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G-surgery on 3-dimensional Manifolds for
Homology Equivalences

By

Masaharu MORIMOTO™

Abstract

For a finite group G and a G-map f : X — Y of degree one, where X and
Y are compact, connected, oriented, 3-dimensional, smooth G-manifolds, we give an
obstruction element o(f) in a K-theoretic group called the Bak group, with the prop-
erty: o(f) = 0 guarantees that one can perform G-surgery on X so as to convert
f to a homology equivalence f' : X' — Y. Using this obstruction theory, we de-
termine the G-homeomorphism type of the singular set of a smooth action of As on
a 3-dimensional homology sphere having exactly one fixed point, where As is the
alternating group on five letters.

§1. Introduction

This paper is a continuation of [7]. For a finite group G, we discuss G-
equivariant surgery on compact connected oriented 3-dimensional manifolds,
and construct an algebraic obstruction to converting a framed G-map of de-
gree one to a homology equivalence by a finite sequence of G-surgeries of free
orbit type. The purpose of the current paper is to improve [2, Theorem 1] to
Theorem 1.1 below. Moreover, we give a detailed proof of this theorem in the
present paper, while [2] omits the details of the proof. In [2], as well as in [7,
p.78], we exhibited the importance of 3-dimensional G-surgery theory from the
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viewpoint of smooth actions of G on spheres. In particular, the theory is a
key tool constructing smooth actions of A5 on spheres of dimensions 7 and 8
with exactly one fixed point, and we also apply it in Section 5 to determine
the G-homeomorphism type of the singular set of a smooth action of A5 on a
3-dimensional homology sphere with exactly one fixed point.

Let G be a finite group, e € G the identity element, and set

G2)={9eGlg’=eg+e}

All manifolds are understood to be paracompact smooth manifolds, and G-
actions to be smooth, unless otherwise stated.
For a compact G-manifold X, we define the singular set X (or more
precisely X)) by
X, = U X9,
geG~{e}

where X9 is the fixed point set of g in X. In the case dim X = 3, we define
GX)={geG2)| dmX?=1}

Here dim X9 is the maximal dimension of connected components of X9. We
denote by M?3(@) the family of all compact connected oriented 3-dimensional
G-manifolds X (possibly with boundary 0X) satisfying

(M 1) dimXS(G) S 1.
In [2], we assumed the additional condition
(M 2) G(X) =G(2),

but this is not necessary in the current paper.

Let Y € M?(G). Then the orientation homomorphism w = wy : G —
{%1} is defined by w(g) = 1 if g € G preserves the orientation of ¥, and —1
otherwise. For a commutative ring R with identity, the group ring R[G] of G
over R is defined to be the set of all formal sums > . ryg, with ry € R. The
group ring R[G] has the involution - associated with wy which is defined by

Z reg | = Z rqwy (9)g -
geG geG

We denote by Y the universal covering space of Y. A 1l-connected G-map
f: X =Y (hence m(f) : m(X) — 71 (Y) is surjective) induces the covering
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space X = f*i? of X from Y and the map f: XY covering f, giving the
pullback diagram
X1y

Lo

x 1,y

The group G = 7, (EG x¢ Y) is an extension of G by 7 (Y):
{e} »m(Y)—G—G—G/G (exact)

and acts on Y and X (cf. [8]). With respect to the G-actions, f is a G-map.

We say that a finite group H is p-hyperelementary (for p a prime) if H is
an extension of a p-group by a cyclic group: H = C' x P, where C is cyclic
and P is of order p™ for some nonnegative integer n. A hyperelementary group
means a p-hyperelementary group for some prime p.

Theorem 1.1.  Let R be a ring such that Z C R C Q. Suppose that X
and Y in M3(G) satisfy
G(X) =G(Y),

and f: (X,0X) = (Y,0Y) is a 1-connected G-map of degree one such that
(1.1.1) 9f = flox : 0X — 9Y is a homotopy equivalence, and

(1.1.2) fomy » Xo(ay = Ysm) s an R-homology equivalence for each hyperele-
mentary subgroup H of G.

Moreover, let b: T(X) @ f*n_ — ny be an orientation preserving map of G-
vector bundles covering f, where ny and n_ are oriented real G-vector bundles
over Y such that ny D ey (R*). Then there exists an obstruction element
o(f,b) in the Bak group W3(R[G], TG(Y); wy) (cf. [5], [2]), where TG(Y) is
the smallest form parameter on R|G] containing G(Y'), with the property that
if o(f,b) = 0 then one can perform G-surgery on X ~\ (0X U X)) to alter
f: X =Y aG-map f : X' = Y which is an R-homology equivalence, and
b:T(X)® f*'n_ —ny toamap : T(X')® f*n_ — ny of G-vector bundles
covering f'.

Remark 1.2.  If the reduced projective class group Ko(Z[G]) is trivial,
then (1.1.2) can be replaced by the condition that

(1.2.1) fF: X* — Y"is mod p homology equivalence for each prime p dividing
|G| and every nontrivial p-subgroup P of G.
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Theorem 1.1 improves [2, Theorem 1] in two respects. One is that the
condition (M2) is removed, and the other is that Y is not restricted to be
simply connected.

In the case without bundle data, we have

Theorem 1.3. Let R be a ring such that Z C R C Q, X and Y in
M3(G), and f: (X,0X) — (Y,0Y) a l-connected G-map of degree one sat-
isfying the conditions (1.1.1), (1.1.2) and (M2) above. Then, there is an ob-
struction element o(f) in the Bak group W3(R[G], maz;triv), where max is
the mazimal form parameter on R[G| and triv is the trivial homomorphism
G — {1}, with the property that if o(f) = 0 then one can perform G-surgery
on X\ (0X U X)) to a G-map f': X" =Y which is an R-homology equiva-
lence.

For applications of Theorems 1.1 and 1.3, the results of A. Bak, e.g., [2,
Theorems 3-5 and Corollary 6], are quite useful, since they guarantee that the
G-surgery obstruction vanishes.

The organization of the rest of this paper is as follows. Section 2 treats al-
gebraic preliminaries, including the definition of quadratic forms and G-surgery
obstruction groups. The equality in Proposition 2.9 is a key to surgery the-
ory on odd dimensional manifolds. In Section 3, we argue how we assign the
G-surgery obstruction o(f) to a G-map f : X — Y of degree one satisfying
certain conditions. We prove Theorem 1.1 in Section 4. Namely we prove that
a(f) = 0 guarantees the existence of a finite sequence of G-surgeries converting
f toa G-map f' : X’ — Y which is an R-homology equivalence. In Section
5, we give an application of our G-surgery theory concerned with the singular
sets of smooth actions of A; on 3-dimensional homology spheres.

82. Quadratic Modules and the Bak Groups

In the current section we recall the definition of form parameters, quadratic
modules and the Bak groups. If the reader is familiar with [2] or [5] then he
can skip the section.

Let A be a ring with identity. We always suppose that a finitely generated
free A-module has a well-defined rank over A, i.e., if A™ = A™ then m = n.

Let — be an involution on A such that
(i)a=a (a€A),

(ii) a+b=a+b (a,be A),
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(iii) ab="ba (a,be€ A) and

Let s € Center(A) such that s§ = 1. This element s is called a symmetry of A.
Then a form parameter I’ on A is defined to be an additive subgroup of A such
that

(T1) {a—sa|ac A} cT C{a€ A|a= —sa} and
(I'2) al'a C T for all a € A.

The maximal and minimal choices are denoted by maxz and min respectively,
i.e.,

maxr ={a€A|a=—-sa} and min={a—sa|ac A}.
In the following, quadratic forms and modules are defined depending on the
datum

A= (A—sT)

called a form ring. Let M be a left A-module. A sesquilinear form on M is a
biadditive map

B:MxM— A

such that
B(ax,by) = bB(z,y)a (a,b€ A, z,y € M).

A sesquilinear form B is called s-Hermitian if
B(z,y) = sB(y,z) (z,y € M).

Definition 2.1. A quadratic A-module is defined to be a triple (M, B, q)
consisting of a finitely generated projective A-module M, an s-Hermitian form
B: M xM — Aand amap q: M — A/T" which satisfy the following conditions
(2.1.1)-(2.1.3):

(2.1.1) gq(azx) = ag(z)a (a € A,x € M),
(21.2) q(z +y) —q(x) —q(y) = B(x,y) mod ' (z,y € M) and

(2.1.3) q(z) + sq(z) = B(z,z) (x € M) for any lifting g(z) € A of ¢(x) € A/T.

The map q: M — A/T above is called a I'-quadratic form.
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A morphism (M, B,q) — (M', B',¢') of quadratic A-modulesis an A-linear
map M — M’ which preserves both Hermitian and quadratic forms. We say
that a quadratic A-module (M, B, q) is nonsingular if the Hermitian form B is

nonsingular, i.e., the map
M — Homy (M, A); x+— Bz, )
is bijective.

Definition 2.2. Define the standard hyperbolic A-module H,, of rank
2m to be the quadratic A-module (A%™, B, q) such that

A?™ s a free A-module with basis {e1,...,€m, fi,---s fm},
B (Z(aiei +bifi), Z(a;ei + b;ﬁ)) = Z(b;a_i + sajb;) and

in A/T,

q (Z aie; + bifi) = lz bia;

where a;, b;, al, b, € A.

7 3

Let M and M’ be free A-modules with ordered bases {z1,...,2,} and
{y1,...,ye}. For an A-homomorphism f : M — M’, we obtain a matrix

Mat(f) = (m;;) (or more precisely Mat(f;{x;},{y;})) by

¢
f(xi) = Z mijY;
j=1

for each i = 1,...,n. We use the notation
1 f(x1)
fl: for :

Then, we can express the relation between f and Mat(f) by

T Y1
f o | =Mat(f)

L Ye

Proposition 2.3 (cf. [3, p.37, Beware]|). Let M = (x1,...,2,)4 be as
above and f, g € Enda(M). Then Mat(fg) is equal to Mat(g) Mat(f).
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Let A?™ = (e1,...,em, fi,---, fm)a as before and f € End4(A%*™). Then
the matrix Mat(f) associated with f is expressed in the form

M1 M-
i) = (1 112,

using m X m-matrices M1y = (ai;), Mi2 = (bij), Ma1 = (cs5), Maoz = (d;j).

Proposition 2.4.  An element f € Enda(A%™) is an automorphism
of H,, if and only if the following (2.4.1)—(2.4.3) are satisfied:

(2.4.1) <M“ M”) € GLom(A).

-1 o
(249) (M M) [ Mo M
M1 Mas 5'May "My

(2.4.3) The diagonal coefficients of Mia(*Mi1) and Mao(*Msy) lie in T.

Proof. We prove the only if part. Let f be an automorphism of H,,
Then (2.4.1) clearly holds. Observe the relations:

B(f(e:), f(e;)) = Z(bjk@ + sajibir) = 0,

k

B(f(fi), F(£;)) = Y_(djs@ir + scjpdix) = 0,

k

B(f(e:), f(f;) = _(djxtir + scjubix) = 6;; and

k

B(f(fi): f(e;)) =Y _(bjntir + sajudir) = s3i;.

k
It follows that

M11 M12 tMQZ 5M12
M21 M22 SM21 tMll
) (bi3) \ [ (dji) s(bji)
(dij) (CJZ) (@ji)

_ | Xilairdir +5bintir) o (saibjr + birdir)
Y owlcindjr +5dincir) Y, (scikbjr + dirajy)

(1, 0,
N0, I ]
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This proves (2.4.2). The final condition (2.4.3) follows from the equalities

q(f(ei)) = lz bikm] =0in A/T and

k
q(f(fi)) = lz dikm] =0in A/T.
k
The if part also follows from the equalities above. Q.E.D.

My My

For a 2m x 2m-matrix M =
<M21 Mys

) and 2m’ x 2m/-matrix M’ =

, we define the 2(m + m’) x 2(m + m/)-matrix M @& M’ to be

My, My,
M3y Ms,

My 0 My O
0 M{, 0 M,

My 0 My 0
0 M}, 0 M,

We define several matrix groups which will be needed later. Firstly, define

SU(A,T) = { (M“ M”) € Map.om(A)

This contains the subgroup

TU,, (A, ) = { (%; %Z) € SU,(A,T)

(2.4.1)—(2.4.3) are satisﬁed} .

Ms :0}.

We define the 2 x 2-matrix o by

o (0 1)
s 0)
Then o lies in SU(A,T'). We set 0; = Izi—1) ® 0 ® Iz(;,—i) and
RU,,(A,T) = (TU,,(A,T),01,...,0m) (CSU,L(A,T)).
The stabilization homomorphism
Jmomt1: SUp (A, T) = SU,,41(A,T)

is defined by jpmm11(M) =M @ I>.
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A matrix having one form among the following 2m x 2m-matrices e..( )
and H(e,.( )) (for some m) is called a I'-quadratic elementary matriz.

the (k,k)-entry =1 (k =1, ...,2m),
L, the (m +1i,j)-entry = a,
6m+i,j(a) (Z 7é J,a € A) : (m +,7 i)—entry — —5a

all other entries = 0.
(the (k,k)-entry =1 (k=1,...,2m),
the (i,m + j)-entry = a,

5i,m+j(a> (Z #j7a € A) : (] m+i)—entry — —sa

all other entries = 0.
the (k,k)-entry =1 (k=1,...,2m),
Emtii(a) (@ €T): the (m + i,i)-entry = a,

all other entries = 0.

the (k,k)-entry =1 (k=1,...,2m),
€imyi(a) (a€eT): the (i,m + i)-entry = a,
all other entries = 0.
the (k,k)-entry =1 (k=1,...,2m),
the (7, j)-entry = a,
(m+ j,m + i)-entry = —a,
all other entries = 0.

H(eij(a)) (i # j,a € A):

Using these ['-quadratic elementary matrices, we define

EU,,(A,T) = ( all elementary matrices € SU,,(A,T)), and
FU,,(A,T) = ( all elementary matrices € SU,,(A,T") of type em+i ;(a)
(i#j, a€A)oreptii(a) (a€l), and o1,...,0m).

For L=E,F, R, S, T, we set
LU(4,T) = lim LUy (4,T).

m

By [1, Corollary 3.9], we obtain

Lemma 2.5. It holds that EU(A,T') = [SU(A,T),SU(A,T")] the com-
mutator subgroup of SU(A,T).

It is easy to see
RU(A,T) D EU(A,T).

Thus, the quotient group SU(A,T")/RU(A,T") is abelian.
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Definition 2.6.  The Bak group W7 (A,T), where s is the symmetry of
A, is defined to be the quotient group SU(A,T')/RU(A,T). For a commu-
tative ring R with identity, W5(R[G],T;w) stands for W' (R[G],T), where
the involution — on R[G] is one induced by the orientation homomorphism
w: G — {£1}.

We obtain the next proposition by straightforward calculation.

Proposition 2.7. If7( ) =e.( ) is a -quadratic elementary matriz,
then

(2.7.1) T(a)T(b) = 7(a+0b).
If i, j and k are distinct, then
Ui_laj_1€m+i,j (a)aiaj =£&; er]'( a) (a € A),
o temyii(a)oi=¢;mri(sa) (a€T),
[Eim+i (1), Emain(a)] =H(gjr(—sa)) (a € A),
0; ' emtij(a)o; =H(e;i(=a)) (a € A),
where [z,y] = x "y~ lay.

This proposition clearly implies the following two.

Proposition 2.8.  Provided m > 2, it holds that FU,,(A,T') D
EU,.(A,D).

Proposition 2.9.  For each element x € SU(A,T), it holds that
TU(A, D)2 FU(A,T) =  RU(A,T) = RU(A, Tz
as subsets of SU(A,T).

Let (M, B, q) be a quadratic A-module. We say that a submodule N of M
is totally isotropic if B(x,y) =0 for all z, y € N and if g(x) = 0 for all z € N.

Proposition 2.10.  Let (A*™,B,q) be a nonsingular quadratic A-
module. If a direct summand N of M = A?™ is a free A-module with basis
{z1,...,2m} and is totally isotropic, then there exists a totally isotropic comple-
mentary direct summand L with A-basis {y1,...,ym} such that B(x;,y;) = 0;;
for alli and j.
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Proof. Let L’ be a direct summand complementary to N in M, i.e., N &
L' = M. We denote by p the projection from M to L', and by f the inclusion
of N to M. The Hermitian form B induces an A-homomorphism

U: M — M# =Homu (M, A); =+ B(z, ).

Since B is nonsingular, ¥ is an isomorphism. It is easy to see that f#W: L' —
N# is an isomorphism, because the rank over A is well-defined. There exist
zi € M, i =1,...,m, such that B(z;,z;) = sd;; (equally B(z;,z;) = d;;).
Here we note that {p(21),...,p(zm)} is a basis of L. Let us make an inductive
assumption that B(z;,z;) =0 and ¢(z;) = 0 for all 4, j < k. Set

k
Zjp1 = Pk41 = 5 <Z B(2i, 2k+1)Ti + 6(2k+1)$k+1> ;
i=1
where ¢(z141) € A is a lifting of q(zx41) € A/T. If i < k, then

B(zi; 2j,11) = B(ziy 2k41) — 3B (2, 241)s = 0.

Furthermore,

k
(2)41) = a(2k41) +61< (ZB Zis Zh41)Ti +(J(Zk+1)xk+1>>
i=1

k
+B <Zk+17_5 (ZB Ziy Zk41)Ti +C](Zk+1)$k+1>>
i=1

= Q(Zk+1) - SQ(Zk+1) (Zk+1733k+1)
=q(2r+1) — G(2k+1)
=0 in A/T

and

B(2h115 2h1) = @(241) + 8q(z4,) =0

because of the condition (I'2) and (2}, ,) € I'. Thus, there exist y; € M,
i =1,..., m, such that B(z;,y;) = d;j, B(yi,y;) = 0 and ¢(y;) = 0. We set
L = {(y1,...,ym)a. Since {p(y1),...,p(ym)} is a basis of L', M is the direct
sum of N and L. Q.E.D.

We close this section by remarking
RU,,(A,T) = (TU,,(A,T),01)

as subsets of SU,, (A,T).
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83. Definition of G-surgery Obstructions

Let X and Y be elements in M3(G), f : (X,0X) — (Y,0Y) a 1-connected
G-map of degree one, and R a ring such that Z C R C Q. In this section we
choose solid tori (=2 S* x D?) in X and disks in Y so that after G-homotopically
deforming f, it becomes a prenormal map over R in the sense of [7, Definition
7.1].

First we note that the orientation homomorphism G — {£1} induced by
the G-action on X coincides with that for Y, namely wx = wy-.

Fix a point yo in Int(Y,(g)), where

Ye) =Y N Yo

After G-homotopically deforming f if necessary, we may assume that f is trans-
verse regular to the point yo. We can choose a tiny disk neighborhood D3 of
Yo in Int(Y,()) and tiny disk neighborhoods D, of z € f~!(yo) in Int(X, ()
such that D3 NgD3 =0 ifg#e (g€ G), D,, NgD,, =0ifz; 2z or g #e
(21, 22 € f~'(v0), g € G), and

fHnt(Dy)) = [ (D).

z€f~*(vo)

Fix a reference point y; in dD3. Arbitrarily choose and fix 21 € f~1(yo)
and take connecting tubes (=2 I x D?) between dD,, and the other 9D, (z €
fY(yo) ~ {21}) in general position of

Int(X,)~ | J (Glnt(Dy)).
we f~(yo)

Since m1(f): m1(X) — m1(Y") is surjective, we can choose the connecting tubes
so that f maps them to {y;} after G-homotopical deformation of f. Let D% be
the union of all D, and the connecting tubes. Smoothing corners, D% becomes
diffeomorphic to a 3-dimensional disk. Moreover it holds that D% N gD% =
ifg#e (g€@G), and f(D%) = Di.

Next take solid tori T1,...,T,, (=2 S! x D?) in general position in

Int(Xr(G) N GDg()

such that their cores (22 S') generate Ker(m(f)) ®z R. Let 3;: S* x D* = T;
be orientation preserving diffeomorphisms and let e¢; and f; be the meridians
and longitudes of 3; respectively. Take a reference point z; € D% and a tiny
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disk neighborhood D% of x1 in D% . Take connecting tubes between D% and
0T; in general position of

Int(X, () ~ Int(GDY) \ [ Int(GTy).
j=1

We may suppose that f maps all 7; and connecting tubes to {y;}. Let T'(m)
be the union of D%, Ti,..., Ty, and the connecting tubes. Then T'(m) is a
solid torus of genus m. We may suppose that all e; and f; lie on 0T (m).

We define

U=GT(m), V=GD}, Xo=X\Int(U) and Yy =Y ~ Int(V).

By (1.1.1), 9f : 90X — 9JY is not only an R-homology equivalence but also
an R[m (Y')]-homology equivalence. Since f is a map of degree one, f is a
prenormal map over R as well as over R[m;(Y)] in the sense of [7, Definition
7.1].

Let A denote R or R[m1(Y)]. If 0f : X — 9Y is a A-homology equivalence
then we obtain the associated butterfly diagram over A.

/—\ BXX) T /—\

0 I K, (Xo) 0

NN TN S

K»(X) K,(8U) K1(X)

VA N

0 I K, (U) 0

\/ K> (Xo,0U) ¥’/f \_/

Diagram 3.1

We note that K;(0U;A) and Ko(U,9U;A) are A-free modules of rank 2m and
m respectively. If (1.1.2) is fulfilled then K;(Xo; R) and K2(X, U; R) are stably
free R[G]-modules. In such a case, taking sufficiently large m, we may assume
that these two modules are free R[G]-modules. Set

G(2)+ = {g € G(2) | wy(g) = 1} and
G2)_={g€ G2) | wyr(g) = -1}.
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We adopt —1 as the symmetry of R[G]. Let @ be a subset of {e} UG(2)+ and
I' = T'Q the smallest form parameter that includes Q. Using the R[G]-basis

{elv"'7em7f17"'7fm}

of K = K1(0U; R), we algebraically define the sesquilinear form B : K x K —
R[G] over the ring R[G] and the T'-quadratic form ¢ : K — R[G]/T by

B Z(aiei +0:fi), Z(cjej +d;f;) | = (Z d;a; — clb_l> and

i J

q (Z(aiei + bifi)) = [bia)

3

where a;, b;, ¢; and d; are elements in R[G]. Then, B coincides with the
geometric equivariant intersection form on K. Thus,
(3.2) B(K>(X,U; R), K2(X,U; R)) = {0}

If an automorphism « on the quadratic module (K;(0U; R), B, q) satisfies

a(K2(U,0U; R)) = Ko(Xy,0U; R)

then « is said to be preferable. For a preferable automorphism «, the matrix
Mat () associated with a with respect to the basis {e1,...,€m, f1,.--, fm} s
called a surgery matriz. In the case where a preferable automorphism exists,
the based quadratic module (K1(0U; R), B, q) determines the surgery matrix
uniquely up to the left action of TU,,.

Decompose G into the disjoint union of the form

G={eIG2)ICuC ",

where C~1 = {g7! | g € C'}. Then, the map ¢ can be regarded as the collection
of maps ¢g4, where g € ({e} UG(2) UC) \ Q, such that

1 KRR (g€ {e}UGR): ~Q),

¢gg: K—-R (g€ G(2)-)and

g K—R (geC),

via the relation

q(z) = > [49(z)g] (2 € K).

ge({e}UG(2JUC)NQ
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Note that

B(z,z) = q(z) — q(z),

where ¢(z) is a lifting of ¢(x). Thus, it follows from (3.2) that
(3.3) 99(K2(X,U; R)) ={0} (g€ G(2)-UC),
and we conclude

Lemma 3.4. Let f: (X,0X) — (Y,0Y) be as in Theorem 1.3. Then,
after a G-homotopical deformation of (f,b), one obtains Diagram 3.1 and the
quadratic module (K, B, q) over R|G], where K = K,(0U;R), B : K x K —
R[G] and q : K — R|[G]/maz, for which Ko(X,U; R) is totally isotropic.

Definition 3.5. Let f: (X,0X) — (Y,09Y) be as in Theorem 1.3. We
define o(f) by

o(f) = [Mat(a)] € W3(R[G], maz; triv),

after choosing an arbitrary preferable automorphism « of the quadratic module
(K, B, q) over R[G], where K = K;(0U;R), B: K x K — R[G] and ¢ : K —
R[G]/max.

Remark 3.6.  The algebraic element o( ) above is not necessarily uniquely
determined by the originally given G-map f. If the reader likes to obtain a
unique algebraic object, then he can adopt

o(f)=< o(f") € Ws(R[G], max; triv)

possible {T1,..., T}, {B1,.-.,Bm}, and f’ which
is G-homotopic to f and for which o(f’) can be
defined with respect to {f1,...,0m}

instead and read the condition o(f) = 0 in Theorem 1.3 as o(f) 3 0.
In the remainder of the current section, we discuss the triviality of g, for

g€{elUG2)L N G(Y).

Let n4 and n_ be oriented real G-vector bundles over Y such that ny D
ey (R*). Let b: T(X)® f*n- — n4 be an orientation preserving map of G-
vector bundles covering f : X — Y. Let w; and w_ be G-frames over V of
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the oriented G-vector bundles 74 and 7n_ respectively. Let bj;w denote the
G-frame over U induced by

by =b: T(X)v @ (f'n-)v — (n+)v

from w, and let f|j;w_ denote the G-frame over U of f*n_ induced by the
canonical map

flon-— n-)v

covering f|y from w_. Then, applying [7, Proposition 2.2] to X replaced by
T'(m) above, we obtain a G-frame k over U of the oriented G-vector bundle
T(U) such that k + f|;;w_ is homotopic to bj;w. .

Hypothesis 3.7. In the case with bundle data as above, we assume
that all 31,..., B, are preferable in the sense of [7, Definition 7.4].

If 3;: St x D? — Tj is not preferable then we can replace 3; by a preferable
one. For example, adopt B;-: St x D? — T; defined by

ﬂ}(zl,zg) = ,Bj(zl,zlzg) (21,22 € C with |Zl| =1 and |2’2| S 1)

instead of 3;. Thus, the arguments developped so far do not lose generality by
the hypothesis.

By [7, Theorem 8.1], the quadratic form ¢, : K1(0U; R) — R/2R vanishes
on Ko(X,U; R).

Let g be an element in G(2)4 ~ G(Y). Then, g acts freely on X and Y.
Thus, X/(g) and Y/(g) are oriented manifolds and the induced map

f/(g) = (X/(9),0X/(g)) = (Y/{9),0Y/(9))

is a map of degree one.

Lemma 3.8.  For each g € G(2)4 \ G(Y), one has q4(K2(X,U; R)) =
{0}

Proof. For the proof, by the definition of ¢, we may suppose

Note that
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where ¢ : (R/2R)[G] — R/2R is the augmentation homomorphism. If z €
K>(X, U;R) then g.(z) = 0 and hence ¢(¢(x)) = g4(x). But € o ¢ coincides
with ¢’ o7, where ¢’ : K1(0U/G; R) — R/2R is the algebraic quadratic form
associated with the compositions of 3;,7 = 1,...,m, with the projection map
X — X/G, and 7 : K;(0U; R) — K;(0U/G;R) is the canonical homomor-
phism. By [7, Theorem 8.1], ¢’(z) = 0 holds for any z € K»(X/G,U/G;R).
Thus we obtain

for x € Ko(X,U; R). Q.E.D.
Putting all together, we obtain

Lemma 3.9.  Let (f,b) be asin Theorem 1.1. Then, after a G-homotopi-
cal deformation of (f,b), one obtains Diagram 3.1 and the quadratic mod-
ule (K, B,q) over R|G], where K = K (0U;R), B : K x K — R[G] and
q: K — R[G]/TG(Y), for which Ko(X,U; R) is totally isotropic.

Definition 3.10.  Let (f,b) be as in Theorem 1.1. We define o(f,b) by
o(f,b) = [Mat(a)] € W3(R[G],TG(Y); w),

after choosing an arbitrary preferable automorphism « on the quadratic module
(K, B, q) over R|G], where K = K;(0U;R), B: K x K — R[G] and ¢ : K —
R[G]/TG(Y).

84. Proof of Theorems 1.1 and 1.3
Let (f,b) be as in Theorem 1.1 and (K;(0U; R), B, q) as in Definition 3.10.

G-surgery along (3. We observe how the surgery matrix Mat(«) in
Definition 3.10 is influenced by the G-surgery along 3 : S* x D? — X, where
k is a fixed integer with 1 < k < m. Let f': X’ — Y be the G-map resulting
from the G-surgery along 0y, let 5] = 3; for all i # k and let 3} be the dual
to Bk. Since dIm(B)) = dIm(B;) we can use the same connecting tubes. We
obtain X, T(m)" and U’ for {8} instead of Xy, T(m) and U obtained for
{Bi}, respectively. The meridian and longitude of 3. are denoted by e, and f]
respectively for each i. Clearly, X = X, and 0U’ = 9U. However the new
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basis of K1(0U’; R) is {e},... €., f1,..., fl.}. Define an R[G]-endomorphism
o' of K1(0GU'; R) by

€1 €1
e; e
/ m m
a =a
fi f1
fn fm
Then, noting that e, = f; and f; = —e},, we obtain
e} el e}
o € Mat(«) m Mat(a) €
= = Ok

fl fi fi
fn fm fn

Thus, o is an automorphism of (K;(0U’; R), B',q'), where B’ = B and ¢’ = q.
Furthermore it holds that

o/ (Ko (U, 0U"; R)) = (a/(€)), ., @' (€},) ricy = (aler), - alem)) ric)
= KQ(Xo,aU; R) - K2(X(/)7 8U,7 R)

This shows that o’ is preferable for defining o(f’,b"). By definition, the surgery
matrix Mat(a') associated with o is Mat(a)oy. We have proved

Proposition 4.1.  Let Mat(«) be a surgery matriz for {B1,...,Bm}-
Then the G-surgery along B alters the matriz Mat(«) to Mat(a)oy.

Reversing GBx. Let k£ be an integer with 1 < & < m. We observe how
the surgery matrix Mat(«) in Definition 3.10 is influenced by replacing 8i with
B+ St x D* — T} defined by

Bi(z,y) = B(@,7) for z € $" and y € D?,

where S' and D? are regarded as the unit circle and disk of C respectively,
and T and gy stand for the complex conjugates of x and y respectively. For
i # k, we set 8/ = [3;. Moreover, all new data derived from {31,...,5,,} are

denoted here by the initial notation with prime ’, e.g. e, f!, U’ etc. Then,
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we may adopt U’ = U in order to obtain a surgery matrix for {8},...,08.,}.

Obviously, e), = —ex, f; = —f, €; = e; and f; = f;, j # k, hold. Define

o+ K1(0GU'; R) — K1(OGU'; R) by

61 61
€ €k
e e
o Tl =a fm
1 1
fr T
fin fm

This o is a preferable automorphism, i.e. o/ (K2(U’,0U’; R)) = K2(X{),0U'; R).
It is easy to see that the associated surgery matrix Mat(a/) is Mat(a)o?. Thus
we obtain

Proposition 4.2.  Let Mat(a) be a surgery matriz with respect to
{B1,-.-,Bm}. Then reversing B alters the matriz Mat(a) to Mat(a)o}.

For a € R* we define a 2 x 2-matrix ¢(a) by

a 0
Ya) = (0 1/a> '

For an integer k with 1 < k < m we define a 2m x 2m-matrix ¢x(a) by
te(a) = Iop—2 ® t(a) ® Iopm—ok.

Multiplication of 8. Let a be a natural number such that 1/a € R.
Then, we can take an orientation preserving embedding 3}, : S' x D? — Int(T}),
where Ty, = Im(0), such that e}, = (1/a)e; and f}, = afy in Hy (Tp\Int(T}); R),
where T} = Im(3;,). We call §;. an a-multiplication of 3. For ¢ # k, we adopt
B = B;. Then, subsets U and X} of X are obtained from {fi,...,03.,}.
Observe the canonical exact sequence

K2(U,U";R) — Ko(X,U'; R) — Ko(X,U; R) — K1(U,U’; R).
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Since Ko(U,U";R) = 0 and Ky1(U,U";R) = 0, K2(X,U";R) = K2(X,U; R)
holds via the canonical map. Let us observe how replacing (8 with 3}, influences
the surgery matrix Mat(a). Formally using the identities e; = e} and f; = f/
(¢ # k) together with e, = ae}, and fr = (1/a)f;., we define o : K1 (0U'; R) —
K,(0U'; R) by

61 €1
ey, ek
e’ e
a/ 77 =a m
fi S
fr fr
fin fm

(The elements a(e;) and «a(f;) of the right hand side are linear combinations
of es and f;, 1 <'s, t < m. Thus they are linear combinations of ¢/, and f;.) It
holds that o/ (K2(U’,0U’; R)) = Ko(X{,0U’; R), namely o is preferable. The
matrix Mat(a/) associated with o/ with respect to {e},...,e},, f1,---, [l } is
Mat(a)ex(a). This concludes

Proposition 4.3.  Let Mat(a) be a surgery matriz with respect to
{B1,---,Bm} and a natural number invertible in R. Then taking a-multi-
plication of By, converts the matriz Mat(«) to Mat(a)ig(a).

Stabilization.  We discuss a stabilization of the surgery matrix Mat(a).

Proposition 4.4. Let Mat(a) be a surgery matriz with respect to
{B1,...,Bm}. Let Bmi1 : S* x D?* — X be an additional orientation pre-
serving trivial embedding. Perform the G-surgery along Byy1, and let B, :
St x D* — X' be the dual to Bpmiq1. Furthermore let B, : S' x D* —
X' be the embedding defined by B"(x,y) = B'(T,y) for x € S' and y €
D%, Then jnm+1(Mat(a)) (= Mat(a) @ I2) is a new surgery matriz for
(Brr B Blrir}.

Proof. The matrix Mat(«a)@®o is a surgery matrix for {81, ..., Bm, Bm+1}-
By Proposition 4.1, (Mat(a) @ 0)om+1 is a surgery matrix with respect to
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{ﬁh ) Bma »:,1+1}- Clearly,
(Mat(a) ® 0)om41 = Mat(a) © (—12).

Thus, by Proposition 4.2, Mat(a) @ I» is a surgery matrix with respect to
{ﬂla"'aﬂma ;:1-5-1}- QED

This proposition allows us to treat surgery matrices in stable range.
Let ¥, = 0@ 0o ® ... ®o (m-fold sum). By definition, ¥, lies in
FU,(R[G],TG(Y)). It is remarkable that
o(f) = 0= Mat(«) € RU,, (for large m)
= Mat(a) € TU,, £,, FU,,
= TU,, Mat(a)F; ... F; 2 %,, for some F},..., Fy € FU,,.

Here we may suppose that each F; above has one of the forms in the list

(4.5.1) emikk(9+9), emirr(—(9+7) (9€G),

(4.5.2) emtnk(9), em+nk(—9g) (9 € G and h#k),
(4.5) (4.5.3) em+kk(9), Emirk(—9) (g€ G(Y)),

(4.5.4) g(a), tk(—a) (a € Nwith 1/a € R),

(4.5.5) o,

where 1 < h, £k < m.
Lemma 4.6. If TU,, Mat(«) contains %,, then
K1(8U; R) = KQ(U, 8U, R) + KQ(X(), 8U, R),

and f: X =Y is an R-homology equivalence.

Proof. This follows from Diagram 3.1. Q.E.D.

For proving Theorem 1.1, it suffices, for each matrix F' in (4.5), to find an
operation which alters a surgery matrix Mat(a) to Mat(«)F. We have already
found operations for F' of types (4.5.4) and (4.5.5). Thus, it suffices to prove

Proposition 4.7.  There exists a G-surgery operation which alters the
surgery matriz Mat(a) to Mat(a)F for each matrix
(4.7.1) F=emirr(£(g+7) (9€6),
(4.7.2) F=cpyni(tg) (g€ G andh+#k),
(4.7.3) F=epmirr(tg) (9€GY)).
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Lemma 4.8 (cf. (4.7.1)). Letg e G and e =1 (resp. —1). Perform an
isotopical deformation in X, (q) of a small portion of By, and link it to g3 in the
negative (resp. positive) direction to gey. This alters the surgery matriz Mat(a)
with respect to {1, .., Bm} to a surgery matrix Mat(a) for {B1,...,0.,} such
that Mat(o') = Mat(a)em+k.k(g +g) (resp. Mat(a)em+x.1(—(g + 7)), where
Bl =i if i # k, and B3}, is the embedding obtained after the deformation of B

The domain of 8 is S' x D?. A small portion above means the part
(exp((m — 0)v/—1),exp((m + 6)v/—1)) x D?

of S' x D2 for small § > 0.

gf\_ﬁ

5 1

\®
O

N\

Proof. Without loss of generality, we can assume k = 1. Define an R|G]-
homomorphism 3 : K;(0GU; R) — K;(0GU’; R) by

(1 el
-1 ell
€m e;n 6;
Bl fi|=1|¢elg+9)e +fi =em+1,1(e(9+9) | 4/
f2 f h
f. f.’ I
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Clearly, 8 is an isomorphism (K;(0GU;R),\,n) — (K1(0GU';R),\N,u').
Moreover it holds that
B(K>(Xo,0GU; R)) = Ka(X(,0GU'; R).

Define an endomorphism o' of K;(0GU’; R) by

€1 €1
/ G;n q G;n
a 7| =Mat(a)emi1,1(e(g+79)) /
f1 f1

f 5

Then ' is an automorphism of (K1(OGU'; R), N, u'). Since d'(e}) = Ba(e;)
for alli=1,...,m, we have

o (Ko(GU',0GU"; R)) = Ba(K2(GU,0GU; R)) = K2(X|,,0GU"; R).
Hence, o is preferable. The associated surgery matrix Mat(a') is

Mat(a)em+1,1(e(g +9))- Q.E.D.

Lemma 4.10 (cf. (4.7.2)). Letg € G and ¢ = 1 (resp. —1). Perform
an isotopical deformation in X,y of a small portion of By and link it to gp
in the negative (resp. positive) direction to gey. This alters the surgery matriz
Mat(«) for {B1,...,Bm} to a surgery matriz Mat(a') for {B1,...,08.,} such
that Mat(a/) = Mat(a)em+nk(9) (resp. Mat(a)emink(—g)), where B = B; if
i # h, and (3}, is the embedding obtained after the deformation of By.

Proof. We may suppose that h = 1 and k = 2 without loss of generality.
Define a R[G]-homomorphism 3 : K;(0GU; R) — K;(0GU’; R) by

61 61
: €l
Em e :
fi eges + fi €
B = _ = Em+1,2€9 o
[ me2le) | g
f3 3 :
s s ,
fm fin
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Clearly, § is an isomorphism (K;(0GU; R),\, ) — (K1(0GU'; R), N, 1). Tt
holds that

B(K2(Xo, 0GU; R)) = K»(X;,0GU'; R).

Define an R[G]-endomorphism o’ of K;(0GU'; R) by

€1 €1
| o | = Mat(a)emia(eg) |
« f/ = a C(Em+172 €gq ,
1 1
I I

Then o is an automorphism of (K;(0GU’; R), N, p'). Since o/(e}) = Ba(e;)
foralli=1,...,m, we have

o' (K2 (GU',0GU'; R)) = Ba(K2(GU,0GU; R)) = K»(X|, 0GU'; R).
Hence, o is preferable and the surgery matrix Mat(a’) associated with o/ is
Mat(v)em+1,2(€9)- Q.E.D.

Next we treat the final case (4.7.3) for g € G(Y'). Choose and fix a con-
nected component X9 of X9 such that dim X9 = 1. Let H be the principal
isotropy subgroup of G on GXY, such that g € H. Set L = (X9)"\ (X9 )>H.
Then, dimL = 1, and codim L = 2. Recall dim X9 < 1 for all ¢’ # e,
because of (M1). This implies that H acts freely on the normal fiber of L
except the origin. Thus, H must be a cyclic group. We denote a generator
of H by h. Clearly we get g = hlfl/2. Perform an isotopical deformation
of a small portion of 8 and link it to L and set it again in general posi-
tion. Then fj is linked to h'Bk, k2B, ..., hIFI=13,. Consider an element
a = h* with 1 < ¢ < |H|/2 - 1. Since dim X* = 1, the action of @ on X
preserves the orientation and hence €(a + a) = ¢(a + a™!). Using the isotopi-
cal defomation in Lemma 4.8, we can eliminate the linking of 8 with h'g;
and the linking of 8}, with A/#1=73; in a pair. Regarding {h',h?,... KlIHI-1}
as {(h', WIHI=1) (B2, pIHI=2)  (RIHI/2=1 plHI/241) pIHI/2Y e use the tech-
nique of pairwise elimination and remove the linking of 3;, with h’@j, where
1<i<|H|—1andi# |H|/2. Thus, there exists an isotopical deformation of
a small portion of 8 such that S is linked only to g0y-
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Lemma 4.11 (cf. (4.7.3)). Letge G(Y) and e =1 (resp. —1). Choose
and fiz a connected component X9 of X9 such that dim X9, = 1. Perform
an isotopical deformation of a small portion of B and link it only to g8 in
the negative (resp. positive) direction to gey. This alters the surgery matriz
Mat(«) for {B1,...,Bm} to a surgery matriz Mat(a/) for {51,...,0.,} such
that Mat(a') = Mat(a)em+x.k(g9) (resp. Mat(a)e,,+k,k(—9g)), where B} = B; if
i # k, and B}, is the embedding obtained after the deformation of By.

UM

) X% 9T,

Figure 4.12

Proof. 'We may suppose k = 1. We define an R[G]-homomorphism 3 :
K,(0GU; R) — K;(0GU'; R) by

€1 €1 ,

. €1
em e, ,
em
Bl fi | =|eger + fi =emt11(€9) |
, 7 /i

Then f is an isomorphism (K;(OGU;R),\,n) — (K1 (OGU'; R), N, p'). Tt
holds that
B(K2(Xo,0GU; R)) = K2(X;,0GU'; R).
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Define an endomorphism o' of K;(0GU’; R) by

€1 €1
N el
o | 7| =Mat(a)emiri(eg) | 7
fi 1
fin fin

Then o is an automorphism of (K;(0GU’; R), N, p'). Since o/(e}) = Ba(e;)

foralli =1,...,m, we have
o (Ko (GU',0GU'; R)) = Ba(K2(GU,0GU; R)) = Ka(X{, 0GU'; R).
Hence, o' is preferable and the surgery matrix Mat(a') associated with o' is
Mat(a)em1,1(€g). Q.E.D.
Putting all together, we have proved Theorem 1.1.

One can prove Theorem 1.3 by a similar argument using the lemma below.
Let ¢ and k be natural numbers satisfying 1 < k < m. Let 8, : S' x D? —
X be an embedding as before. Then, Twist,(8) : S* x D? — X is defined by

Twista (Bk)(z,y) = Br(z,2%y) (xr € S* and y € D?).
We call Twist, () the a-times twisted embedding of [y,

Lemma 4.13.  Replacing B by the (—a)-times twisted embedding
Twist(_q)(Bk) alters the surgery matriz Mat(a) for {81,...,Bmn} to a surgery
matriz Mat(a’) for {8, ..., 8., } such that Mat(a') = Mat(a)em, 1 k(a), where
ﬁ: = ﬁl Zfl 7é k and ﬁllc = TWiSt(,a)(ﬁk).

Proof. Without loss of generality, we may assume that & = 1. Since
Im 3] = Im 3y, we may use U’ = U and X{) = X, to obtain a surgery matrix.
Define an R[G]-endomorphism o’ of K;(0GU’; R) by

e} e1
e; e
T =l T
!
fi S
f I
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Then we obtain

€1 €1 €1
e e; e'.
o | ™| =Mat(a m = Mat(a) € a m
{ ( ) ae'l + f{ ( ) m+1,1( ) f{ y
I fin [

because ) = e; and f{ = fi1 + (—a)e; in K;(0U';R) = K1(0U;R). The
endomorphism «' is an automorphism of (K;(0GU’; R), N, i'). Furthermore

o/ (K2(GU',dGU"; R)) = Ko(X}),0GU"; R).

Thus this o' is preferable for {431, .., (., }. The surgery matrix Mat(a/) satisfies
Mat(a’) = Mat(a) €my1,1(a). Q.E.D.

85. Singular Sets of Actions of A5 on Homology 3-spheres

Let As be the alternating group on five letters, and SO(3) the special
orthogonal group of degree three. For a nontrivial homomorphism p : A5 —
SO(3), the Poincaré sphere ¥ = X(p) is defined to be the space of left cosets,
SO(3)/p(As). A smooth action of As on the Poincaré sphere ¥ is naturally
given. That is,

As x B = 5 (g, hp(A5)) = p(g)hp(As).

We call this action the standard action of A5 on Y. This standard action on
the Poincaré sphere is investigated in [9]. In particular, there are two As-
diffeomorphism (or As-homotopy) types of the Poincaré spheres. They are
decided by the characters of homomorphisms A5 — SO(3). The purpose of
this section is to study the G-homeomorphism types of the singular sets of
smooth actions of As on homology spheres of dimension 3 with exactly one
fixed point, and to prove Theorem 5.5 below.

We denote the cyclic group of order m by C,, and the dihedral group of
order 2m by Ds,,. We also denote by A, the alternating group on four letters,
which is isomorphic to the tetrahedral group. For elements gy, go, - . ., g, of As,
the subgroup of Aj generated by ¢1,92, ..., gn is denoted by (g1, 92, -, gn)-

Definition 5.1.  We set z = (1,2)(3,4), y = (3,5,4), z = (1,2,3,5,4)
and u = (1,3)(2,4) in As. The subgroup (x) is properly contained in the
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following seven subgroups.

<m7u>(gD4)a <xay>(gD6)a <mauyu>(gD6)a
(x,2)(2 Dyg), (z,uzu)(= Dyg), (z,z’uz)(= Ay) and As

2

The subgroup (z, z*uz) contains (x, u). Throughout this section, unless other-

wise stated, the above elements x, y, z and u are fixed as above and we use the
notation

Csy = <x>’03 = <y>,05 = <Z>
Dy = (x,u), Dg = (x,y), D1g = (x,2) and Ay = (x, 2%uz).

Any subgroup of Aj is conjugate to one of the groups in the next figure
(ct. [4, p.10]).

As

B

D

<

10
Cs Cy Cs

N

{e}
Figure 5.2

Definition 5.3. We denote by 9> the family of closed, oriented, 3-
dimensional, smooth As-manifolds X satisfying the following conditions (5.3.1)—
(5.3.4).

(5.3.1) | X4 |=1.
(5.3.2) XH = XK whenever H C K C A5, H = Dy and K = A,.
(5.3.3) | X |=2 whenever H C A5 and H = Dy, for some m = 2,3 or 5.

(5.3.4) X is diffeomorphic to S' whenever H C A5 and H = C,, for some
m=2,3 or 5.
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It is well-known that if X is a 3-dimensional homology sphere having a
smooth action of As with exactly one fixed point, then X lies in 93. The
Poincaré sphere X is a homology sphere and the standard action of As on it
has exactly one fixed point. Thus, X belongs to 9t3.

Let X € M3. For each subgroup H of As such that H = A5, A4, Dy or
Dg, there exists a unique point p(H) € X with isotropy subgroup H. Imagine
that we walk on the circle X2 starting from and ending at p(As). Since
ux = wu, the action of u gives a diffeomorphism of X2 fixing p(As) and p(Ay)
and interchanging p(Da,,) and p(uD2,,u) for m = 3 and 5. Hence, on X2 we
must meet the intersection points p(H) in one of the following order. (Note:
In each case, we do not specify a direction.)

1 (2)

/\ /\

p(uDgu) p(uDgu)

i | i |

p(D1o) p(uDigu) p(uDiou) p(D1o)

~ 7 \/

P(Aq)

®3) p(As) p(4s)
p(Dio) p(uDiou) p(D1o) p(uD1ou)

1 | | |

p(uDgu) p(uDgu) p(Ds)

\/ \/

Definition 5.4. Let Cy, Ay, Dg, D1g, uDgu be the specified subgroups
of Ajs as in Definition 5.1. We say that X € 93 is of type (A5 — Dg — D1g — Ay),
(A5 — D6 — UDlou — A4), (A5 — D10 — D6 — A4) or (A5 — D10 — UD6U — A4)
according as the figure of X2 is (1), (2), (3) or (4) above.

The type of the Poincaré sphere with standard action is determined in [9,
Theorem 1.13]. Let p : A5 — SO(3) be a nontrivial representation. Then the
Poincaré sphere ¥(p) with standard action is of type (A5 — Dg — uDjou — Ay)
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if x,(2) = (1+ \/5)/2, and (As — Dg — D19 — Ay) if (1 — \/3)/2, where y,, is
the character associated with p.

Theorem 5.5.  For any nontrivial real representation p : A5 — SO(3)
of As and any type v of the singular set, there exists a smooth action X of As
on a 3-dimensional homology sphere with exactly one fived point such that the
tangential representation at the unique fized point is isomorphic to V(p), the
type of the singular set of X is v, and X is As-cobordant to X(p), where V(p)
is the As-module associated with p.

Proof. The tangential representation of ¥(p) at the unique As-fixed point
p(As) is isomorphic to V(p). Take a closed As-disk neighborhood D(V(p))
around p(As) in X(p). Pinching the outside of Int D(V(p)), we obtain an As-
map f” : 3(p) — Y of degree one, where Y = S(R® V(p)) and f"(p(As5)) =
(1,0). Tt is easy to see that f” can be converted by As-surgeries of isotropy
type (Cy) to an As-map f: X — Y such that X € M3 is of type v (by the
same argument as [9, Proof of Lemma 2.4]). Since the employed surgeries are
of isotropy type (C3), they do not change the fixed point sets of As, Ay, (Dy,)
Dg and D;y. By Theorem 1.3, the As-surgery obstruction o(f) to converting
f: X — Y to a homology equivalence keeping f; : X; — Y5 fixed, lies in the
group W3(Z[As], max;triv). Since by [2, Corollary 6] this group is trivial, we
can perform As-surgery, and obtain a homology equivalence ' : X’ — Y. Here
X' € M3 is the As-manifold required in Theorem 5.5. Q.E.D.
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