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Propagation of the Irregularity of
a Microdifferential System

By

Teresa Monteiro FERNANDES™

Abstract

We construct the functor of microlocal analytic irregularity Iy hom (-, Ox) which
gives a natural third term of a distinguished triangle associated to the transformation
tphom(-,Ox) — phom(-, Ox) of functors on the derived category of R-constructible
sheaves. When restricting to C-constructible objects we prove that the microlocal
irregularity of a microdifferential system propagates along non 1-microcharacteristic
directions, as a consequence of the propagation for tuhom(-, Ox) and phom(:,Ox).

Introduction

In this paper we treat a problem posed by P. Schapira : to show that
the l-microcharacteristic variety of a microdifferential system M along an
involutive submanifold V' contains the microsupport of its solutions in the
sheaves tphom(F, Ox), phom(F,Ox), whenever the microsupport of the R-
constructible complex F is contained in V. Here Ox denotes the sheaf of holo-
morphic functions on the complex manifold X. In other words, the microlocal
F-irregularity of M propagates along the non 1-microcharacteristic directions.
Let us recall that phom(-, Ox) and tuhom(-, Ox) are the microlocalized of the
functors RHom(-, Ox) and tHom(-, Ox), and were respectively introduced by
Kashiwara-Schapira (cf. [K-S3]) and Andronikof (cf. [A]).
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At the present status of microlocal analysis, it is not clear if the sheaf
Ex of microdifferential operators acts on phom (F,Ox) and tphom (F,Ox)
but only on its cohomology; however, the work developped by Kashiwara and
Schapira ([K-S5]) seems to indicate a positive answer. In this paper, we will
treat the C-constructible case, and F' is supposed to be perverse.

When F = Cy for a complex d-codimensional submanifold, one has

C?/O\X = 7_17*M hom(Cy, Ox)[d] = 7_1’7*C$|X,

the holomorphic microfunctions along Y, where +y is the projection of the cotan-
gent bundle minus the zero section on the associated projectif bundle.
Similarly,

Cyix =7~ "Yutphom(Cy, Ox)[d] = 7_17*05]];(

is the sheaf of microfunctions of finite order. The propagation in ;’,o‘ y was
proved by Kashiwara-Schapira in [K-S2], and the propagation in Cy|x was
studied by the author in [MF2], Schapira in [S] and Laurent in [L]. When we
want to prove the propagation theorem for ¢x hom(F, Ox), some of the essential
tools developped in the preceding works are no longer available.

However, in the C-constructible case we can use the theory of regular
holonomic D-modules, and in particular Kashiwara’s theorem which asserts
that tHom(F, Ox) has regular holonomic cohomology; moreover phom(F, Ox)
and tuhom(F, Ox) are obtained from tHom(F, Ox) tensorizing respectively by
5§, the sheaf of microlocal holomorphic operators, and by Egl%f , the subsheaf
of tempered microlocal operators.

Using the identification of X with the diagonal of X x X, we can reduce
the problem to the propagation of the solutions of M in C$|  and C';Rf"l; respec-
tively, Y an arbitrary complex submanifold, that is, V' = T{iX , the conormal
bundle to Y minus the zero section.

The second essential tools are Bony’s results concerning the propagation
for solutions in the sheaf of tempered microfunctions C/ for operators satisfying
a Levi condition ([B]) together with a precised Cauchy-Kowalewski theorem of
Kashiwara and Schapira for C’Eﬁ‘ « (cf. [K-S2]).

The paper is organized as follows : in the first section we construct the
complex of sheaves of microlocal F-irregularity as the microlocalized
of I'Hom(F,Ox) introduced in a previous work ([MF3]). Therefore, Iy hom
(F,Ox) provides a natural third term to a distinguished triangle associated to
the morphism

tphom(F, Ox) — phom(F, Ox)
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and represents the notion of F-irregularity : for example, when F' = Cy for
a submanifold Y of codimension d, Iphom(Cy [—d],Ox) is nothing but the

. COyix
quotient —g7.
CY\X
The second section is devoted to the propagation theorem in the C-construc-

tible perverse framework, and its successive reductions, for tghom (F,Ox),
phom(F, Ox) and hence for Iyhom(F,Ox).

We are very happy to thank P. Schapira and M. Kashiwara for their useful
suggestions, and V. Colin for her expertise on Andronikof’s work.

§1. Construction of I'yuhom(F,Ox)

We shall recall some properties of the objects tuhom(F,Ox) and phom
(F,Ox), where X is an n-dimensional complex analytic manifold, Ox is the
sheaf of holomorphic functions and F is an object of D§__(X), that is a complex
of sheaves of C-vector spaces with bounded and R-constructible cohomology.
Recall that Df__(X) denotes the subcategory of D%_,(X) whose objects are
the C-constructible complexes. The functor  hom was introduced in the 80%¢*
by Kashiwara and Schapira ([K-S3]), and the tempered version ¢uhom was
introduced by Andronikof ([A]). We also recall some facts about the functor
tHom due to Kashiwara ([K]) which can be recovered by the restriction of
tphom to the base X of the cotangent bundle 7% X - X.

Let Dx (resp. DY) be the sheaf on X of holomorphic differential operators
of finite order (resp. infinite order), Ex (resp. £§) the sheaf of microdifferential
operators of finite (resp. infinite) order, E;R(’f (resp. £%) the sheaf of tempered
microlocal operators (resp. microlocal operators).

Ex, Y, as well as Eﬁ‘f and EX are sheaves on T* X, satisfying

5§f |x =€x |x=Dx

EX Ix = €% [x=D¥

and they are all particular cases of phom and tghom. One denotes Ex(m)
(resp. Dx(m)) the sheaf of operators of order at most m.

For instance, when F' = Cy, for a smooth complex submanifold of X of
codimension d, phom(Cy,Ox) is the sheaf C&X[—d] of [S-K-K] and
tuhom(Cy, Ox) is the sheaf Cy [~d] defined in [A].

When F = (Cypr)’, the dual of Cyy, for a real analytic submanifold M of
X such that X is a complexified of M, phom((Cys)’, Ox)[n] is isomorphic to
the sheaf of microfunctions on M and tuhom((Cyr)’, Ox)[n] is isomorphic to

the tempered microfunctions (cf. [A] and [B]).
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When restricting to X one obtains
phom(F,Ox) |x~ RHom(F,Ox),
a complex of D-modules, and
tphom(F, Ox) |x~ tHom(F, Ox),

a complex of Dx-modules.
One also defines THom(F, Ox), the sheaf of analytic local F-irregularity
which appears to be a natural third term to a distinguished triangle

tHom(F,Ox) - RHom(F,Ox) — I'Hom(F,Ox) -

where the left arrow is the usual one. In particular, when F = (Cj;)’ one

obtains
By

Dby’
where B is the sheaf of hyperfunctions on M and Dby, is the sheaf of distri-

I'Hom(F,Ox) =

butions on M; and when F = Cy, Y a d-codimensional submanifold,

oo
BY\X

THom(Cy [—d], Ox) = ,
By |x

where Bf (resp. By |x) denotes the sheaf of holomorphic hyperfuntions (resp.
holomorphic hyperfunctions with finite order) along Y.

Let us recall that THom(F, Ox) has Dx-module cohomology.

Let now A be the diagonal of X x X and 7: Tao(X x X) — A be the pro-
jection of the normal bundle to A. Let X be the complex normal deformation
of X x X along A (A identified with X by the first projection p; : X x X — X),
let p: X — X X X be the deformation morphism, let ¢ : X — C be the natural
projection, let Q = ¢~ }(R"), and let Q< X and Ta (X x X) ?X' be the natural
inclusions. (For more details we refer][A] (Prop. 3.2.1) and [K-S3].) Let po
denote the second projection of X x X on X. We have a distinguished triangle

(1) tHom((p'p; ' F)a, Og) = RHom((p'p; ' F)a, Ox)
— I?—lom((p!pglF)Q, Ox%) :

Following the constructions in ([A], Lemme 2.1.8) we apply the functor

s DXXX(—)_(% :
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to (1) and set
Ivhom(F,Ox)) :=
Dixgtrx o0 57 (Prax ) (095 F)o O5) )
vhom(F, Ox)) :=
Dt et 57 (D s §) BHom((0p7 F)os O))
tvhom(F, Ox)) :=
DX;XXX @r-1pyyy 5 (DXXX?XI%t’Hom((p!pQ_lF)Q,(’)X)) .
Then

tvhom(F, Ox) — vhom(F,Ox) — Ivhom(F, OX):

is a distinguished triangle in D®(771Dx), the derived category whose objects
are complexes of 771D y-modules with bounded cohomology. Finally, denoting
by A the Fourier transform from D%, (Tx (X x X)) to D, (T%(X x X)), we
define Tphom(F, Ox) by

Iphom(F,Ox) = Ivhom(F,Ox)".

Here D%, (E), where E is a real vector bundle on X, denotes the derived
category of complexes of sheaves on E of C-vector spaces with bounded and
R -conic cohomology.

One easily deduces the isomorphisms

Iphom(F,Ox) |x= R, Iphom(F,Ox) ~ I'Hom(F,Ox)
from the analogous formulae for {yhom and g hom. Moreover,
Rrllphom(F,Ox) =0

by (2.3.2) of [A].
Also, as pointed out above, the correspondence

F — Inhom(F,Ox)

defines a contravariant functor from D% _(X) to D*(r~'Dx).

On the other hand, since Iphom(F,Ox) is the third term of a distin-
guished triangle where the other two terms are supported by the microsupport
of F, SS(F), Inhom(F,Ox) is also supported by SS(F).
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Finally, we observe that the cohomology of Iyhom(F,Ox) is obviously
provided of a canonical structure of £x-modules, induced by the structure on
tphom(F,Ox) and phom(F,Ox) (cf. (TR4) of Proposition 1.4.4 of [K-S3]).

Definition 1.1.  For any F' € D}__(X), Iphom(F, Ox) is the complex
of microlocal analytic F-irregularity.

82. Statement of the Main Theorem and Reductions

In this section we start by briefly recalling the essential results on the
1-microcharacteristic variety of a coherent £x-module M along a smooth in-
volutive manifold V of T*X. Here T*X denotes the complementary of the
null section X < 7*X in T*X. The l-microcharacteristic variety C{(M) is
a conic involutive closed analytic subset of Ty (7T*X). To build it one needs to
introduce the subring £y of £x generated by the operators of order at most
one with a principal symbol vanishing on V; when P € &y (m) := Ex(m) N Ey,
modulo €y (m — 1), the symbol oi,(P) is a homogeneous function on 7y (1% X)
and when S is a coherent ideal of £x, Ci-(Ex/S) is the subset of zeros of
ol (SN Ey). For further details see [MF1], [L] and [S].

Recall that if n € Ty (T* X)), one says that 1 is non 1-microcharacteristic for
M along V if n ¢ C{,(M). Moreover, the normal cone Cy (CarM) is contained
in C,(M). When M is a coherent Dx- or Ex-module, Car(M) will denote
its characteristic variety in 7*X. Let F € D} _(X), SS(F) its microsupport
in T*X (see [K-S3]); recall that supp(F) = SS(F) N X. Moreover, if M
is a coherent Dx-module, Car(M) = SS(RHomp, (M,Ox)). Let us recall
that Cy(CarM) := Cy (M) was studied in [K-S1, K-S2]. Tt is called the
microcharacteristic variety of M along V.

Let us denote by DP,(Dx) the derived category whose objects are the
complexes of left Dx-modules with bounded regular holonomic cohomology.
Recall that, as proved in [K], when F € D& __(X), there exists a unique N’ €
D%, (Dx) such that RHomp, (N,Ox) ~ F and that correspondence is an
equivalence of categories. More precisely, N' = tHom(F,Ox) and by ([A],
Theorem 4.2.6)

el @ N ~tuhom(F,Ox)
7r_1'DX
as well as
E¥  ® N ~phom(F,0x),

TrilDX

(cf. [K-S4]).
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Let V be a smooth submanifold of a manifold X. One denotes py the
projection
VxTX - TyX.
X

In most cases studied in this paper, instead of X we consider the cotangent
bundle T* X and V will be an involutive smooth submanifold; we then get

VxT*(T*X) = Ty (T"X).
pu VI (I7X) - To(T°X)

Here we identify T'(7T* X ) and T*(T* X ) by —H, where H is the Hamiltonian iso-
morphism. Recall that, if (z;£) denotes a system of local canonical coordinates
on T*X in a neighborhood of p € T*X, if (z,£;(,n) denotes the associated
canonical coordinates on 1T*(1T*X), —Hp(¢dx + ndf) = ((0/9¢ — nd/dx) €
T,(1" X)

Let Qx denote the sheaf of holomorphic differential n-forms on X.

Theorem 2.1.  Let F € DY __(X) be perverse and M be a coherent Ex -
module. Let V be smooth involutive in T*X such that SS(F) C V. Then one
has the inclusions
(3) a)  pv(SS(RHomey (M, phom(F, Ox))) C Cv(M),

b)  pv(SS(RHome (M, tphom(F,Ox))) C Ci (M),
c)  pv(SS(RHome, (M, Iphom(F,0x))) C CH(M).

Proof. ¢) It derives from a) and b).
a) and b) We may assume that N = tHom(F, Ox) is concentrated in degree
zero. Let us identify TX (X x X) with 7*X and denote by j : T*X — T*(X x X)
the associated inclusion. Denote by * the duality functor

RHome, (,Ex) ® 7 Q% n].
T 1Ox

Hence it is suffitient to prove that

v (SS (j_lRHomgXXx <M@ (gx & W_IN) 7C§|X><X)>> C Cy (M),
7['71DX
as well as with C’E‘Xxx replaced by C’E’&Xx, and Cy (M) replaced by CJ,(M).
Since C&XXX is supported by T (X x X),
SS(jilRHOHIgXXX (Mg N*v C§|X><X))
C pry(xxx)(SS(RHomg (M BN, CX |y x)))
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where N' = Ex (? 7 1N, and the inclusion holds for C§7\J;(><X as well.
7~ 1Dx

Here we identify Tr: (x x x)(T* (X x X)) with 7*(7™ X) via the identification of
Ty (xxx)(T*(X x X)) with T*(TA (X x X)) and the identification of the last
one with T*(T*X).

Suppose we know that for any £x-coherent module, for any smooth sub-
manifold Y of X,

(4) PT;X(SS(RHomé‘X (M, O&X))) - CT';,X(M)a
piy x (SS(RHome, (M, Cyiy)) € Ch. (M),

where P x is, as before, the projection
TyX x TH(T*X) — Tpe x (T*X).
PX X TH(TX) = Ty, (T°X)

Then, replacing M by M K N* we get

(5) pTg(XXX)(SS(RHomSXXX(M @N*vcE\XxX)))
C Cigxxx) MK N*) = C(M,N)
pTZ(XXX)(SS(R,HomSXXX(Mgﬁ/*7 CET);(XX)))

1 \*\ . vl
C CT;(XxX)(MgN ):i=C (M,N)
where we identify 7*(X x X) to T*X by the first projection. O

Since SS(F) equals the characteristic variety of /', we know by [K-O] that
N, being regular holonomic, is regular along V. We shall use the following
result, which is a slight improvement of the analogous in [MF1].

Lemma 2.2. Let X be a complex analytic manifold. Let N be a coher-
ent Ex -module reqular along a smooth involutive submanifold V- C T*X. Then,
for any coherent Ex-module M,

(6) pv(C(M,N)) C Cy (M),
pv(CHM,N)) C Cyp(M).

Proof. The first inclusion is obvious since C'(M,N) = C(Car(M),
Car(N)) and Car(N) C V.

As for the second inclusion, let us start by assuming that V is regular
involutive, that is, the canonical 1-form never vanishes on V. By [K-O], we
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know that N is locally a quotient of some power N of a coherent £x-module
Ly supported by V', with simple characteristics. Hence

C*M,N) c C* (M, L)

and then we apply Theorem 1.4.2 in [MF1].
For the general case, we use the dummy variable trick, that is, we consider

local canonical coordinates (x,&) in T*X in a neighborhood of V, the regular
involutive submanifold of 7*(X x C),

V={(z,1;¢£,¢) € T"X x T*C; (2;€) €V, ¢ #0}
and M := M K &c. Since

CL(M) = CL(M) x T*C,

%
we get
pi (CHM,N)) C C"l/(/\;l) = CH (M) x T*C.
On the other hand,
pir(CHMLNY) = pv (CH (M, N)) x T*C,
hence the result. O
Therefore, a) and b) of Theorem 2.1 hold provided that we prove (4).

Let f : X — X be a smooth morphism of complex manifolds, let A be a
smooth involutive submanifold of 7*X, let w : X x T*X — T*X and ' f': X x
X X

T*X — T*X be the canonical morphisms. Let W :="f"o w™L(A). Then W is

a smooth involutive submanifold of 7*X. In this situation, we have:

Lemma 2.3. Let f : X — X be a smooth analytic morphism of finite
dimensional complex analytic manifolds. Let A be a smooth involutive subman-
ifold of T*X and let W ="' f'o w(A) C T*X. Set wN: Ty1a) (T X X X) -

X
TA(T*X) and 7 : Ty=1(5)(T*X % X) = Tw(T*X), the canonical morphisms
X

associated to w and tf'.
Then:

i) 7 is injective.

ii) Let M be a coherent Ex-module. We have the following estimation:

Oy (f*M) = 7 (W) TICAM).
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Proof. Since the statement is of local nature, we may assume that X ~
X x Y, that f: X x Y — X is the projection, and consider local coordinates
on X x Y, (x,2'), such that x are local coordinates on X, =’ are local coor-
dinates on Y and f(x,z’) = z. Consider the associated canonical coordinates
(z,2';€,€") on T*X. We get

W=A{('YeT Y, =0} x A=Y xA,
Tyw (T*X) ~ Ty (T*Y) x Th(T*X),

T,-1(n) <X T*X> ~Y x Th(T*X),
and, for 2’ € Y and p € TA(T*X), 7™ (', p) = ((2';0),p). Here we identify V'
to the zero sections of T'Y, of T*Y and of Ty (T*Y"). This proves i).

As for ii), it will be enough to consider the case where M is of the form

M = 57" with J a coherent ideal of £x. In that case, i*./\/l is isomorphic to
é‘ -

S}}j +)2')'(DI/’

the z’ variables. Hence,

where £ D,/ denotes the ideal generated by the derivations in

Ciy(f"M) ={(a, p) € Ty (T"Y) x TA(T*X), g €Y, p € Cx(M)},
hence the result. O
We shall now return to (4).

Lemma 2.4. Let Y be a smooth submanifold of X. Then, for any co-
herent £x -module M,

(7) a’) PT';.X(SS(RHomé‘x (M7C§\X)>) - CT';.X(M)7
) pre x (SS(RHome, (M, Cyly))) C Che x(M).

Proof. a’) It is a form of Theorem 8.2.1 of [K-S1]. This proves a) of
Theorem 2.1.

b’) Since the statements are local and invariant by canonical transformation,
we may assume that Y is a hypersurface.

Let (z,t) = (%1, - ,Zn—1,t) be local coordinates on X such that t = 0
defines Y, (z,t; &, ¢) the associated canonical coordinates in 7*X and v be the
section

Y‘7T¢Xa Y(y) = (y; 1),
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in the neighborhood of 0 € Y.
We shall regard T*Y (=~ T*(y(Y))) as a submanifold of 7*(7} X) via the
composition ¢y of the morphisms:

TY < Ty X xT*Y — T*(Ty X)
Y

where the left arrow derives from the section v and the right arrow is the
immersion associated to T;}X Y.

More precisely, if (z;¢) € T*Y, ly(z;€) = (x,1;£,0) € T*(T3X). More-
over, if H denotes the Hamiltonian isomorphism, —H induces an isomorphism:

T* (13 X) = T, (T X)

(see (6.2.2) and (6.2.3) of [K-S 3]). We still denote by —H this isomorphism
for the sake of simplicity. Explicitely,

—Holy(;€) = —H(x,1;£,0) = (=€, 1;2,0).

Therefore we may regard 7*Y as a submanifold of TT-; +(I*X) by the immer-
sion py := —H o ly.

Let V.={& =--- = &,-1 = 0;¢ # 0}. The composition of the natural
morphism of vector bundles sy : T-;'X(T*X) — Ty (T*X) with py is injective ;
more precisely, if (z;€) € T*Y then

sy py (x;€) = (=€,0,1;z) € Ty (T* X).

We set ¢y := sy py. By means of ¢y we identify T*Y to a submanifold
of Ty (T*X). Moreover, if M is an arbitrary Ex-coherent module we have an
inclusion

CLM)NT*Y C sy (C%; (M) N T*Y)

X

since the sheaf £y is a subsheaf of & e X and, by the above identification, for
any P € &y, oi,(P)

For any coherent £x-module M we regard £ := RHomg, (M, C’&J;) as a

complex on T;}X Then, to get b’), it is enough to prove the inclusion
b”) — H(SS(L)) C C’%*X(M).
Y
Assume that, for any coherent £x-module M, the following inclusion holds :

(8) SS(L |yvy) € Oy (M) NTY.
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Then, to get b”), we may use (8) by adjunction of a new variable following a
suggestion of M. Kashiwara. Let X = X x C with the coordinates (z,t', s) and
let f: X — X be the smooth morphism

flx,t',s) = (x, set/).

Let M = /"M be the inverse image of M, a coherent £ gz-module. Let Y’ C X
be defined by s = 0 and let

Vl = {(x’t,as;évg,an); 5207 CI - 0, 777é0} C T*X
Let f:TX >TXxX,'f :T*X x X > T*X and w: T*X x X — T*X be
X X X

the canonical morphisms:

T'*X<:T*X)>§X't—f>/T'*)~(.
Explicitely
Fowr (€. ¢ m) = (€,¢'se” +net),
and

tf(/‘nt’,s) (57 C) = (67 Cset ’ Cet )
Restricting to n = 1 and fixing a determination of log(%) we get a section h of

w
h;T'*X—>T'*X)>§X

and h := f’ o h gives an immersion of the corresponding open subdomain of
{(z,t;¢,0) € T*X; ¢ # 0} in {(z,¢',5,¢,¢',n) € T*X;n = 1}. The image
R(T3X) is an open subset of T3, X N {n = 1}. More precisely,

h(z, ¢, ¢) = ((z,4¢€, (), Ct, log (1/¢))

and
h(z,t:€,C) = (z, log (1/¢), (t;€, (L, 1).
Remark that we can cover {p € T*X; ¢ # 0} by two such open domains,
Q; and 2. Since the notion of microsupport is of local nature, it is enough
to prove b”) for the restriction of I to each of O NTyX, Qy N Ty X. In that
situation, h: T*X — T*X induces an analytic isomorphism

hy: Ty X =~ T3, X n{n=1}

More precisely, setting iy : T}*,X < T*X and iy T;;,f( N{n=1} — T*X,
we have
Eoiy :Z'/y/ Ohy.
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Let h° be the canonical isomorphism
T (Ty X) — T*(Ty. X N {n =1} (= T*Y")

induced by hy. Composing with the immersion

¢yl :T*Y! — TV’ (T*X),
we get an isomorphism
I (T}*/X) = TV’(T*X) ‘{s:O,nzl} .

We set

Y 1= ¢y 0 h o (—H) ™ Ty (T*X) = Ty (T X).

—N
Remark that, by functoriality, i is also the quotient morphism associated to
h and hoiy. On the other hand, the sequence of morphisms of vector bundles :

T*X =T*Xx X -T*X
h X tf/

induces a sequence

Ty X 5Ty X x X =V
8, X T{',

and 7' is injective since ! f' is injective. Setting jy: T3 X N{n =1} < V', by
construction

jy/ OhY :71'/06,.

Set V' := T;X;X' Then

V' = T*X;<()~( Nw (13 X),
(V') = Ty X,
7 e (T3 X) = hy (T3 X) = T3, X N {n=1}.
Let
N Tp T*X = Ty (TFX x X),
W Ty (T X % X) = Tp, xT* X,

N * v * v
" T"/,(T X;X)—)TV/(T X),
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be the canonical morphisms respectively associated to h and €', to w and w|y,,
to ! f’ and 7’. Consider the diagram of morphisms below:

T (T3 X) = T X T X Ty (T7X % X) = Ty (T X).

g

(Here —H denotes the isomorphism induced by the Hamiltonian isomorphism
as before.) Remark that 7 is the composition of the morphisms:

Te, (T*X X X) = Tp. xT°X = Ty (T*X).
X T Y/

Sy

N

Furthermore, sy/|;.y is injective, 7% is injective (cf. Lemma 2.3) and 7'~ o

—N
eN=h =gy oh®o(—H)™L. Since h is a section of w, that is, wo h =Id, by
functoriality, eV is a section of w’V.

Recall we assumed (8), hence we have the inclusion

SS(ﬁ~ |{77:1}) C C‘l//(./\;l) NnNT*Y’

where £ denotes
RHome (M, C% ).

Y'| X

On the other hand, for any coherent £x-module M,

hy! (RHome _ (M, ofﬁ;f‘ &) In=1) ~ RHomg, (M, ) = L.

To prove this, it is enough to consider M ~ Ex, hence
M= X
(C:X(SDS — Dt’)

in which case the isomorphism above is clear.
Therefore,

SS(L) = ()1 (SS(L |ty=1}))
c (k) HCL M) NT*Y")
C (hc)71 (Syl (Cl )—((./\;l) ﬂT*YI>) .

Tz,

In order to get b”) we shall prove the inclusion

—H(h) sy (Ch. x(M)NT'Y")) C Cl. (M),



PROPAGATION FOR MICRODIFFERENTIAL SYSTEMS 133
Using Lemma 2.3 with A = T3 X, we have
—H(hO)! (5y/ (C%* <(M)N T*Y’))
=—H(0) oy} (svr (7¥ @) (Cf (M) N T7Y7))
=) (s (7N @) (Ch (M) NTY))
= () ™M) (sve (7Y @N) (O (M) N TV
= ()7 ) st (sve (N @N) (L (M) NTY))
(M) M) (Ch (M)
1
C CT-; ~(M).
Therefore b”) holds provided that we prove (8).
Let 0 € Ty (T* X) such that 6 ¢ C{,(M). Considering the local coordinates
in Tv(T*X), ((z,t;m);&1, -+ ,&—1) and using the technique of [MF2] or [9],
we may assume 6 = ((0,0;1);1,---,0). We shall identify Ty X N {¢ = 1} to

Y. Furthermore, we may assume by classical arguments that M is of the form
gx/gxp with

(9) P(z,t,Dp, D) =D + > Aj(x,t, Dor, Dy) DI,
0<j<m-—1
where Dy = (Dg,,---,D,, ;) and A; € Ey(m — j). We shall prove that

(0,dz1) ¢ SS(RHomg, (M, C;Rf“’;) l{¢c=1})- For that purpose we need Lemmas
2.5, 2.6 and 2.7 below.

Lemma 2.5.  The sheaf C&‘& satisfies:
1) The analytic continuation principle: Let w C Q be two open subsets of
Y, Q connected and w # ¢, and assume that u € T'(, 05&){4:1} vanishes in
w. Then u = 0.
2) If V is a conic subset of Tg‘}X of the form W x T', where W is compact Stein
inY and T a convex cone in C* containing 1, such that T N St is closed, then,

Vi>1,  H(V,Cyl) =0.

In particular, if W is compact Stein in'Y , HI (W, C’;Rj’lﬁ( l{c=13) =0, Vj > 1.

Proof. 1) Since C’g‘f‘l’; is a subsheaf of C’g@lx, it is enough to prove that u

vanishes as a section of C’% x lg¢c=1y but this is a consequence of the analytic
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continuation principle for C’;Rfl + which is well known (cf. [K-S1]).
2) We have

Vi, HI(W xT,Cyl) = lim H (W' xT',Cyly),
—
w'r’
where W’ runs through a neighborhood system of W formed by open Stein

relatively compact subsets of Y and I'' through a neighborhood system of T’

formed by convex open cones.
Let V! = W' x I". Then

HI (V' Cyy) = B (r'm(V'), "oy (Ox))

where 7 : Ty X — Y is the projection and ‘vy(Ox) denotes the tempered
specialisation of the sheaf Ox along Y. We denote by vy (Ox) the usual spe-
cialisation of (Ox) along Y. Let us study the long exact sequence
(10) - = Hio(t7 7 (V) 'vy (Ox)) = H (77 (V'), oy (Ox)) —

— H (r 'n(V)\ V', 'uy (Ox)) = Hife (11 (V), 'y (Ox)) — -+

On one hand, we have, Vi > 1 :

Hi(r (V") 'y (Ox)) = Hi (t 7 7(V'), vy (Ox))
=H'(W',0x)
=0.
On the other hand, we have V'° = W’ x I"°, therefore 7 7 (V') \ V'° =
W’ x (C\T"°).

Hence it remains to prove that, Vi > 1,

(11) lim H' (W' x (C\T"°),'vy(0Ox)) = 0.

w'.r’
This direct limit equals
HY (W x H,'vy(0x)) =0,

where H is the cone generated by C\ I'° N S!. Let now V denote W x H.
We have

H{(V,'vy (Ox)) = lim H*(RT(X, tHom (Cy, Ox)),
—
U
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with U running through the open subanalytic sets in X such that VN Cy (X \
U) = ¢, by (3.1.2) of [A].

By Proposition 4.1.3 of [K-S3], U may be taken to range through the
family p(U’ N¢=1(R")) where U’ ranges through a neighborhood system of
V in the real normal deformation of X along Y, Xy, t : Xy — R being
the canonical projection and p : Xy — X the deformation morphism. Since
V = W x H we may assume that U is of the form (W' x I'') N B where
W' is Stein subanalytic, I is an open cone in C and B is an open polydisc
in C*. Hence U is Stein subanalytic relatively compact and we may apply
Hormander’s results in [H]. More precisely, tHom(C,;, Ox) is concentrated in
degree zero and H'(X,tHom(C,;,Ox)) =0, Vi > 0. (Cf. also Lemma 2.6 and
Lemma 2.16 of [Be].) |

Proof of Lemma 2.4 (continued). We shall now use some concepts intro-
duced by J.M. Bony and P. Schapira (cf. [B-S]).

Let Q be an open convex subset of Y. Let us note H;, and Z, respectively,
the hyperplane of C" of equation x1 = h and z; = 0, hence Z = Hy. Let § be
a real positif number. We say that Q is §-Y N Hp-flat if, whenever x €  and
Z € Hj, satisfy

|1 —h|>6 |25 — T [j=2, n1

entails Z € Q.

If Q is § -Y N Z-flat, then for any p > 0, pQ is still 5-Z N Y-flat, and for
any w = (£,0,---,0), Q+ w is §-(Z + w) N Y-flat.

Let P(z,t, D., D;) be of the form (9), that is, P is Weierstrass with respect
to D, , and belongs to £y in a suitable neighborhood of (0;1,--- ,0). O

Lemma 2.6 (Precised Cauchy Problem).  There exists an open neigh-
borhood Q1 of 0 € Y and § > 0 such that, for any convex open subset 2 C €y
which is §-Y N Z-flat, the Cauchy problem

Pr=g, v(f)=(h)
where ¥(f) = (f |z, D=L |2), g € Oy lie=1y () and
(h) € Cg’rfmz l¢=1y (20 2)™
admits a unique solution

f e Cl lie=1y ().
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Moreover, there exists hg > 0 depending only on P, Q1 and 6§, such that, if Q
is 6-Hp NY -flat, and the Cauchy data is given on Hy for | h |< hg, the same
result holds in €.

We shall not give here the detailed proof of this lemma since the unicity
is an immediate consequence of Lemma 5.2 of [K-S2] and, as for the existence,
one follows step by step the proof of this same lemma, using Theorem 2.4.3 of
[B] to be sure that the unique solution is in fact in 05‘&. O

We give here a version, in our framework, of Zerner’s classical result on the
propagation at the boundary for holomorphic solutions of partial differential
equations ([Z]).

Lemma 2.7. Let ¢ be a C* function in a neighborhood of 0 € Y
such that ¢(0) = 0 and dp(0) = dx;. Let Q@ = {z,9o(x) < 0}. Let u €
F(Q,C&’& \{¢=1}) and assume that Pu extends as a section of Cgléf lfc=1} to
a neighborhood of 0. Then u extends to a neighborhood of 0.

Proof. Let Qy, hg and ¢ be as in Lemma 2.6. We may assume ¢ is defined
in Qp, and that Pu extends to ;. We have p(z) = Rex; — ¢¥(Im z1, 2, -,
Zp—1) with dip(0) = 0. Let 0 < e < 1 : there exists R > 0 such that ||z'|| < R
entails —¢ < ¢(0,2’), that is, denoting as before H_. = {x; = —¢},

H .n{(z,2") € O,| 2’ |< R} C Q.

Since ¥(0,z’') = 0(]z'|), we may assume that € < §R and that the open polydisc
centered in (—¢,0,0) with radius max(R,JR) is contained in €.

Then W, = {(z1,2');] z1 + ¢ |< 6(R — ||2']]),[|=']] < R} C €1 will be
0-H_. N Y-flat and is a neighborhood of zero.

Let us now consider the Cauchy problem :

Pu, = Pu, Va(us) = 76(’“/)7

where 7. denotes the traces along H_.. By Lemma 2.6, the solution u. = u is
defined in W,, which achieves the proof. O

Conclusion of the proof of Lemma 2.4 and of Theorem 2.1. We shall use
Proposition 5.1.1. 3) of [K-S3] which gives a characterization of the microsup-
port of a complex of sheaves better adapted to our situation.

Let po = (0;dzy) € T*Y. Let 4, § and hg be given by Lemma 2.6. Let
0 <e <K hpand 0 < R < 1 be small enough and satisfying :
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i) e <R,

ii) the open polydisc Br(—¢) centered in (—¢,0,--0) and radius R is con-
tained in ;.

Let U = Br(—¢). Let v be the proper closed convex cone of C"~! defined by
v={(z1, -, zn-1),Rexs < —0(|[2'[|+ | Imz: |)}.

In particular, (1,0---0) € int 4°%, a denoting the antipodal map.

It is easy to check that (U 4+ v) N H, where H denotes the real half space
{(z1,7"),Re 1 > —¢}, is bounded. Hence, for any z € U, HN (x + ) is a
compact.

Up to a suitable choice of ¢, R and d, we may assume that (U+~)NH C €

and
oa 1 SX
{U+9)NH} xInt v NCy, | == ) = ¢.
ExP
Let L = {x,Rexy = —e}. We shall prove that the natural morphism of
complexes :

P
RU(H 0 (x4 ), Cyx lic=1y) = BU(H N (2 +7), Cyy lic=1y)
l {

P
RT(L N (z+7), C;I{f’l];( lic=13) = RI(L N (z + ), C&é{ l¢=13)

is a quasi isomorphism.
Since H N (z + ) and L N (z + «) are compact convex subsets, hence
Stein, by Lemma 2.5 it remains to prove that P induces an isomorphism in the

quotient
R,
DL (@ +7), Ciy lie=1))
= .
T(H N (z+7), O3y le=1))
Here, we used the analytic continuation principle to identify
T'(HN(x+7), C’E{j’lé{ l{¢c=1}) with a submodule of I'(L N (z + ), C’E’& ltc=1})-
To prove the surjectivity of P, we apply the analogous of Lemma 2.4.7
of [MF1] or Lemma 3.1.5 of [S] which is proved by the same method thanks
to Lemmas 2.6 and 2.7. Let v € T'(L N (z + 7),6’5"}; ltc=1})- We solve the
equation Pu = v in a neighborhood of H_. N (z+ ) using Lemma 2.6 and then

extend u to a neighborhood of L N (x + «) since any real hyperplane through
x, with a I-microcharacteristic normal, which intersects L N (x + +) intersects
H_.N(x+7) (see for example page 152 of [S]).

As for the injectivity, we shall use the construction of [K-S3, Proposition
5.1.5).
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For each a € UN(H\ L), we construct a family of open subsets {Q:(a) }scr+,
such that :

i) Q(a) Ca+ int vy,
i) Y(a)NL=(a+ int y)NL,

iii) Qi(a) = U Qp(a),

r<t

iv) 694 (a) is smooth real analytic,

v) Zi(a) = ( ﬂth(a) \ Q(a)) N H C 6 (a), and the conormal of Q;(a) at
5>

Zi(a) is non l-microcharacteristic for the operator P everywhere in Z;(a),

vi) <tgoﬂt(a)> NH=(a+ inty)NH,

vii) < ﬂoﬂt(a)> NH=(a+ int y)NL.
t>
We recall that if v = (1,0, -0), then the family

{(z+pv+ int v)NH}pso

forms a neighborhood system of (z + v) N H, and the family {Q;(z + pv) N
H} 0,50 forms a neighborhood system of (z ++) N L.

Let w € T(L N (z + 7),65"];( l{¢c=1}) such that Pu = w extends to a
neighborhood of H N (x + 7).

Let p > 0 and ¢y > 0 such that w is defined in Q,(x + pv) N H and w in
(x +pv+ int v) N H. By v) and Lemma 2.7, u extends to a neighborhood of
0, (z 4+ pv) N H hence to Qu (x + pv) N H for some ¢’ > ty, and the definition
of the family Q; entails that this procedure leads to an extension of u in a
neighborhood of (z ++) N H. O

Remark. By the functorial properties of ghom(-,Ox), assuming that
M is generated by a coherent Dx-module, one easily deduces that if F' is an
object of D4__(X) such that SS(F) C V as in Theorem 2.1,

SS(RHomg, (M, phom(F,0x))) C Cy (M),

and this inclusion may still be improved to the microdifferential framework
using other tools.

Our conjecture is that Theorem 2.1 may be generalized to the case where
Fe D (X).
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