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On a Conjecture of Kac-Wakimoto

By

Feng XU*

Abstract

We prove a conjecture about mininmal index of certain representations of Coset
Algebraic Conformal Field Theories under certain conditions as formulated previously
by us. As a by-product, the Kac-Wakimoto Conjecture (KWC) which is related to
the asympotics of the coset characters is true under the same conditions. The same
idea in the proof also proves a recent conjecture related to subfactors from conformal
inclusions.

§1. Introduction

Let us first recall some definitions from [X4].

Let G be a simply connected compact Lie group and let H C G be a
connected subgroup. Denote by LG (cf. [PS]) the group of smooth maps from
a circle to G. Let 7* be an irreducible representations of LG with positive
energy at level £ ! on Hilbert space H*. Suppose when restricting to LH, H*
decomposes as:

H'=) " Hj,® H,,

and 7, are irreducible representations of LH on Hilbert space H,. The set of
(7, «) which appears in the above decompositions will be denoted by exp.

To illustrate the new ideas in this paper we will focus on the case when
both G and H are simply connected semisimple compact Lie groups of type A,
i.e,, G and H are of the forms SU(Ny) x SU(Nz) X ... x SU(N,,). The ideas of
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this paper can be applied to all compact semisimple and simply connected Lie
groups and we plan to consider them in separate publications.

We shall use 7! (resp. 71) ? to denote the vacuum representation of LG
(resp. LH). Let Ag g be the irreducible conformal precosheaf of the coset
G/H as defined in Prop. 2.2 of [X4]. The decompositions above naturally give
rise to a class of covariant representations of A, denoted by m; , or simply (7, a).
By Th. 2.3 of [X4], 711 is the vacuum representation of Aq g

Let us denote by S;; (resp. Sap) the S matrices of LG (vesp. LH) at level
k (resp. certain level of LH determined by the inclusion H C G},) as defined
on P. 264 of [Kac]. Define 3

(1) b(i,a) = Y SijSas((G. ), (1,1))

(4,8)

Note the above summation is effectively over those (7, 3) such that (4, 8) € exp.
The definition of (x,y) for any two sectors x, y can be found in Section 2.1 before
formula (0).

The Kac-Wakimoto Conjecture (KWC) states that if (i,a) € exp, then
b(i,a) > 0 (cf. Conj. 2.5 of [KW]). This conjecture is related to the asymptotics
of the coset characters (cf. Th. B of [KW]).

In Section 2.4 of [X4] an even stronger conjecture, Conjecture 2 (C2) is
formulated. This conjecture states that the square root of the minimal index
(cf. Section 2.1) of sector (i, ), denoted by d(; o), is given by

_ bi,a)
i) = 311y

C2 is stronger than KWC since d; o) > 1,b(1,1) > 0.
In [X4], C2 is proved for a class of cosets, but the proof is based on the

known results about the branching rules, which already implies KWC. The
main improvement in this paper is a proof of C2 under general conditions,
without knowing details about the branching rules (cf. Th. 3.4). The power of
the new ideas in this paper can be seen from the examples listed in Section 3.1
after Cor. 3.5, where we show that KWC is true for infinite series of cosets
which do not seem to have been obtained by other methods. We also give a
simple proof of a conjecture (Conj. 7.1) in [BE3]. *

Let us describe the content of this paper in more details. In Section 2
we collect some results from [Reh] and [KLM] which will be used in the proof
of Prop. 3.1 in Section 3. In particular the notion of modular matrices from
[Reh], and the notion of u-index from [KLM] are introduced. In Lemma 2.2 we
calculate the p-index of the coset. Lemma 2.3 is an application of Prop. 3.1
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of [BEK2] and Prop. 3.1 of [BE4] to our setting. In Prop. 2.4, we show that
the global index of the coset is the same as its p-index using Lemma 2.3. This
implies the non-degeneracy of the modular matrices for the coset under the
conditions of Prop. 2.4 by Cor. 32 and Th. 38 of [KLM]. We also give a second
proof of this result by using relative braidings first used in [X1] and studied in
details in [BE3], [BEK1]. The n-regularity (cf. definition in Section 2.2) of our
coset (Cor. 2.5) follows from Lemma 2.3 and Cor. 7 of [KLM].

The proof of Prop. 3.1 contains one of the new ideas of this paper, which is
a novel way of calculating the summation on the right-hand side of the equation
in (1) of Prop. 3.1. Prop. 3.1 is then used to prove Cor. 3.2, Cor. 3.3, Th. 3.4
and Cor. 3.5. The main results of Section 3, Th. 3.4 and Cor. 3.5 have already
been described at the beginning of this introduction. The same idea in the
proof of Prop. 3.1 is also used in Section 3.2 to give a proof of Conj. 7.1 in
[BE3] (Th. 3.7).

As we already noted before, all the Lie groups considered in this paper will
be simply connected semisimple compact Lie group of type A, i.e., groups of
the form SU(Ny) x SU(N3) X ... x SU(N,,) unless stated otherwise.
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§2. Preliminaries
§2.1. Genus 0 and 1 modular matrices

Let us first recall some definitions from [X2]. Let M be a properly infinite
factor and End(M) the semigroup of unit preserving endomorphisms of M. In
this paper M will always be the unique hyperfinite IT1; factors. Let Sect(M)
denote the quotient of End(M) modulo unitary equivalence in M. We denote
by [p] the image of p € End(M) in Sect(M).

It follows from [L3] and [L4] that Sect(M), with M a properly infinite
von Neumann algebra, is endowed with a natural involution § — §; moreover,
Sect(M) is a semiring with identity denoted by id or 1 when no confusion arises.

If given a normal faithful conditional expectation € : M — p(M), we define
a number d. (possibly co) by:

d_? = Max{\ € [0, +00)|e(my) > Am,Vm, € M}

(cf. [PP]).
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We define
d = Min{d.|d. < o0}.

d is called the statistical dimension of p. It is clear from the definition that the
statistical dimension of p depends only on the unitary equivalence classes of p.
The properties of the statistical dimension can be found in [L1], [L3] and [L4].
We will denote the statistical dimension of p by d, in the following. di is called
the minimal index of p.

Recall from [X2] that we denote by Secto(M) those elements of Sect(M)
with finite statistical dimensions. For A, p € Secto(M), let Hom(\, 1) denote
the space of intertwiners from A to p, i.e. a € Hom(\, p) iff aA(z) = p(x)a
for any # € M. Hom(A,u) is a finite dimensional vector space and we use
(A, 1) to denote the dimension of this space. (A, i) depends only on [A] and [y].
Moreover we have

(A, 1) = (N, op), (v, ) = (v, pA)

which follows from Frobenius duality (See [L2]).

Next we will recall some of the results of [Reh] (also cf. [FRS]) and intro-
duce notations.

Let {[pi],7 € I} be a finite set of equivalence classes of irreducible covariant
representations of an irreducible conformal precosheaf (cf. Section 2.1 of [GL]).
Suppose this set is closed under conjugation and composition. We will denote
the conjugate of [p;] by [p;] and identity sector by [1] if no confusion arises,
and let NJ5 = ([pil[p;], [pr]). We will denote by {I.} a basis of isometries in
Hom(p, pipj). The univalence of p; (cf. P.12 of [GL]) will be denoted by w,,.

Let ¢; be the unique minimal left inverse of p;, define:

(0) Y:LJ = dp@'dpjd)j(e(pj)pi)*e(pi)pj)*))

where €(p;, p;) is the unitary braiding operator (cf. [GL]).
We list two properties of Y;; (cf. (5.13), (5.14) of [Reh]) which will be used
in Section 2.2:

(1) Yij=Y=Y; =Y
- k wiwj
(2) Yij = zk:Nij o G

Define 6 := Y, d> w; ', If the matrix (Vj;) is invertible, by Proposition on
P.351 of [Reh] ¢ satisfies |6]* = Y ,d>.. Suppose ¢ = |7|exp(ix),z € R.
Define matrices

(3) S = |6|7'Y, T := CDiag(w,,)



ON A CONJECTURE OF KAC-WAKIMOTO 169

where C' := exp(i5). Then these matrices satisfy the algebra:

(4) SST =TT = id,
(5) TSTST = S,
(6) $2=C,1C=CT=T,

where Cj; = 4,5 is the conjugation matrix. Moreover

SimSjm S
(7) NE = ; _Sﬂl . km
(7) is known as Verlinde formula.

We will refer the S, T matrices as defined in (3) as genus 0 modular
matrices since they are constructed from the fusions rules, monodromies and
minimal indices which can be thought as genus 0 data associated to a Conformal
Field Theory (cf. [MS]).

It follows from (7) and (4) that any irreducible representation of the com-
mutative ring generated by #’s is of the form i — :2”

Now let us consider an example which verifies ( ) to (7) above. Let G =
SU(N). We denote LG the group of smooth maps f : S! — G under pointwise
multiplication. The diffefomorphism group of the circle DiffS! is naturally a
subgroup of Aut(LG) with the action given by reparametrization. In particular
the group of rotations RotS! ~ U(1) acts on LG. We will be interested in the
projective unitary representation 7 : LG — U(H) that are both irreducible and
have positive energy. This means that 7 should extend to LG x Rot S* so that
H = ®,>0H(n), where the H(n) are the eigenspace for the action of RotS®,
i.e., rg¢ = exp™? for 6 € H(n) and dim H(n) < oo with H(0) # 0. It follows
from [PS] that for fixed level K which is a positive integer, there are only finite
number of such irreducible representations indexed by the finite set

P¢+_{AeP|A: XA, D

A < h}
i=1, ,N—1 =1, n—1

where P is the weight lattice of SU(N) and A; are the fundamental weights
and h = N + K. We will use 1 to denote the trivial representation of SU(N).
For A\, u,v € Pf+, define

®) N, =

3 SxsSusSys

Sis
K
OEPL,
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where S)s is given by the Kac-Peterson formula:

(9) Sy =c¢ Z ewexp(iw(d) - A2 /n).

weSN

Here &,, = det(w) and ¢ is a normalization constant fixed by the requirement
that (Sxs) is an orthonormal system. It is shown in [Kac| P. 288 that N}, are
non-negative integers. Moreover, define Gr(Ck) to be the ring whose basis are
elements of Pf+ with structure constants Ny, . The natural involution * on
Pf+ is defined by A — A\* = the conjugate of A\ as representatiog of SU(N).
Sau

£ for some

All the irreducible representations of Gr(Cg) are given by A\ — S

1.

The irreducible positive energy representations of LSU(N) at level K give
rise to an irreducible conformal precosheaf Aqg and its covariant representations
by the results in Section 17 of [W2]. A¢ is a collection of maps I € Z — Ag (1)
from the proper intervals on a circle to von Neumann algebras which satifsy
conditions as defined in Section 2 of [GL], and one can also find the definitions
of covariant representations of Ag is Section 2 of [GL]. We will use A to denote
such representations.

For M irreducible, the univalence w) is given by an explicit formula. Let
us first define

2N
T K+ N

(10) Ay

where c3(\) is the value of Casimir operator on representation of SU(N) labeled
by dominant weight A (cf. 1.4.1 of [KW]). A, is usually called the conformal
dimension. Then we have wy = exp(27iA,). Note that wy = ws.

Define the central charge (cf. 1.4.2 of [KW])

B Kdim(G)
(11) Coi= TN
and 7" matrix as
(12) T = diag(wy)

where W) = wyerp(=25:€<). By Th.13.8 of [Kac] S matrix as defined in (9)
and T matrix in (12) satisfy relation (4), (5) and (6). Since S, T matrix defined
in (8) and (11) are related to the modular properties of characters which are
related to Genus 1 data of CFT (cf. [MS]), we shall call them genus 1 modular

matrices.
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By Cor. 1 in Section 34 of [W2], The fusion ring generated by all A € P_E_I_?
is isomorphic to Gr(Ck), with structure constants Ny, as defined in (8). One
may therefore ask what are the ¥ matrix (cf. (0)) in this case. By using (2)

and the formula for NY

o @ simple calculation shows:

_ San
Y/\p, - S—lp,’

and it follows that Y}, is nondegenerate, and S,T matrices as defined in (3)
are indeed the same S, T matrix defined in (8) and (11), which is a surprising
fact. This fact is refered to as genus 0 modular matrices coincide with genus 1
modular matrices. If the analogue of Cor. 1 in Section 34 of [W2] is established
for other types of simple and simply connected Lie groups, then this fact is also
true for other types of groups by the same argument.

§2.2. Nondegeneracy of the coset

Let H C Gy, be as in the introduction. We will use Ag, Ag to denote the
irreducible conformal precosheaves associated with G and H respectively (see
paragraph before (10) in Section 2.1). Denote by A,y the irreducible confor-
mal precosheaves associated with the coset H C Gy, as defined in Prop. 2.2 of
[X4].

In [X4], certain rationality results (cf. Th. 4.2) are proved for a class of coset
H C Gj. A stronger rationality condition, u-rational or completely rational, is
defined in Section 3 of [KLM], and we will recall these definitions.

Let A be an irreducible conformal precosheaf on a circle S'. Two proper
intervals I, I, ° of the circle are said to be disjoint if I; NI, = (). Denote by &
the set of two disjoint intervals. A is said to be split if A(I1)V.A(I3) is naturally
isomorphic to the tensor product of von Neumann algebras A([;) ® A(Il2) for
all {11, I} € &.

Let {I1, Iz} € &, and let I5, I, be the disjoint intervals such that I3 U I,
is the interior of the complement of I; U I in S'. If the index

[A(13) N A(LL) : A(T) V A(I)]

is independent of {I1,Io} € &2, then this index is called the p-index of A,
denoted by p4. A is said to be completely rational, or p-rational for short, if
A is strongly additive with finite u-index.

Recall that A is strongly additive if A(Iy) V A(Iy) = A(I) where I; U I,
is obtained by removing an interior point from I. A is said to be n-regular if
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A(SY = {p1, .y pn}) = A(S?) for any p1,...,p, € S'. Note that if A is strongly
additive, then A is n-regular for any n.

Here we will make corrections on a statement concerning strong additivity
in [X4]. When G is of type A, it is proved (cf. Remark on P. 504 of [W2]
and [W4]) that Ag is strongly additive. But as pointed out to us by Prof. A.
Wassermann, the proof of this fact, Th. E in P. 504 of [W2], is not correct
(This does not affect the results of [W2] ). Tt follows that the proof of (1) of
Lemma 2.1 and the proof of a remark on strong additivity at the end of Section
2.1 in [X4] which follows from the proof of Th. E in [W2] is not correct. We
note that the correct proof of Th. E as remarked in [W2] (also cf. [TL]) applies
without change to give a proof of (1) of Lemma 2.1 in [X4]. The remark
on strong additivity at the end of Section 2.1 in [X4] is used in Section 4
of [X4] only to ensure the equivalence of local and global intertwinners (also
cf. Section 2.3 of [BE1]). More precisely, the equivalence of local and global
intertwinners is used in the proof of Braiding-Fusion equations. But under the
condition of finite index and conformal invariance, the equivalence of local and
global intertwinners has been proved in Th. 2.3 of [GL]. Hence all the lemmas,
corollaries and theorems of [X2] hold without the strong additivity assumption
since one can instead use Th. 2.3 of [GL]. However it will be interesting to
prove strong additivity for the net associated with the coset. See Cor. 2.5 for
a positive result in this direction. We will show in Prop. 2.4 how one can still
get nondegeneracy of modular matrices for the coset without knowing strong
additivity.

When A has finite p-index, then A has only finitely many irreducible
covariant representations with finite index (cf. Th. 8 of [KLM] and the remark
after it), denoted by p;,i = 1,...,n. The global index of A, denoted by 14, is
defined to be I4 := ), d> . Note that by the proof of Th. 38 in [KLM] (also
cf. Section 3 of [X3]) 4 < pa.

Denote by pg, pim, ey the p indices of the irreducible conformal pre-
cosheaves Ag, Ay and Ag/p associated with H, G and the coset H C G
respectively. The irreducible covariant representations of Ag, An and Ag g
will be denoted by 7, and x respectively. For simplicity the global index of
Ag, Ay and Ag, g will be denoted by I, Iy and I, respectively. Note that
as in Section 1 (1,1) will denote the vacuum representation of Ag /. As in
Section 1, let 7! denote the vacuum representation of Ag. Then one has a
natural inclusion (cf. Section 3 of [X4])

m (Ag/u(I) ® Ap(I)) € Ac(I)

for any proper interval I of a circle. The coset H C G, is cofinite if the above
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inclusion has finite index (cf. Section 3 of [X4]), and the square root of this index
is denoted by d(G/H). As noted in Section 3 of [X4], d(G/H) is independent
of the choices of I. By (3.1) of [X4], we have

(13) AG/HY =3 diyoyda

where d(; ) and d,, are the statistical dimensions of covariant representations
(1,a) and « respectively.
We have:

Lemma 2.2.  Suppose that H C Gy, is cofinite, and Ay and Ag are
p-rational. Then Ag g is split and has finite p index. In fact

_ d(G/H)* e
e = ———2
12324

Proof.  First note that Ag,p is split. This is a well known fact which
follows from the asymptotics of the growth of states in the vaccum (cf. Th. B
of [KW]) and [BAF]. For a simplified proof see Prop. 2.3.1 of [X7] which fol-
lows from [W3]. Then the p-index of the tensor product of Ay and Ag,p is
pr G/, and it follows from the proof of Prop. 21 of [KLM] (also cf. the proof
of Th. 3.5 in [X3]) that:

HHHG/H = d(G/H)4MG-

It follows that .
d(G/H) g
HH
is finite. O

HG/H =

Let us note the following interesting consequence of Lemma 2.2. For the
diagonal inclusions of type A considered in Section 2.2 of [X5], a direct calcu-
lation using Lemma 2.2 shows that

,U’G/H = |6-‘27

where & is determined in (2) of Th. 2.3 in [X5]. By Th. 38 of [KLM], this
shows that the irreducible sectors which are determined in Section 2.2 of [X5]
are all the irreducible sectors of the coset theory, and by Cor. 7 of [KLM] Ag /g
is n-regular for any n. We will see more general statements in Cor. 2.5 and
Cor. 3.2.
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The p-rationality of the irreducible conformal precosheaf associated with
a type A group G follows from the results of [W2] and [X3]. In this case one
has I¢ = pg. The proof of finite x4 index and the calculation of the index value
in [X3] are based on the existence of a class of conformal inclusions which exist
for all classical simply connected Lie groups.

For the rest of this section, we assume d(G/H) < oo. By Lemma 2.2 and
the remark after Th. 8 of [KLM], A,y has only finite number of irreducible
covariant representations. In fact the global index I,y < pug/p- Also note
that the set of irreducible covariant representations is closed under conjuga-
tion and composition (cf. [GL]). Note that if x,a are the irreducible covariant
representations of Ag,y and Apg respectively, then z ® « is an irreducible co-
variant representation of Ag,/g ® Ag. We can take the finite set consisting of
r® a where , a are the irreducible covariant representations of Ag/y and Ay
respectively and define the Y-matrix as in (0) of Section 2.1. Then one has

Yz®a.y®ﬁ = me Yaﬁ 5

where Y, Yo are the Y-matrix associated with the set of irreducible covariant
representations of Ag g and Ag respectively. Y, will be referred to as the
Y -matrix of the coset.

In Section 4.2 of [X4], the results of [X1] (also cf. [BE1-2]) are applied
to the net of inclusions 7 (Ag,u(I) ® Au(I)) C Ag(I). The key observation
is that there is a ring homomorphism = ® a = a,g, With certain remarkable
properties first established in [X1]. We will refer to Section 4.2 of [X4] for the
definition of a,gq and o;. A useful property which follows from Prop. 4.2 and
(4) of Th. 4.1 of [X4] is

<0'i7 afx®oc> = <(Zv O‘)7x>'

So the map  — azg1 as defined in [X4] is a ring isomorphism by (1) of
Prop. 4.2 in [X4], and we have

(:v,y> = <az®17ay®1>-

We will use the notations of Section 4.2 of [X4] and ideas of [X1]. We de-
note the set of irreducible sectors of a,qx by W. ¢  Notice o; € W, and
are referred to as “special nodes” in Section 3.4 of [X1]. The ring homomor-
phism z ® & — azza, Up to a unitary equivalence, is called a-induction in
[BE1,2,3]. A dictionary between the notations of [X1] and [BE1,2,3] can be
found in Section 2.1 of [X6]. If one choose the opposite braiding compared to
the braiding in the definition of a,g., one obtain d,gq. Let W be the set of
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irreducible subsectors of a,gq, Vo, . Let W be the set of irreducible subsectors
of Gygatyes, VT, a,y, B. Let Wy :=W N W. For any finite set Z of irreducible
sectors closed under multiplication we denote by Iz := » ., d%, where dy is
the statistical dimension of 6 (cf. Section 2.1). If no possible confusion arises,
we will denote the vector space over C with basis Z by Z. This vector space
is endowed with an inner product by extending the bilinear form (, ) on sectors
(cf. Section 2.1) linearily in the first variable and conjugate linearily in the
second variable. Note that every sector of Z gives rise to a linear operator
acting on the vector space Z where the action is given by left multiplication.

The following Lemma follows from Prop. 3.1 of [BE4] and Prop. 3.1 of
[BEK2]. We include the proof for our case.

Lemma 2.3.

InlG/u Iylg/u
Iy = Is = 2 CG/MH 1 1.1 Iy, = 2L G/H
w d(G/H)z W T G W T (G

Proof. Each sector a;g, (and linear combinations of them) can be thought
as an operator on W where the action is given by left multiplication. These op-
erators a,ga share a common eigenvector d = Z)\GW dx ) where ) are elements
in the basis W, with eigenvalues d,d,. Note that the matrix corresponding
to N = > o, dc@a on the basis W is irreducible since each element of W
is a subsector of some a,gq, and d = ZAGW d)\ is also a Perron-Frobenius
eigenvector of N. Now define another vector

V=Y dalataga = Y doda(Goga; A)A.

T,a,A

Note that v has positive entries under the basis W. Since

UyopV = dodatygploga = Y dodaN7,N)sa.0s

T, T,z,0,0

=Y dydpdsd.a.es
2,0

=dyds » _ d.dsaes
z,0

where we have used the homomorphism property of the map r® a — a;gq. It
follows that v is also an Perron-Frobenius eigenvector of N. So there exists a
positive constant ¢ such that v = cd. By computing the statistical dimension
we get Iylg/p = clw. From (v,id) = c(d,id) where id is the identity sector
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we get (using d;g = 1)

¢=Y dedo(taga,id) =Y dpda(z, (1,0)) = dg1ayde = d(G/H)?
T,a T,a o
where in the last equality we have used (13).

Similarly if we define vectors v~ = > | drdalzga,d” = Y 5y da, then
a similar proof as above shows that v~ = c¢d~ and Iylg,x = cly. This proves
the first equation in the lemma.

To prove the second equation, consider a;galyes as operators on W with
the action given by multiplication on the left. Let d= 2 xew da d is a common
eigenvector of aygalygps With eigenvalues d,d,dy,dg. Define another vector

b= Y dedadydssgaiyss.
z,y,0,0

One checks easily using the fact that as sectors a;galygs = Gyoptzea (cf
Lemma 3.3 of [X1] or [BE2]) that ¢ is also a common eigenvector of G;galyxs
with eigenvalues d,dndydg. Let N = >ow vof

N under the basis W is irreducible since every irreducible sector in 144 appears

Gr@alyng. Then the matrix of

as a descendant of some @ @qdyes- It follows that d, & are Perron-Frobenius
eigenvectors of N, and so & = éd for some positive constant é. By computing
the statistical dimension we get: (Iylg y)* = ély;,. From (0,id) = &(d, id) we
get (using d;q = 1)

é=(b,id)= Y dpdadyds(aepaiyss, id)

z,y,a,3

> dadadydp(tzga,dyes)

z,y,o,3

Y dedadydp(azga, dyss)

z,y,0o,3

Z Yowa,(1.)@1(G@a: yos) Yys,1,1)01
w6

= Y (i, a000) Vevoyos Yyos. (1101
29,08

where in the last step we have used Th. 5.7 of [BEK1] as in the proof of
Prop. 3.1in [BE4]. Since Yo3Y31 = Igda1, Yega,yes = YayYas, we get

é = Z<ld’ aw®1>Y$yYy(1v1)IH = Z((L 1>v x>nyYleH

T,y z,y
= Z YoayyYyile = Ig/ula.
)
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It follows that Iy;, = Inlg/u-
From the proof of the first equation above we have v = e¢d, v~ = e¢d~, and
hence (v,v™) = Iy, I3 /I%,. But one can also compute directly that

(v,v7)=¢= IG/HIH
completing the proof of the third equality. O
Now we are ready to prove the following:

Proposition 2.4.  Suppose G and H are simply connected semisimple
compact Lie groups of type A as noted in Section 1. Assume H C Gy is also
cofinite. Then:

(1) Ie/u = ey u;

(2) The Y matriz of the coset is nondegenerate.

Proof. Ad (1): By the third equation in lemma 2.3 Iy, = dl(fg/icégﬁ On

the other hand since o; € Wy, Vi (cf. Lemma 3.5 of [X1] or [BE1]), it follows
by definition that I =", d2 < Iy, = tale/n  Gince I = ua, Iy = p, we

= dG/H)*
get
palc/n
< =
1= aGrmy
Note that I,z < pg/m, but by Lemma 2.2
_ HHEG/H
HeT wGmy

It follows that all the < above are = and this proves (1).
Ad (2): This follows immediately from (1), the second part of Th. 38 (note
that strong additivity is not assumed) and Cor. 32 of [KLM]. O

A different proof of (2) of Lemma 2.4 without using the results of [KLM]
can be given by using properties of relative braidings as follows. Let x be an
irreducible covariant representation of Ag,y which has trivial braidings with
every covariant representation of Ag g, i.e., e(z,y)e(y, ) = id,Vy. Then z @1
is a covariant representation of Ag/g ® Apx which has trivial braidings with
every covariant representation of Ag g @ Ag. It follows by definition that
g1 = Gze1, and so azg1 € Wy. Since Iy, = Ig, as sectors [azg1] = [0i]
for some i since a,g is irreducible. Let u be a unitary intertwinning operator
such that o; = uaygi1u*. For any oj, since o; < ajggg, we can choose an
isometry u; such that o; = uja(; gggui- Note that by our assumption z @ 1
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has trivial braidings with (j, ) ® 8, and by using u,u; and the naturality of
relative braidings (cf. Prop. 3.12, 3.15 of [BE3], also cf. Lemma 2.2.3 of [X6]),
we conclude that ¢ and j as irreducible covariant representations of Ag have
trivial braidings. This forces ¢ to be identity, and it follows that [a;g1] = [id]
which implies that = is the identity by Prop.4.2 of [X4]. This proves (2) of
Lemma 4.2 by the proposition in Section 5 of [Reh].

Corollary 2.5. Under the assumptions of Prop. 2.4 Ag g is n-reqular
for any n > 1.

Proof. This follows from Lemma 2.2, (1) of Lemma 2.4 and Cor. 7 of
[KLM]. O

§3. Kac-Wakimoto Conjecture
§3.1. Conjecture 2 of [X4]

Let H C Gj be as in Section 1. Throughout this section, we assume that
H C Gy, is cofinite.

We will denote by S, T (resp. S,T) the genus 0 modular matrices cor-
responding to G (resp. H). As we remarked at the end of Section 2.1, they
coincide with the genus 1 modular matrices when G, H are type A.

We also assume that H C G}, is not conformal, so the coset theory is non-
trivial (cf. Prop. 2.2 of [X4]). But see the remark after Prop. 3.1 for the case
of conformal inclusions.

By Prop. 2.4, the Y-matrix of the coset as defined in Section 2.1 is non-
degenerate, and we shall denote by S ,T the corresponding genus 0 modular
matrices. We will denote by S,T" (resp. S ,T) the genus 0 modular matrices
associated with G (resp. H).

Throughout this section we will use genus 0 modular matrices only unless
noted otherwise.

As in Section 2.2, we denote the set of irreducible sectors of a,ga by
W. Notice o; € W, and are referred to as “special nodes” in Section 3.4 of
[X1]. Since (cf. [X4] or [BE1-2]) a4zga = Gzr@a)Tj0zga = Gzea0;, the matrix
corresponding to multiplications on W by 0y, azg1, and a1g, are commuting
normal matrices, so they can be simultaneously diagonalized. Note that all
the irreducible representations of the ring generated by o’s are given by (cf.
Section 2.1 after (7))

S,
a— 228
Sis
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and similarly for the ring generated by o}s and a;g1’s, with S replaced by S
and S respectively. Assume {1/1(’“’5’2?5)} are normalized orthogonal eigenvectors

of the matrix corresponding to multiplications on W' by 0y, a,;g1, and a1ga

SI~
bl Sl
multiplicity of k,d,z, and we denote by (Exzpl) the set of k,d,z;s’s which

with eigenvalues g"“ and 3“5 respectively, s is an index indicating the
appears in the set {dl (k6,235 } Recall if a representation is denoted by 1, it will
always be the vacuum representation.

Lemma A. We have:
(1) The eigenvector Y OLL9) s unique with multiplicity s = 1, and is

given by > dqa, up to a positive constant; moreover y d? = m,
1

(2)

Sz Sa5 Szz (k,8,2;s)
Z S ; S S W}l | <0i7az®a>;
(k,0,z;5)€(Expl) 1k P16 D1z
@) I
<O-]'a a’y®ﬂ> 7é 0,

I
then w, = wiwg

Z SljSmSly<aj,ay®ﬂ> =1.

7,85y

Proof. Ad (1): Let G = Y 2o Gz@a, then every element of W appears as

an irreducible subsector of G, and so we have
Gap := (Ga,b) = (G, ba) > 0

since W is a ring. It follows that (éab) is an irreducible matrix and has up
to positive constant a unique Perron-Frobenius eigenvector. But the vector
> . daa is an eigenvector of (éab> by the properties of statistical dimensions
with maximal eigenvalue, and so up to positive constant the Perron-Frobenius
eigenvector of (Gap) is 3, daa. Note that 1(1115%) is an eigenvector of (Glap)
with maximal eigenvalue, we must have s = 1 and there exists a positive number
p such that 1/)(1‘1’1;1) = pdg,Va. The last part of (1) now follows from d; = 1
and (11D s a unit vector. Note that there is an analogue statement in (3)
of Th. 3.9 of [X1].

Ad (2): Note (0, azga) = (0;025a, 1), and (2) follows from the definitions.

Ad (3): By (4) of Th. 4.1 of [X4] (also cf. (2) of Prop. 4.2 of [X4]) we have

(0, ayep) = ((4,8):y)



180 FENG XU

so if
<Uj7ay®ﬂ> 7é 0,

then y appears as an irreducible sector of (j, 3). Note that the action of univer-
sal covering group G of PSL(2,R) (cf. Prop. 2.2 of [GL]) on the Hilbert space
H; g) induces an action on the representation space H, corresponding to sector
y, but the action of 27 in G on the Hilbert space H; ) is given by a constant
ijgl, and it follows that the univalence w, of y is given by w, = ijgl.

Ad (4): By local equivalence (cf. Th. B in Section 17 of [W2]), the mini-
mal index of the subfactor 7/ (L;H)" V (7/(LrH)' N7/ (L;G)") C nI(L;G)" is
independent of j, where 77 is the representation corresponding to j. It follows
from the properties of statistical dimensions (cf. [L6]) that

Y dipds =d; Y dapds = d3d(G/H)?,
B B

where d(G/H)? = > sd1,pds and d(; p) is the statistical dimension of the
coset sector (7, 3). So we have:

Z Sljs.lgs.iy<0'j,ay®ﬁ> == Sllsllgll Z d]dﬁdy<(.77ﬁ>7y>

7,8y 3By
= S11811511 Z djd; sy = S11511511 Zd?d(G/H)Q
3B J
St '

Note that by our assumption pg = =, g = =, and vwa/a = la/ag = = by
Sll 511 Sll
(1) of Prop. 2.4, so it follows from Lemma 2.2 that

d(G/H)2S,1 511

= 1’
S11

and the proof is complete. O

Proposition 3.1. (1)

(i ar@a) = Z SijSapSey (0, ayes);

7By

Z<0i7 am®a>gmz = Z Sz 'St;cﬂ<aj7 az®ﬂ>‘

z 5.8
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Proof. (2) Obviously follows from (1) and the unitarity of S, so we just
need to prove (1). Use (cf. (2) and (3) of Section 2.1) we have

Sey = Z(xy,w) :i Y S 1w,

so the right hand side of Prop. 3.1 is:
—_— (,u_lw_l .
(*) Z SijSaﬁ<0—j7ay®ﬂ><myﬂw> w—lJ Slw

7.Byw

Note by (3) of Lemma A that if

<Uj7 ay®ﬁ> 7& 0,

then w, = ijﬁ_l, so we can substitute ijﬂ_l for w, in the above expression.
Now take the complex conjugate of both sides of (2) of Lemma A with (4, «, x)
replaced by (7, 8,y) we have:

Sjk Sﬁ’(g S’ﬂz (k5Z's) 2
U"a == - T = T )
< J y®ﬁ> k’%’z;s Slk 516 Slz ‘wl |

and we shall plug this into (*) and we shall call this resulting expression after
the two substitutions above by (*) in the following. We first sum over j and
in (*) using (cf. (5) of Section 2.1)

ij—lSiijk = C3wiwkS;k,
J

Y wpSapSps = C Pw, w5 s,
B

and then sum over y in (*) using (cf. (2) of Section 2.1)

Z(wy,w>€gz _ ez Sue
Slz Slz Slz

Y

and finally sum over w in (*) using (cf. (5) of Section 2.1)

S Sruwnlu: = O G,

The right hand side of Prop. 3.1 is then

c? w; Wi Sgk Sa5 Szz (k,8,2;8) 2
> e [

(k,8,2;5) € (Expl) 303 wawy wsw- S1k S15 51,
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Set
i=1, a=1, z=1,

and use (4) of Lemma A, we have:

03 |1/1 (k,8,2;s)
C3C3w5wz !

2 =1.
(k,d,2;5)€(Ezpl)

By setting i =1, = 1,z = 1 in (2) of Lemma A we have

> TR =1

(k,8,z;8)€(Ezpl)

Since
03

C3C3
and |a + b| < |a| + |b],Va,b € C, we must have

Wik

:]_7

Wswz

(1,1,1;1) Wk 1,1,1;1 k,6,2;8
R 4 A < R 2, (k6,25

and since by (1) of Lemma A

(1,1,1;1)
|¢1 |>07

we have
k,b,z;s k,b,z;s
S [
WsWy
and it follows that if
k,0,z;s
i # 0
for some s, then w;’:) =1.
It follows that C(SJCS = 1 and we have proved that the RHS of Prop. 3.1 is:
Z Szk Sa5 Szz ‘w(k,ﬁ,z;s)|2
, Stk Sis 81, ’
which is precisely the left hand side by (2) of Lemma A. O
A 3 (Cg=C
Note that c3c3 = 1 shows that C3 = % = exp(—6m%), where

Cg, Ch are central charges as defined in (11) of Section 2.1. This matches with
the result of [GKO] that the central charge of the coset is Cg — Cy. For the
special of diagonal cosets of type A, this is (2) of Th. 2.3 in [X5] which is proved
by different methods.
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Note that if H C G is a conformal inclusion, then by a similar but simpler
proof as above one can show the following:

bia = ZSijSaﬂbjﬂa
3,8
where b;,, € N are the branching coefficients. This is implied by (1) of Th. A
on P. 185 of [KW].
By setting i = 1,a =1,z =1 in (1) of Prop. 3.1 we have:

1= 51,8155, (0),a,55)
7By

_ 1 |¢(1,1,1;s)|2’

a ; S11811 511

so it follows from (1) of Lemma A that
I A ——
oW ¢ SuSuSn

where ¢ € W means the summation over the basis of W given by irreducible
sectors.

In [X5] we define V' to be the vector space whose basis are irreducible
subsectors of ;a1g4, and w(jvﬁvs) are normalized eigenvectors of linear trans-
formations on V' which are multiplications by o; and a1g,. The proof of (1) of
Lemma A applies in this case with G = Y i Tiliga and we have

Z 42 = ;
“ o 81,81,00(1,1)

acV

where (cf. Prop. 3.1 of [X5])

vO(1,1) := Z Slj91ﬂ<o'ja a19)-
3.8

Set i=1,a=1,z=11in (2) of Prop. 3.1 we have
b°(1,1) = Sy;.

So we have proved that

dodi=)"d,

aeW acV
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and since V' C W, we must have V = W. So for any irreducible sector = of the
coset, there exists (j,3) such that a,g1 is an irreducible subsector of oja;43.
Since

(050165, aee1) = (0, azep) = ((4, B), T),

we have proved the following:

Corollary 3.2.  FEvery irreducible sector of the coset appears as an ir-
reducible subsector of some (j,3) € exp.

Note (1) of Th. 2.3 in [X5] follows from Cor. 3.2 above and Cor. 32 of
[KLM].

Cor. 3.2 proves a stronger version of Conj. 1 in [X4] under the conditions
stated at the beginning of this section. It is interesting to note that there is also
a Vertex Operator Algebra (VOA) approach to the coset CFT in [FZ]. In Section
5 of [FZ] (also cf. P. 113 of [Kacv]) a coset VOA is defined and it is conjectured
that these coset VOA is rational (cf. [Z] for definitions). For (4, 3) € exp, and
x a subsector of (j,3), let H; g, H, C H(;g) be the corresponding Hilbert
spaces of representations. It is easy to see using Section 2.3 of [X4] that H, is
also an irreducible representation of the coset VOA. This shows Th. 4.3 of [X4]
and Lemma 2.2 of [X5] holds for the coset VOA in the case of diagonal coset of
type A, which is a result that has not been proved by using the theory of VOA
so far. However to use Cor. 3.2 to prove the rationality of the coset VOA, one
has to show that any representation of this coset VOA admits a natural inner
product so similar norm estimations as in Section 2.3 of [X4] can be carried
out. 7

More generally let us define

bo(i, Oz) = Z SijS'aMaj, a1®ﬁ>.
7B
Note as stated at the beginning of this section that all the 5, S matrices above
are genus 0 S, S matrices. So 0°(i,a) is defined differently from b(i,a) in (1)
of Section 1 where genus 1 S, S matrices are used.

Corollary 3.3.  The statistical dimension d(; o) of the sector (i,ca) is
given by

Proof. By settingi =1,a =1,z = 1in (2) of Prop. 3.1 we have °(1,1) =
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Si1, and by setting z =1 in (2) of Prop. 3.1 we have

b (i,Oé) :Z<Uivaz®a>§,—ji
= Z(Uiaaz®a>da:
= Z((iaa)7x>dm

= Ya)

which completes the proof of the Corollary. O

Note that if the genus 1 S (resp. S) matrix corresponding to G (resp.
H) coincide with the genus 0 S (resp. S) corresponding to G (resp. H), then
b2(i, ) coincides with b(4, ) defined in (1) of Section 1. By Cor. 3.3, we have
proved the following theorem:

Theorem 3.4.  Suppose G and H are simply connected semisimple com-
pact Lie groups of type A as noted in Section 1. Assume H C Gy, is also cofinite.

Then Conjecture 2 in [X4] is true, i.e., the statistical dimension d(i,a) of
the coset sector (i,q) is given by

b(i, a)

() = p(1,1)

Since d(; o) > 1,b6(1,1) > 0, an immediate corollary of Th. 3.4 is the
following;:

Corollary 3.5. Under the same conditions of Theorem 3.4, the Kac-
Wakimoto Congecture is true, i.e., if (i,«) € exp, then b(i,a) > 0.

Let us mention some examples which satisfy the assumptions of Th. 3.4.
Take H; C G1 to be conformal inclusion where H, G are simply connected type
A Lie groups. Here is a list of such pairs:

N(N -1
SU(N)n-—2CSU (%) , N >4
N(N +1
SU(N)N+2 C SU (%) ;
SU(M)n x SU(N)py Cc SUNM).

Consider the coset Hj, C Gj with k > 2. By [W2] and [X3], Hj, G are p-
rational and the genus 0 S-matrices coincide with the genus 1 S-matrix, and
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by (2) of Cor. 3.1 of [X4] the coset Hy, C Gy, is cofinite, so the conclusion of
Th. 3.4 and Cor. 3.5 is true in these examples. To the best of our knowledge,
this is already a new result since the branching rules (the set exp) is not known
in general & for these examples, and even with the explict formula for exp, the
calculation of b(, &) seems to be nontrivial in general.

§3.2. Conjecture 7.1 of [BE3]

We shall use the original settings of [X1]. Let Hy C Gp be a conformal
inclusion with both G and H being semisimple compact Lie groups of type A,
and &k the Dynkin index of the inclusion (cf. [KW]). We use i (resp. A) to
denote the irreducible projective positive energy representation of loop group
LG (resp. LH) at level 1 (resp. k) (cf.[PS]).

Denote by b;) the branching coefficients, i.e., when restricting to LG, ¢
decomposes as ), bixA. Denote by S;; (resp. Sy,) the genus 1 S-matrices of
LG (resp. LH) at level 1 (resp. k) (cf. [Kac]). Recall ay as defined on Page
372 of [X1], then we have (cf. P. 9 of [X2])

bin = (ax,04).

Let us first prove a lemma in the setting of [X1] which is an analogue of
Lemma 3.10 of [BE3]. The basic idea is already implicit in the proof of Lemma
3.2 in [X1]. The proof depends on Section 3 of [X1] and we refer the reader to
[X1] for unexplained notations.

Lemma 3.6.  If (ax,d,) # 0, then wy = w,,.

Proof. Let u # 0 be in Hom(ayx,a,). Then

p(u) € Hom(yA,yp) = Hom(paxp, pa,p),

so u € Hom(axp, a,p), and by (1) of Th. 3.3 in [X1], we have u € Hom(ax,a,).
So we get:
a,(m)u = a,(m)u, Vm € M.
Set m = w, apply p to both sides, and use the equation on P. 373 of [X1] we
obtain
v(o)wp(u) = v(5)wp(u).
Multiply on the left by v* and use the equation on P. 369 of [X1] we get:

*

o) wp(u) = d, o p(u);

vy (&) wp(u) = d; 6 p(u);
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and so
op(u) = ap(u).
Note this equation is an analogue of Lemma 3.6 of [BE3].
Now multiply both sides on the right by v, we have

op(u)y = Gp(u)e,
hence
o tap(u)v = p(u)v.
Note that p(u)v € Hom(\,yu), and apply the monodromy equation (cf. P. 359
of [X1] and use the fact that the univalence of v is 1) we get:

wxwljlp(u)v = p(u)v.

To finish the proof we just have to show that p(u)v is not zero. Note by
(3) of Prop. 2.6 of [X1] we have p(u*) = v(uy)w for some u; € M, and so
p(u)v = w*y(ui)v = w*vy(uj) = d; ' (uj), so if p(u)v = 0, then p(u) = 0, and
so u = 0 contradicting our assumption u # 0. ]

Let U be the vector space with a basis which consists of irreducible compo-
nents of axa,o;, VA, it,%. ax,ay,o0; acts on U by multiplication, and since they
are normal commuting matrices by (2) of Cor. 3.5 and Lemma 3.3 of [X1], they
can be simultaneously diagonalized, and suppose {w(j’)‘l’““_s)} are normalized
Dy Swiapnd Su

orthogonal eigenvectors of ay,a,, and o; with eigenvalues Zz~=+, F*+, S
S1ay 7 S1pq 1j

respectively, where s is an index indicating the multiplicity of j, A1, 1.

Theorem 3.7.

auv a)\ E bzp,bz)\

Proof. Let us calculate
Z Sl,u<dp,7 a>\>Sl)\
A
as in the proof of Prop. 3.1. By Lemma 3.6, we have

. ~ . - w - -
Z Slp,<ap,a a)\>Sl)\ = Z Sluw_A<a,u7 a)\>Sl)\
A s

(4,M1,11;8) 12
E Smw SWISU\W,\SA,\IS 3 1y ‘
PN TR TR 11”1

-1 (i,A1,1138) 2
Z wy, Wy [t T,

1,A1,1158
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where we have used (5) of Section 2.1 in the last =. It follows that

S S a)Sin < D0 = 1,1) = 1.

A 1,A1,1415S

On the other hand

ZSm(%,a)\)Su > Z S1lap, i) (0, ax)Six
>\,p, Anu/!i

= Z S1,bipbirS1a

Ayt

=) SuSu=1,

where in the second = we have used (a) of Th. A on P. 185 of [KW]. So we
must have

Z Sy, ax) Sy = Z S1,bipbirSix,

Ap Ayt

and since

(Gu,ar) > Z bipbix,

K2

and Sm > O,Su > 0, we must have
<&,u7a)\> = Z bipbi)\- O

Th. 3.6 proves Conj. 7.1 of [BE3] is true. This together with Prop. 5.1
of [BE3] show that the invariants of the dual Jones-Wassermann subfactors
associated with conformal inclusions are determined by the ring structure gen-
erated by irreducible sectors of axd,, thus removing the mystery expressed in
the footnote on P. 393 of [X1], where one can also find the first example of such
ring.

Footnotes

1 When G is the direct product of simple groups, k is a multi-index, i.e., k = (k1, ..., kn),
where k; € N corresponding to the level of the i-th simple group. The level of LH is
determined by the Dynkin indices of H C G. To save some writing we write the coset as
H C Gy.

2 This is slightly different from the notation 70 (resp. mp) in [X4]: it seems to be more
appropriate since these representations correspond to identity sectors.

3 Our (j,0) corresponds to (M, u) on P.186 of [KW], and it follows from the definition (cf.
Section 2.1) and Cor. 2.10 of [GL] that ((4,8), (1,1)) is then equal to multys(u, p) which
appears in 2.5.4 of [KW] if the sector (7, 3) has finite index, and that our formula (1) is
identical to 2.5.4 of [KW].
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4 After this paper appears as preprint math.RT /9904098 in the net, the author is informed
by Prof. D. Evans that Conj. 7.1 is also proved in a forthcoming paper (cf. [BEK1]) by
different methods.

5 Asin [GL] by an interval of the circle we mean an open connected proper subset of the
circle. If I is such an interval then I’ will denote the interior of the complement of I in
the circle.

6 Note this is slightly different from the definition of vector space V' in Section 3.1 of [X5],
and in fact V. C W, but we will see in Cor. 3.2 that these two spaces coincide.

7 We'd like to thank Dr. Yongchang Zhu for a discussion on this point.

8 The branching rules in the case of conformal inclusions listed here are the main results
of [LL] and [ABI] and are by no means trivial.
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