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The Borel Sum of Divergent Barnes
Hypergeometric Series and its Application to
a Partial Differential Equation

By

Kunio ICHINOBE*

Abstract

An explicit form and its analytic continuation around the origin of the Borel
sum of the Barnes generalized hypergeometric series 4F),_1 of divergent type (¢ > p)
is obtained. As an application we give an integral representation of the Borel sum of
the formal solution to the Cauchy problem of a certain partial differential equation
of non-Kowalevski type.

§1. Introduction

In this paper we shall study the Barnes generalized hypergeometric series
oFp—1 of divergent type (¢ > p) which is defined by

ey N (@ 2"
(1.1) JFoi(a;y;2) = nz:% Aol 2€ C,
where & = (a1,...,04) € C?, v = (Y1,... ,7p-1) € CP~! and the following

abbreviations are employed

(a)n = H(Oée)n, (V)n = H (Ym)ns
{=1 m=1
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with

>1
(C)nzw— 0 (ce©).

I(c+n) _{c(c—l—l)---(c—i—n—l), n >
1, n =

Here I' denotes the Gamma function.

The main interest in this paper is in the structure of the Borel sum of this
divergent series, and we shall give an explicit form of the Borel sum (Theorem
2.11in Section 2) and its analytic continuation around the origin (Theorem 2.2 in
Section 2). In these theorems, we only study the case where a;; —a; ¢ Z (i # j)
as a typical case. A result without this condition is given in Theorem 2.3 and
further remarks will be given in Section 4.

Next, Theorem 2.2 will be applied to give an integral representation of the
Borel sum (Theorem 5.1 in Section 5) of the divergent formal solution to the
following Cauchy problem of a partial differential equation of non-Kowalevski

type

u(07x>:90(x)7 81{11,(0,1‘):0 (lgjgp—l),

where t,z € C and ¢(z) is a holomorphic function in a neighbourhood of the
origin which satisfies the conditions stated in Theorem B in Section 5. (These
conditions guarantee the Borel summability of the formal solution.) We will see
the kernel function of the integral representation in question can be expressed
by a linear combination of ,F,_;. In Section 6 we will show that it is actually
represented by special functions for some particular pairs (p, q).

We have to remark that by the following observation we easily see a
relationship between the formal solution of the Cauchy problem (1.2) and
the Barnes generalized hypergeometric series (Fj,_1: Let 4(t, ) be the formal
solution of the Cauchy problem (1.2) which is given by

(1.3) w(t,z) = Z ol (2) —

(pn)!

n=0

Then a formal use of Cauchy’s integral formula implies

o1 p(z+¢) o (an)! 7"
“(t’x)_mficﬂ ¢ nz:;,(pnﬂcqnd

Now the relation, (pn)! = pP™ x H’;:l (4/p),,, implies the following formula in
the formal sense,

p(z + ()

ﬁt,x = —
D= omi fae <

qu—l(aé’)’;Z) g,
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where a = (1/q,2/q, ... ,4/q), v = (1/p,2/p,... ,(p—1)/p) and z = q%tP /pP(T.

Here we give a brief history of the theory of k-summability or the Borel
summability. After the concept of k-summability for divergent power series
was given by Ramis [Ram]| in 1980, the theory of multisummability introduced
by Ecalle has been developed extensively by many authors, and it was proved
by Braaksma that every formal solution of an analytic ordinary differential
equation is multisummable (cf. [Bral, see also Balser [Bal 1] for more detailed
history and results).

Recently there have been some attempts to apply the theory of k-summabil-
ity or the Borel summability to the study of divergent formal solutions of par-
tial differential equations of non-Kowalevski type. Firstly, Lutz-Miyake-Schéfke
[LMS] studied the formal solution of the Cauchy problem of the complex heat
equation, and the Borel summability was characterized in terms of an analytic
continuation property and a growth condition to the Cauchy data. For more
general Cauchy data this result was generalized by Balser [Bal 2]. In Balser-
Miyake [BM], they proved a sufficient condition for the Borel summability for
divergent series obtained through a certain recursion formula. (They applied
their results to a formal solution of the Cauchy problem of a certain partial
differential equation which generalizes (1.2).) After that, Miyake [Miy] proved
that the sufficient condition obtained in [BM] is also a neccesary condition for
the formal solutions of the Cauchy problem (1.2) to be Borel summable (cf.
Theorem B). Therefore, Theorem 5.1 in this paper gives an integral represen-
tation of the Borel sum under the conditions given in [Miy] or [BM]. At the
end of this introduction, we note that a part of this paper is published in [MI]
without detailed proofs.

§2. Statement of Results

In this section we shall state our main results concerning the Borel sum
and its analytic continuation of the Barnes generalized hypergeometric series
of divergent type (¢ > p) which is given in (1.1),

A~

(2.1) f(2) = gFp1(asy;2) = ¢Fp1 <7§Z> .

In order to make sense of this series we assume 7,, ¢ Z<o for allm € {1,2,...,
p—1} and to avoid the trivial case we assume ay ¢ Z<o forall £ € {1,2,... ,q}
where ZSO = {0, —1, —2, ce }

It is known that f(z) is a formal solution of the following differential equa-
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tion,
(2.2) Eqp-1losy](u) = (9 [TO+vm-1v-=]]0O+ az)) u(z) =0,
m=1 (=1

where 6 = z(d/dz).

In the case ¢ < p, the order of this differential equation is p. In the case
where any two of {1,71,...,7,—1} do not differ by an integer, the other (p—1)
solutions are given by

. l—-v+« .
uj(z) = 217 Fpy ! sz |, j=Ll...,p—1,
! TP\ Lo+

where 1 —v; +a = (1—vj+ay,...,1 =7 +a,) and 7; € CP~2 is obtained
by omitting the j-th component from ~.

Now, our interest is in the case ¢ > p. In this case, our formal series f(z)
is divergent. We want to study the Borel summability of this divergent series.
Before stating our results we shall prepare some notations and definitions (cf.
[Bal 1]).

1. Sector. Ford e R, 8 > 0 and p (0 < p < o0), we define a sector
S =S5(d,3,p) by

S(d,f,p) = {z € Cild —argz| < 2,0 <|e] < g,

where d, 8 and p are called the direction, the opening angle and the radius of
S(d, B3, p), respectively.

2. Gevrey formal power series. For k > 0, we say that 4(z) =
Yoo unz" belongs to C[[z]]y/x, which is called the formal power series of
Gevrey order 1/k, if there exist some positive constants C' and K such that for
any n we have

lup| < CK"T (1 + %) .

Then it is easily seen that f(z) € C[[2]],—p-

3. Gevrey asymptotic expansion. Let k > 0, @(z) = Y7 jupz" €
C[[z]]1/r and u(z) € O(S). Here O(S) denotes the set of holomorphic functions
on a sector S. Then we say that
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if for any closed subsector S’ of S, there exist some positive constants C' and
K such that for any N we have

N-1
u(z) — Z Up 2"
n=0

N
< CKM|zNT <1 + k) , z€8.

4. Borel summability. For & > 0, d € R and 4(z) € C[[2]],/;, we say
that @(z) is k-summable in d direction or Borel summable for short if there exist
a sector S = S(d, 3, p) with 8 > 7/k and u(z) € O(S) for which u(z) = u(z)
holds in S. In this case such a function u(z) is called the Borel sum of @(z).

Remark 1. Let 4(z) € C[[2]]1 /1, be given.

(i) If B < 7 /k, then there are infinitely many u’s satisfying u(z) & 4(z)
in S(d, 83, p) for any d and some p > 0.

(ii) If 8 > 7/k, then the Borel sum u(z) of @(z) does not exist in general,
but it is unique if it does exist. In this sense the notion of the Borel sum is well
defined, and a characterization of k-summability for a given divergent series
will be given in Lemma 3.1 in Section 3 (cf. [Bal 1]).

Now our first result is stated as follows.

Theorem 2.1 (Borel sum).  Assume that o; —o; € Z (i # j). Then
f(2) is 1/(q — p)-summable in any direction d such that d # 0 (mod 27) and
its Borel sum f(z) is given by

q _
_ . L\ oy aj7]‘+aj_’y.w
(2.3) f(z)_OM;CM(J)X( z) Y pFy1 <1+aj_a; T ’
where z € S(m, (¢ —p+ 2)7,00) and
)

_ Iy N
(2.4) Coy = T(a) Cay(j) =

Here we use the following abbreviations:
q
T(a)=[[T(w), T@—a)= [[ T(ar—ay).
=1 j

We remark that Co(j) = 0 if v — o € Z< for some i.

Next, our result for the analytic continuation of the Borel sum f is stated
as follows.
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Theorem 2.2 (Analytic Continuation of Borel sum).  Under the
same assumptions as in Theorem 2.1, we have

(25)  5-{f() - [}

q - —
Cay(d) aj,1+a; =y (1)1
=0, — e TN F, | Lo ——,
7 ; I(a;)I(1 — ay) P 1+oaj — o z

@

where z € S(0, (¢ — p)m,00) and Cqn, Cay(j) are the same constants as above.

Remark 2. In 1907, Barnes [Bar] (cf. [Mei]) obtained an asymptotic
expansion of linear combinations of generalized hypergeometric function as
follows, which is an alternative version of Theorem 2.1.

Theorem A (Barnes). Let ¢ > p. Then there are q asymptotic ex-
pansions of the following form:

CV’YZC(YY X $0 s Fq L (ajv +Olj Aﬂy;(l)pqlt>

].—I—OZJ'—OLJ'

-1
S A (a;t> as t— o0, te€S0,(qg—p+2)m, 00),
v

where s =1,2,... ,q.

We remark that ¢ functions on the left hand side are fundamental solutions
of the following differential equation

Ep,qfl[asa 1+ Qs — 75 1+ Qs — C/M\S](U)

q p—1
:{H(G—{—as—ag ) —2(0 + as) H9+1+0zs—7m)}u(z):0,
m=1

(=1
with 2z = (=1)P7971¢.

Remark 3.  In the case where there exists a pair (o, ;) such that a; —
aj € Z, we can give the similar results to Theorem 2.1 where the logarithmic
terms appear. In fact, we can prove the following theorem (cf. [Erd 2, p.63],
[Luk, p.14]).

Theorem 2.3.  Let us assume aps —aoy =m (m >0), aj — a1 ¢ Z
B<j<qg andy,—a1 ¢Z (1<k<p-—1). Then the Borel sum f(z) is
given by

f(z) le o)kl 4 ar — )k 1 [ (=1)p=2\"
(2.6) CM—C z% (et E( ) )
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q _

) o s 1+C¥'_"}’ (,1)? q

E C, —z) Y F,_ 7 o
+j:3 4(73)(—2) plg—1 <1+aj—aj >

+ﬂ()¢m(2 ) i as)n(l+az—)n 1<(_1>pq)n

m! (14+ay —a3z), n!

x{log(—z) +¥(n+1)+¥(n+m+1)

+Z\I/(aj agn)\I/(a2+n)\I/(’ya2n)},

j=3
where z € S(m, (¢ —p+ 2)7,00) and
I(a2) HZ=1‘4¢1,2 Doy — ao)
[(y —a2) '

Here U(z) = T"(2)/T(z) denotes the Psi function and we use the following
abbreviations

Cary(2501) =

U(y—az—n) =) U(y—az—n),

andzzn:_ol---:()z’fmzo.

83. Proof of Theorems 2.1 and 2.2

In order to prove Theorem 2.1, we use the following lemma for the Borel
summability.

Lemma 3.1. Letk >0, d € R and u(z) € C[[z]]1/5. Then the following
three statements are equivalent:

(i) 4(z) is k-summable in d direction.

(ii) Let g(&) be the formal k-Borel transform of (z)

oo

(3.1) 9(6) = =3 M

which is holomorphic in a neighbourhood of € = 0. Then g(§) can be continued
analytically in S(d,e,00) for some positive constant € and satisfies a growth
condition of exponential order at most k there, that is, there exist some positive
number C and § such that we have

(3.2) 9(6)] < Cexp{l¢[*}, € € S(de,00).
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(iii) Let j > 2 and k1 > 0,... ,k; > 0 satisfy 1/k =1/ki +---+1/k;. Let
h(§) be the following iterated formal Borel transforms of 4(z)

(3.3) h(E) = (Br, o+ 0 By, w)(£).
Then h(&) holds the same properties as g(&) above.

In the case (ii), the Borel sum u(z) is obtained after an analytic continu-
ation of the following Laplace integral

5o (d) .
(3.4) u@=wm@:%A €/ g(e)d(e),

z

where z € S(d, 3, p) with 8 < w/k and p > 0 and the path of integration is
taken from 0 to oo along the half line of argument d.

In the case (iii), the Borel sum u(z) is obtained after an analytic continu-
ation of the following iterated Laplace integrals

(3.5) u(z) = (Lg, 00 Ly, h)(2).

The equivalence of (i) and (ii) was given in [Bal 1] and the equivalence of
(iii) with others was proved in [Miy].

First proof of Theorem 2.1. We employ the statement (iii) in Lemma 3.1.
Let h(§) be the (¢ — p) times iterated formal 1-Borel transforms of our formal

series f(z)

@@m#@@wO@:Z—ﬁﬂ—ﬁ—&l( alg.

(Y)n(n)z=p p! 17 v1,...

This series is convergent in || < 1. Then we can see that h(§) € O (C\ [1,00))
and h(€) has at most polynomial growth as & — oo, because h(&) satisfies

(37) Eq7(q,1)[a;'y,1,... ,1](h) :0,

which is a Fuchsian equation with singular points {0,1,00}. Therefore f(2) is
1/(g — p)-summable in any direction d such that d # 0 (mod 27) and the Borel
sum f(z) is given by the following iterated Laplace integrals

(3.8) f(2)=((£1)"""h) (2)

1 [oold) 1 [oe(d)
:f/ exp<fs—1) dsl—/ exp <82> dsg X+ -
Z Jo z S1 Jo S1

1 oo(d) é-
'>< Sq—p—1 /0 P < 5qp1> AE)E,
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where |d —argz| < 7/2 and args; =arg{ =d #0 (1 <j<g—p—-1). We
can regard that f(z) is analytic in S(m, (¢ — p + 2)m,00) by taking analytic
continuation of f(z) by rotating the arguments of the paths of these iterated
integrals. By a change of variables, we have

oo(a) 00 (0) 00(0)
(3.9  f(2) :/ e “duy / e “?dugy - / e Y rh(uz)dug_p,
0 0 0

where a =d —argz and u = u; - ug—p.
To calculate this iterated integrals, we employ the Barnes integral repre-
sentation of k(&) (cf. [IKSY]), which is given by

_ Cu,y I'a+ Qr'(=()
(3.10) ) = 5 J DY+ O{ra+Q)er

where C,, is the same constant as in Theorem 2.1. Here the path of integration

(=€)°dC,  |arg(=€)| <,

I runs from —ico to +ico in such a manner that the poles of I'(a + ¢) which
are ploted by e are on the left side of I and the poles of I'(—() which are ploted
by o are on the right side of I (see the figure below).

N

Here we remark that from the expression (3.10) k(&) becomes either the sum
of the residues at {n;n > 0} located on the right side of I or the sum of the
residues at {—a; —n;n > 0,1 < j < ¢} located on the left side of I; thus
we obtain a connection formula between a solution at £ = 0 and solutions at
& = 0o of the equation (3.7) (cf. [IKSY]). Moreover by taking residues on the
left side of I, we can exchange the order of integrations in (3.9), and we obtain
the following fundamental formula for the Borel sum

ch/F(CYJrC)F(—C)

F(’Y+() (_Z)CdC7 EAS S(Wa(q—p+2)7r,oo).

(3.11) f(2) =

Y
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Now, by the residue theorem, we obtain the conclusion as follows. First,
by taking residues on the left side of I, we have

(3.12)  f(2)=Ca, Z 3 I(a; ;(:j—a’j)F(s)j +n) (—nl!)" (=),

Here we notice the formula
1 (I=c)u(=1)"

(3.13) Te—n) = (o) , cé€C,

which is obtained from the reciprocal formula

(3.14) sin(n¢) = 7/{T(OT'(1 = ()},

(cf. [Erd 2, p.3]). Then by using this formula (3.13) to the terms I'(a; —a; —n)
and I'(y — a; — n), we get

q < (s s — —1)p—a)n
R D I e

P -
_ AP aj,L+a;—v (=177
- CWZCCWO)(_Z) IpFg—1 (1%—0@—&? ’ > ’
=1
which is nothing but the formula (2.3). The proof of Theorem 2.1 is complete.
O

Second proof of Theorem 2.1. By using the statement (ii) in Lemma 3.1,
we shall give another proof of Theorem 2.1. Let g(&) be the formal 1/(¢ — p)-
Borel transform of our formal series f(z)

(3.15) 96) = Br-nHEO =) ﬁ%

n=0

_ - (@) l 3 "
a nz:% (M)n((g —p)/(a—D))n ! <(q — p)”)
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Then we can see that g(€) has the similar properties with h(£) in the previous
proof. Therefore, the Borel sum f(z) is given by the following Laplace integral

oo (d) 1/(g—p)
e [ e [— (£) ] g()d(e/ o),

where d # 0 (mod 27), |d — arg z| < (¢ — p)7/2 and arg{ = d. We can regard
that f(z) is analytic in S(m, (¢ — p + 2)m, 0) by rotating the argument of the
path of the integration in (3.16). By a change of variable, we have

oo(b)
(3.17) f(z)= /0 e “g(zu?P)du,

where b = (d —argz)/(q—p). We employ the Barnes integral representation of
g(&) which is given by

_G (o + OL(=¢) ( 3 (q_p)><d<,

(3.18) g(&) = 5— /1 Fy+Qr((@—p)/(a=p)+O \ (2-p)

where |arg(—¢)| <,

and the path of integration I is the same one as in (3.10). Moreover by taking
residues on the left side of T in the expression (3.18), we can exchange the order
of integrations in (3.17) and we have

« — —z( _
(3.19) f(z)_ﬂ/lr( T(a+ O (=0)(=2) T(1+ (g —p))

=i T 0N (@ —p)Jla )+ 0 (q—pant ©

Now by using the following multiplication formula (cf. [Erd 2, p.4]) with m =
2,3,...
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m—1
[T 0 (c+£) = ne/mt-merno)
k=0

k
C+E¢Z§0 (k=0,1,...,m—1),
we have

LA+ (=P _ o \—a=p=1)/2 . 1y _ pyb+(a=p)C
N CEDED e a=p™

and

9—P) _ (a=p=1)/2(, _ )\~3
r < p— > (2m) (q—p)
Therefore we obtain

_ Coy [T(@+QU(=0), ¢

This is nothing but the formula (3.11) in the previous proof. O

Proof of Theorem 2.2. From (3.11), we get the following formula for the
difference between the Borel sum and one which is obtained after rotating
around the origin.

B2) )~ feem) =g Rt IO yer - exmicyg

27 L(y+¢)
_ Coy [T@QOT(=C) ¢ g

By using the reciprocal formula (3.14) to the term —I'(—() sin(7(), this expres-
sion becomes

» P+ Q)
3.21 f(z) = f(ze¥™) = C,, / 28dC.

(3:21) () = F(ze™) TSI T(r+ QT +¢)

Finally by the residue theorem, we get the desired formula (2.5). O

84. Proof of Theorem 2.3

Proof of Theorem 2.3. First, it should be remarked that the Borel sum
f(z) is given by the following formula (3.11)

(4.1) f(Z) _ % F(C\f, + C)F(_C)

_\¢ _
= omi |, Ty +0) (—2)d¢, z€S(m(qg—p+2)m, 00).
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Theorefore what we have to do is to calculate carefully the residues of the
integrand which has a simple pole at each point ( = —a; —n (3<j<g,n=
0,1,...)and ( = —a; —k (0 <k <m—1) (and no simple pole at { = —a; — k
if m = 0), and has a double pole at each point ( = —az —n (n=0,1,...).

By denoting by Res(c) the residue at ¢ = ¢ of the integrand in (4.1), we
have

(4.2)  f(2)
m—1
=Coy ZRes - — —i—ZRes —0 — 1N —I—ZZRes —aj —n)

=0 j=3n=0
a'y{Il + I2 + 13}

put

Here we denote each sum in (4.2) by I; (7 = 1,2,3) in order. The term I3 is
the same one as in the proof of Theorem 2.1 and we have

(4.3) I = ZCM o F, 1(“]"1“‘]' ;ﬂw).

1+a; —a; z

Next, in order to calculate Iy and I, by using the formula I'(1+2) = 2I'(2),
we deform T'(a; + ¢)T'(as + ¢), a part of the term of the integrand, to the form

F2(042+O
(a1 + Q) +¢+1) - (ar +¢+m—1)

L(an + Oz +¢) =
Then we can see that

(4.4)

_mfl 2 (ag + )
I = (C-i-oq—i—k)(al+<)(a1+c+1)...(a1+C+m—1)

I T+ Or(9)

(=2)¢

T(y+¢) A
- m—1 (—=1)% T2(m — k) H;’.: [(aj — a1 — k)D(ar + k) o
_kzzo m—k—1)! " - Ty —a1— k) -z

By using the formula (3.13) and recalling m = s — @y, we obtain

m— 1

(45)  h=Cay()(—g) 3 (el - “Y)kl((—l)p_q)k.

o 1 + o — Oll)k k!
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For I we have to calculate the residues carefully as follows, because the order
of pole is 2.

[ee]

— i o n)? F2(012+O
(4.6) 12—ng(4+ 2 e F Ol + CH D) (s F CFm—1)

13Ty +OT(=0¢)
INCENG)

n=0

(—2)°

(=—az—n

=y { d%(CJraz +n)’T%(az + O‘
n=0
1

(a1 —ag—n) (e —ag—n+m—1)
XH?ZS I'(a; — az —n)I'(az +n)
[(y — a2 —n)
+ (¢ +az +n)°T?(as +¢
d 1
C (Ol rm 1)
[[j_sT(aj —az —n)T(a2 +n)
Ly =2 —n)
+ (¢4 a2 +n)°T?*(az +¢

(=—az—n

X

72)70427774

)|§:7o¢27n

(=—aa—n

72)7(12771

)|(:7a27n
1
(a1 —a2—n) (o —ag—n+m—1)
DT N0
dg Iy +¢) -

+ (¢ + az +n)°T?(az + ¢

X

)|(:7a27n
1
(a1 —a2—n) (o —ag—n+m—1)

X

Ly =2 —n) d¢

= O A{Ia1(n) + Ina(n) + Ips(n) + Los(n)}.
n=0

Here we denote each sum in (4.6) by I»;(n) (j =1,2,3,4) in order.
Now, we put

A(Q) = (C+ a2 +n)l(e2 + ().



DIVERGENT BARNES HYPERGEOMETRIC SERIES 105

Then by using the formula I'(1 + z) = 2I'(z), we have

Mag+¢+n+1)
(a2 + (a2 +C+1)- (a2 +(+n)
_ Ila2 +(+n+1)
C (a2 + Qa2+ ¢+1) (e + CHn— 1)

(4.7) A(Q)=(C+ a2 +n)

which implies

_1)n

(4.8) A(—ag —n) = ( -

Moreover, by taking logarithmic derivative of both sides of the expression (4.7)
we get

A _ R _
A(C)_‘Il(a2+<+n+l) az + ¢ as+C+n—-1

where U(z) =TI"(z)/I'(z) denotes the Psi function. This shows

(4.9)

(4.10) Al(_OZQ —n)=A(—az —n) <\I/(l) + % + L et 1)

n—1 1
(="

= U(1+n),

where we have used some formula for the Psi function given in [Erd 2, p.16].
Then from (4.8) and (4.10) we obtain

1 (—=1)™n!

(n!)? (m+mn)!
[[j_sT(ej — a2 —n)T (a2 +n)
[(y—az—n)

1 (=1)™n! 1 1
(412)  In(n)= ()2 Emin)! (m e 1)
1_3T(aj —az —n)l(az +n)
(v —az —n)
1 (—1)™n!
(nh)?2 (m + n)!
1 T(aj —az —n)(az +n)

x —1= Ty —as—1) (—z)"*2 7" log(—=z).

U(l+n)

X

72)70627”7

(_Z)_az_n7

In order to calculate I23(n), we put

(1._3F O[j F —
(4.14) B(¢) = —= F((vig (=9,
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By taking logarithmic derivative of both sides of (4.14), we get

(4.15) B'(¢)=B(¢) [ D (a;+¢) = ¥(=() = ¥(y +)
=3
This shows
d B 1_3T(ej —az —n)l(az +n)
(4.16) dCB(O‘g:_az_n = N C g ——
X U(aj—as—n)—¥(az+n) —V(y—az—n)
j=3

From this, we have

1 (=1)™n! H?:?’ Ia; —az —n)I'(a +n)

(4.17)  Ix3(n) = (n)2 (m + n)! I'(y—az—n)

X (> W(ay—az—n)~ Ylag+n) Wy —ay—n) | (~2)""

Therefore, from (4.11), (4.12), (4.13) and (4.17), and by using the formula

1 1

v(l =Y(1 - 4.
(I+n+m)=9(+n)+ i AR Sy

+

n+1
(cf. [Erd 2, p.16]), we obtain the following

< (=)™ i_sT(ej —az —n)l(az +n)
(4.18) IQ:Z n!Em—?—n)! Iy —az—n)

n=0

_z)en
X {log(—z) +¥(1+n)+¥(1+n+m)

+Z\If(aja2n)\ll(a2+n)\If(’yagn)}.

i=3

Finally, from (4.3), (4.5), (4.18) and the formula (3.13) we obtain the desired
formula (2.6). O

Remark 4.
(i) In the case where there are many pairs (o, a;) with an integer difference
but there are no pair (a;,7;) with an integer difference, a similar result is proved
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by a similar mannar. The difference in the result is the appearence of powers
and products of the logarithmic term and higher derivatives of Psi function.

(ii) In Theorem 2.3 if we further add an assumption that y1 —ay € Z, then
more complicated situations occur which are shown in the below.

Let v — a3 = ¢ € Z. We should remark that the Borel sum is always
given by the formula (4.1). What we have to do is to calculate the residues I;
(j = 1,2) where I in (4.2) is the same one as in (4.3).

(I) The case £ < 0. In this case, by using the formula I'(1+ z) = 2I'(z) we
deform a part of the terms of the integrand to the form

['(oa1 + Qa2 +¢)
L(y1+¢)
This shows that the integrand has a simple pole at each point ( = —a; — n

(2<j<gqn=0,1,...). This implies that I; = 0 in (4.2) because —a; — k
(0 <k <m —1) are all regular points for the integrand. Next we have

=Mm+OMm+C+1) - (ynn—L=1+OT (a2 + ).

(4.19)
I, = Z Res(—ag — n)
n=0
00 —1)»
= (71_a2_n)..-(71—5—1—a2—n)(n')
n=0 )
Hg:i?) F(aj — Q2 — TL)F(O[Q + TL)( )—az—n
— —z
L'y — a2 —n)
S (mtn= 0! [M=al(ej —az—nl(eatm)
_n:0 n!(m +n)! r'®; —az —n)
(=D (m - 0)! L o as, 1+as —v (=1)P71
—Tca7(27a1771)(_z) PFQ*I 1+a2—&\2 ’ z ’
where

['(az) HZ=1,2;£1,2 I'(ar — as)
(v, —a2) '
Therefore, from (4.3) and (4.19) we obtain the following

Ca7(2§ a\17§/\1) =

(420) J(2) = Car |3 Con)(2) s <%‘»1+%' ;7;<—1>”>

e 1+a; —a; z

(—=1)¢(m — £)! N - az, l+ay—y (=177
(=1)"(m —£)’ 9. S : .
+ Cory(2;01,71)(=2)7% pFya l4oap—a =
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(IT) The case 0 < ¢ <m. From

F(as + Qs +¢) _ F(as +0)
T'(y+¢) (1 +Q(a+¢+1)- (e +£-14()
we see that the integrand has a simple pole at each point ( = —a; — k (0 <

E<l{—1)and ( = —a; —n (2<j <qn=0,1,...). This implies that Iy
is given by (4.5) (but in the summation k runs from 0 to ¢ — 1) and I» is the
same one as (4.19).

(IIT) The case £ > m. From

[(og + O (a2 + Q)
I'(n+Q)

- 1 F(Oéz + C)
Tt @Am =1+ @+ (at l—m—1+0)’

we see that the integrand has a simple pole at each point ( = —a; — k (0 <
E<m-1),(=—-az—i(i>{-—m)and(=—a;—n(3<j<gq,n=0,1,---),
and a double pole at each point ( = —ay —7 (0 < i < £ —m —1). This implies
that Iy is given by (4.5) and
—m—
n-{3

=0

1

+ }Res —ag —1).
i=f—m

By taking into considerations (4.18) and (4.19), we obtain

ot T T(aj—as— ) (ag +1
421 Z j=3 ( J 2 )( 2 )
Ty —ay —1)

X {log(—z) +U(14+i)+Y(1+i+m)

(~2) o=

+Z‘I’(aj_a2_i)—\ll(CYQ-i-i)—\I/(’Y—ag—i)}
7j=3

oo 1£+1m+z— )!H?:3F(O¢j*a27i)r(a2+i)
+ Z il(m +1)! (7, — az —1) (

—z)T2

i=f—m

Summing up the above observations, we obtain the following

Corollary 4.1.  Let us assume ag —ay =m (m > 0), a;j —oq ¢ Z
B<j<q,mm—ay=Le€Zandy,—a1 ¢ Z (2<k<p-—1). Then the Borel
sum f(z) is given as follows.
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(i) The case £ < m.

a1 (1+a;— )ki<(—1)pq>’“

0—
Ca'y k=0 1+ar - al)k: k!

[(az) Hg:1,2¢1,2 I'(ar — a2)

Can (281, 71) = i
1

Here we use the abbreviation that Zi;h -+ =01f € <0. Moreover in this case
the logarithmic term disappears.
(ii) The case ¢ > m.

7j=3
—1)¢ L —u

0 @am )2

L N~ (m— 0Dl an)i(1+ 0 — 1) L (—1)p=\*
Py (1 —+ a9 — &\Q)l 7! z ’

where Co~(2;a7) is the same one as in Theorem 2.3.
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§5. Application to a Partial Differential Equation

As a mention in Section 1, we shall give an application to a partial differ-
ential equation of Theorem 2.2. Let us consider the Cauchy problem which is
given in (1.2)

Nu(t,r) = agu(t,x_),
o) {um,x) = pl@), Ou(0,2)=0 (15 <p-1)

This Cauchy problem has a unique formal solution

o0 TL

5.2 tp”.
52) =30
By the assumption that ¢ > p, this formal power series is divergent in general.
Miyake [Miy] proved the following theorem for the characterization of the Borel
summability of the formal solution (5.2).

Theorem B (Miyake).  Let u(t,x) be the formal solution (5.2) of the
Cauchy problem (5.1). Then u(t,x) is p/(q — p)-summable in d direction in
t-plane if and only if the following two conditions for the Cauchy data p(z) are
satisfied:

(i) @(z) can be continued analytically in q sectors

d + 2
(5.3) Qp,q;d,e) U (p 27 V€, oo)

for some € > 0.
(ii) @(x) has the growth condition of exponential order at most q/(q—p),
that is, there exist positive constants C' and § such that we have

(5.4) p(z)] < Cexp(6]z/ 7)),z € Qp,g;d,e).

Under the above conditions, we get the integral representation of the Borel
sum by using the kernel function as follows, which is a generalization of a result
in Lutz-Miyake-Schéfke [LMS].

Theorem 5.1 (Integral representation of Borel sum).  Under the
conditions for the Cauchy data o(x) in Theorem B, the Borel sum u(t,z) of
the formal solution (5.2) of the Cauchy problem (5.1) is given by

oo(pd/q)
(5.5) ult, ) = / B (i, C)(t, €)dC.
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where

,_.

q—
(5.6) (x,¢) = oz + (W), w=exp(27i/q),
7=0

and the kernel function k(t, ) is given by

1 CT((a/a); —ila) (¢ 7\ "
¢ 8 L(p/p—j/a) <pPC‘1>

j=1
. F 1+j/q—p//z_)\,(71)p,qug
P\ L+ /g - (a/a); grtr )’

where p = (1,2,...,p) and q = (1,2,... ,q).

(5.7) k(t,¢) =

Proof of Theorem 5.1. Let v(s,z) be the

(¢ — p) times iterated p-Borel
transforms in t-variable of the formal solution (¢, x)

sPm

v(s,x) = ((B,)"Pa) (s,7) = 3 790(11”)(33)
(5.8) (s,2) = ((B)" ) (s, 1=t e

By Cauchy’s integral formula, for sufficiently small |s| and |z| we have

L et O™ @) (s
(59) St D DY T (c) “

_ 1 p@+Q),

“wmifl < h(s, ¢)d¢,

where r > {/(q?/pP)|sP| and h(s,() = ¢Fy-1(q/qg;p/p,1,... ,1;q%sP/pP(Y).
Here we notice that h(s,() has ¢ smgular points in {-plane at g roots of (7 =
(¢?/p?)sP, which we denote by ¢ = {/(¢q4/pP)sP for short, for a fixed s # 0 with
args = d. We put a = (¢?/pP)"/9sP/% (the root with argument dp/q), and we
denote by [0, a] the segment joining the origin and a. Then h(s, {) is univalent in
Ce \ U;’;é[o, aw’] (outside of ¢ segments). Therefore by deforming the contour
of integration (5.9) on these ¢ segments, we get the following expression for
v(s, x)

(5.10) v(s,z) = i /0“ w {h(s,0) = h(s,¢w™) } dC.

21

Here we remark in the expression (5.10) that the integrand is integrable at ¢ = 0
and ¢ = a. In fact, we notice that w(z) = h(s, () with z = ¢%s? /pP(? satisfies
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E,q-1la/¢;p/p,1,... ,1](w) = 0. The characteristic exponents at z = 1 are
{0,1,2,...,q— 2,v} where

(5.11) v = zp:

which implies the integrability at ( = a. Next, the characteristic exponents at
z =oc are {1/q,2/q, ... ,1}, which implies the integrability at ¢ = 0.
Since h(s, () is univalent outside of ¢ segments, we have

0o (pd/9) (o
(5.12) v(s,x) L/0 w{h(s,o—h(s,(uﬁl)}dg.

= omi

Hence the Borel sum u(t,z) is given by the following iterated Laplace trans-
forms of v

(5.13) u(t,z) = ((Ly)? Pv) (¢, )
1 oe(pd/a) g
— [ T ) (.0 - ) 0
This observation shows that the kernel function k(¢, () is given by

G.1) Q) = 5 2 (6)T7H) () = ((6)77H) (G} (0.0)

Now, we shall prove that the function h(s, )/ is an iterated formal Borel
transforms of the formal solution of the following Cauchy problem for the
adjoint equation

B u(t, ¢) = (—=0¢)ul(t, ¢),
(515) {’U,(O,C)Zl/gv (95U(O,C):O (1§] Sp—1>

This Cauchy problem (5.15) has a unique formal solution

(5.16) &(t,¢) = i (q”)% (tp>n

where z = ¢4/pP x t?/¢% and f € C[[z]],_,. Let g(¢) = ((l’;‘l)q_pf> (€). Then
we can see that

(5.17) g <$zz> = h(s, ().
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Hence, if we put f(z) be the Borel sum of f(z), then f(z) = ((£1)? ?g) (z) and
the Borel sum e(t, () of é(t, () is given by

1
(5.18) €(t.0) = ()
Thus we can see that the kernel function &(¢, () is given by
1 27i
(519) k(tv C) = %{e(tv C) - e(te P 7()}
1

-—X%U@—ﬂwmﬂaz=¢WﬁU

 2n
Therefore by using Theorem 2.2, we get the kernel function which is given by
(5.7). This completes the proof of Theorem 5.1. O
§6. Explicit Form of the Kernel in Special Cases

We shall prove the explicit representation of the kernels stated in Thoerem
5.1 in the following special cases:

(p,q) k(t,¢)

1
e/ (heat kernel)

Vart

31 1 4¢3 4¢3
(2,3) E Z exp <2 X 27t2> W1/2‘1/6 <27t2>
1 . ¢
ay ()

In the above table W, ; denotes the Whittaker function (cf. [Erd 2]) and Ai
denotes the Airy function (cf. [Erd 1]) which is given by

(6.1) Ai(z) = 1 /000 cos <§ + zt> dt,

™
21/2

(6.2) Ai(=2) = Z= (Ds(©) + Tapsl)) . 6= 527,

where J. denotes the Bessel function of the order ¢ which has the following
power series expansion

- -1n" 2\ 2nte

(1,2)

(1,3)

n=0
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The case (p,q) = (1,2). We omit the proof (cf. [LMS]).

The case (p,q) = (1,3). From Theorem 5.1 we obtain

1 T(2/3 = 1/3)T(3/3=1/3) (s t \ ™/
(64) k.0 = s 5amrem) < { T <3 F)

L+1/3=1/1 s G
><1F2<1+1/3—2/3,1+1/3—3/3’(_1) @)
T(1/3-2/3)1'(3/3—-2/3) (st —2/3
! L(1/1-2/3) <3 (3)

1+2/3-1/1 . 1—3 ¢
><1F2<1+2/31/3,1+2/33/3’(_) 3@)}

1 1 271\ ~'/? 2 NG
SSVBINEIE) {””3) (%) on( 5en)

+I1(—1/3) <2th> o oF ( ; g; (—1)—22%> } .

We notice the following relation

(6.5)  oFi( ;l+c2)=D(1+c) <%)C/2Jc <2 (%)m) ceC,

where and in what follows we use the abbreviation that —1 = €™ and therefore
z/(—1) = e ™z, z/(—1)® = e 372, etc. Then by using this relation, we get

(6.6)
(o) rem (=) e (2 () )

(6.7)
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By substituting these formulas to the expression (6.4), we have

1 1
(6.8) k(t,¢) = CT(1/3)I(2/3)

X {F(1/3)F(2/3) <(—57;27t>1/2 J_1/3 (2 <#‘227t>1/2>

+ I(=1/3)1'(4/3) <(217)fs)1/2 Ji/3 <2 ((_f;%> 1/2> } .

We notice the formula I'(—1/3)I'(4/3) = I'(1/3)I'(2/3)/(—1) which is obtained
from the fundamental relation I'(1 4 z) = 2I'(z) and we obtain

(6.9)

C 1/2 (3 Cg
k(t, Q) = <(—1)27t> {J‘1/3 (2 (—1)327t> s <2 (—1)327t> }

Therefore, the formula (6.2) implies the desired formula

1 : ¢
10,0 = g ()

The case (p,q) = (2,3). From Theorem 5.1 we obtain

(6.10)

o T(1/2) 1 [T(2/3—1/3)(3/3—1/3) (212 '/?
KO = - xc{ (%)

(1/3)T(2/3) T(1/2 - 1/3)T(2/2 — 1/3) \ 4¢3

1+1/3-1/2,1+1/3—2/2 y g AC
XQFQ 7(—1) Yy
14+1/3-2/3,1+1/3—3/3 27t

I(1/3 —2/3)1(3/3 —2/3) (2142 /*
TT(1/2-2/3)0(2/2 ~ 2/3) < i >

14+2/3-1/2,1+2/3-2/2 5 34
X2F2<1+2/3—1/3,1+2/3—3/3’( 2 27t2>}

_ T/ 1 fras) (4 \Yt 52 4
T T(1/3)r(2/3) ¢ {F(l/ﬁ) (27t2) 1 <6’§’(_1> W)

T(—1/3) [ 4¢3 \*/? 74 4c
MY (ﬁ) 1F1<5’§’(‘” ﬁ)}
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We recall the following two formulas:
In case of 2m ¢ Z,
I'(—2m)
L(1/2—m—k)

I'(2m)

(6.11)  Wim(2) = T(1/2+m—k)

Mk,m(z) + Mk,,m(z),

where
(6.12) Mpm(z )—exp( 2) A2 R (124 m— k14 2m;2), 2] < oo,

(cf. [Tem, p.178]).
For any «,v € C (v ¢ Z<o),

(6.13) 1Fi(asys2) = €1 P (y — a3 —2).
Then by using the formula (6.13), the expression (6.10) becomes

L2 1 <4g3>
T(1/3)(2/3) ¢ 2702

{rtss () o (iiass)
S () ()

and finally by using the formulas (6.11) and (6.12) with £k =1/2,m = 1/6, we

obtain
2 1 140 4¢3
0= it ¢ (3 amm) e (31m)

(6.14) k(t,¢) =
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