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The g-twisted Cohomology and
the g-hypergeometric Function at |g| = 1

By

Yoshihiro TAKEYAMA*

Abstract

We construct the ¢g-twisted cohomology associated with the g-multiplicative func-
tion of Jordan-Pochhammer type at |¢| = 1. In this framework, we prove the Heine’s
relations and a connection formula for the g-hypergeometric function of the Barnes
type. We also prove an orthogonality relation of the g¢-little Jacobi polynomials at
gl =1.

§1. Introduction

In this paper we construct the g-twisted cohomology at |¢| =1 in Jordan-
Pochhammer case and prove some properties of the g-hypergeometric function
at |g| = 1 defined in [NU].

The basic hypergeometric function with 0 < |g| < 1 [GR] is represented in
terms of a Jackson integral. In [A1l, AK], a formulation of Jackson integrals is
given. Namely, for a g-multiplicative function defined by means of g-version of
Sato’s b-functions [Sa], the g-twisted cohomology is defined. In this approach,
Jackson integrals can be regarded as a pairing between this cohomology and
g-cycles.

We consider the case that |¢g| = 1 and ¢ is not a root of unity. Then
the structure of b-functions is the same as in the case of 0 < |g| < 1 and
associated g-multiplicative function can be constructed in terms of the double
sine function [B]. The problem is to define a suitable integral which is a certain
generalization of Jackson integrals to the case of |¢| = 1.
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In [MT], a family of solutions to the quantum Knizhnik-Zamolodchikov
equation (¢KZ) at |g| = 1 was constructed. The solution is represented in terms
of a pairing between two functional spaces, which is called the hypergeometric
pairing. The hypergeometric pairing was defined by Tarasov and Varchenko in
the study of the rational ¢KZ [TV1] and the trigonometric ¢KZ for 0 < |g| <
1 [TV2]. In the trigonometric case, the hypergeometric pairing is a pairing
between a space of trigonometric functions and that of elliptic functions. It is
given by an integral over a closed contour with a kernel function defined by
a product of the infinite product with step ¢. This kernel function is the ¢-
multiplicative function mentioned above. By taking residues, we can represent
this integral in terms of a Jackson integral.

In the case of |¢| = 1, the hypergeometric pairing is a pairing between two
spaces of trigonometric functions which depend on two respective values of a
deformation parameter

g=¢e’" and Q=e%.

Hence the pairing induces certain duality of two functional spaces at |g| =
1. This type of duality has appeared in mathmatical physics: for example,
modular double of quantum group [F] and matrix elements in quantum Toda
chain [Sm)].

In this paper we define an integral associated with the g-multiplicative
function of Jordan-Pochhammer type at |g| = 1 in a similar way to [MT]. This
integral is regarded as a pairing between two functional spaces which depend
on g and @, respectively. Then we can define a cohomology of these spaces
associated with this integral. In this way we get the g-twisted cohomology at
lgl = 1. From this point of view, we can prove some relations satisfied by the
g-hypergeometric function of the Barnes type at |¢| = 1.

The plan of the paper is as follows. In Section 2, we recall the result of
g-analogue of b-functions following [A2] and define a g-multiplicative function
at |¢) = 1. In Section 3, we construct the g-twisted cohomology associated
with the g-multiplicative function of Jordan-Pochhammer type. In this case we
can find a basis of the cohomology. In order to prove linear independence, we
write down the formula for a determinant, see (3.23). This formula gives us the
g-Beta integral formula at |¢g| = 1 in a special case. In Section 4, we prove two
properties of the g-hypergeometric function at |¢| = 1: Heine’s relations and a
connection formula. Section 5 is additional one. We discuss the ¢-little Jacobi
polynomials and their orthogonality with respect to the kernel of the ¢-Beta
integral at |g| = 1 given in Section 3.
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§2. The g-multiplicative Function at |g| =1

Let ¢ be a nonzero complex number. In this paper, we consider the case
that |g| = 1 and ¢ is not a root of unity. We put g = €™ (w > 0,w € Q).
Let L be an [ dimensional integer lattice in C':

(2.1) L:={x=01--x)x;€%j=1,...,1}cCl

For a set of nonzero rational functions {b,(¢)}yer, where
(2.2) by(t) = by(t1,...,t;) € C(ty,....t)%,

we consider the following system of difference equations:

(2.3) Q(z+x) =by()®(2), (x€L),
where z = (z1,...,%) € C' and
(2.4) t=(ty,... 1) = (e?™w=1  e2miwa),

The compatibility condition of (2.3) implies
(2.5) bo(t) = 1,
(2.6) bytx (t) = by (t)by(¢*-t) forany x,x' € L,

where ¢Xt = (¢X*t1,...,¢¥'t;). The conditions (2.5) and (2.6) mean that the set
{by(t)}yer defines a 1-cocycle. A set {by(t)}yer is said to be a 1-coboundary
if and only if there exists a nonzero rational function ¢(t) such that

-1
(2.7) by(t) = ————= foranyx € L.

Let us consider the quotient H' :={1-cocycles}/{1-coboundaries}. H' has
a mutiplicative group structure. For p € L* := Homgz(L, Z), we put

m—th

(2.8) pim)=p(0,..., 1 ,...,0)€Z
and
(2.9) =g D),

Note that u(x) = Einzl w(m)xm for x = (x1,-..,x1) € L.
Then the following result holds.
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Proposition 2.1. H' is represented by cocycles of the following form:
k
Vi
po(x)—1 1_[1((1 T ) ;00
v J=
(2.10) b =ay ] (a"t)5
v=0

[T D (x)

Jj=1

for ,uo,,u]-,u;- € L* and 'yj,’y; € C. Here {a,}yerL is a set of nonzero constants
Satisfying ay 4y = ayays for any x,x’ € L, and

n—1

H(l —x¢’), forn >0,
(2.11) (23q)n := {75}

H(l —2q~)™, forn < 0.

j=1

The expression (2.10) is not unique.

This result is a g-analogue of Sato’s result [Sa] and was stated by Aomoto
in [A2]. In [A2], Aomoto stated this result in the case of 0 < |¢| < 1. However,
it can be checked that the proposition holds unless g is a root of unity.

Let us find a solution ®(z) to (2.3) for the 1-cocycle {b, (t)} e given by
(2.10). Following [N], we set

(2.12) (z) := exp <7;Z (1 +w)z - w:c2)) Ss (a:|1, i) ;

where Sa(x) is the double sine function. We refer the reader to [JM] for the
double sine function. Moreover, we define a function o(z) by

(2.13) o(z) := exp(mi (1 + w)z —wz?)) = (z) <1 + % - ac> .

These functions satisfy

<‘T + 1> _ 1 U(m + 1) _ —2miwx
(2.14) o Sisae e~ .

For p € L*, we set

(2.15) wu(z) = Z pw(m)zm.
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Then we have

(n(z+x)+7) _ 1
(210 W+ @D
U(M(Z+X>) (1 (%) ot vap—1
O’(M(Z)) _( 1) Vl;IO (q t )

From (2.13) and (2.16), we can get a solution to (2.3) in the following form:

(2.17) D(z) =t ...tl“”
+7]

H 15(2) +75)
LTt

where amv’Yja’Y;' € (Cvﬂjhu;' €L
A function ®(z) of type (2.17) is called a g-multiplicative function at |q| =
1.

83. The g-twisted Cohomology in Jordan-Pochhammer Case

Let us consider the g-multiplicative function of Jordan-Pochhammer type
given by

(3.1) o(z) =] =+ )

where z € C,t = ™% = ¢* and a,7;,7j € C. We assume v; # 7} for any
5L k=1,...,n

We denote by D, D; and D; the difference operators corresponding to the
displacements a +— o + 1,y; = 7; + 1 and 7;- > fy;- + 1, respectively. Let A be
the commutative algebra generated by D*!, D]il and D;-il (j=1,...,n) over
C. We define a subspace Z of C(t) by

(3.2) 7 :={(k®)/®|k € A}.
It is easy to see that

) 0
(33) 7= { [T (a5 t0)s, (G,

f(t) € C[t,t " ]and (;, 0} € Z>0},

. o,
where ¢; = €2™*“7 and = e2miwY;
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Next we define another space of rational functions. An important point is
that the function (x) satisfies also the following functional relation:

(@+35) 1
<$> - 1 — e2miz’

(3.4)

We denote by 5,13; and l’)v; the difference operators corresponding to the
displacements a — o + %,'yj =y + % and v; = 7; + %, respectively. In
the same way as before, we consider the commutative algebra A generated by
l~)i1,bvji1 and B;il (j=1,...,n) over C and set

(3.5) Z = {(r®)/®|r € A}.
Then we have

(3.6)

; jir) . T
Z = - f(T)eC|T, T A0, 0 € Zso p
[[=1(CQ75T; Q) (CIT: Q) (1) ecl Jand €5, 6; € Zzo

J

2ni

where Q) = e’»

T = 27z C. = 2mivy; dc = 27y,
, 1 =€ ,Uj =€ an ]-—e J.

Now we define a pairing between Z and Z. For

tm
3.7 elt) = [T;=i (cja™"t50)e, (cjts @) €7
and
(33 )= e 7,
[I=(C5Q™5T5 Q)7 (C5T5 Q)
we set
(3.9) 16,5) = [ dz6(2)e03(1).
C

Here the contour C is taken to be the imaginary axis (—ioco,i00) except that
the poles at

{; 1 ,
(3.10) —7j+€j+;]+zgo+zzgo G=1,...,n)

are on the left of C' and the poles at

!

/ / gj 1 .
(3.11) —; *EJ-* ;+Z>1 +;Z>1 (j=1,...,n)
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are on the right of C. Then the integral (3.9) is absolutely convergent if

(3.12) 0 <Rea +m + %
<Z(Revj — Rey;) Z (5 +05) + Z(ZJ +é§)
Jj=1 j=1 j:l

Under the condition (3.12) the integrand of (3.9) decreases exponentially as
z — too.

Let us consider cohomologies of Z and Z associated with the integral (3.9).
We set

(3.13) B := spanc {4 (t) — by ()¢ (¢*1)[¢(t) € Z,x € Z},

where b, (t) = ®(z + x)/®(z). Note that for any ¢(t) € Z,o(T) € Z and
X € Z we can deform the contour C' so that there are no poles of the function
D(2)Y(t)p(T) between C and C' + x. Thus we have

(3.14) /C d=B(2){W(1) — by () (g*0)}F(T)

_ (/C_/C+X> dz®(2)y(t)o(T)
=0

if all the integrals are convergent. Here we used the fact that T = €27 is
invariant under the change z — z — x. Hence, we find

(3.15) I(po,) =0 forgy € Band@ € Z.

Similarly, we set

(3.16) B = span { (1) = b (1)B(Q T)|$(T) € Z,x € Z} |
where bNX(T) = ®(2+ *)/®(2). Then we have

(3.17) I(p,50) =0 fory € Zand @, € B.

From these relations, we define the g-twisted cohomology H and H by
(3.18) H:=Z7/B and H:=Z/B.

We note that the structure of the cohomology H is determined by the
parameters ¢,q%,c; and ¢} (j = 1,...,n). We write down this dependence
explicitly as

(3.19) H =H(q|q%; c1,. - cniCly-nych).

’r n
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Then H is written as
(3.20) H =H(Q|Q“*;Cy,...,Cn; C,...,CL).
It is easy to see that the following proposition holds.

Proposition 3.1.  The cohomology H(q|q*;c1, ..., cn; ), ..., Cl) is gen-

erated by
(3.21) L =1
. —ji=1,...,n,,
1—cit J
if the parameters q,q%,c; and ¢ (j = 1,...,n) are generic.

Moreover, we see that the set {{=-7 ,t}] 1,....n is a basis of H from the

following determinant formula.

Proposition 3.2.  Set

(3.22) o) =1 F) =g (=1,

Then

j=1
(o + 273‘1:1 Vi — 273‘1:1 ;)
X - ;
(a) Hj,k=1<7j = Vi)
5 H (1 — 2™ =My (1 — e2wi(v,’-fv;’c)).

1<jShn o (7 =)
Proof. First we set
k-1

1 1—c;t

3.24 t) = /

( ) (®) 1—cpt Hlfct

~ 1 - 1-C;T

d’k(T) = C/ H 1— C/ (.7 =1, ,TL)

Then we have

CEORRTUNS gEsst ey ) EETC +H ol
| ' P=11_c;‘?/c;7j:1 I/C I/C/(pk

i#p
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and a similar formula for ¢, (T).
Hence we find

(3.26) det (I(g;, pr)) =

1—c}/c, 1-C}/C ~
[T (2 gl ) deertu. o

The determinant in the right hand side of (3.26) is a special case of the deter-
minant discussed in [MT]. Combining the result in [MT] and (3.26), we get the
formula (3.23). O

1<j<k<n

Remark. In the case of n = 1 and 7 = 0, the formula (3.23) is repre-
sented as follows:

NG R T N PR RS o e
6 | T = [ e =

We may call (3.27) the g-Beta integral formula at |q| = 1.

To finish this section we find a system of difference equation in « satisfied
by the function

(3.28) U(a) =¥(a|@) := /Cdzq)(z)(ﬁ(T) for 3(T) € H

in a similar manner to [AK].

For the g-multiplicative function (3.1), we can represent the function b, (t)

= cpc(;(t)x ) (x € Z) as follows:

(3.29) by() = *°

where b (t) and b (t) are polynomials in ¢ and have no common factor. For
example, if Y = 1 we have

(3.30) ﬁlfcj ﬁlfct

7j=1
By setting ¢(t) = b (¢~ Xt) in (3.13), we find
(3.31) by (¢7%t) — ¢**b} (t) € B.

Note that t ® = D®, where D is the difference operator defined by a — o + 1.
Therefore, we get

(3.32) {b3(¢™XD) — ¢** b} (D)} ¥ =0
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for x € Z such that b, (¢ XD)¥ and bf (D)W are defined. These equations are
g-analogues of Mellin-Sato hypergeometric equations [AK] at |¢| = 1. In the
case of y = 1, the equation (3.32) is given by

n n

(3.33) [[a-a'¢D)-¢* H(l —¢;D) 3 U =0.

J=1

84. Application to the g-hypergeometric Function
84.1. Preliminaries

Following [GR], we recall some properties of the basic hypergeometric series
with 0 < |¢| < 1 given by

oo k k
4.1 é(a,b,c;t)
( ) kz=0 q;9 k aq)k
for |t| < 1.

This function satisfies the Heine’s relations:

_ 1—a)(l1-=0

(4.2) ¢(a,b,q""c) — ¢(a,b,c) = tcmqﬁ(qa, qb, qc),
1-0
(43) ¢(qa7 ba C) - ¢(aa b) C) =ta 1_— C¢(qa, qba qC),
—-b

(4.4) 6(qa,q7"b,¢) — dla,b,¢) = ¢t 5 §(ga, b, go).

Here we abbreviated ¢(a,b, c; x) to ¢(a,b,c).
It also satisfies a connection formula:

(b)oo(c/a)o O(at)
(€)oo (b/a)se O(1)
4 (@)oo (€/b)oc O(bt)
T (O(a/b)e O(0)
where (@) := H;‘i1(1 — ¢’ ta) and O(7) := (¢) oo ()00 (q/Z) 00

(4.5) o(a,b,c;t) = #(a,qa/c, ga/b; gc/abt)

@(b,qb/c, qb/a; qc/abt),

Now we cousider the g-hypergeometric function of the Barnes type at |q| =
1 [NU], which is defined as follows in our notation:

16 W Bgia) i (200) <_L> [ (4 D(e+) ma)

2mi , (z+a)(z+B) sinmz
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where —¢® = €?™“*~™ and the contour Cp is the imaginary axis (—ioco,io0)

except that the poles at
1 1
(4.7 —a+ Zgo + ;Zg), —B+Zgo + azgo

are on the left of Cjy and the poles at

1 1
(4.8) Lxo + —Zxo, Y+ 2Ly + —Zx:
w w
are on the right of Cj.
By using
1\ w(—¢")* 1
4.9 —— =q"* .
(4.9) < 27ri> sinmz T 1 eniz>

we can rewrite (4.6) as follows:

(a)(B) 2 21+ D)(2+7)
() /co" E+ayz+0)

Now we denote by ®(z) the integrand of (4.10):

(4.10) U(a, B,y;x) = dz.

2 ZH 1+ D) (z+7)

(4.11) D(z)=g¢q B Y P

This function ®(2) is the g-multiplicative function of Jordan-Pochhammer type.
From (3.12), the integral (4.10) is absolutely convergent if

1
(4.12) 0<Rer<1+ " + Rey — Rea — Ref3.

In this case, the equation (3.33) is nothing but the hypergeometric difference
equation at |q| = 1:

(4.13) {1-D)(1-¢""'D) - ¢*(1-¢"D)(1 - ¢’D)} ¥ =0,

where D is the difference operator defined by z +— = + 1.
For the g-multiplicative function (4.10), we define two functional spaces Z
and Z as in the previous section, and set

()(B)
S MCY

Note that ¥(a, 3,7v;2) = ¥(a, 5,7; z|1). Then the function (4.14) also satisfies
(4.13).

@14) (o, Byiald) = /C B()F(T)dz  for Fe 7.
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For simplicity’s sake, hereafter we use the following notation:

(4]_5) t = eQTriwz7 a= eQTriwa’ b= eQTriwﬂ’ c= e?‘/riw'y
and
(416) T = eQTriz’ A= 627”;(1, B = e27r7,ﬂ’ C = eQTriAy‘

8§4.2. Heine’s relations

Proposition 4.1.  We abbreviate V(«, 3,7;x) to ¥(«, 3,7). Then the
following equalities hold:

(417) (e 5,7~ 1) = W(a, B,7) = q%%m(a FLB4 Lyt ),
(418) W(a+1,6,9) = ¥(e f,7) = q"a7—W(a+1,B+1,7+1),

ag—>b
q—C\Il(a+1,ﬁ,7+l).

(4.19) W(a+1,8-1,9) = ¥(a,0,7) = ¢" " 7=

Proof. For f(t) € Z, we set

@O0 [ s
(1.20) 1= s [ 20

First we prove (4.17). It is easy to see that

1—q tet

] wes -

(4.21) U(a,B,y—1) = [

Hence, we have

(4.22) U(a, B,y — 1) — U(a, B,7) = [M] .

q—c
On the other hand, by changing the variable z — z — 1, we find

~=ou-07,

(4.23) Va+1,6+1,7+1)= {q (1—a)(1—b)

From (4.22) and (4.23), we get (4.17). We can prove (4.18) in the same way as
above.
Next we prove (4.19). By changing the variable z — z + 1, we have

o (g—b)(1—at)(1 - qat)}
I—a)(-a)i—ct) ]
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It is easy to see that

(425)  W(@fy) =[], La+lpBy+1)= [%] '

By using this, we can find the following:

—-b
(426)  ¥(a+1,8-1,7) ~¥(a,B,9) - ¢ T U(a+1,6,7+1)

1-— 1-—
[y e
(1 —gt)(1—ct)
Note that
(1 —at)(1—0bt)
4.27 -1 Coe————— = —{1-0b,(¢) -1} € B.
Therefore, (4.26) equals to 0. This completes the proof of (4.19). O

In the proof above, we see that Heine’s relations come from some relations
in H. Hence, we find that the function U(q,,y;z|@) (4.14) also satisfies
Heine’s relations.

84.3. Connection formula
Proposition 4.2.

(4.28)

¥(a, 8,7 )
_ (- a)olz +a)
MB—a) o)
a){y — B) o(a + )
Na—B) o)

1
Y l+a-—yl+a—fil+t —+y—a-F-z)

1
\I/(ﬁ,l—i-ﬁ—%l—l—ﬁ—a;l—i-;—i—v—a—ﬁ—x).

Proof. We rewrite the integral

(4.29) \Il(a,1+a—'y,1+a—ﬁ;l+£+7—a—ﬁ—:c)
_ @ (1+ 5 +y—a—pB—-1x)z
<1>/,q
ita- NW{z+1+ ) z+1+a-8)
<1—+—a7 8 (+a)z+1l4+a—7)
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where CJ) is the contour associated with the set of parameters (o, 1+ a — 7,
L+a—p).
By changing the variable z - —z — a, we have

(4.30) (4.29) = @/ q(1+%+7—a—ﬂ—m)(—2—a)
(0 Jey
Slta-y)(—z—atlt ) -z+1-6)
(L+a-8) (m2{—2+1-7) ’
where Cj is the contour defined in (4.6). By using (2.13), we have
(4.31) the integrand of (4.30)

:q(1+5+v—a—ﬁ—m)(—z—a)
Xo(l—&-a—y) o(—z—a+1+1)o(—2z+1-7)
oc(l+a-7) o(=z2)o(—z+1—7)
+B8—a)(z+1+ ) z+v+ 1)
+y—a) (z+a)(z+B8+1)

A
(&

It can be shown that

(4.32) g+ str—a—p-o)(-2-a)
ol+a-y)o(—z—a+1+2)o(-2+1-0)
— Lz U(m)
 oleta)

From (3.4), we have
(T+8-0a)(z+1+ L) z+~7+1)
(Ct7—a) ra)e+ptD)
(Bma) 1+ D)) (A=) BT)
(y—a) (z+a)z+p8) (A-B)(1-CT)
Combining (4.32) and (4.33), we get

(4.33)

1
(4.34) \Il(a,l+a—7,l+a—ﬁ;l+—+7—a—ﬁ—x>
w

(@(B-a) o) L A-ou-Bn)
=y —a) oz + ) /coq’( A= —cn™

By exchanging « and 3, we find

(4.35) W(&1+B—%1+B—m1+%+v—a—ﬁ—@

 Bla-p) o) (B-O)-AT)
=Wy - 8) e+ B) /coq)( & _on™
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Therefore, we get

(4.36) the rhs of (4.28)

(A-C)A-BT) (B-C)(1-AT)]
(z){(AB)(loT) (BAWCT)} )

|
2 e
S
o
&

= >/C ®(2) - 1dz = ¥(a, B,7; ). [

In the proof above, we see that the formula (4.28) comes from the following
simple relation in H:

(A—C)(1—BT) (B-C)(1— AT)

(4.37) (A_B)(1-CT)  (B-A)(1-CT)

=1

If we consider H as a cohomology and H as its dual, that is a homology, then
the relation (4.37) is a relation among some homologies, and the formula (4.28)
is a linear relation among the integrals associated with different homologies.

§5. The g-little Jacobi Polynomials at |g| =1

First we recall the definition of the ¢-little Jacobi polynomials in the case
of 0 < |q| <1 [GR]:

(5.1) PP () = plq ™, ¢ TP gt gt),  (n=0,1,...).

The following orthogonality relation holds [AA, GR]:

1
1 () (o151 ~1,5-
5.2 / ot 220 p(a=LB=1) (1) @=L B=D (1) d t = G,y pCn,
where

(0)oc(q°1F)oe 1 —g*tF 1 (@)n(d")n o
(¢9)o0(q?)oe 1 — qoFBtn=1 (qoth=1), (g2), "

In (5.2), the integral is a Jackson integral defined by

(53)  co=(1-0)

1 o
(5.4) / F(dgt = (1 )'S Fla™)a",

k=0

and (a)n = (a;q)n.
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The formula (5.2) means that the g-little Jacobi polynomials are orthogonal
polynomials with respect to the kernel of the ¢-Beta integral given by

(5.5) /01 ot ooy (g gy (Doe(@™ oo

(tqﬂ)oo (qa)OO(qﬁ)oo

Let us consider the case of |¢g| = 1. We can get the ¢-little Jacobi polyno-

mials at |¢| =1 from the g-hypergeometric function (4.10) as follows.

Proposition 5.1.  For n € Zyy, we have

(5.6) lim (o, B,v2) =l ", 4", q";q%).

a——n

Note that the right hand side of (5.6) is a polynomial in ¢° and so makes sense
at g = 1.

Proof. Recall the definition of ¥U(a, 3, v;x):

() (8)
(5.7) (e, B,v;2) = ®(z)dz.

(1) Je,
At a = —n, the coefficient (a) has a zero and the integral has a pole because of
pinches of the contour Cy by poles at z=0,1,...,nand z = —a—n,—a—n+
1,...,—a, respectively. In order to avoid these pinches, we take the residues
at z=—a —mn,...,—a. Then we get

5.8 U(a, B,y;x) =
) | W) &
(@) (B)
+ X (regularata = —n)
M
The second term of the rhs of (5.8) equals zero at « = —n. Hence it suffices to

calculate the limit of the first term.
By using (2.14), we have

(5.9)  2mires.—_q_(n—r)P(2)dz
n—~k
(1—g ')A —get) _(hp
-9 Y n P
mires H (1= g iat) (1 — q—7bi) z

j=1

nfk i1 “ —jc u
:<1><1+l lq—q /1)(_q Jb/a)/ ) S

CJ

w
)i
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Here we used the notation (4.15) and
d

(5.10) Imires,_o—r = —— = (1).
z

Therefore, we get

(5.11) lim W(a,8,7:2)

= lim (« l—OZ </B> <7_a>
=, g ><ﬂ—a> o)

a+n— - 1_(] J+1/a)(1_q Jc/a)
qu e H (1—qﬂ<1—qﬂb/a)

B) {(y+n) < qk — (1—¢" ])(1*q"’j0)
Gt () e

=o(-n)

7j=1
o yn, - T 1—q3 ~ e 7T (L= g7 ) (1 = ¢’b)
=(=D" H Z H — @)1= gic)

Jj= 1

=o(q7".d", 45 q"). O
From this proposition, we get

(512) PP (¢") = ¥(—n,a+B+n+1,a+1l;z+1), (n=0,1,...).

Then we find that the g-little Jacobi polynomials (5.12) satisfy the orthog-
onal relation associated with the g-Beta integral at |g| = 1 (3.27).

Proposition 5.2.

0 ZHLH D) am15m1) gy (01,0
e3) [ B e 0z = b

and

<1><a + ﬁ) 1-— qa+ﬂ71 (q)n(qﬂ)n g
(@)(B) L —qotft2n=t (¢ th=1), (¢%)n
In the left hand side of (5.13), the contour C' is the imaginary azis (—ioo, i00)

except that the poles at Zzo + %Z>0 are on the right of C and the poles at
—B+Zgo + %Zgo are on the left of C'.

where t = ¢F = e?™w?

(5.14) Cn =

Proof. First we rewrite the orthogonality relation with 0 < |g| < 1 (5.2)
as follows. We expand the product
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m-+n
G5 T = Y AP, A ec,
k=0
By using (5.5), we have
1
1 () (15— 1
5.16 o1 ( (a=1,6-1) (4 (@=1.8-1) 4\ ¢
(510 /ﬁ () D0
m—+n 1
— Z Azln/ ta+k:—1 (tQﬂ)oo dqt
k=0 0 (tq") oo
57 (4)oe(g*7+F)
= AT -
P (1) e (%) o
m—+n k—1 .
(@)oo (@)oo "= o Ty 1
=(1—q 2N AP [
o & k _ gatB+
(@%)o0(47) oo =0 oty 1—gq J
Hence the relation (5.2) is equivalent to
m—+n k—1 . _
mon 1— qa+] B 1— qa—i-ﬂ 1 (q)n(qﬂ)n -
(517) Z Ak: H HT[‘H] - (5’m‘n 1_ qa+ﬂ+2n*1 (qa+ﬂ71)n(qa)nq .

k=0 j=0

Note that (5.17) is an algebraic equality and holds also in the case of |¢| = 1.
On the other hand, we find the following from (3.27) in the same way as
(5.16):

(z+14+Ly . L
5.18 az ™ T 7wl p(a=1,8-1) p\pla=1.8=1) )4
(5.18) oS e
m—+n k—1 .
<1><a+ﬂ> - m,n l_qa+]
=S At [
(a)(B) 1;) k 3‘1;[0 1 — qoth+i
From (5.17) and (5.18), we get (5.13). 0
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