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Analytic Representation of Generalized
Tempered Distributions by Wavelets

By

Byung Keun SOHN* and Dae Hyeon PAHK**

Abstract

The analytic representation of the generalized tempered distributions of expo-

nential growth, Kj', is given in terms of series of analytic wavelets. These series

converge uniformly on compact subsets of the upper and lower half planes.

§1. Introduction

The analytic representation of functions or distributions on the real line is
usually given by a Cauchy type formula, but in some cases may also be given
by an orthogonal series. This is evident for periodic functions and distributions
for which trigonometric series may be used [5]. The more natural approch for
arbitrary functions on the set of real numbers R seems to be one involving
wavelets. G. G. Walter has found an analytic representation of the tempered
distributions of polynomial growth in terms of series of analytic wavelets [6].

In the past, the tempered distributions of polynomial growth were ex-
tended to various types of generalized tempered distributions of exponential
growth [2], [3].

In this paper, we will find an analytic representation of the generalized tem-
pered distributions of exponential growth in terms of series of analytic wavelets.
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These series converge uniformly on compact subsets of the upper and lower half
planes.

§2. The Generalized Tempered Distributions Space K;(R)

We denote by K,(R),p > 1, the space of all functions ¢ € C*°(R) such
that

(1) vp(d) = supzeR’aSkek‘zlp\Doﬁ(mﬂ <oo, k=1,2,...,

where D¢ = ddz—aa. The topology in K, (R) is defined by the family of the
semi-norms ;. Then C,(R) becomes a Fréchet space and the embeddings
D — K, — § < & are continuous; here £ denotes the space of all C'*°-
functions, S the space of the tempered ditsributions of polynomial growth and
D the space of C*°-functions with compact supports. By K, (R), we mean the
space of continuous linear functionals on p(R). G. Sampson and Z. Zielezny
characterized the distributions in K,(R) by the growth at infinity [3]; a distri-
bution T' € D" is in K},(R) if and only if there exist positive integers o, ko and
a bounded continuous function f(z) on R such that

T = D[V f ().

Definition 1. Let 7 be a natural number and p > 1. We denote by
K, (R) the space of all functions ¢ € C"(R) such that

V(@)= swp M IDo(a)| < o0, k=123,

The topology of K (R) is defined by the family of semi-norms {v}},_, ,

By K7'(R), we mean the space of continuous linear functionals on K;(R). Each
S € K'(R) is characterized by

(2) S = D"l f(a)),

where f(z) is a bounded continuous function on R and r,ky € N, the set of
natural numbers, by the same method of the above K -case in [3, Theorem 2].
Similarly, we can define

S-(R) = {0(t) € C"(R); |D*0(t)| < Cor(1+|t)) P, pEN, k=0,1,...,r}

and its dual S.(R). For further details, we refer to [3].
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§3. Multiresolution Analysis of L?(R) Associated with ¢ € K, (R)

Let ¢ € K(R). In order for it to qualify as a scaling function, there must
be associated with ¢ a multiresolution analysis of L?(R), i.e., a nested sequence
of closed subspaces {V;,.},,c, for the set of integers Z such that

(i) {¢(t —n)} is an orthonormal basis of Vj,
(i) ---cVoacWVCcViC-- C L*R),
(iii) f € Vin & f(2-) € Viny,
(iv) N Vi = {0}, Uy Vi, = L2(R).
Then ¢ has an expansion

(3) ¢(t) = chnﬁ¢(2t - n)a {Cn} € 127 t € R,

where 12 = {{¢,}; 3, |ea]> < 00}. Once we have the scaling function ¢ €
K}, (R), we can obtain a mother wavelet ¢ such that {¢(t —n)} is an orthogonal
basis of the space Wy, given by the orthogonal complement of V4 in V;. Also,
1) has an expansion

(4) W(t) =) duV26(2t—n), {du} € P,

for d,, corresponding to ¢, in (3). We will adopt the construction of a mother
wavelet defined by d,, = (—1)"¢1—,. If such a ¥(¢) can be found, then 1, (t) =
2% )(2™t—n) is an orthogonal basis of W,,, which is the orthogonal complement
of V,,, in Vg1

Example. In [1], Corollary 5.5.3 states that it is impossible that
has exponential decay and that i) € C">°, with all derivatives bounded, unless
¢ = 0. Hence there is no mother wavelet ¢ € IC,,(R). So we will restrict our
attention to IC;(R). Daubechies’ compactly supported wavelets are examples
of K, (R), but Battle-Lemarié’s wavelets (in the page 152 of [1]) are not K (R)
wavelets even if they have exponential decay and smoothness.

The reproducing kernel of Vj is given by
q(l‘,t) = Zn¢(x - n)¢(t - n)7

where ¢(x) is the scaling function. The series and its derivatives with respect
to t of order < r converge uniformly for z € R by the regularity of ¢ € IC;(R),
i.e.,

(5) 0 (z)] < Care ™™V a=0,1,... ,mk=1,2,....



144 ByuNGg KEUN SOHN AND DAE HYEON PAHK

The reproducing kernel for V,,, is given by
Gm(z,t) =2Mq(2Mx,2™).
Similarly, we can define the reproducing kernel r,,(z,t) for W,, by
rm(z,t) = sznl/)(me —n)Y (2™t — n),

where 1(t) is the mother wavelet.
The sequence {gm(z,t)} is a delta sequence in S;.(R) C KJ'(R), ie.,
Gm(x,t) = 0(x — t). This follows from the fact that

/ gm (z,t)0(t)dt — 0(x) as m — oo,
for each § € Kj(R) C S,(R), where the convergence is in the L*-sense. These
kernels have a number of interesting properties, some of which come out of the
wavelet moment theorem. Since KJ(R) C S,(R), we have by [1],

Lemma 2.  Let1 € Kj(R) with mn(x) = 22 ¢(2™z—n) an orthogonal
system in L?(R). Then

/ ehep(x)de =0, k=0,1,...,r

Definition 3. We define the spaces Ty and Uy by Ty = {f; f(t) =
>, and(t — n) for some sequence of complex numbers with a, = O(eFI"")
for some ky € N} and Uy = {g;9(t) = >_,an¥(t — n) for some sequence of
complex numbers with a,, = O(e®"") for some k; € N}. We denote by T},
and U, their corresponding dilation spaces, i. e., f € Ty & f(2™t) € T,, and
g €Uy & g(2™t) € Up,.

We may expect that a multiresolution analysis of IC;'(R) exists, namely,
(6) -~-cT_m~-~cT_1CTOCT1~-~chC---cIC;’(R)

and
- -
UL = ICp (R),

where the closure is in the topology of K7'(R).
Now in [4], we have found the expansion in orthogonal wavelets from L*(R)
to KI'(R).
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Theorem 4.  Let the scaling function ¢ € K, (R) satisfy the dilation
equation (3) with c;, = O(e="™") for all | € N, and have an associated mul-
tiresolution analysis in L*(R); let ¢ € K} (R) be the mother wavelet given in
(4). Then there exists a multiresolution analysis (6) of closed dilation subspaces
{T'n} whose union is dense in K'(R); the closed subspace U, in Definition 3
is a complementary subspace of Ty, in Tpv1 and

Tn=U®U @ DUy Ty,

where @ denotes the nonorthogonal direct sum.

84. Analytic Representation of Distributions of KZ;' by Wavelets

A quasi — positive delta sequence is a sequence {6, (-, y)} of functions in
L'(R) with a parameter y € R which satisfies the following:

(a) there is a C' > 0 such that

/ |0m (x,y)|de < C, y € R, m € N;

— 00

(b) there is a ¢ > 0 such that

y+c
/ Om(z,y)de — 1
y

—C
uniformly on compact subsets of R, as m — oo;

(c) for each v > 0,

SUP|y_y <y [Om (T, y)] = 0 as m — oo.

Then since K (R) C S(R), we have the following important lemmas as in [7]:

Lemma 5.  Let {0,,(x,y)} be a quasi-positive delta sequence and let f €
LY(R) be continuous on (a,b). Then

) = [ (e ) f@)dr = () a5 m— oo

uniformly on compact subsets of (a,b).

Lemma 6.  If the scaling function ¢ € K (R), then the reproducing
(z_t)gt—(;qm(m,t) fora € N,0< a <r, are

al

kernel g (x,y) and K, (z,t) =
quasi-positive delta sequences on R.
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In order to represent an element of IC;'(R) by series of analytic wavelets,
we impose conditions on the scaling function ¢ again. Since K7 (R) C L*(R),
an analytic represetation of ¢ is given by

¢:t(z)_ 1 > (15(33)

2 J_x— 2

dx, Imz 2 0,
where ¢F are analytic in the upper half-plane and the lower half-plane, respec-

tively. An analytic representation of the mother wavelet is also given by

wi(z) _ L >~ Q/J(l')

2mi J_ o x — 2

dz, Imz 2 0,

and the analytic wavelets ¢ are obtained by dilation and translation of ¥*.
Now, we define Ty = {f(2) = 3, an¢™ (2 — n); a, = O(el™") for some Iy €
N} and we denote by the subspaces T,:,E of TOi the corresponding dilation spaces.
Then the spaces T, and T},, are composed of analytic functions in the upper and
the lower half-planes, respectively, whose boundary functions are continuous
functions of exponential growth. Since UT}, = IC;’(R), we might expect to
obtain an analytic representation of f € IC;'(R) in terms of wavelets,

ft (z) = Zzo:,ma"¢+(z —n)+ Z:ZOZZO:7oobmn2%w+(2mz —n),

where the first series may not converge. Since an analytic representation is a
continuous map from IC;'(R) to a corresponding space of analytic functions and
fm(x) = (f, gm(x,t)) = f(z) = D"F(x) in K}'(R) for a continuous function of
exponential growth F(z) [cf. (2)] by Lemmas 5 and 6, f,-(2) — f*(z) uniformly
on bounded subsets of the upper half-plane. Moreover, fT(z) = DLF*(z),
where F'T(z) is an analytic representation of F(z), and is given by

Ft(z) = 1 / F(z) efkmpekmpdx’

2 J_x — 2

for a sufficiently large k such that F(z)e %I € L2(R).
We may express f,, as

foo= ot fu—fo=Fot 3 S byt

and if the inner sum converges,

™) B = @ =3 T b (2) + an(2),

where g,,(z) is an entire function.
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Lemma 7. Let ¢ € K, (R) and b, = O(eFI""™") for any k € N and

some € > 0. Then -
Z o bt (2 —n)

converges uniformly on compact subsets of the upper half-plane.

Proof. The proof is based on the moment property, Lemma 2,

/ dy(z)de =0, 1 =0,1,...,r

— 0o

Hence, for any £ € N and a natural number p < r + 1,

®) )

1 oo klzlP P
=5 — (x)dz
T ) oo 2 T —z
| e
=5 o (z)dz
T ) oo % T —z
1 oo klz|P pp
By o Y(z)dx
T ) o % T —z
1 [ ekl

- (Pt pP=2 4 .. p—2 p—1
= o) (2P 4 2P -+ 2P 4 2P (2)de

1 [ ekl gp
L[ T )i
21 J_ r—z
1 oo klz|P 4p

2mi J_ 2P x— %

Y(x)dx

holds. By the growth condition of 1 € K7 (R), |ek|z|p1/1+(z)| is uniformly
bounded on compact subsets of the half-plane Imz > ¢ > 0 for any k € N
and a natural number p < r+ 1. Hence, the preceding fact holds for any £k € N
and any p < r + 1. Thus the conclusion follows. O

Theorem 8.  Let f € K5'(R), ¢,¢ € K;(R), s < r and let by, =
(fybmn), m = 0,1,2,...;n = 0,£1,£2,... be the wavelet coefficients of f.
Then an analytic representation of f is given by

FE=fEO+Y S bantihal2),

where the series converges uniformly on compact subsets of the half-plane Im z
> 1 and fyf (2) is an analytic representation of fo, the projection of f on Tp.
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Proof. First, we will estimate |b,,,,,]. Each f € K'(R) is characterized by
f = D[erl "]
for some integer ko and finite measure y on R. Each ¢ € K (R) satisfies
[ (z)| < Cje™11" 1=1,2,...,r;5 > 0.

If we use integration by parts s-times and the inequality (a +b)? < 2P(aP +
b?), a,b > 0, we have, for m > 1,

bl < [ DT Y@l < [ ) @)l
< /°° ghalil” 0% amg—kal2s—nl? g1

oo

</ 2pk0|z n2=m|? 2"k0\n2_m\ Cr 2 tsm 7k0(2m) |zfn2_m|pd"u|
—oo

2%+sm62pk:0|n27m|p

/
< Cky

By the fact in the proof of Lemma 7, on every compact subset K of the
half-plane Imz > 1, there exists a constant ¢ such as [ (2)| < ce *I*” for any
ke N. Let k> kg and M = max(7,s + %) Then we have, for every z € K,

oo 0o +
> > |6 (2)]
m=0 n=-—00
o o0 1 P —m P m m.,_ o |P
<§ § C;C €(2+s)m€2 ko|n27 ™| 2% e k|2™ z—n)|
- m=0 n=—oco 0

<Z Z C +s)m 2pko\n2 m\p —k(2™)P|(n27™—Re z) +1]
m=0 n=-—o0o ko

: {Zm=ozn=—oo + Zm=M+IZn:—OO} CC;coe(ngs)m@QPkol"gimlp

p
—k27|(n2 ™ —Re z)°+1|2 o—km??|(n2” "~ Re 24113 9%

N\‘U

xXe

oo m
SZm:M+1Ck0’Z2 ? <09

where we use (2™)7 > 2P + (2m~1)" > 2P 4+ m?” for m > 7. Hence the series
> o> o bn ¥, (2) converges uniformly on compact subsets of the half-
plane Im z > 1.

Now, by taking the limit in (7) as m — oo, we have

=@+ S bt (2) +m(2),

where goo(z) = limy, 5 gm(2) is an entire function. Since an analytic repre-
sentation plus an entire function is an analytic representation, we can drop g,

in (7). O
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Remark.  We have only worked out the convergence for f+ but proof for

is parallel. Then by the same method as in the proof of Theorem 8, an

analytic representation of f is given by

FE=f @+ S bantal2),

where the series converges uniformly on compact subsets of the half-plane

Im z < —1 and f; (2) is an analytic representation of fy, the projection of
f on Tj.

for

Acknowlegement

The authors thank the referee for careful reading and valuable suggestions

the revision of this paper.

References

Daubechies, 1., Ten Lectures on Wavelets, SIAM, CBMS 61, Philadelphia, 1992.
Hasumi, M., Note on the n-dimensional tempered ultra-distributions, Tohoku Math. J.,
13 (1961), 94-104.

Sampson, G. and Zielezny, Z., Hypoelliptic convolution equations in IC;), Trans. A. M.
S., 223 (1976), 133-154.

Sohn, Byung Keun and Pahk, Dae Hyeon, Wavelets in the generalized tempered distri-
butions, Tsukuba J. Math., 23 (1999), 529-538.

Walter, G. G., Fourier series and analytic representation of distributions, STAM Rev.,
12 (1970), 272-276.

, Analytic representations with wavelet expansions, Complez Variables Theory
Appl., 26 (1994), 235-243.

, Pointwise convergence of wavelet expansions, J. Approz. Theory, 80 (1995),
108-118.




