C, we recover Malgrange-Sibuya’s construction. If
X is a complexification of M, wv,,(Ox) is a subsheaf of the inverse image of

%7 in Tar X, describing the infinitely differentiable functions on M which are
boundary value along M of a holomorphic function in a sector.

To study the solutions of differential systems, it seems more efficient to
look at the microlocalization. For instance, in comparison theorem, the non-
characteristic property appears naturally in the cotangent bundle. So the next
step is to transpose this present construction to the frame of microlocal analysis
[SKK]. In [C2], we gave a construction equivalent to the functors phom(-, Ox)
and T phom(-,Ox) for the formal cohomology and obtain an action of micro-
differential operators. The big machinery being installed, we can expect it to
be as fruitful as it have been in moderate case.

I thank Pierre Schapira for the suggestion of this construction and to have
supervised my thesis. I am particularly grateful to Masaki Kashiwara for the
invitations at RIMS during my thesis and for a post-doctoral position, for all
the discussions and proof-relectures. I would like also to thank Teresa Monteiro
Fernandes for the invitation at CMAF /UL and the final push.

8§1. Notations

Let X be a real analytic manifold. We denote by Ax, C§¥ and Dx the
sheaves on X of complex valued real analytic functions, C'*°-functions and
finite-order differential operators with coefficients in Ax, respectively.

§1.1. Whitney functions

For more details, we refer to the book of Malgrange [M12], and the papers
of Whitney [Wh1][Wh2]. In this paragraph, we set X = R™. Let A be a subset
of X.

Definition 1.1.  One calls infinitely differentiable function on A in the
sense of Whitney or Whitney function on A a family F = (F¥)renn of contin-
uous functions on A such that:
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VYmeN, VkeN' |kl <m, Yae€ A, Ve >0, there exists a neighborhood U
of a in X such that Vx,y € UN A

W Fra)— Y @Y k) cdge,

|
l71<m J:

We shall denote by W, the space of Whitney functions on A.

Let U be an open subset of X. If F' is a Whitney function on U then we
notice that F° € C3(U) and D*F° = F*. Conversely if f € C¥(U), Taylor’s
expansion shows that the family (D* f)pene is a Whitney function on U.

Theorem 1.2 (Whitney [Whl]).  Let Z be a closed subset of X, U an
open neighborhood of Z and F a Whitney function on Z. Then there exists a
function f in C3¥(U) such that D* f|; = F*.

This is a generalization of the Borel theorem (Z is a point): for any formal
series, there exists a C'° function on X such that the n-th derivative at this
point is equal to the n-th coefficient of the series for all integer n. In fact, we
have the exact sequence of Fréchet spaces:

0I5 7(U) = CX(U) = W5z — 0,

where Z%°, is the subsheaf of C¥° consisting of functions vanishing on Z up
to the infinite order. An important well-known remark is that: W3°, #

I'(Z;C%) = lim C(U). Nevertheless the presheaf U — W%, is a sheaf
U>z '
that we shall denote by W5 ;. We get the exact sequence of sheaves:

0—>I§§Z—>C§§—>W§§Z—>O.

A subset A of X is said regular if for all 2 in X, there exists a neighborhood
U of x and a positive constant C' such that for all y and z in ANU, there exists
a rectificable curve in ANU from y to z whose length is smaller than Cd(y, z).
Obviously, any convex subset is regular. Let us also recall that any closed
subanalytic subset is regular. On the other hand an open subanalytic subset is
not necessarily regular (for instance the complementary of a closed half line).

Theorem 1.3 (Whitney [Wh2]).  Let U be a regular open subset and
f €C¥(U) such that for all k € N*, D* f admits an extension to a continuous
function on U. Then there exist a Whitney function on U, F such that F*|U =
DFf.
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§1.2. Whitney functor

We shall recall briefly the construction of the Whitney functor. For more
details, see [KS1].

The Whitney functor, denoted by - & C¥ is an exact functor from the
category of R-constructible sheaves to the category of Dx-modules. Its value
on Cy for an open subanalytic subset U of X is the subsheaf 7% y_; of CF
consisting of sections vanishing at infinite order on X \ U.

Notice that C; ® CX is nothing but the sheaf WS , of Whitney functions
on 7.

This functor being exact, it extends naturally to a functor from the derived
category DH'%_C (Cx) of Cx-modules with bounded and R-constructible cohomol-
ogy to the derived category DP(Dx) of Dx-modules with bounded cohomology.

Recall the operations on the Whitney functor. Let f : Y — X be a mor-
phism of real analytic manifolds, F' and G objects of D _(Cx) and D} _(Cy),

respectively. We denote by Dy ,x = Ay ® f 1Dy, the transfer bi-module
f~1Ax
for D-modules.

In D"(Dx), we have the morphism:
(2) RfIG®CY — Rf.(RHomp (Dy_x,G @ Cy)),

which is an isomorphism if f is proper on supp(G).
In DP(Dy), we have the morphism:

L w w
(3) Dyox & fTHF®CE) = (f1F) @ Cy,
X

which is an isomorphism if f is a closed embedding.
In DP(f~1Dy), we have the morphism:

(4) FTHF & CF) = RHomp, (Dyx, (f7'F) & CF),

which is an isomorphism if f is smooth.
In D’(Dx«y), we have the natural morphism:

(5) (FOCRR(GRCE) = (FRG)HCE,y-

Remark 1.4.  Let F € Ob(DE (Cx)). Let U and V be two subanalytic

open subsets such that V' C U. Following Andronikof’s factorization of the
restriction morphisms for the functor 7hom(-, Dbx ), we have the commutative
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diagram:

(6) RIy(F&CY) RIv(F &CY)

L~

RFU(F ®COO)<—F ®Coo—>RF\/F ®C°o)

In particular, if = is a point in X, we have the stalk’s formula:

(7) H*(F ©C%), ~lim R (X; 1y © CF),
U

where U ranges through a system of relatively compact subanalytic open neigh-
borhoods of z in X.

81.3. Normal deformation

Let us recall the construction given in [KS2]. Let X be a real analytic
manifold, M a submanifold of X and Ty, X 5 M the normal bundle to M
in X. We denote by k the embedding of M as the zero-section in Thy X. We
set Ty X = Ty X ~ M, and denote the projection on the sphere bundle by
Ao TMX — SuX = TMX/Rj_. We call normal deformation of M in X, the
data of:

i) a real analytic manifold X,

ii) amap p: X — X such that p~" (X ~ M) ~ (X ~ M) x R* and p~ (M) ~
Ty X U (M x R) identifying M x {0} to the zero-section of Tp; X,

iii) amap ¢t : X — R such that t~!(R*) ~ X x R* and t1(0) ~ T}/ X,
iv) a group action of R* on X such that the stalk of p is stable by this action.

Let us denote by € the open subset ¢~ !(R% ). We have the following commu-
tative diagram:

S

TML X T/)

M-—>X

We denote by 9 the infinitesimal generator of the action of R* on X. At a point
Fin X, 0z 4 (c.%)|c=1. Let z = (2/,2") be a local coordinate system on an
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open subset U of X such that M is defined on U by {z’ = 0}. On p~(U),
we consider the coordinate system (&', z",t). We denote by D,, = az. . Then
p(jl7 CE”,t) — (tj/,x”)
c.(¥, 2", t) = (c¥', 2", c ')
0= <fl,Di/> —tDy.

Let A be a subset of X. The set Cps(A) = Ty X Np~1(A) is called the
normal cone of A along M. Let F € Ob(DP(X)). The specialization of F' along
M is defined by:

vu(F) = s 'Rj.p7'F ~ s'Rjip'F.
For v € Ty X, let U be the family of subanalytic open subsets U of X such that

v is not in the normal cone Cpr(X \ U). Then we have the stalk’s formula:

H*(vy(F)), ~ lim RFT(U; F).
Uelu

Identifying Thy M with M, we have
Var (F) vt = Flar,

RFTMM(VM(F))|TMM = RFM(F)|M
Recall that if G is a conic object of DP(Ty X) then we have

RT*G ~ G|TMM and RT!G ~ RFTMM(G”TMM-

82. Whitney Specialization

In this chapter, X will be a real analytic manifold, M a real analytic
submanifold of X and X the normal deformation of X along M.

§2.1. Specialization of the Whitney functor

Let us first notice that if we just compose the functor of specialization of a
sheaf along M with the Whitney functor, we loose the growth conditions along
M. For instance, we obtain the same object with the constant sheaf on X and
the sheaf Cx\ 7. In fact, for v € Ty X, let U be the family of open subsets U
of X such that v ¢ Cp (X \ U). We have the isomorphisms:

(s (Cx B CF))o = limg CF(U) = limg TF 3y (U) = (v (Cxar HCF))or
Ueu Uel

Our aim is to construct a functor which will keep growth conditions on M
such as being infinitely differentiable on M in the sense of Whitney or vanishing
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at infinite order on M. In fact what should appear is the inductive limits of
D(X;Cy & ) and T'(X;Cpry yy 9 CF).-

The first idea is to factorize the restriction morphisms C¥(U) — C¥(U’')
in the above inductive limit by I'(X; Gz ® C¥) which is possible if U c U,
as in the commutative diagram (1.4). The problem is that for U in U, we can
not always find an open set U’ in U such that U c U, if v is outside the
zero-section. But if we look in the normal deformation X , we can consider a
base of neighborhoods V of v in X whose projection on X is /. So we should
apply the Whitney functor on X.

The second idea is that if we intersect V with Q like in usual specialization
then we obtain I'(X; (CU\M (‘f@C%"), the subspace of I'(X; G @@C}}O) consisting of
functions flat on M. As U N M corresponds to VNTy X =V NS, we should
intersect with Q.

Finally we set the following definitions:

Definition 2.1.  Let F € Ob(DY (Cx)). We set:
(8) wvn (F,C¥) = s'RHomp_(Dg_x,(0™' Fg©CF).
We call wv,, (F,C¥) the Whitney specialization of F along M.

We have the diagram:

oo

b 2 b W% b
Dp . (Cx) —>Dg. (Cx) ——=>D"(Dy)
plT lis’HomDA_{ (Px_x»)

wVN[(-,C?(O)

D .(Cx) DP(r~'i~'Dx)

Proposition 2.2.  Let F' € Ob(D} (Cx)). In D*(771Dx), we have
the commutative diagram:

(9) wry (D'F,C¥) ——— Tvy(F, Dbx)

| |

v ((D'F) & C) — var(Thom(F, Dbx))

Proof. The first vertical arrow comes from the sequence of morphisms:
wvy (D'F.CY) = 5_1RH0mDX (Dgox: (P (D'F))g @ c3)
— s 'Rj.RHomp_(Daox, (5 'D'F) ®C)
~ s Rj.p Y D'F & C¥)
= vy ((D'F) & C¥).
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The second morphism follows from the fact that the Whitney functor is local
and (p7'F)gla ~ (p7'F)|q. The third morphism follows from the isomor-

phism (4), as p is smooth.
Notice that we have a chain of morphisms:
(b {(D'F))g — RIa(p ' D'F)
~ Rj.p 'RHom (F,Cx)
~ Rj.RHom (p 'F,Cq)
~ RHom (p~'F,RI,Cx)
~ RHom ((p ' F)a,Cy)
~ D'((p™'F)a).
Then the first horizontal morphism of the proposition follows from the sequence
of morphisms:
wiy (D'F,C¥) = s ' RHomp,_(Dg_,x, (07'D'F)g & CF)
— silR’HomD? 25 Thom((p~'F)a,Dby))
~ Tvy(F,Dbx). 0

Proposition 2.3. Let F € Ob(D}_(Cx)). In DP(r7'Dx), we have
the tsomorphism:

(10) Wy (Far,C) ~ 77 HFy & CF).

Proof. Since ﬁmp—l(M) = Ty X, we have the sequence of isomorphisms:
silR?-lomDX (’DXHXW (pilF)TMX ® C)o_(o)

~ s_lR’HomDX (Dg_x» (sus™'p7'F) ® C;Zo)

~ sflRHOm”Dy{ (D)Z—>X7 S*RHom”DTMx (DTA4X—>)?7 (silpilF) ® C%?MX)

L ,
1 —1 -1, -1 >
~s s*RHomDTMX('DTMX_})-( Si(IX)D~ ST D v, (s F)QCT, x)
X

L
_1 —1.-1 &
~ RHomp  (Dryxsm @ T "Dyox, (tH1F)®©CE, x)
Tap X 1Dy M

~RHom _ip (T7'Dyox, 7 ' (i'F ®C37))

~r'RHomp (Dy—x,i ' F &C5)
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~7r i Yi,RHomyp, (Du—x,i 'F ©Chy)
~ 7 5N (i 7 F) @ CF)
~r LY Fy & C).
The second and the eighth isomorphisms is a consequence of the direct image

formula (2). The fifth isomorphism follows from the inverse image formula (4).
The sixth isomorphism is due to the fact that 7 is smooth. ]

Proposition 2.4 (Stalk’s formula). Let F € Ob(D}_(Cx)) andv €
Ty X. Then:

(11) H* (wvy, (F,C))y ~ lim RFT(X; Fp @ CF),
Ueu

where U is the family of subanalytic open subsets U of X such that v ¢ Cpr(X ~
U).

Proof. Let V be a base of subanalytic relatively compact open neighbor-
hoods of v in X. We have the sequence of isomorphisms:

H* (wv,, (F,C¥))w ~ limy RFT(V; RHomp (Dx_ x, (p1F)g® %))

Vey
~ lim R¥T(X; RHomp, (D, x, RIv((p™' F)g & CF)))
Vey
li RkF(X; R’Homp}2 (Dg_x» (p_lF)ﬁnV & C;(o))
Vey
~ lim R*"T(X; Rpi(p™" F)gry © CF)
Vey
~ hﬂ RkF(X; Rp!(p_lF ® CﬁmV) ® CY)
Vey
~ lig R*T(X; (F @ RpiCipr) & CF).
Vey

The third isomorphism follows from Remark 1.4, the fourth isomorphism follows
from the morphism of direct image (2) for p is proper on supp((p™ F)g,7)-
We have the sequence of morphisms:

BpCqry = BpCony
< Bp.Cp p@nmy)
~ Rp.p 'C,qnv)

— Cp(ﬁﬂV) .
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By using the same construction as in [KS2], there is an open neighborhood
system V of v satisfying the following properties:

i) anv=anV.
ii) For x € X \ M, p~!(z) N Q NV is either empty or isomorphic to a closed
interval [a; b].

iii) For x € M, p~Y(z)NQNV =771(2) NV is either empty or isomorphic to
a compact convex set in 77! (z).

Hence we have:

C itk=0and ze€p2nV),

Hk Rp!(C* )z ==
( an) {O otherwise.

Notice that U = p(V N Q) ranges then through the family of open subanalytic
subsets of X such that v ¢ Cpr(X N U). O

Proposition 2.5. i) If Z is the inverse image of a compact subset by
¥, we can write the sections on Z of the Whitney specialization for Fx\ s :

(12) RFT(Z; wu (Fyx\i, CF)) = lim RFT(X; Fyryy 0 CF)

Ueld
where U is the family of open subanalytic subsets of X such that Z N Chr(X ~
U)=2.
ii) If moreover 7|z has contractible stalks, we also have the same formula for
the Whitney specialization of F :

(13) R*T(Z; wuy (F,C¥)) =~ lim R*T(X; Fr & CF).
veu

Proof. The proof of (12) is similar to the proof of the stalk’s formula.
We just have to replace the basis of neighborhoods of v in X by the family of
relatively compact subanalytic open subsets of X such that Z C Ry (VNI X).

To prove (13), we use the distinguished triangle Fx\n — F— Fur 2N
and the remark that if 7|z has contractible stalks, we have the sequence of
isomorphisms:

R*D(Z; 71 (Far ® CX)) RO (r 1 (Z); 77 Y (Fay & CF))
~ RkF(T(Z); RT*T_l(FM & C%))
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~RFT(1(2); Fru @ CF).
~ lim RFT(X; Fyyp,p, 9 CF).
veu

The last isomorphism follows from the fact that the family of U N M when
U ranges through the family of subanalytic open subsets of X such that Z N
Cu(X N\ U) = @ is a neighborhood system of 7(Z) = Z N M. O

Corollary 2.6. Let F € Ob(D}_(Cx)). Then we have the isomor-
phisms:
(14) Rrowvy, (F,CY) ~ (F ® CX)Ins
(15) RT!’LUZ/\[(F,C%O)Z(FM(?@C%O)‘M ®WM/X7

and the distinguished triangle:

(16) (Fa & C¥)m @ wagyx = (F &CF)|w = Ri(wry (F,CF) iy, x) = -

Proof. The morphism (14) is defined by the sequence of morphisms:

(FRCX)|m =i (FRCY)
~ ks Y F o CY)
- Ic_ls_lRHomD}2 Pz, x, (p7'F)® %)
%kils*IRﬂomDX(Dgﬁxa(Ple)ﬁé’C;{o)'

From the stalk’s formula (11), this morphism is an isomorphism. Indeed if
v = (z,0) € Thy M then the family of open subsets U such that v ¢ Cp (X \U)
is a neighborhood system of = in X.

Let us construct the isomorphism (15). From the isomorphism (10), we
obtain the triangle:

Rrwvy, (Fx\ar, CX) = Rrwvy (F,C¥) = R~ (Fu ®C¥) SEN

Since the third term of this triangle is isomorphic to (Far @ C2)|m ® wry, x/
it is sufficient to prove that the first term of the triangle is zero.

Applying Sato’s triangle R7(-) = R7.(-) = R7: (|4, x ) L to wry, (Fx\m,C%),
we obtain:

Rnwvy, (Fx\ar, CX) = Rrawvy (Fx\i, C)

. o0 1
= R (wva (Fx\ar,CX) |y, x) - .
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Let us prove that the second arrow of this triangle is an isomorphism. Let
2 € M. Then the family U of open subsets U of X such that Cy (X ~\U) N
7+=1(x) = @ is the family of open neighborhoods of z in X. Let V be the family

of open neighborhoods of x in M. Then we have the sequence of isomorphisms:

Hk(R%*(w’/M(FX\M,C?(o)|TMx))x = h_ﬂ,l RkF(VS Ri—*(wVM(FX\M)C?(o”TMX))
vey

~ hg RkF(Til(V%UJVM(FX\Mvc;)(O»
Vey

~ er(’f’_l(m);'U)VM(FX\Ma(’,?))

~ lim R (X5 Py ©CF)
Ueu

~ Hk(WOVM(FX\Myc)O(O))(%U)

~ Hk(RT*(’U)VM(FX\M7C?)))(LO)'

The third isomorphism follows from the fact that wv,, (Fx\a,CY) is conic, the
fourth from formula (12) and the fifth from the stalk’s formula of wv, (Fx\ar,
CY).

We obtain the distinguished triangle by applying Sato’s triangle to
wvy (F,C¥) and using the two isomorphisms (14) and (15). O

Remark 2.7. If F is an R-constructible sheaf (i.e. F is concentrated in
degree zero), the Whitney specialization of F is also concentrated in degree zero.
Thus the Whitney specialization induces an exact functor from the category of
R-constructible sheaves to the category of 7~ 'Dx-modules. We shall use the

same notation:
Wy, (+,CF) : Rcons(X) — Mod (7' Dx).
We have the exact sequence of 71D x-modules:
(17) 0 = wr (Fx\wm,CF) — wuy (F,C¥) = 771 (Far & CF) — 0.

Let V be a conic subanalytic open subset of ThrX such that 7|y has
contractible stalks. Then we have:

(18) D(V;wiy (F,CF)) =~ ;i7m <I§ D(X;Fr & C§§)>

where Z ranges through the family of inverse image by  of subanalytic compact
subsets of 4(V'), such that 7|z has contractible stalks, and U ranges through
the family of subanalytic subsets of X such that ZNCy (X \U) = @.



50 VIOLAINE COLIN

§2.2. Asymptotic expansions for C*°-functions
Let us consider the case where F' is the constant sheaf on X. We set:
wry (CX) = wrvy(Cx,CY) and  wvy(CY) = wvn (Cx\um,CX).
We have a sequence of sub-r~!Dx-modules:
W'y (CY) = wrn(CX) <= vu(CY).

For simplicity of exposition, we assume that X ~ {z = (2,t) € R* P x R} and
M ~ {z = 0} ~ RP. We shall call sector along M a subanalytic open subset
S of X such that S = Uy x (Uz N Va) where Uy, Uy are open convex subsets of
RP and R"™P, 0 € Us, and V5 is an open convex cone of R"™P with vertex at
0. Let us denote 78 = Uy C M and R1S = Uy x Vo C Ty X. Let S and S’ be
two sectors of X. We shall say that S’ is a subsector of S, and write S’ < S,
if 5 M C 8.

Definition 2.8.  Let S be an open sector of X and f € C>(S). One
says that f is asymptotically developable in S along M, if there exists a formal
series Y enn—» ak(t)2" with C> coefficients on 7S such that

VS < S,¥m e N,3C > 0,¥(z,t) € S, |f(zt) — Y ar(t)2F| < C|l2™
|k|<m

We denote by op(S) the vector subspace of C*(S), consisting of functions
asymptotically developable in S along M. We set:

o3(S) = {f €C™(S),Vk e N*"P DFf c 5)(5)}.
Proposition 2.9.  Let S be a sector of X. We have:

(19) o77(8) 2 lim T'(X;Cy ©CF).
S'<S

The map which associates to a function its asymptotic expansion is a morphism
of D(X)-modules:

(20) oRi(S) B Wirs
Proof. We have the following diagram of vector spaces:

c(8) s Jm CF(5)

S'<S
Ps’ st
o53(5) tm Wy
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i) Let us prove that of;(5) C lim W°°_, If f € o%3(S) then for all multi-
S'<S

indices k € N*, D*f € 0)/(S). From the asymptotic expansion of order 0, we

get that D f is bounded on every subsector S’. Since every sector is regular, it

follows that D f|s, admits an extension to a continuous function on S” and from

Whitney’s theorem, there exists a Whitney infinitely differentiable function F',

on gl, such that Fk|5/ = Dkf|5/.

We have the commutative diagram of D(X)-modules:

-/
)
[ T l/ Ps’ 5 nm

W -rSSﬁ]\/I 1m XSQM
X, TS > S'<S

ii) Since lim WOOE, is stable under derivations and ¢33(S) is the biggest sub-

S'<S
space of o (S) stable under derivations, to prove that lim W = Co37(S5), we
S’<S
just have to check that lim W, C on(S5). Let f € C>(S) and (F¥)kene be

S'<s
a Whitney function on a subsector S’ of S such that Vk € N*, F¥|g, = DF f|s.
By definition, Ym € N, Va € ?l, Ve > 0, there exists a neighborhood U, of
a such that:

Nk
veyeunS, [P - Y Eph )| < ety
|k|<m '

Eventually taking a smaller open subset U,, we can assume that for all x = (2, t)
inS' N U,, the point y = (0, ) is also in S NU,. Since §' NM is compact, there
exists a positive number § such that S§ = {(z,¢) € S'/||z|| < 6} is a subset of
U=U,esnpUa

Let k = (i,j) € N7 x N, o = (z,t) € S5 and y = (0,t). For all
teS N M, we set a;(t) = F(9(0,¢)/il. Then, we get:

V(z,t) € S5, [ f(2,0) = D ai(®)2 | <ell2l™+ | D ailt)?

[i|<m li|=m
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Notice that the formal series Y, a;(t)z" as the image of the Whitney function F
—
by the restriction map pgr 57, is @ Whitney function on S N M. In particular,

the coefficients a;(t) are C*> on 75" and continuous on SnM.
Finally, in order to satisfy the estimate in Definition 2.8, we set:

Ci = sup Zai(t) ,teglﬂM ,
|i]=m

Cy =supy |f(z,t) — Z Z'a;(t)|, (2,t) € S\ S ¢,

lil<m

C =max(e+ Cy;Co0™™). B

Proposition 2.10.  Let S be a sector of X. The sections of wv, (CF)
on RY S are the germs along M of C°-function asymptotically developable in
S as well as its derivations.

(21) [(R S;wry (CY)) ~ lim ( lim oy (8N U))
S’<S \UDTtS

where U is an open neighborhood of 7S in X. The space I'(RYS;w’vy (CF))
is the subspace I'(RY. S;wvy (CY)) of functions of asymptotic expansion zero.

The formula (21) is a consequence of the formulas (18) and (19). The
second assertion follows then from (20) and the exact sequence (17):

(22) 0 — wry (CF) = wrn (CF) B 771 (Cy HCT) = 0

§2.3. Operations

Let X and Y be two real analytic manifolds, M and N two submanifolds
of X and Y, respectively. Let p and s be the maps associated to the normal
deformation of M X N in X X Y. We denote by p and s’ the maps px X py
and sx X sy. We have the closed embedding & of X XY in X x Y which gives
the commutative diagram:

X

(23) TMX X TNY(—> X' Y/ '

TMXN(X X Y)
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Proposition 2.11 (External tensor product).
Let F € Ob(D% (Cx)) and G € Ob(D% (Cy)). We have the natural
morphism:

(24) wry (F,CF) B wvy (G,C3°) = wry v (FRG), CRyy)-

Proof. We have the sequence of morphisms:

wvy (F,C%) 8wy (G, C5)

= sy RHom (Dx_, ., (P¥' Flg, C;zo)
R sy RHom (Dy .y, (py "G, CF)

~ s’ 'RHom (Dxxvoxxy: (Px Flg écg’f) X ((p;lG)ﬁY ® &)

%SlilRHOm(DXXY/*}XXY7(( Flg, X (py'G)g )®COO ;)

— 5 'RHom (Dg s, x vy (R(p™"(F R Gy, y) ©CFyy)

~ s 'RHom (Dg 5, x .y RkaRHom (D

p HFRG)g ®c%v)

XXY 3 XXY?

Qxxvy

1
~ ' "' RkyRHom (D v oxxy @8 Doy xxys

HFRG)g,,, ©C2)

Qxxy

& 02—

1R?—Lom( Ty Xxy)

—1
v oxxy P (FRG)

The third morphism is a consequence of the morphism (5), the sixth morphism
of the direct image formula (2) since k is proper and the last morphism of the
Cartesian square (23). The fourth morphism is the composition of the following

morphisms:

(Px'F)g, B (0y'G)g, ~ (0x' FRpy' Gy, 3,
=~ (pl_l(Fg G))QX xQy
— Rk (FRG))g, va,
~ Ry(k~'p " {(FRQ)),- 1(@Qx x0y)
~ Riy((p" (FRG))g,,)- O

Let f : Y — X be a morphism of real analytic manifolds, M and N two
submanifolds respectively of X and Y such that f(IN) C M. We have then the
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following commutative diagram where the first square is Cartesian:

(25) Ty sy 2
A o lf
TuX—E > %

Recall that f is clean relatively to M if N = f~1(M) is a submanifold of Y’
such that 'fy : N xp Ty, X — TxY is surjective. If N = f~1(M) and f is
clean relatively to M, then fj : TnY — N X Ty X and p x f Y 5Y xX
are closed embeddings.

Proposition 2.12 (Inverse image).
Let F € Ob(D}_(Cx)). In D"(fy 7 1Dx), we have the natural morphism:

-1

(26) INT wva(F,CE) = RHom 1y (7' Dy x,wuy (f7'F,C5)).

If f and f|n are smooth, then the morphism (26) is an isomorphism. In
D"(r71Dy), we have the natural morphism:

L _
(27) 1Dy Ly 3, F N W (F,CE) — wuy (fL1F, C).

If f is a closed embedding, clean with respect to M and N = f=Y(M), then the
morphism (27) is an isomorphism.

Proof. Let us first construct the morphism (26). Since f ~1(Qx) = Qy,
we have the natural isomorphisms:

oy P, = (f_lp;(lF)f—l(ﬁx)
~(py'f ' F)g,
Then the morphism (26) follows from the sequence of morphisms:

I'n wZ/M(F C%)
~s lf_lRfHong (D}Z—>X’ (p;(IF)ﬁx é C;{(O)
— s;lR’Homf,lp)_( (fflp)}_g(, fﬁl((p)_(lF)ﬁx & (=3))

L - - B v e
- SYIR%OWD Dy x ; ® f_lfo(%X7 (f_l(pxlF)ﬁx) ® C{/ )
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~ sy RH Dy 5 pip AR e
= Sy Om’D}n( YooY f?p p yox, 0y f )QY ® {/)
py Dy
— RHom 1,-1p, (sy Py Dy x, wun(f1F,C5)).
The third morphism is an application of inverse image formula (4).
If f is smooth, then Dy _, x is Dy-coherent and the last arrow is an iso-

morphism. If f and f|y are smooth, then f is smooth and the first two arrows

are also isomorphisms.
By adjunction of the morphism (26), we obtain the morphism:

L _
T DyLx ® iy twon(FCE) = wun (U, C).
TflfleX

Let us prove that it is an isomorphism when f is a closed embedding. Assume
then that v € TyY. Since f and fj are closed embeddings, Dy_,x is a right
f~'Dx-coherent module and Rfy, =~ fi is exact. We have the sequence of

isomorphisms:

k( —1 L —1 %0
H (7' Dy_x 1f®1’D fN wVJ\I(F7 CX ))v
T - X

L
~H*(fym 'Dyox ® wun(F,C)) gy (o)

1Dy
gn_n;er(X;f*DHxéFﬁéC??)
~ERRIT(X f(Dyax & f7 (Fy 8 CR)
~lim RED(Y; (f 71 F) & C5)
~lm R T(Y; (f 7 F)yng © CF)
~ H* (wuy (f71F,C5)).-

The second and last isomorphisms follow from the stalk’s formula (11). The
fourth isomorphism follows from the inverse image morphism (3). O

Proposition 2.13 (Direct image).
Let G € Ob(D_(Cy)). In DP(77'Dx), we have the natural morphism:

(28) wuy (RAG,CE) = Rfy.RHom _ip (77" Dy x,wvy(G,C5)).

If f is smooth, proper on suppG, and N = f~Y(M), then the morphism (28)
18 an isomorphism.
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Proof. Let us begin with the construction of the morphism (28). By
adjunction in the morphism (26), we have the morphism:

wvy (F,CE) — Rfy. RHom _ip (17 Dy L x,wvy (f1F,C50)).

Replacing F by RfiG, and composing with f'RfG — f'Rf.G — G, we
obtain the morphism (28).

Let us prove that, if f is smooth, proper on suppG, and N = f~1(M),
then the morphism (28) is an isomorphism. If f is smooth and N = f (M),
we assume locally on Y that f is the first projection of X x Z and N = M x Z.
Then the second square of the diagram (25) is Cartesian, and we have the

sequence of isomorphisms:

(Px'RAG)g, ~ (RApy G,
~ Rf, ((p;lG)ffl(ﬁx))
~Rfi((py'G)g,).

Moreover since f is proper on supp@, f is proper on supp(p 1G)g and fj
is proper on supp(p *G) N Ty X. Then the isomorphism (28) follows from the
sequence of isomorphisms:

'LUVM(R][!G’C;(O>
~ s)_(lR’HomDX (D x, RN (p{,lG)ﬁy ® CcY)
~ sy RHomyp_(Dg_,x, Rf.RHomp_(Dy_, 5, (py' G)g, ©CY))

~sy'Rf.RHomp_(Dy_ % i F7'Ds o x, (0y ' G)g, @ CF))
X

L w
~Rfy.sy Rilomp (Dy_y © py'Dyox. (py'Cla, ©CF))
Py Py

~ Rf]'\,*s;lRHomp;1DY (py' Dy - x, RHomp_ (Dy_y» (p;lG)ﬁy ® CZ))
~ Rfy. RHom s7ipyiDy (5}71p}7/1DYﬁX7 wy (G, Cy7)).

Since f is smooth, Dy _, x is Dy-coherent and the last arrow is an isomorphism.
O

Recall that f is transversal to M if tf’|yXXT;[X Y xx Ty X = TY is
injective. If f is a closed embedding transversal to M and N = f~'(M), we
have the following commutative diagram where the vertical arrows are closed
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embeddings and the two squares are Cartesian.

(29) Tyye—2 -~y oy
oo {f O f
Ty X~ ¥ 2 o x

Proposition 2.14. Let f : Y — X is a closed embedding, transversal
to M and N = f~*(M). Letg: X — Z and h : Y — Z be two smooth
morphisms such that h = go f.

Let G € Ob(D}_.(Cy)). We have the natural isomorphism:

(30)
RHom'DX (DX—>Za ’UJZ/M(f*G, CS)(O)) = f]IV*RHomDY (DY—>Z; wVN(Ga C?’o))

Proof. Indeed from the diagram (29), we have the sequence of isomor-
phisms:

RHomp (Dx—z,wvu(f.G,CX))

=RHomy (Dx-z, s}lRﬂomDX (Pg_ (p}lf*G)ﬁx ® C}O))

~ s}lRﬂomDX (p;(lDXHZ, R?—lome( (Dg_x» (f*p{/lG)QX ® C%O))

~ sy RHomp (Dx_,z, (f(py'G)g,) ©CF)

~ S}IRHomD}_{ (Dg_, s f*RHomD? (Dy_, %, (p;,lG)ﬁy & )

~ s}lf*RHomDy_' (Dy_, 2. (py' G)g, & Cy)

~ fi.sy' RHomy (py' Dy oz, RHomp_(Dy_y, (03! G)g, ©CY))

~ fy.RHom (77 "Dy Lz, wvyn (G, C5)). O

§3. Formal Specialization

From now on, X will be a complex analytic manifold of complex dimension
d. We denote by X the conjugate complex manifold of X, Xp the underlying
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real analytic manifold of X and M a real analytic submanifold of Xg.
The diagonal embedding Xr < X x X allows us to consider X x X as a
complexification of Xi. If there is no fear of confusion, we often write X
instead of Xg. For instance, we shall write CY instead of C5,. We denote Dx
the sheaf of rings of finite order holomorphic differential operators on X.

Let F € Ob(DE (Cx)). The functor of formal cohomology is the Dol-
beault complex of the Whitney functor [KS1]:

F & Ox = RHomp_(Ox, F ©C%).

In particular, if F is the constant sheaf on X, we have Cx ® Ox = Ox. If
X = C and F = Cygy, then we have:

Cpoy © Ox = RHomp,_(Ox, Cpoy 0 CF)
~ RHomsy (O, (Cll2 2] o)
~ (Cl[2]) 0y -
§3.1. Specialization of the functor of formal cohomology
Definition 3.1.  Let FF € Ob(D}_(Cx)). We set:
(31) wry (F,O0x) = RHomT_lpy(Tfloy, wry (F,CY)).
We call wvy (F,Ox) the formal specialization of F along M.
In DP(77'Dx), we have the commutative diagram:
(32) wvy (D'F, Ox) Tvu(F,Ox)

| !

Va((D'F) % Ox) —= var(Thom(F, Ox))

Proposition 3.2 (stalk’s formula).
Let F € Ob(D}_(Cx)) and v € Tayy X . Then:

(33) H*(wvy (F,0x))y = lim R*T(X; Fyr ® Ox)
velu

where U is the family of subanalytic open subsets of X such thatv ¢ Cp (X \U).

Proof. Let us notice first that:

wy(F,Ox) =~ ™' RHom 15, _(p™'Ox, RHomp_(Dx_,x, (0™ ' F)g® CF)).
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Then we have the sequence of isomorphisms:

H* (wvy (F,0x))s
~lig R*I(V; RHom -1 _(p™ ' Ox, RHom, (D, x, (07" F)g ©CF)))

~lig R*I'(X; RHom -1 pp_(p~' Ox, RHomp, (D, x, RIv((p™'F)g © CF))
~1lig R"T(X; RHom p_(Ox, Rp.RHom 1, (Dx_,xs RIv((p™' F)g @ CF))))-

Following the same argument as for the computation of the stalk in the C*
case, we obtain:

w

H"(wvy, (F,Ox)), ~lim R*T(X;; RHomp_(Ox, Fy ©CF))
~lim R*T(X; Fr © Ox),

where U ranges through the family of subanalytic open subsets of X such that
v g Cy(X\U). O

Proposition 3.3.  Let F € Ob(D} (Cx)). We have the isomorphisms:

(34) R (wvy (F,0x)) ~ (F @ Ox)|um
(35) RT!(wVM(FaoX»Z(FMéoX”M@wM/X;

and the distinguished triangle:

(36) (Far & Ox)n @ waryx — (F & Ox)|u = Riv(wva (F,0x)g,, ) .

Proof. To check the isomorphism (34), we consider the sequence of iso-
morphisms:

Rr.(wvy (F,0x)) = RT*R/HOmT_lpy(Tiloy, wv (F,CY))
:RHomi,lpy(i_l(’)y, Rr.wvy (F,CY))
~ RHom,; 1p_(i7' Ox,i”'(F & CF))
~i 'RHomp_(Ox, Fxa ©CF)
~ (F & Ox)|u.

The third isomorphism follows from the isomorphism (14) and the forth from
the coherence of O« on D+.
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As for the isomorphism (35), it follows from the sequence of isomorphisms:
Rr(wvy, (F,Ox)) ~ k!RHomT,lpy(Tfl(Qy, wry (F,CY))
~ RHomi,lpy(i_loy, Ewwy, (F,CE))
o~ R?—lomi,IDY(i_loy, i (Fy @ CF) @ wir/x)
~ i_lRHompy(Oy, Fy ®CF) ® war/x
~ (Fyr & Ox)|ur ® W/ x-

The third isomorphism follows from the isomorphism (15).
Applying Sato’s triangle to wvy, (F, Ox), we obtain the distinguished tri-
angle (36). O

§3.2. Complex normal deformation

If M is a complex submanifold of X, it will sometimes be useful to give
an expression of the formal specialization in terms of the deformation to the
normal complex bundle [BFM], [V]. We denote by X° the complex normal
deformation, by z the projection on C and by p the projection on X. We
denote by ¢ the embedding of Th/ X in X¢. Recall that z=1(0) ~ Tj; X and
27H(C*) ~ X xC*. Identifying Xr with 2~ (R) and Q with 2~!(R".), we obtain
the commutative diagram of real analytic manifolds:

z

(T X)RE z (X)r C

N

T'ry (XR>( : Xr
Proposition 3.4. Let F € Ob(DE_(Cx)). We have the isomorphism:
(1) wnn(F,0x) =0 ‘RHom (Dg._,x, (0 ' F)g® Ox.).

t

Proof. We have the sequence of isomorphisms:
wvy (F,C¥) =s"'RHom (Dx. s xas (p ' F)g® CcY)
~ o 'Ri,RHom (DXR‘)X§ ® L_lp)?]gaxkﬂ (TR ® %)
~ o 'RHom (DX];;%XR’ Ri.(t 77 F)g ® C%.)
~o 'RHom (Dx._,x,. (07 F)g ©CZ.).
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On the other hand, from Lemma 5.5 of [KS1], we have the sequence of isomor-
phisms:

wry (F,O0x) = RHoma,lp,l%(oflpfloy, wry (F,CY))
~ U—lRfHompley(p_loy, R’Homeﬁ (D}Zﬁﬁxﬂx’ (p_lF)ﬁ &@ C;Z,OC)

~o 'RHomp_ (Dx._, RHomp_ (0%, (p 'F)g®CE.)

~ 0_1R’HomDXC (DXCHX, (p_lF)ﬁ ® OXc)-

§3.3. Examples

In this section, we study the case where F' is the constant sheaf Cx. We
set:

wry (Ox) = wry (Cx,0x)  and  w'vy(Ox) = wry (Cx\um, Ox).
We have the distinguished triangle:
(38) W'y (Ox) = wry (Ox) = 7 H(Cy & Ox) AN

If M is a complex submanifold or if X is a complexification of M, then

wry (Ox) and 771(Cy ® Ox) are concentrated in degree zero. Indeed, if v

belongs to the normal bundle Ty X, then H*(wv,,(Ox)), ~ @er(x; Cp
U

Ox), where U ranges through the family of subanalytic open subset of X
such that v ¢ Cp (X \U). We can assume U convex, then from A. Dufres-
noy [D], RI'(X;Cy; ® Ox) is concentrated in degree zero, (see [DS] for another
proof of the result). We have the same result for 7—1(Cy ® Ox). More-
over, the restriction morphism I'(X;Cy ® Ox) ~ I'(X;Cy ® C¥) N O(U) —
['(U;Cy & Ox) =~ O(U) is injective. Therefore we can identify wv,,(Ox) with
the subsheaf Hwv,,(Ox) of the sheaf v,,(Ox), and we have an exact sequence
of 77 1Dx-modules:

(39)
0 = How'vy (Ox) = wry (Ox) = 771 (Chy @ Ox) = H'uwvy, (Ox) — 0.
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3.3.1. Complexification of a real manifold

Proposition 3.5. Let X be a complexification of M, a real analytic
manifold. We have an exact sequence of Dx -modules:

(40) 0 — wry (Ox) = 771(C57) = H (w'vy(Ox)) — 0,
which induces on the zero-section, the exact sequence:
(41) 0— Ax|m — C3p — HY(Rro(wvy (Ox))) — 0.

The sheaf wvy, (Ox) can be seen as a subsheaf of 7-1(C3%). More precisely, let
S be a sector of X along M. A section of wvy (Ox) on the cone RS is the
germ of an infinity differentiable function on TS which is the boundary value

along M is a holomorphic function on S.

Proof. From the exact sequence (39):
0 = How'vy, (Ox) = wry (Ox) = 771C55 — Hw'v, (Ox) = 0,

we just have to prove that HOwOVM((’)X) is zero. In other words, we have to see
that if a holomorphic function f on a sector has a null asymptotic expansion,
as well as all its derivatives, then this function f is zero.

For simplicity, we assume X ~ {z € C"} ~ {(z1,2') e Cx C""'}, M ~
{Sz = 0} and consider the sector S ~ {||S2'|| < rSz, [|Sz]| < r,||Rz]| < r}.

There exists a Whitney function (F¥)enn on S, such that F¥|ss = D¥f|s
and F*|, = =0. Weset S; = SN{z =0} C C. Then F¥|g is holomorphic
on S; and F k|§mR = 0. From Schwartz reflection principle, it implies that
F*|g, =0, which means that there is a point (z1,0) in the interior of S such
that for all k, DF f vanishes at this point. Thus f is identically zero. O

3.3.2. Asymptotic expansions for holomorphic functions

In this paragraph, M is a complex (smooth) submanifold of X. For sim-
plicity of exposition, we can assume that X ~ {(z,t) € C" P x C?} and
M ~ {z = 0}. We shall use the same notations of a sector S, its projection 7.5,
the generated cone R’ S and subsector, used in the paragraph 2.2.

We denote by a"/(S) the set of holomorphic functions f on a sector S such
that there exists a formal series >, cyn—» ai(t)2z" with holomorphic coefficients
on 7.5 such that for all subsector S’ of S, for all m € N, there exists a positive

constant C' such that

Vo e s, |[flat) = 3 at)| <ollz)m.

|El<m
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Proposition 3.6. Let S be a sector of X. The sections of wvy(Ox)
on R S are the germs along M of holomorphic functions asymptotically devel-
opable in S, having an asymptotic expansion with holomorphic coefficients.

(42) D(R’S; wry (Ox)) ~ lim (m o?v;ﬂ(s'mU)>,
S'<S \UDTtS

where U is an open neighborhood of 7S in X.
This is a consequence of the following proposition.
Proposition 3.7.  Let S be a sector of X. We have:

(43) oi7 (8) = o3(S) NO(S) ~ lim I'(X;Cg & Ox).
S'<S

Proof. First notice that for all sector S, we have I'( X; (Cgé@x) ~ Wy 5N
O(S). So from the formula (19), we get:

S'<S

Moreover by definition, o¢!(S) and 055 (S)NO(S) are subsets of o,(S)NO(S).

i) Let us prove the inclusion 03%(S) N O(S) C oh?!(9).
Let f € O(S) and T(f) = 3_; jenn—» ajr(t,1)27z" € W, s Forall (a,B) €
N"~P x NP, we have:
«@ (k + Oé)' I =
DEDgT(f) = Z 1 Dgaﬂﬁa(t, 1)2izk
j,kENr—P
—T(D2Dl)
—0.

With # = 0, this implies that a; (¢, ) vanishes if & # 0. With o = 0, this
implies that D{ﬂam(t,i) vanishes on 7.5, thus a;(t,) is holomorphic on 7.5.

ii) Let us prove that o"?/(S) is stable under derivation. Let us recall
Cauchy’s estimation: If g is holomorphic on the polydisc P(a,r) = {z €
C"/|x; — a;] < r} and continous on its closure, then for all & € N", one
has:

N al
|D%g(a)] < — sup |gl.
T Payr)
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For all S’ < S there exist a positive number ¢ and a subsector S; < S such
that for all (z,t) € S’, P((2,1),¢||z|]) € Si. For all (2,t) € S’, we have:

Do fen = 3 et | [ =2 s |- 3 an(t)et

X
Fret (ellzID'! pez ez k<m

a! m
< WCI(U +)l=l)
o al(l4+¢e)™
= g|’1|

< Callzfm 1,

=)™

On the other hand, for o = (i,7) € N*7P x NP we have :

pr [ S amt) = % (k+i)!Djak+i(t)Zk.

k!
|k|<m |kl <m—]i]
Finally, if we set
- || —m+]al i B!
€ =Caotsup (] > Pawn ).

m—|a|<|kl<m—|i|

we have:

o k+1 'Dig it m—la
popey -y EEDDe ) i
|k|<m—|al ’

|

Proposition 3.8.  The distinguished triangle (38) induces an ezact se-
quence of sheaves outside the zero-section:

T . _ .
(44) 0— wOVM((’)X)|T-MX — qu((’)X)|T-MX = 77 HOx|m) = 0.
On the zero-section we have the exact sequence:

(45) 0= Ox|y = Ox|u = HY(Rrw'vy (Ox)) = 0.

Proof. We have the exact sequence (39):

0 = How vy (Ox) = wry (Ox) 5 77 (Ox|a) = H'uwvy (Ox) — 0.
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i) If we consider the restriction to the zero section, the morphism T
from wrvy, (Ox)|m = Ox|m to Ox|u is injective. Thus we get the exact se-
quence (45).

ii) The surjectivity of T' from wvy (Ox)l|4,, x to 7‘_1((’)XTM) follows from
the surjectivity of T from o"°!(S) to Wx s N O(S), which is the Borel-Ritt
theorem with parameters: For all formal series with holomorphic coefficients,
there exists a sector S and a holomorphic function on S whose asymptotic
expansion is exactly this formal series. There is a sketch of the proof, for
instance, in Wasow’s book [Wal]. O

In particular, if X = C and M = {0}, Malgrange and Sibuya had already
given a construction of the sheaves wv o, (Oc) and w’vy, (Oc) viewed on the
circle S' ~ (T, X \ M)/R7, denoted by A and A, [MI1], [Si]. The exact
sequence (45) is a generalization of Malgrange’s exact sequence:

0 — C{z} — C[[z]] — H(S%; Ag) — 0.

In the case of normal crossing divisor, M. A. Zurro also proved the equiv-
alence for a holomorphic function to be strongly asymptotically developable
in a polysector S; x ...S, of Majima [Mj], and to be a Whitney function on
every closed subpolysectors [Mo], [Z]. If M is a smooth complex submanifold
of codimension 1, wr,,(Ox) corresponds to the polysectors such that at least
n — 1 sectors S; are neighborhoods of 0 in C.

83.4. Operations

Let X and Y be two complex manifolds, M and N be two real analytic
submanifolds respectively of Xr and Yg.

Proposition 3.9 (External tensor product).
Let F € Ob(D_ (Cx)) and G € Ob(D}_(Cy)). We have the natural mor-
phism:

(46) wry (F,Ox) B wry (G, Oy ) = wry, v(FRG),Oxxy).
Proof. We just have to apply the functor R’HomDYX?((’)YXV, -) to the
morphism (24):

WV (F7 OX) X wl/N(Ga OY)
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~ R?—lomp?((’)y, wry (F,CY)) X R’HomDT((’)y, wry (G, Cy°))
~ RHomp_ (O, v, wvu(F,C3) B wvy (G, Cy))

- RfHomDYx »(Ofx?’wVMxN((F X G),CXyy))

Y

:wyl\lxN((FgG)a(,)XXY)- OJ

Let f : Y — X be a morphism of complex analytic manifolds, M and N be
two real analytic submanifolds respectively of Xg and Yg.

Proposition 3.10 (Inverse image).
Let F € Ob(D5_(Cx)). In DP(fi '771Dx), we have the natural morphism:

(47) f]'V_leM(F, Ox) — RHom _.p (TﬁlDy_,X,wuN(fle, Oy))

If f and f|n are smooth, then the morphism (47) is an isomorphism. In
D"(r7'Dy), we have the natural morphism:

L _
(48) T 'Dyx Bop wwn (F, Ox) = wiy (f7LF, Oy).
T PXx

If f is a closed embedding, clean with respect to M and N = f=Y(M), then the
morphism (48) is an isomorphism.

Proof. The morphism (47) follows from the sequence of morphisms:

1 ; —1

In wrn(F,0x) = fn R’HomT,lpy(T*l(Qy, wvy (F,C¥))

~ RHom p —sap ([ 77 O i wwn (F.CF))

%RHomT,lf,lpy(T_lf_loy, RHom (17" Dy, x,, wvy (f ' F,C5°)).
The second morphism is an application of the direct image formula (26). If

moreover f and f|y are smooth, then both arrows are isomorphisms.

L
As in Lemma 5.5 of [KS1], since 77Dy, ,x, ~ (77'Dy;, ® 771Dy x)
- T—I'DY

® 71D

i v x> We have the isomorphisms:
T 1Dy

R’HomT_lfﬂDY(T*lffloy, R?—[omT_lDYR (17 "Dy L x0, won (FHF,C50)))
~ RHom  .p (T_lDy_m,RHomT,lDY(T_l(’)V, wuy(f1F,C)))
~ RHom _.p . (t7'" Dy x, wun (f7F, Oy)).
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By adjunction of the morphism (47), we obtain the morphism (48). Then
to prove that this morphism is an isomorphism if f is a closed embedding clean
relatively to M and N = f~1(M), we have to compute the stalk exactly like
in the proof of the isomorphism 27, replacing - @ C¥ by - ® Ox, and using the
stalk formula (33) instead the stalk formula (11). O

Proposition 3.11 (Direct image).
Let G € Ob(D_(Cy)). In DP(771Dx), we have the natural morphism:

(49) wry (RAHG,Ox) — Rf,'V*R’HomT,IDY (T_lDyHX, wry (G, Oy)).

If f is smooth, proper on suppG, and N = f~Y(M), then the morphism (49)
18 an isomorphism.

Proof. We consider the sequence of morphisms:

wvy (RAHG,Ox) = R’HomT,lpy(T_l(Qy, wvy (RAHG,CF))
— RHomT_lpy(Tfloy, sz'\,*R’i‘—[on"LT_lDYR (7' Dyi s xa, wrn (G, C5F))
o~ RfIIV*RHOmfllvflel'DY
(fn " 77 Oxs RHom i (77" Dysmsxg, win (G, CF)))
~ Rfy.RHom i pp_
(11O, BHom 1, (1" Dyys e w0 (G.CF))
~ Rfy.RHom _1p (77 'Dy_x,wvy(G, Oy)).

If moreover f is smooth and N = f~!(M), then the first arrow is an isomor-
phism. O

The following corollary is the specialization’s version of morphism (5.19)
of [KS1] in the smooth case.

Corollary 3.12.  Let F € Ob(DE_(Cx)). If f and f|y are smooth, we
have the natural morphism in D®(r71Dx) :

(50)  Rfp(r'Dxcy & won(f 7 F,0)ldy] = wva (F,Ox)ldx].
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Proof. We have the sequence of morphisms:

sz'V!(T_leng% wuy(f7'F, Oy))[dy]

~ RfyiRHomp, (77 'Dy_x,wvy(f~'F,Oy))[2dy — dx]
~ Rfffy wvy(F, Ox)[2dy — dx]
~ Rt fi win (F,0x)ldx]

—>w1/M(F, Ox)[dx] O

Proposition 3.13. Let f : Y — X be a closed embedding, transversal
to M and N = f~Y(M). Let g: X — Z and h : Y — Z be two smooth

morphisms such that h = go f. Let G € Ob(DY__(Cy)). We have the natural
isomorphism:

(51)
RHomp (Dx -z, wvy(fG,0x)) =~ f}V*RHomDY (Dy oz, wvy (G, Oy)).

Proof. We have the sequence of isomorphisms:

RHom p (Dx oz, wvy (fG, Ox))

~ RHomyp (Dxz, RHomD?(Oy, wry (f+G,C%)))

~ RHomh,lDy(h_lOy, RHom px. (Dxy— 7, wva (f:G,CX)))
~ RHom ,L,lDy(h_lOy, f*RHomDYR (Dya— 22, Wy (G, C3F)))
o~ f*RHomg_lDy(gfloy, R”HomDYR (Dyz— 2, wvn (G, C5°)))
~ feRHomp (Dy_z, RHom DY(OY’ wry (G, C3)))

~ f*R’HomDY (Dy o z,wvn (G, Oy)).
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