# G-surgery on 3-dimensional Manifolds for Homology Equivalences

By

Masaharu Morimoto\*

#### Abstract

For a finite group G and a G-map  $f: X \to Y$  of degree one, where X and Y are compact, connected, oriented, 3-dimensional, smooth G-manifolds, we give an obstruction element  $\sigma(f)$  in a K-theoretic group called the Bak group, with the property:  $\sigma(f) = 0$  guarantees that one can perform G-surgery on X so as to convert f to a homology equivalence  $f': X' \to Y$ . Using this obstruction theory, we determine the G-homeomorphism type of the singular set of a smooth action of  $A_5$  on a 3-dimensional homology sphere having exactly one fixed point, where  $A_5$  is the alternating group on five letters.

#### §1. Introduction

This paper is a continuation of [7]. For a finite group G, we discuss G-equivariant surgery on compact connected oriented 3-dimensional manifolds, and construct an algebraic obstruction to converting a framed G-map of degree one to a homology equivalence by a finite sequence of G-surgeries of free orbit type. The purpose of the current paper is to improve [2, Theorem 1] to Theorem 1.1 below. Moreover, we give a detailed proof of this theorem in the present paper, while [2] omits the details of the proof. In [2], as well as in [7, p.78], we exhibited the importance of 3-dimensional G-surgery theory from the

Communicated by Y. Miyaoka, June 6, 2000. Revised September 11, 2000.

<sup>2000</sup> Mathematics Subject Classification(s): 57R91, 57R67, 57R19.

Key words and phrases: 3-dimensional manifolds, equivariant surgery, Bak groups, 3-dimensional homology spheres.

Partiall supported by Grant-in-Aid for Scientific Research.

<sup>\*</sup>Department of Environmental and Mathematical Sciences, Faculty of Environmental Science and Technology, Okayama University, Tsushimanaka, Okayama, 700-8530 Japan. e-mail: morimoto@ems.okayama-u.ac.jp

viewpoint of smooth actions of G on spheres. In particular, the theory is a key tool constructing smooth actions of  $A_5$  on spheres of dimensions 7 and 8 with exactly one fixed point, and we also apply it in Section 5 to determine the G-homeomorphism type of the singular set of a smooth action of  $A_5$  on a 3-dimensional homology sphere with exactly one fixed point.

Let G be a finite group,  $e \in G$  the identity element, and set

$$G(2) = \{ g \in G \mid g^2 = e, g \neq e \}.$$

All manifolds are understood to be paracompact smooth manifolds, and G-actions to be smooth, unless otherwise stated.

For a compact G-manifold X, we define the  $singular\ set\ X_s$  (or more precisely  $X_{s(G)}$ ) by

$$X_s = \bigcup_{g \in G \setminus \{e\}} X^g,$$

where  $X^g$  is the fixed point set of g in X. In the case dim X=3, we define

$$G(X) = \{ g \in G(2) \mid \dim X^g = 1 \}.$$

Here dim  $X^g$  is the maximal dimension of connected components of  $X^g$ . We denote by  $\mathcal{M}^3(G)$  the family of all compact connected oriented 3-dimensional G-manifolds X (possibly with boundary  $\partial X$ ) satisfying

$$(\mathcal{M} 1) \qquad \dim X_{s(G)} \le 1.$$

In [2], we assumed the additional condition

$$(\mathcal{M} \ 2) \qquad \qquad G(X) = G(2),$$

but this is not necessary in the current paper.

Let  $Y \in \mathcal{M}^3(G)$ . Then the orientation homomorphism  $w = w_Y : G \to \{\pm 1\}$  is defined by w(g) = 1 if  $g \in G$  preserves the orientation of Y, and -1 otherwise. For a commutative ring R with identity, the group ring R[G] of G over R is defined to be the set of all formal sums  $\sum_{g \in G} r_g g$ , with  $r_g \in R$ . The group ring R[G] has the involution - associated with  $w_Y$  which is defined by

$$\left(\sum_{g \in G} r_g g\right)^- = \sum_{g \in G} r_g w_Y(g) g^{-1}.$$

We denote by  $\widetilde{Y}$  the universal covering space of Y. A 1-connected G-map  $f: X \to Y$  (hence  $\pi_1(f): \pi_1(X) \to \pi_1(Y)$  is surjective) induces the covering

space  $\widetilde{X}=f^*\widetilde{Y}$  of X from  $\widetilde{Y}$  and the map  $\widetilde{f}:\widetilde{X}\to\widetilde{Y}$  covering f, giving the pullback diagram

$$\begin{array}{ccc} \widetilde{X} & \stackrel{\widetilde{f}}{\longrightarrow} & \widetilde{Y} \\ \downarrow & & \downarrow \\ X & \stackrel{f}{\longrightarrow} & Y. \end{array}$$

The group  $\widetilde{G} = \pi_1(EG \times_G Y)$  is an extension of G by  $\pi_1(Y)$ :

$$\{e\} \to \pi_1(Y) \to \widetilde{G} \to G \to G/G \quad (\text{exact})$$

and acts on  $\widetilde{Y}$  and  $\widetilde{X}$  (cf. [8]). With respect to the  $\widetilde{G}$ -actions,  $\widetilde{f}$  is a  $\widetilde{G}$ -map.

We say that a finite group H is p-hyperelementary (for p a prime) if H is an extension of a p-group by a cyclic group:  $H = C \rtimes P$ , where C is cyclic and P is of order  $p^n$  for some nonnegative integer n. A hyperelementary group means a p-hyperelementary group for some prime p.

**Theorem 1.1.** Let R be a ring such that  $\mathbb{Z} \subset R \subset \mathbb{Q}$ . Suppose that X and Y in  $\mathcal{M}^3(G)$  satisfy

$$G(X) = G(Y),$$

and  $f:(X,\partial X)\to (Y,\partial Y)$  is a 1-connected G-map of degree one such that

(1.1.1)  $\partial f = f|_{\partial X} : \partial X \to \partial Y$  is a homotopy equivalence, and

(1.1.2)  $f_{s(H)}: X_{s(H)} \to Y_{s(H)}$  is an R-homology equivalence for each hyperelementary subgroup H of G.

Moreover, let  $b: T(X) \oplus f^*\eta_- \to \eta_+$  be an orientation preserving map of G-vector bundles covering f, where  $\eta_+$  and  $\eta_-$  are oriented real G-vector bundles over Y such that  $\eta_+ \supset \varepsilon_Y(\mathbb{R}^4)$ . Then there exists an obstruction element  $\sigma(f,b)$  in the Bak group  $W_3(R[G], \Gamma G(Y); w_Y)$  (cf. [5], [2]), where  $\Gamma G(Y)$  is the smallest form parameter on R[G] containing G(Y), with the property that if  $\sigma(f,b)=0$  then one can perform G-surgery on  $X\setminus (\partial X\cup X_{s(G)})$  to alter  $f:X\to Y$  a G-map  $f':X'\to Y$  which is an R-homology equivalence, and  $b:T(X)\oplus f^*\eta_-\to \eta_+$  to a map  $b':T(X')\oplus f'^*\eta_-\to \eta_+$  of G-vector bundles covering f'.

Remark 1.2. If the reduced projective class group  $\widetilde{K}_0(\mathbb{Z}[G])$  is trivial, then (1.1.2) can be replaced by the condition that

(1.2.1)  $f^P: X^P \to Y^P$  is mod p homology equivalence for each prime p dividing |G| and every nontrivial p-subgroup P of G.

Theorem 1.1 improves [2, Theorem 1] in two respects. One is that the condition  $(\mathcal{M}2)$  is removed, and the other is that Y is not restricted to be simply connected.

In the case without bundle data, we have

**Theorem 1.3.** Let R be a ring such that  $\mathbb{Z} \subset R \subset \mathbb{Q}$ , X and Y in  $\mathcal{M}^3(G)$ , and  $f:(X,\partial X)\to (Y,\partial Y)$  a 1-connected G-map of degree one satisfying the conditions (1.1.1), (1.1.2) and ( $\mathcal{M}^2$ 2) above. Then, there is an obstruction element  $\sigma(f)$  in the Bak group  $W_3(R[G], max; triv)$ , where max is the maximal form parameter on R[G] and triv is the trivial homomorphism  $G\to \{1\}$ , with the property that if  $\sigma(f)=0$  then one can perform G-surgery on  $X\setminus (\partial X\cup X_{s(G)})$  to a G-map  $f':X'\to Y$  which is an R-homology equivalence.

For applications of Theorems 1.1 and 1.3, the results of A. Bak, e.g., [2, Theorems 3–5 and Corollary 6], are quite useful, since they guarantee that the G-surgery obstruction vanishes.

The organization of the rest of this paper is as follows. Section 2 treats algebraic preliminaries, including the definition of quadratic forms and G-surgery obstruction groups. The equality in Proposition 2.9 is a key to surgery theory on odd dimensional manifolds. In Section 3, we argue how we assign the G-surgery obstruction  $\sigma(f)$  to a G-map  $f: X \to Y$  of degree one satisfying certain conditions. We prove Theorem 1.1 in Section 4. Namely we prove that  $\sigma(f) = 0$  guarantees the existence of a finite sequence of G-surgeries converting f to a G-map  $f': X' \to Y$  which is an G-homology equivalence. In Section 5, we give an application of our G-surgery theory concerned with the singular sets of smooth actions of G-surgery spheres.

### §2. Quadratic Modules and the Bak Groups

In the current section we recall the definition of form parameters, quadratic modules and the Bak groups. If the reader is familiar with [2] or [5] then he can skip the section.

Let A be a ring with identity. We always suppose that a finitely generated free A-module has a well-defined rank over A, i.e., if  $A^m \cong A^n$  then m = n. Let — be an involution on A such that

(i) 
$$\overline{\overline{a}} = a \quad (a \in A),$$

(ii) 
$$\overline{a+b} = \overline{a} + \overline{b}$$
  $(a, b \in A),$ 

(iii) 
$$\overline{ab} = \overline{b}\overline{a}$$
  $(a, b \in A)$  and

(iv) 
$$\overline{1} = 1$$
.

Let  $s \in \operatorname{Center}(A)$  such that  $s\overline{s} = 1$ . This element s is called a *symmetry* of A. Then a *form parameter*  $\Gamma$  on A is defined to be an additive subgroup of A such that

(
$$\Gamma 1$$
)  $\{a - s\overline{a} \mid a \in A\} \subset \Gamma \subset \{a \in A \mid a = -s\overline{a}\}$  and

$$(\Gamma 2)$$
  $a\Gamma \overline{a} \subset \Gamma$  for all  $a \in A$ .

The maximal and minimal choices are denoted by max and min respectively, i.e.,

$$max = \{a \in A \mid a = -s\overline{a}\} \text{ and } min = \{a - s\overline{a} \mid a \in A\}.$$

In the following, quadratic forms and modules are defined depending on the datum

$$\mathbf{A} = (A, -, s, \Gamma)$$

called a form ring. Let M be a left A-module. A sesquilinear form on M is a biadditive map

$$B: M \times M \to A$$

such that

$$B(ax, by) = bB(x, y)\overline{a} \quad (a, b \in A, x, y \in M).$$

A sesquilinear form B is called s-Hermitian if

$$B(x,y) = s\overline{B(y,x)} \quad (x,y \in M).$$

**Definition 2.1.** A quadratic A-module is defined to be a triple (M, B, q) consisting of a finitely generated projective A-module M, an s-Hermitian form  $B \colon M \times M \to A$  and a map  $q \colon M \to A/\Gamma$  which satisfy the following conditions (2.1.1)–(2.1.3):

$$(2.1.1) \ q(ax) = aq(x)\overline{a} \ (a \in A, x \in M),$$

$$(2.1.2) \ \ q(x+y) - q(x) - q(y) \equiv B(x,y) \mod \Gamma \ (x,y \in M)$$
 and

$$(2.1.3) \ \ \widetilde{q}(x) + s\overline{\widetilde{q}(x)} = B(x,x) \ (x \in M) \ \text{for any lifting} \ \widetilde{q}(x) \in A \ \text{of} \ q(x) \in A/\Gamma.$$

The map  $q: M \to A/\Gamma$  above is called a  $\Gamma$ -quadratic form.

A morphism  $(M, B, q) \to (M', B', q')$  of quadratic A-modules is an A-linear map  $M \to M'$  which preserves both Hermitian and quadratic forms. We say that a quadratic A-module (M, B, q) is nonsingular if the Hermitian form B is nonsingular, i.e., the map

$$M \to \operatorname{Hom}_A(M, A); x \mapsto B(x, \cdot)$$

is bijective.

**Definition 2.2.** Define the standard hyperbolic A-module  $\mathbf{H}_m$  of rank 2m to be the quadratic A-module  $(A^{2m}, B, q)$  such that

$$A^{2m} \text{ is a free $A$-module with basis } \{e_1, \dots, e_m, f_1, \dots, f_m\},$$

$$B\left(\sum_i (a_i e_i + b_i f_i), \sum_i (a_i' e_i + b_i' f_i)\right) = \sum_i (b_i' \overline{a_i} + s a_i' \overline{b_i}) \text{ and }$$

$$q\left(\sum_i a_i e_i + b_i f_i\right) = \left[\sum_i b_i \overline{a_i}\right] \text{ in } A/\Gamma,$$

where  $a_i, b_i, a'_i, b'_i \in A$ .

Let M and M' be free A-modules with ordered bases  $\{x_1, \ldots, x_n\}$  and  $\{y_1, \ldots, y_\ell\}$ . For an A-homomorphism  $f: M \to M'$ , we obtain a matrix  $\mathrm{Mat}(f) = (m_{ij})$  (or more precisely  $\mathrm{Mat}(f; \{x_i\}, \{y_j\})$ ) by

$$f(x_i) = \sum_{j=1}^{\ell} m_{ij} y_j$$

for each i = 1, ..., n. We use the notation

$$f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 for  $\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$ .

Then, we can express the relation between f and Mat(f) by

$$f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \operatorname{Mat}(f) \begin{pmatrix} y_1 \\ \vdots \\ y_{\ell} \end{pmatrix}.$$

**Proposition 2.3** (cf. [3, p.37, Beware]). Let  $M = \langle x_1, \ldots, x_n \rangle_A$  be as above and  $f, g \in \text{End}_A(M)$ . Then Mat(fg) is equal to Mat(g) Mat(f).

Let  $A^{2m} = \langle e_1, \dots, e_m, f_1, \dots, f_m \rangle_A$  as before and  $f \in \operatorname{End}_A(A^{2m})$ . Then the matrix  $\operatorname{Mat}(f)$  associated with f is expressed in the form

$$Mat(f) = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix},$$

using  $m \times m$ -matrices  $M_{11} = (a_{ij}), M_{12} = (b_{ij}), M_{21} = (c_{ij}), M_{22} = (d_{ij}).$ 

**Proposition 2.4.** An element  $f \in \operatorname{End}_A(A^{2m})$  is an automorphism of  $\mathbf{H}_m$  if and only if the following (2.4.1)–(2.4.3) are satisfied:

(2.4.1) 
$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \in GL_{2m}(A).$$

$$(2.4.2) \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}^{-1} = \begin{pmatrix} t\overline{M_{22}} & s^t\overline{M_{12}} \\ \overline{s}^t\overline{M_{21}} & t\overline{M_{11}} \end{pmatrix}.$$

(2.4.3) The diagonal coefficients of  $M_{12}({}^{t}\overline{M_{11}})$  and  $M_{22}({}^{t}\overline{M_{21}})$  lie in  $\Gamma$ .

*Proof.* We prove the only if part. Let f be an automorphism of  $\mathbf{H}_m$ . Then (2.4.1) clearly holds. Observe the relations:

$$B(f(e_i), f(e_j)) = \sum_{k} (b_{jk} \overline{a_{ik}} + s a_{jk} \overline{b_{ik}}) = 0,$$

$$B(f(f_i), f(f_j)) = \sum_{k} (d_{jk} \overline{c_{ik}} + s c_{jk} \overline{d_{ik}}) = 0,$$

$$B(f(e_i), f(f_j)) = \sum_{k} (d_{jk} \overline{a_{ik}} + s c_{jk} \overline{b_{ik}}) = \delta_{ij} \text{ and}$$

$$B(f(f_i), f(e_j)) = \sum_{k} (b_{jk} \overline{c_{ik}} + s a_{jk} \overline{d_{ik}}) = s \delta_{ij}.$$

It follows that

$$\begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} {}^t \overline{M_{22}} & s^t \overline{M_{12}} \\ \overline{s}^t \overline{M_{21}} & {}^t \overline{M_{11}} \end{pmatrix}$$

$$= \begin{pmatrix} (a_{ij}) & (b_{ij}) \\ (c_{ij}) & (d_{ij}) \end{pmatrix} \begin{pmatrix} (\overline{d_{ji}}) & s(\overline{b_{ji}}) \\ \overline{s}(\overline{c_{ji}}) & (\overline{a_{ji}}) \end{pmatrix}$$

$$= \begin{pmatrix} \sum_k (a_{ik} \overline{d_{jk}} + \overline{s}b_{ik} \overline{c_{jk}}) & \sum_k (sa_{ik} \overline{b_{jk}} + b_{ik} \overline{a_{jk}}) \\ \sum_k (c_{ik} \overline{d_{jk}} + \overline{s}d_{ik} \overline{c_{jk}}) & \sum_k (sc_{ik} \overline{b_{jk}} + d_{ik} \overline{a_{jk}}) \end{pmatrix}$$

$$= \begin{pmatrix} I_m & 0_m \\ 0_m & I_m \end{pmatrix}.$$

This proves (2.4.2). The final condition (2.4.3) follows from the equalities

$$q(f(e_i)) = \left[\sum_k b_{ik} \overline{a_{ik}}\right] = 0 \text{ in } A/\Gamma \text{ and}$$
  
$$q(f(f_i)) = \left[\sum_k d_{ik} \overline{c_{ik}}\right] = 0 \text{ in } A/\Gamma.$$

The if part also follows from the equalities above.

Q.E.D.

For a 
$$2m \times 2m$$
-matrix  $M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix}$  and  $2m' \times 2m'$ -matrix  $M' = \begin{pmatrix} M'_{11} & M'_{12} \\ M'_{21} & M'_{22} \end{pmatrix}$ , we define the  $2(m+m') \times 2(m+m')$ -matrix  $M \oplus M'$  to be

$$\begin{pmatrix} M_{11} & 0 & M_{12} & 0 \\ 0 & M'_{11} & 0 & M'_{12} \\ M_{21} & 0 & M_{22} & 0 \\ 0 & M'_{21} & 0 & M'_{22} \end{pmatrix}.$$

We define several matrix groups which will be needed later. Firstly, define

$$SU_m(A,\Gamma) = \left\{ \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \in M_{2m,2m}(A) \middle| (2.4.1) - (2.4.3) \text{ are satisfied} \right\}.$$

This contains the subgroup

$$\mathrm{TU}_m(A,\Gamma) = \left\{ \left( \begin{matrix} M_{11} \ M_{12} \\ M_{21} \ M_{22} \end{matrix} \right) \in \mathrm{SU}_m(A,\Gamma) \ \middle| \ M_{12} = 0 \right\}.$$

We define the  $2 \times 2$ -matrix  $\sigma$  by

$$\sigma = \begin{pmatrix} 0 & 1 \\ \overline{s} & 0 \end{pmatrix}.$$

Then  $\sigma$  lies in  $SU_1(A,\Gamma)$ . We set  $\sigma_i = I_{2(i-1)} \oplus \sigma \oplus I_{2(m-i)}$  and

$$\mathrm{RU}_m(A,\Gamma) = \langle \mathrm{TU}_m(A,\Gamma), \sigma_1, \dots, \sigma_m \rangle \ (\subset \mathrm{SU}_m(A,\Gamma))$$

The stabilization homomorphism

$$j_{m,m+1} \colon \mathrm{SU}_m(A,\Gamma) \to \mathrm{SU}_{m+1}(A,\Gamma)$$

is defined by  $j_{m,m+1}(M) = M \oplus I_2$ .

A matrix having one form among the following  $2m \times 2m$ -matrices  $\varepsilon_{**}(\quad)$  and  $\mathbf{H}(\varepsilon_{**}(\quad))$  (for some m) is called a  $\Gamma$ -quadratic elementary matrix.

$$\begin{aligned} \mathbf{H}(\varepsilon_{**}(\quad)) & \text{ (for some } m) \text{ is called a } \Gamma\text{-}quadratic elementary matrix.} \\ \varepsilon_{m+i,j}(a) & (i \neq j, a \in A) : \\ \begin{cases} \text{the } (k,k)\text{-}entry = 1 \ (k = 1, \dots, 2m), \\ \text{the } (m+i,j)\text{-}entry = a, \\ (m+j,i)\text{-}entry = -s\overline{a}, \\ \text{all other entries} = 0. \end{cases} \\ \begin{cases} \text{the } (k,k)\text{-}entry = 1 \ (k = 1, \dots, 2m), \\ \text{the } (i,m+j)\text{-}entry = a, \\ (j,m+i)\text{-}entry = -s\overline{a}, \\ \text{all other entries} = 0. \end{cases} \\ \begin{cases} \text{the } (k,k)\text{-}entry = 1 \ (k = 1, \dots, 2m), \\ \text{the } (m+i,i)\text{-}entry = a, \\ \text{all other entries} = 0. \end{cases} \\ \begin{cases} \text{the } (k,k)\text{-}entry = 1 \ (k = 1, \dots, 2m), \\ \text{the } (i,m+i)\text{-}entry = a, \\ \text{all other entries} = 0. \end{cases} \\ \begin{cases} \text{the } (k,k)\text{-}entry = 1 \ (k = 1, \dots, 2m), \\ \text{the } (i,m+i)\text{-}entry = a, \\ \text{all other entries} = 0. \end{cases} \\ \begin{cases} \text{the } (k,k)\text{-}entry = 1 \ (k = 1, \dots, 2m), \\ \text{the } (i,j)\text{-}entry = a, \\ (m+j,m+i)\text{-}entry = -\overline{a}, \\ \text{all other entries} = 0. \end{cases} \end{aligned}$$

Using these  $\Gamma$ -quadratic elementary matrices, we define

$$\mathrm{EU}_m(A,\Gamma) = \langle \text{ all elementary matrices } \in \mathrm{SU}_m(A,\Gamma) \rangle$$
, and  $\mathrm{FU}_m(A,\Gamma) = \langle \text{ all elementary matrices } \in \mathrm{SU}_m(A,\Gamma) \text{ of type } \varepsilon_{m+i,j}(a)$   $(i \neq j, \ a \in A) \text{ or } \varepsilon_{m+i,i}(a) \ (a \in \Gamma), \text{ and } \sigma_1, \ldots, \sigma_m \rangle.$ 

For L = E, F, R, S, T, we set

$$LU(A, \Gamma) = \lim_{\substack{\longrightarrow \\ m}} LU_m(A, \Gamma).$$

By [1, Corollary 3.9], we obtain

**Lemma 2.5.** It holds that  $\mathrm{EU}(A,\Gamma) = [\mathrm{SU}(A,\Gamma),\mathrm{SU}(A,\Gamma)]$  the commutator subgroup of  $\mathrm{SU}(A,\Gamma)$ .

It is easy to see

$$RU(A, \Gamma) \supset EU(A, \Gamma)$$
.

Thus, the quotient group  $SU(A, \Gamma)/RU(A, \Gamma)$  is abelian.

**Definition 2.6.** The Bak group  $W_1^s(A,\Gamma)$ , where s is the symmetry of A, is defined to be the quotient group  $SU(A,\Gamma)/RU(A,\Gamma)$ . For a commutative ring R with identity,  $W_3(R[G],\Gamma;w)$  stands for  $W_1^{-1}(R[G],\Gamma)$ , where the involution – on R[G] is one induced by the orientation homomorphism  $w: G \to \{\pm 1\}$ .

We obtain the next proposition by straightforward calculation.

**Proposition 2.7.** If  $\tau(\ )=\varepsilon_{**}(\ )$  is a  $\Gamma$ -quadratic elementary matrix, then

If i, j and k are distinct, then

$$(2.7.2) \sigma_i^{-1}\sigma_j^{-1}\varepsilon_{m+i,j}(a)\sigma_i\sigma_j = \varepsilon_{i,m+j}(\overline{s}a) (a \in A),$$

(2.7.3) 
$$\sigma_i^{-1} \varepsilon_{m+i,i}(a) \sigma_i = \varepsilon_{i,m+i}(sa) \quad (a \in \overline{\Gamma}),$$

$$[\varepsilon_{i,m+j}(1), \varepsilon_{m+i,k}(a)] = \mathbf{H}(\varepsilon_{jk}(-sa)) \quad (a \in A),$$

(2.7.5) 
$$\sigma_j^{-1} \varepsilon_{m+i,j}(a) \sigma_j = \mathbf{H}(\varepsilon_{ji}(-\overline{a})) \quad (a \in A),$$

where  $[x, y] = x^{-1}y^{-1}xy$ .

This proposition clearly implies the following two.

**Proposition 2.8.** Provided  $m \geq 2$ , it holds that  $\mathrm{FU}_m(A,\Gamma) \supset \mathrm{EU}_m(A,\Gamma)$ .

**Proposition 2.9.** For each element  $x \in SU(A, \Gamma)$ , it holds that

$$\mathrm{TU}(A,\Gamma)x\,\mathrm{FU}(A,\Gamma) = x\,\mathrm{RU}(A,\Gamma) = \mathrm{RU}(A,\Gamma)x$$

as subsets of  $SU(A, \Gamma)$ .

Let (M, B, q) be a quadratic **A**-module. We say that a submodule N of M is totally isotropic if B(x, y) = 0 for all  $x, y \in N$  and if q(x) = 0 for all  $x \in N$ .

**Proposition 2.10.** Let  $(A^{2m}, B, q)$  be a nonsingular quadratic A-module. If a direct summand N of  $M = A^{2m}$  is a free A-module with basis  $\{x_1, \ldots, x_m\}$  and is totally isotropic, then there exists a totally isotropic complementary direct summand L with A-basis  $\{y_1, \ldots, y_m\}$  such that  $B(x_i, y_j) = \delta_{ij}$  for all i and j.

*Proof.* Let L' be a direct summand complementary to N in M, i.e.,  $N \oplus L' = M$ . We denote by p the projection from M to L', and by f the inclusion of N to M. The Hermitian form B induces an A-homomorphism

$$\Psi \colon M \to M^{\#} = \operatorname{Hom}_{A}(M, A); \ x \mapsto B(x, ).$$

Since B is nonsingular,  $\Psi$  is an isomorphism. It is easy to see that  $f^{\#}\Psi \colon L' \to N^{\#}$  is an isomorphism, because the rank over A is well-defined. There exist  $z_i \in M, \ i=1,\ldots,m,$  such that  $B(z_i,x_j)=s\delta_{ij}$  (equally  $B(x_i,z_j)=\delta_{ij}$ ). Here we note that  $\{p(z_1),\ldots,p(z_m)\}$  is a basis of L'. Let us make an inductive assumption that  $B(z_i,z_j)=0$  and  $q(z_i)=0$  for all  $i,j\leq k$ . Set

$$z'_{k+1} = z_{k+1} - \overline{s} \left( \sum_{i=1}^{k} B(z_i, z_{k+1}) x_i + \tilde{q}(z_{k+1}) x_{k+1} \right),$$

where  $\tilde{q}(z_{k+1}) \in A$  is a lifting of  $q(z_{k+1}) \in A/\Gamma$ . If  $i \leq k$ , then

$$B(z_i, z'_{k+1}) = B(z_i, z_{k+1}) - \overline{s}B(z_i, z_{k+1})s = 0.$$

Furthermore,

$$\begin{split} q(z_{k+1}') &= q(z_{k+1}) + q\left(-\overline{s}\left(\sum_{i=1}^k B(z_i, z_{k+1})x_i + \tilde{q}(z_{k+1})x_{k+1}\right)\right) \\ &+ B\left(z_{k+1}, -\overline{s}\left(\sum_{i=1}^k B(z_i, z_{k+1})x_i + \tilde{q}(z_{k+1})x_{k+1}\right)\right) \\ &= q(z_{k+1}) - \overline{s}\tilde{q}(z_{k+1})B(z_{k+1}, x_{k+1}) \\ &= q(z_{k+1}) - \tilde{q}(z_{k+1}) \\ &= 0 \quad \text{in } A/\Gamma \end{split}$$

and

$$B(z'_{k+1}, z'_{k+1}) = \tilde{q}(z'_{k+1}) + s\overline{\tilde{q}(z'_{k+1})} = 0$$

because of the condition ( $\Gamma 2$ ) and  $\tilde{q}(z'_{k+1}) \in \Gamma$ . Thus, there exist  $y_i \in M$ ,  $i=1,\ldots,m$ , such that  $B(x_i,y_j)=\delta_{ij}$ ,  $B(y_i,y_j)=0$  and  $q(y_i)=0$ . We set  $L=\langle y_1,\ldots,y_m\rangle_A$ . Since  $\{p(y_1),\ldots,p(y_m)\}$  is a basis of L', M is the direct sum of N and L.

We close this section by remarking

$$RU_m(A,\Gamma) = \langle TU_m(A,\Gamma), \sigma_1 \rangle$$

as subsets of  $SU_m(A,\Gamma)$ .

## $\S 3.$ Definition of G-surgery Obstructions

Let X and Y be elements in  $\mathcal{M}^3(G)$ ,  $f:(X,\partial X)\to (Y,\partial Y)$  a 1-connected G-map of degree one, and R a ring such that  $\mathbb{Z}\subset R\subset \mathbb{Q}$ . In this section we choose solid tori ( $\cong S^1\times D^2$ ) in X and disks in Y so that after G-homotopically deforming f, it becomes a prenormal map over R in the sense of [7, Definition 7.1].

First we note that the orientation homomorphism  $G \to \{\pm 1\}$  induced by the G-action on X coincides with that for Y, namely  $w_X = w_Y$ .

Fix a point  $y_0$  in  $Int(Y_{r(G)})$ , where

$$Y_{r(G)} = Y \setminus Y_{s(G)}$$
.

After G-homotopically deforming f if necessary, we may assume that f is transverse regular to the point  $y_0$ . We can choose a tiny disk neighborhood  $D_Y^3$  of  $y_0$  in  $\operatorname{Int}(Y_{r(G)})$  and tiny disk neighborhoods  $D_z$  of  $z \in f^{-1}(y_0)$  in  $\operatorname{Int}(X_{r(G)})$  such that  $D_Y^3 \cap gD_Y^3 = \emptyset$  if  $g \neq e$   $(g \in G)$ ,  $D_{z_1} \cap gD_{z_2} = \emptyset$  if  $z_1 \neq z_2$  or  $g \neq e$   $(z_1, z_2 \in f^{-1}(y_0), g \in G)$ , and

$$f^{-1}(\text{Int}(D_Y)) = \coprod_{z \in f^{-1}(y_0)} \text{Int}(D_z).$$

Fix a reference point  $y_1$  in  $\partial D_Y^3$ . Arbitrarily choose and fix  $z_1 \in f^{-1}(y_0)$  and take connecting tubes  $(\cong I \times D^2)$  between  $\partial D_{z_1}$  and the other  $\partial D_z$   $(z \in f^{-1}(y_0) \setminus \{z_1\})$  in general position of

$$\operatorname{Int}(X_{r(G)}) \setminus \bigcup_{w \in f^{-1}(y_0)} (G \operatorname{Int}(D_w)).$$

Since  $\pi_1(f) \colon \pi_1(X) \to \pi_1(Y)$  is surjective, we can choose the connecting tubes so that f maps them to  $\{y_1\}$  after G-homotopical deformation of f. Let  $D_X^3$  be the union of all  $D_z$  and the connecting tubes. Smoothing corners,  $D_X^3$  becomes diffeomorphic to a 3-dimensional disk. Moreover it holds that  $D_X^3 \cap gD_X^3 = \emptyset$  if  $g \neq e$   $(g \in G)$ , and  $f(D_X^3) = D_Y^3$ .

Next take solid tori  $T_1,\ldots,T_m~(\cong S^1\times D^2)$  in general position in

$$\operatorname{Int}(X_{r(G)} \setminus GD_X^3)$$

such that their cores ( $\cong S^1$ ) generate  $\operatorname{Ker}(\pi_1(f)) \otimes_{\mathbb{Z}} R$ . Let  $\beta_j \colon S^1 \times D^2 \to T_j$  be orientation preserving diffeomorphisms and let  $e_j$  and  $f_j$  be the meridians and longitudes of  $\beta_j$  respectively. Take a reference point  $x_1 \in \partial D_X^3$  and a tiny

disk neighborhood  $D_X^2$  of  $x_1$  in  $\partial D_X^3$ . Take connecting tubes between  $D_X^2$  and  $\partial T_j$  in general position of

$$\operatorname{Int}(X_{r(G)}) \setminus \operatorname{Int}(GD_X^3) \setminus \coprod_{j=1}^m \operatorname{Int}(GT_j).$$

We may suppose that f maps all  $T_j$  and connecting tubes to  $\{y_1\}$ . Let T(m) be the union of  $D_X^3$ ,  $T_1, \ldots, T_m$  and the connecting tubes. Then T(m) is a solid torus of genus m. We may suppose that all  $e_j$  and  $f_j$  lie on  $\partial T(m)$ .

We define

$$U = GT(m), \quad V = GD_Y^3, \quad X_0 = X \setminus \operatorname{Int}(U) \quad \text{and} \quad Y_0 = Y \setminus \operatorname{Int}(V).$$

By (1.1.1),  $\partial f: \partial X \to \partial Y$  is not only an R-homology equivalence but also an  $R[\pi_1(Y)]$ -homology equivalence. Since f is a map of degree one, f is a prenormal map over R as well as over  $R[\pi_1(Y)]$  in the sense of [7, Definition 7.1].

Let  $\Lambda$  denote R or  $R[\pi_1(Y)]$ . If  $\partial f: \partial X \to \partial Y$  is a  $\Lambda$ -homology equivalence then we obtain the associated butterfly diagram over  $\Lambda$ .



We note that  $K_1(\partial U; \Lambda)$  and  $K_2(U, \partial U; \Lambda)$  are  $\Lambda$ -free modules of rank 2m and m respectively. If (1.1.2) is fulfilled then  $K_1(X_0; R)$  and  $K_2(X, U; R)$  are stably free R[G]-modules. In such a case, taking sufficiently large m, we may assume that these two modules are free R[G]-modules. Set

$$G(2)_{+} = \{g \in G(2) \mid w_Y(g) = 1\}$$
 and  $G(2)_{-} = \{g \in G(2) \mid w_Y(g) = -1\}.$ 

We adopt -1 as the symmetry of R[G]. Let Q be a subset of  $\{e\} \cup G(2)_+$  and  $\Gamma = \Gamma Q$  the smallest form parameter that includes Q. Using the R[G]-basis

$$\{e_1, \ldots, e_m, f_1, \ldots, f_m\}$$

of  $K = K_1(\partial U; R)$ , we algebraically define the sesquilinear form  $B : K \times K \to R[G]$  over the ring R[G] and the Γ-quadratic form  $q : K \to R[G]/\Gamma$  by

$$B\left(\sum_{i} (a_{i}e_{i} + b_{i}f_{i}), \sum_{j} (c_{j}e_{j} + d_{j}f_{j})\right) = \left(\sum_{i} d_{i}\overline{a_{i}} - c_{i}\overline{b_{i}}\right) \text{ and}$$

$$q\left(\sum_{i} (a_{i}e_{i} + b_{i}f_{i})\right) = \sum_{i} [b_{i}\overline{a_{i}}]$$

where  $a_i$ ,  $b_i$ ,  $c_j$  and  $d_j$  are elements in R[G]. Then, B coincides with the geometric equivariant intersection form on K. Thus,

$$(3.2) B(K_2(X, U; R), K_2(X, U; R)) = \{0\}.$$

If an automorphism  $\alpha$  on the quadratic module  $(K_1(\partial U; R), B, q)$  satisfies

$$\alpha(K_2(U, \partial U; R)) = K_2(X_0, \partial U; R)$$

then  $\alpha$  is said to be *preferable*. For a preferable automorphism  $\alpha$ , the matrix  $\operatorname{Mat}(\alpha)$  associated with  $\alpha$  with respect to the basis  $\{e_1, \ldots, e_m, f_1, \ldots, f_m\}$  is called a *surgery matrix*. In the case where a preferable automorphism exists, the based quadratic module  $(K_1(\partial U; R), B, q)$  determines the surgery matrix uniquely up to the left action of  $\operatorname{TU}_m$ .

Decompose G into the disjoint union of the form

$$G = \{e\} \amalg G(2) \amalg C \amalg C^{-1},$$

where  $C^{-1} = \{g^{-1} \mid g \in C\}$ . Then, the map q can be regarded as the collection of maps  $q_g$ , where  $g \in (\{e\} \cup G(2) \cup C) \setminus Q$ , such that

$$\begin{split} q_g: K &\to R/2R \quad (g \in \{e\} \cup G(2)_+ \smallsetminus Q), \\ q_g: K &\to R \quad (g \in G(2)_-) \text{ and} \\ q_g: K &\to R \quad (g \in C), \end{split}$$

via the relation

$$q(x) = \sum_{g \in (\{e\} \cup G(2) \cup C) \smallsetminus Q} [q_g(x)g] \quad (x \in K).$$

Note that

$$B(x,x) = \widetilde{q(x)} - \overline{\widetilde{q(x)}},$$

where  $\widetilde{q(x)}$  is a lifting of q(x). Thus, it follows from (3.2) that

$$(3.3) q_g(K_2(X, U; R)) = \{0\} (g \in G(2)_- \cup C),$$

and we conclude

**Lemma 3.4.** Let  $f:(X,\partial X) \to (Y,\partial Y)$  be as in Theorem 1.3. Then, after a G-homotopical deformation of (f,b), one obtains Diagram 3.1 and the quadratic module (K,B,q) over R[G], where  $K=K_1(\partial U;R)$ ,  $B:K\times K\to R[G]$  and  $q:K\to R[G]/max$ , for which  $K_2(X,U;R)$  is totally isotropic.

**Definition 3.5.** Let  $f:(X,\partial X)\to (Y,\partial Y)$  be as in Theorem 1.3. We define  $\sigma(f)$  by

$$\sigma(f) = [\operatorname{Mat}(\alpha)] \in W_3(R[G], max; triv),$$

after choosing an arbitrary preferable automorphism  $\alpha$  of the quadratic module (K, B, q) over R[G], where  $K = K_1(\partial U; R)$ ,  $B : K \times K \to R[G]$  and  $q : K \to R[G]/max$ .

Remark 3.6. The algebraic element  $\sigma(f)$  above is not necessarily uniquely determined by the originally given G-map f. If the reader likes to obtain a unique algebraic object, then he can adopt

$$\sigma(f) = \left\{ \sigma(f') \in W_3(R[G], max; triv) \right|$$

$$\text{possible } \{T_1, \dots, T_m\}, \{\beta_1, \dots, \beta_m\}, \text{ and } f' \text{ which }$$
is  $G$ -homotopic to  $f$  and for which  $\sigma(f')$  can be defined with respect to  $\{\beta_1, \dots, \beta_m\}$ 

instead and read the condition  $\sigma(f)=0$  in Theorem 1.3 as  $\sigma(f)\ni 0$ .

In the remainder of the current section, we discuss the triviality of  $q_q$  for

$$g \in \{e\} \cup G(2)_+ \setminus G(Y).$$

Let  $\eta_+$  and  $\eta_-$  be oriented real G-vector bundles over Y such that  $\eta_+ \supset \varepsilon_Y(\mathbb{R}^4)$ . Let  $b: T(X) \oplus f^*\eta_- \to \eta_+$  be an orientation preserving map of G-vector bundles covering  $f: X \to Y$ . Let  $\omega_+$  and  $\omega_-$  be G-frames over V of

the oriented G-vector bundles  $\eta_+$  and  $\eta_-$  respectively. Let  $b_U^*\omega_+$  denote the G-frame over U induced by

$$b_U = b|: T(X)_U \oplus (f^*\eta_-)_U \to (\eta_+)_V$$

from  $\omega_+$ , and let  $f|_U^*\omega_-$  denote the G-frame over U of  $f^*\eta_-$  induced by the canonical map

$$f|_U^* \eta_- \to (\eta_-)_V$$

covering  $f|_U$  from  $\omega_-$ . Then, applying [7, Proposition 2.2] to X replaced by T(m) above, we obtain a G-frame  $\kappa$  over U of the oriented G-vector bundle T(U) such that  $\kappa + f|_U^*\omega_-$  is homotopic to  $b_U^*\omega_+$ .

**Hypothesis 3.7.** In the case with bundle data as above, we assume that all  $\beta_1, \ldots, \beta_m$  are preferable in the sense of [7, Definition 7.4].

If  $\beta_j: S^1 \times D^2 \to T_j$  is not preferable then we can replace  $\beta_j$  by a preferable one. For example, adopt  $\beta_j': S^1 \times D^2 \to T_j$  defined by

$$\beta'_{i}(z_{1}, z_{2}) = \beta_{i}(z_{1}, z_{1}z_{2}) \quad (z_{1}, z_{2} \in \mathbb{C} \text{ with } |z_{1}| = 1 \text{ and } |z_{2}| \le 1)$$

instead of  $\beta_j$ . Thus, the arguments developped so far do not lose generality by the hypothesis.

By [7, Theorem 8.1], the quadratic form  $q_e: K_1(\partial U; R) \to R/2R$  vanishes on  $K_2(X, U; R)$ .

Let g be an element in  $G(2)_+ \setminus G(Y)$ . Then, g acts freely on X and Y. Thus,  $X/\langle g \rangle$  and  $Y/\langle g \rangle$  are oriented manifolds and the induced map

$$f/\langle g \rangle : (X/\langle g \rangle, \partial X/\langle g \rangle) \to (Y/\langle g \rangle, \partial Y/\langle g \rangle)$$

is a map of degree one.

**Lemma 3.8.** For each  $g \in G(2)_+ \setminus G(Y)$ , one has  $q_g(K_2(X, U; R)) = \{0\}$ .

*Proof.* For the proof, by the definition of q, we may suppose

$$G = \langle g \rangle$$
.

Note that

$$\varepsilon(q(x)) = \varepsilon(q_e(x) + q_g(x)g) = q_e(x) + q_g(x),$$

where  $\varepsilon: (R/2R)[G] \to R/2R$  is the augmentation homomorphism. If  $x \in K_2(X, U; R)$  then  $q_e(x) = 0$  and hence  $\varepsilon(q(x)) = q_g(x)$ . But  $\varepsilon \circ q$  coincides with  $q' \circ \pi$ , where  $q' : K_1(\partial U/G; R) \to R/2R$  is the algebraic quadratic form associated with the compositions of  $\beta_i, i = 1, \ldots, m$ , with the projection map  $X \to X/G$ , and  $\pi: K_1(\partial U; R) \to K_1(\partial U/G; R)$  is the canonical homomorphism. By [7, Theorem 8.1], q'(z) = 0 holds for any  $z \in K_2(X/G, U/G; R)$ . Thus we obtain

$$q_q(x) = \varepsilon(q(x)) = q'(\pi(x)) = 0$$

for 
$$x \in K_2(X, U; R)$$
. Q.E.D.

Putting all together, we obtain

**Lemma 3.9.** Let (f,b) be as in Theorem 1.1. Then, after a G-homotopical deformation of (f,b), one obtains Diagram 3.1 and the quadratic module (K,B,q) over R[G], where  $K=K_1(\partial U;R)$ ,  $B:K\times K\to R[G]$  and  $q:K\to R[G]/\Gamma G(Y)$ , for which  $K_2(X,U;R)$  is totally isotropic.

**Definition 3.10.** Let (f, b) be as in Theorem 1.1. We define  $\sigma(f, b)$  by

$$\sigma(f,b) = [\operatorname{Mat}(\alpha)] \in W_3(R[G], \Gamma G(Y); w),$$

after choosing an arbitrary preferable automorphism  $\alpha$  on the quadratic module (K, B, q) over R[G], where  $K = K_1(\partial U; R)$ ,  $B : K \times K \to R[G]$  and  $q : K \to R[G]/\Gamma G(Y)$ .

## §4. Proof of Theorems 1.1 and 1.3

Let (f, b) be as in Theorem 1.1 and  $(K_1(\partial U; R), B, q)$  as in Definition 3.10.

G-surgery along  $\beta_k$ . We observe how the surgery matrix  $\operatorname{Mat}(\alpha)$  in Definition 3.10 is influenced by the G-surgery along  $\beta_k: S^1 \times D^2 \to X$ , where k is a fixed integer with  $1 \leq k \leq m$ . Let  $f': X' \to Y$  be the G-map resulting from the G-surgery along  $\beta_k$ , let  $\beta_i' = \beta_i$  for all  $i \neq k$  and let  $\beta_k'$  be the dual to  $\beta_k$ . Since  $\partial \operatorname{Im}(\beta_i') = \partial \operatorname{Im}(\beta_i)$  we can use the same connecting tubes. We obtain  $X_0'$ , T(m)' and U' for  $\{\beta_i'\}$  instead of  $X_0$ , T(m) and U obtained for  $\{\beta_i\}$ , respectively. The meridian and longitude of  $\beta_i'$  are denoted by  $e_i'$  and  $f_i'$  respectively for each i. Clearly,  $X_0' = X_0$  and  $\partial U' = \partial U$ . However the new

basis of  $K_1(\partial U'; R)$  is  $\{e'_1, \dots, e'_m, f'_1, \dots, f'_m\}$ . Define an R[G]-endomorphism  $\alpha'$  of  $K_1(\partial GU'; R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} = \alpha \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ \vdots \\ f_m \end{pmatrix}.$$

Then, noting that  $e_k = f'_k$  and  $f_k = -e'_k$ , we obtain

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} = \operatorname{Mat}(\alpha) \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ \vdots \\ f_m \end{pmatrix} = \operatorname{Mat}(\alpha)\sigma_k \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Thus,  $\alpha'$  is an automorphism of  $(K_1(\partial U'; R), B', q')$ , where B' = B and q' = q. Furthermore it holds that

$$\alpha'(K_2(U', \partial U'; R)) = \langle \alpha'(e_1'), \dots, \alpha'(e_m') \rangle_{R[G]} = \langle \alpha(e_1), \dots, \alpha(e_m) \rangle_{R[G]}$$
$$= K_2(X_0, \partial U; R) = K_2(X_0', \partial U'; R).$$

This shows that  $\alpha'$  is preferable for defining  $\sigma(f', b')$ . By definition, the surgery matrix  $\operatorname{Mat}(\alpha')$  associated with  $\alpha'$  is  $\operatorname{Mat}(\alpha)\sigma_k$ . We have proved

**Proposition 4.1.** Let  $Mat(\alpha)$  be a surgery matrix for  $\{\beta_1, \ldots, \beta_m\}$ . Then the G-surgery along  $\beta_k$  alters the matrix  $Mat(\alpha)$  to  $Mat(\alpha)\sigma_k$ .

Reversing  $\beta_k$ . Let k be an integer with  $1 \leq k \leq m$ . We observe how the surgery matrix  $\operatorname{Mat}(\alpha)$  in Definition 3.10 is influenced by replacing  $\beta_k$  with  $\beta_k': S^1 \times D^2 \to T_j$  defined by

$$\beta_k'(x,y) = \beta(\overline{x},\overline{y}) \text{ for } x \in S^1 \text{ and } y \in D^2,$$

where  $S^1$  and  $D^2$  are regarded as the unit circle and disk of  $\mathbb{C}$  respectively, and  $\overline{x}$  and  $\overline{y}$  stand for the complex conjugates of x and y respectively. For  $i \neq k$ , we set  $\beta'_i = \beta_i$ . Moreover, all new data derived from  $\{\beta'_1, \ldots, \beta'_m\}$  are denoted here by the initial notation with prime ', e.g.  $e'_i$ ,  $f'_i$ , U' etc. Then,

we may adopt U' = U in order to obtain a surgery matrix for  $\{\beta'_1, \ldots, \beta'_m\}$ . Obviously,  $e'_k = -e_k$ ,  $f'_k = -f_k$ ,  $e'_j = e_j$  and  $f'_j = f_j$ ,  $j \neq k$ , hold. Define  $\alpha' : K_1(\partial GU'; R) \to K_1(\partial GU'; R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_k \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_k \\ \vdots \\ f'_m \end{pmatrix} = \alpha \begin{pmatrix} e_1 \\ \vdots \\ e_k \\ \vdots \\ e_m \\ f_1 \\ \vdots \\ f_k \\ \vdots \\ f_m \end{pmatrix}.$$

This  $\alpha'$  is a preferable automorphism, i.e.  $\alpha'(K_2(U', \partial U'; R)) = K_2(X'_0, \partial U'; R)$ . It is easy to see that the associated surgery matrix  $\operatorname{Mat}(\alpha')$  is  $\operatorname{Mat}(\alpha)\sigma_k^2$ . Thus we obtain

**Proposition 4.2.** Let  $Mat(\alpha)$  be a surgery matrix with respect to  $\{\beta_1, \ldots, \beta_m\}$ . Then reversing  $\beta_k$  alters the matrix  $Mat(\alpha)$  to  $Mat(\alpha)\sigma_k^2$ .

For  $a \in \mathbb{R}^{\times}$  we define a  $2 \times 2$ -matrix  $\iota(a)$  by

$$\iota(a) = \begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix}.$$

For an integer k with  $1 \le k \le m$  we define a  $2m \times 2m$ -matrix  $\iota_k(a)$  by

$$\iota_k(a) = I_{2k-2} \oplus \iota(a) \oplus I_{2m-2k}.$$

Multiplication of  $\beta_k$ . Let a be a natural number such that  $1/a \in R$ . Then, we can take an orientation preserving embedding  $\beta_k': S^1 \times D^2 \to \operatorname{Int}(T_k)$ , where  $T_k = \operatorname{Im}(\beta_k)$ , such that  $e_k' = (1/a)e_k$  and  $f_k' = af_k$  in  $H_1(T_k \setminus \operatorname{Int}(T_k'); R)$ , where  $T_k' = \operatorname{Im}(\beta_k')$ . We call  $\beta_k'$  an a-multiplication of  $\beta_k$ . For  $i \neq k$ , we adopt  $\beta_i' = \beta_i$ . Then, subsets U' and  $X_0'$  of X are obtained from  $\{\beta_1', \ldots, \beta_m'\}$ . Observe the canonical exact sequence

$$K_2(U, U'; R) \to K_2(X, U'; R) \to K_2(X, U; R) \to K_1(U, U'; R).$$

Since  $K_2(U, U'; R) = 0$  and  $K_1(U, U'; R) = 0$ ,  $K_2(X, U'; R) = K_2(X, U; R)$  holds via the canonical map. Let us observe how replacing  $\beta_k$  with  $\beta'_k$  influences the surgery matrix  $\operatorname{Mat}(\alpha)$ . Formally using the identities  $e_i = e'_i$  and  $f_i = f'_i$   $(i \neq k)$  together with  $e_k = ae'_k$  and  $f_k = (1/a)f'_k$ , we define  $\alpha' : K_1(\partial U'; R) \to K_1(\partial U'; R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_k \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_k \\ \vdots \\ f'_m \end{pmatrix} = \alpha \begin{pmatrix} e_1 \\ \vdots \\ e_k \\ \vdots \\ e_m \\ f_1 \\ \vdots \\ f_k \\ \vdots \\ f_m \end{pmatrix}.$$

(The elements  $\alpha(e_i)$  and  $\alpha(f_i)$  of the right hand side are linear combinations of  $e_s$  and  $f_t$ ,  $1 \leq s$ ,  $t \leq m$ . Thus they are linear combinations of  $e_s'$  and  $f_t'$ .) It holds that  $\alpha'(K_2(U', \partial U'; R)) = K_2(X_0', \partial U'; R)$ , namely  $\alpha'$  is preferable. The matrix  $\operatorname{Mat}(\alpha')$  associated with  $\alpha'$  with respect to  $\{e_1', \ldots, e_m', f_1', \ldots, f_m'\}$  is  $\operatorname{Mat}(\alpha)\iota_k(a)$ . This concludes

**Proposition 4.3.** Let  $Mat(\alpha)$  be a surgery matrix with respect to  $\{\beta_1, \ldots, \beta_m\}$  and a natural number invertible in R. Then taking a-multiplication of  $\beta_k$  converts the matrix  $Mat(\alpha)$  to  $Mat(\alpha)\iota_k(a)$ .

**Stabilization.** We discuss a stabilization of the surgery matrix  $Mat(\alpha)$ .

**Proposition 4.4.** Let  $\operatorname{Mat}(\alpha)$  be a surgery matrix with respect to  $\{\beta_1,\ldots,\beta_m\}$ . Let  $\beta_{m+1}:S^1\times D^2\to X$  be an additional orientation preserving trivial embedding. Perform the G-surgery along  $\beta_{m+1}$ , and let  $\beta'_{m+1}:S^1\times D^2\to X'$  be the dual to  $\beta_{m+1}$ . Furthermore let  $\beta''_{m+1}:S^1\times D^2\to X'$  be the embedding defined by  $\beta''(x,y)=\beta'(\overline{x},\overline{y})$  for  $x\in S^1$  and  $y\in D^2$ . Then  $j_{m,m+1}(\operatorname{Mat}(\alpha))$  (=  $\operatorname{Mat}(\alpha)\oplus I_2$ ) is a new surgery matrix for  $\{\beta_1,\ldots,\beta_m,\beta''_{m+1}\}$ .

*Proof.* The matrix  $\operatorname{Mat}(\alpha) \oplus \sigma$  is a surgery matrix for  $\{\beta_1, \dots, \beta_m, \beta_{m+1}\}$ . By Proposition 4.1,  $(\operatorname{Mat}(\alpha) \oplus \sigma)\sigma_{m+1}$  is a surgery matrix with respect to

$$\{\beta_1,\ldots,\beta_m,\beta'_{m+1}\}$$
. Clearly,

$$(\operatorname{Mat}(\alpha) \oplus \sigma)\sigma_{m+1} = \operatorname{Mat}(\alpha) \oplus (-I_2).$$

Thus, by Proposition 4.2,  $\operatorname{Mat}(\alpha) \oplus I_2$  is a surgery matrix with respect to  $\{\beta_1, \ldots, \beta_m, \beta''_{m+1}\}.$  Q.E.D.

This proposition allows us to treat surgery matrices in stable range.

Let  $\Sigma_m = \sigma \oplus \sigma \oplus \ldots \oplus \sigma$  (*m*-fold sum). By definition,  $\Sigma_m$  lies in  $\mathrm{FU}_m(R[G], \Gamma G(Y))$ . It is remarkable that

$$\sigma(f) = 0 \Rightarrow \operatorname{Mat}(\alpha) \in \operatorname{RU}_m \quad \text{(for large } m)$$

$$\Rightarrow \operatorname{Mat}(\alpha) \in \operatorname{TU}_m \Sigma_m \operatorname{FU}_m$$

$$\Rightarrow \operatorname{TU}_m \operatorname{Mat}(\alpha) F_1 \dots F_\ell \ni \Sigma_m \quad \text{for some } F_1, \dots, F_\ell \in \operatorname{FU}_m.$$

Here we may suppose that each  $F_i$  above has one of the forms in the list

(4.5.1) 
$$\varepsilon_{m+k,k}(g+\overline{g})$$
,  $\varepsilon_{m+k,k}(-(g+\overline{g}))$   $(g \in G)$ ,  
 $(4.5.2)$   $\varepsilon_{m+h,k}(g)$ ,  $\varepsilon_{m+h,k}(-g)$   $(g \in G \text{ and } h \neq k)$ ,  
 $(4.5.3)$   $\varepsilon_{m+k,k}(g)$ ,  $\varepsilon_{m+k,k}(-g)$   $(g \in G(Y))$ ,  
 $(4.5.4)$   $\iota_k(a)$ ,  $\iota_k(-a)$   $(a \in \mathbb{N} \text{ with } 1/a \in R)$ ,  
 $(4.5.5)$   $\sigma_k$ ,

where  $1 \leq h, k \leq m$ .

**Lemma 4.6.** If  $TU_m \operatorname{Mat}(\alpha)$  contains  $\Sigma_m$  then

$$K_1(\partial U; R) = K_2(U, \partial U; R) + K_2(X_0, \partial U; R),$$

and  $f: X \to Y$  is an R-homology equivalence.

For proving Theorem 1.1, it suffices, for each matrix F in (4.5), to find an operation which alters a surgery matrix  $Mat(\alpha)$  to  $Mat(\alpha)F$ . We have already found operations for F of types (4.5.4) and (4.5.5). Thus, it suffices to prove

**Proposition 4.7.** There exists a G-surgery operation which alters the surgery matrix  $Mat(\alpha)$  to  $Mat(\alpha)F$  for each matrix

$$(4.7.1) F = \varepsilon_{m+k,k}(\pm (g + \overline{g})) (g \in G),$$

$$(4.7.2) F = \varepsilon_{m+h,k}(\pm g) (g \in G and h \neq k),$$

$$(4.7.3) F = \varepsilon_{m+k} _k(\pm q) (q \in G(Y)).$$

**Lemma 4.8** (cf. (4.7.1)). Let  $g \in G$  and  $\epsilon = 1$  (resp. -1). Perform an isotopical deformation in  $X_{r(G)}$  of a small portion of  $\beta_k$  and link it to  $g\beta_k$  in the negative (resp. positive) direction to  $ge_k$ . This alters the surgery matrix  $\operatorname{Mat}(\alpha)$  with respect to  $\{\beta_1, \ldots, \beta_m\}$  to a surgery matrix  $\operatorname{Mat}(\alpha')$  for  $\{\beta'_1, \ldots, \beta'_m\}$  such that  $\operatorname{Mat}(\alpha') = \operatorname{Mat}(\alpha)\varepsilon_{m+k,k}(g+\overline{g})$  (resp.  $\operatorname{Mat}(\alpha)\varepsilon_{m+k,k}(-(g+\overline{g}))$ ), where  $\beta'_i = \beta_i$  if  $i \neq k$ , and  $\beta'_k$  is the embedding obtained after the deformation of  $\beta_k$ .

The domain of  $\beta_k$  is  $S^1 \times D^2$ . A small portion above means the part

$$(\exp((\pi - \delta)\sqrt{-1}), \exp((\pi + \delta)\sqrt{-1})) \times D^2$$

of  $S^1 \times D^2$  for small  $\delta > 0$ .



Figure 4.9

*Proof.* Without loss of generality, we can assume k = 1. Define an R[G]-homomorphism  $\beta: K_1(\partial GU; R) \to K_1(\partial GU'; R)$  by

$$\beta \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ f_2 \\ \vdots \\ f_m \end{pmatrix} = \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ \epsilon(g + \overline{g})e'_1 + f'_1 \\ \vdots \\ f'_2 \\ \vdots \\ f'_m \end{pmatrix} \begin{pmatrix} e_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Clearly,  $\beta$  is an isomorphism  $(K_1(\partial GU; R), \lambda, \mu) \rightarrow (K_1(\partial GU'; R), \lambda', \mu')$ . Moreover it holds that

$$\beta(K_2(X_0, \partial GU; R)) = K_2(X_0', \partial GU'; R).$$

Define an endomorphism  $\alpha'$  of  $K_1(\partial GU'; R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} = \operatorname{Mat}(\alpha) \varepsilon_{m+1,1} (\epsilon(g + \overline{g})) \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Then  $\alpha'$  is an automorphism of  $(K_1(\partial GU'; R), \lambda', \mu')$ . Since  $\alpha'(e_i') = \beta \alpha(e_i)$  for all i = 1, ..., m, we have

$$\alpha'(K_2(GU', \partial GU'; R)) = \beta \alpha(K_2(GU, \partial GU; R)) = K_2(X_0', \partial GU'; R).$$

Hence,  $\alpha'$  is preferable. The associated surgery matrix  $Mat(\alpha')$  is

$$\operatorname{Mat}(\alpha)\varepsilon_{m+1,1}(\epsilon(g+\overline{g})).$$
 Q.E.D.

**Lemma 4.10** (cf. (4.7.2)). Let  $g \in G$  and  $\epsilon = 1$  (resp. -1). Perform an isotopical deformation in  $X_{r(G)}$  of a small portion of  $\beta_h$  and link it to  $g\beta_k$  in the negative (resp. positive) direction to  $ge_k$ . This alters the surgery matrix  $\operatorname{Mat}(\alpha)$  for  $\{\beta_1, \ldots, \beta_m\}$  to a surgery matrix  $\operatorname{Mat}(\alpha')$  for  $\{\beta'_1, \ldots, \beta'_m\}$  such that  $\operatorname{Mat}(\alpha') = \operatorname{Mat}(\alpha)\varepsilon_{m+h,k}(g)$  (resp.  $\operatorname{Mat}(\alpha)\varepsilon_{m+h,k}(-g)$ ), where  $\beta'_i = \beta_i$  if  $i \neq h$ , and  $\beta'_h$  is the embedding obtained after the deformation of  $\beta_k$ .

*Proof.* We may suppose that h=1 and k=2 without loss of generality. Define a R[G]-homomorphism  $\beta: K_1(\partial GU;R) \to K_1(\partial GU';R)$  by

$$\beta \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ f_2 \\ f_3 \\ \vdots \\ f_m \end{pmatrix} = \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ \epsilon \overline{g} e'_1 + f'_2 \\ f'_3 \\ \vdots \\ f'_m \end{pmatrix} \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Clearly,  $\beta$  is an isomorphism  $(K_1(\partial GU; R), \lambda, \mu) \to (K_1(\partial GU'; R), \lambda', \mu')$ . It holds that

$$\beta(K_2(X_0, \partial GU; R)) = K_2(X_0', \partial GU'; R).$$

Define an R[G]-endomorphism  $\alpha'$  of  $K_1(\partial GU'; R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} = \operatorname{Mat}(\alpha)\varepsilon_{m+1,2}(\epsilon g) \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Then  $\alpha'$  is an automorphism of  $(K_1(\partial GU'; R), \lambda', \mu')$ . Since  $\alpha'(e'_i) = \beta \alpha(e_i)$  for all i = 1, ..., m, we have

$$\alpha'(K_2(GU', \partial GU'; R)) = \beta \alpha(K_2(GU, \partial GU; R)) = K_2(X_0', \partial GU'; R).$$

Hence,  $\alpha'$  is preferable and the surgery matrix  $Mat(\alpha')$  associated with  $\alpha'$  is

$$\operatorname{Mat}(\alpha)\varepsilon_{m+1,2}(\epsilon g).$$
 Q.E.D.

Next we treat the final case (4.7.3) for  $g \in G(Y)$ . Choose and fix a connected component  $X_{\gamma}^g$  of  $X^g$  such that  $\dim X_{\gamma}^g = 1$ . Let H be the principal isotropy subgroup of G on  $GX_{\gamma}^g$  such that  $g \in H$ . Set  $L = (X_{\gamma}^g)^H \setminus (X_{\gamma}^g)^{>H}$ . Then, dim L=1, and codim L=2. Recall dim  $X^{g'} \leq 1$  for all  $g' \neq e$ , because of  $(\mathcal{M}1)$ . This implies that H acts freely on the normal fiber of L except the origin. Thus, H must be a cyclic group. We denote a generator of H by h. Clearly we get  $g = h^{|H|/2}$ . Perform an isotopical deformation of a small portion of  $\beta_k$  and link it to L and set it again in general position. Then  $\beta_k$  is linked to  $h^1\beta_k$ ,  $h^2\beta_k$ , ...,  $h^{|H|-1}\beta_k$ . Consider an element  $a = h^i$  with  $1 \le i \le |H|/2 - 1$ . Since dim  $X^a = 1$ , the action of a on X preserves the orientation and hence  $\epsilon(a+\overline{a})=\epsilon(a+a^{-1})$ . Using the isotopical defomation in Lemma 4.8, we can eliminate the linking of  $\beta_k$  with  $h^i\beta_k$ and the linking of  $\beta_k$  with  $h^{|H|-i}\beta_k$  in a pair. Regarding  $\{h^1, h^2, \dots, h^{|H|-1}\}$  as  $\{(h^1, h^{|H|-1}), (h^2, h^{|H|-2}), \dots, (h^{|H|/2-1}, h^{|H|/2+1}), h^{|H|/2}\}$ , we use the technique of pairwise elimination and remove the linking of  $\beta_k$  with  $h^i\beta_k$ , where  $1 \le i \le |H| - 1$  and  $i \ne |H|/2$ . Thus, there exists an isotopical deformation of a small portion of  $\beta_k$  such that  $\beta_k$  is linked only to  $g\beta_k$ .

**Lemma 4.11** (cf. (4.7.3)). Let  $g \in G(Y)$  and  $\epsilon = 1$  (resp. -1). Choose and fix a connected component  $X^g_{\gamma}$  of  $X^g$  such that dim  $X^g_{\gamma} = 1$ . Perform an isotopical deformation of a small portion of  $\beta_k$  and link it only to  $g\beta_k$  in the negative (resp. positive) direction to  $ge_k$ . This alters the surgery matrix  $\operatorname{Mat}(\alpha)$  for  $\{\beta_1, \ldots, \beta_m\}$  to a surgery matrix  $\operatorname{Mat}(\alpha')$  for  $\{\beta'_1, \ldots, \beta'_m\}$  such that  $\operatorname{Mat}(\alpha') = \operatorname{Mat}(\alpha)\varepsilon_{m+k,k}(g)$  (resp.  $\operatorname{Mat}(\alpha)\varepsilon_{m+k,k}(-g)$ ), where  $\beta'_i = \beta_i$  if  $i \neq k$ , and  $\beta'_k$  is the embedding obtained after the deformation of  $\beta_k$ .



Figure 4.12

*Proof.* We may suppose k=1. We define an R[G]-homomorphism  $\beta: K_1(\partial GU;R) \to K_1(\partial GU';R)$  by

$$\beta \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ f_2 \\ \vdots \\ f_m \end{pmatrix} = \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ \epsilon g e'_1 + f'_1 \\ f'_2 \\ \vdots \\ f'_m \end{pmatrix} \begin{pmatrix} e_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Then  $\beta$  is an isomorphism  $(K_1(\partial GU; R), \lambda, \mu) \to (K_1(\partial GU'; R), \lambda', \mu')$ . It holds that

$$\beta(K_2(X_0, \partial GU; R)) = K_2(X_0', \partial GU'; R).$$

Define an endomorphism  $\alpha'$  of  $K_1(\partial GU'; R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} = \operatorname{Mat}(\alpha)\varepsilon_{m+1,1}(\epsilon g) \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Then  $\alpha'$  is an automorphism of  $(K_1(\partial GU'; R), \lambda', \mu')$ . Since  $\alpha'(e'_i) = \beta \alpha(e_i)$  for all  $i = 1, \ldots, m$ , we have

$$\alpha'(K_2(GU', \partial GU'; R)) = \beta \alpha(K_2(GU, \partial GU; R)) = K_2(X_0', \partial GU'; R).$$

Hence,  $\alpha'$  is preferable and the surgery matrix  $\operatorname{Mat}(\alpha')$  associated with  $\alpha'$  is  $\operatorname{Mat}(\alpha)\varepsilon_{m+1,1}(\epsilon g)$ . Q.E.D.

Putting all together, we have proved Theorem 1.1.

One can prove Theorem 1.3 by a similar argument using the lemma below. Let a and k be natural numbers satisfying  $1 \le k \le m$ . Let  $\beta_k : S^1 \times D^2 \to X$  be an embedding as before. Then, Twist<sub>a</sub> $(\beta_k) : S^1 \times D^2 \to X$  is defined by

$$\operatorname{Twist}_a(\beta_k)(x,y) = \beta_k(x,x^a y) \ (x \in S^1 \text{ and } y \in D^2).$$

We call Twist<sub>a</sub>( $\beta_k$ ) the a-times twisted embedding of  $\beta_k$ .

**Lemma 4.13.** Replacing  $\beta_k$  by the (-a)-times twisted embedding  $\operatorname{Twist}_{(-a)}(\beta_k)$  alters the surgery matrix  $\operatorname{Mat}(\alpha)$  for  $\{\beta_1,\ldots,\beta_m\}$  to a surgery matrix  $\operatorname{Mat}(\alpha')$  for  $\{\beta'_1,\ldots,\beta'_m\}$  such that  $\operatorname{Mat}(\alpha') = \operatorname{Mat}(\alpha)\varepsilon_{m+k,k}(a)$ , where  $\beta'_i = \beta_i$  if  $i \neq k$  and  $\beta'_k = \operatorname{Twist}_{(-a)}(\beta_k)$ .

*Proof.* Without loss of generality, we may assume that k=1. Since  $\operatorname{Im} \beta_1' = \operatorname{Im} \beta_1$ , we may use U' = U and  $X_0' = X_0$  to obtain a surgery matrix. Define an R[G]-endomorphism  $\alpha'$  of  $K_1(\partial GU';R)$  by

$$\alpha' \begin{pmatrix} e'_1 \\ \vdots \\ e'_m \\ f'_1 \\ \vdots \\ f'_m \end{pmatrix} = \alpha \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ \vdots \\ f'_m \end{pmatrix}.$$

Then we obtain

$$\alpha' \begin{pmatrix} e_1' \\ \vdots \\ e_m' \\ f_1' \\ \vdots \\ f_m' \end{pmatrix} = \operatorname{Mat}(\alpha) \begin{pmatrix} e_1' \\ \vdots \\ e_m' \\ ae_1' + f_1' \\ \vdots \\ f_m' \end{pmatrix} = \operatorname{Mat}(\alpha) \varepsilon_{m+1,1}(a) \begin{pmatrix} e_1' \\ \vdots \\ e_m' \\ f_1' \\ \vdots \\ f_m' \end{pmatrix},$$

because  $e'_1 = e_1$  and  $f'_1 = f_1 + (-a)e_1$  in  $K_1(\partial U'; R) = K_1(\partial U; R)$ . The endomorphism  $\alpha'$  is an automorphism of  $(K_1(\partial GU'; R), \lambda', \mu')$ . Furthermore

$$\alpha'(K_2(GU', \partial GU'; R)) = K_2(X_0', \partial GU'; R).$$

Thus this  $\alpha'$  is preferable for  $\{\beta'_1, \ldots, \beta'_m\}$ . The surgery matrix  $\operatorname{Mat}(\alpha')$  satisfies  $\operatorname{Mat}(\alpha') = \operatorname{Mat}(\alpha) \varepsilon_{m+1,1}(a)$ . Q.E.D.

## §5. Singular Sets of Actions of $A_5$ on Homology 3-spheres

Let  $A_5$  be the alternating group on five letters, and SO(3) the special orthogonal group of degree three. For a nontrivial homomorphism  $\rho: A_5 \to \mathrm{SO}(3)$ , the Poincaré sphere  $\Sigma = \Sigma(\rho)$  is defined to be the space of left cosets,  $\mathrm{SO}(3)/\rho(A_5)$ . A smooth action of  $A_5$  on the Poincaré sphere  $\Sigma$  is naturally given. That is,

$$A_5 \times \Sigma \to \Sigma$$
;  $(g, h\rho(A_5)) \mapsto \rho(g)h\rho(A_5)$ .

We call this action the standard action of  $A_5$  on  $\Sigma$ . This standard action on the Poincaré sphere is investigated in [9]. In particular, there are two  $A_5$ -diffeomorphism (or  $A_5$ -homotopy) types of the Poincaré spheres. They are decided by the characters of homomorphisms  $A_5 \to SO(3)$ . The purpose of this section is to study the G-homeomorphism types of the singular sets of smooth actions of  $A_5$  on homology spheres of dimension 3 with exactly one fixed point, and to prove Theorem 5.5 below.

We denote the cyclic group of order m by  $C_m$  and the dihedral group of order 2m by  $D_{2m}$ . We also denote by  $A_4$  the alternating group on four letters, which is isomorphic to the tetrahedral group. For elements  $g_1, g_2, \ldots, g_n$  of  $A_5$ , the subgroup of  $A_5$  generated by  $g_1, g_2, \ldots, g_n$  is denoted by  $\langle g_1, g_2, \ldots, g_n \rangle$ .

**Definition 5.1.** We set x = (1, 2)(3, 4), y = (3, 5, 4), z = (1, 2, 3, 5, 4) and u = (1, 3)(2, 4) in  $A_5$ . The subgroup  $\langle x \rangle$  is properly contained in the

following seven subgroups.

$$\langle x, u \rangle (\cong D_4), \langle x, y \rangle (\cong D_6), \langle x, uyu \rangle (\cong D_6),$$
  
 $\langle x, z \rangle (\cong D_{10}), \langle x, uzu \rangle (\cong D_{10}), \langle x, z^2uz \rangle (\cong A_4) \text{ and } A_5$ 

The subgroup  $\langle x, z^2uz \rangle$  contains  $\langle x, u \rangle$ . Throughout this section, unless otherwise stated, the above elements x, y, z and u are fixed as above and we use the notation

$$C_2 = \langle x \rangle, C_3 = \langle y \rangle, C_5 = \langle z \rangle$$

$$D_4 = \langle x, u \rangle, D_6 = \langle x, y \rangle, D_{10} = \langle x, z \rangle$$
 and  $A_4 = \langle x, z^2 uz \rangle$ .

Any subgroup of  $A_5$  is conjugate to one of the groups in the next figure (cf. [4, p.10]).



Figure 5.2

**Definition 5.3.** We denote by  $\mathfrak{M}^3$  the family of closed, oriented, 3-dimensional, smooth  $A_5$ -manifolds X satisfying the following conditions (5.3.1)–(5.3.4).

- $(5.3.1) \mid X^{A_5} \mid = 1.$
- (5.3.2)  $X^H = X^K$  whenever  $H \subset K \subset A_5, H \cong D_4$  and  $K \cong A_4$ .
- (5.3.3)  $\mid X^H \mid = 2$  whenever  $H \subset A_5$  and  $H \cong D_{2m}$  for some m = 2, 3 or 5.
- (5.3.4)  $X^H$  is diffeomorphic to  $S^1$  whenever  $H \subset A_5$  and  $H \cong C_m$  for some m=2,3 or 5.

It is well-known that if X is a 3-dimensional homology sphere having a smooth action of  $A_5$  with exactly one fixed point, then X lies in  $\mathfrak{M}^3$ . The Poincaré sphere  $\Sigma$  is a homology sphere and the standard action of  $A_5$  on it has exactly one fixed point. Thus,  $\Sigma$  belongs to  $\mathfrak{M}^3$ .

Let  $X \in \mathfrak{M}^3$ . For each subgroup H of  $A_5$  such that  $H \cong A_5$ ,  $A_4$ ,  $D_{10}$  or  $D_6$ , there exists a unique point  $p(H) \in X$  with isotropy subgroup H. Imagine that we walk on the circle  $X^{C_2}$  starting from and ending at  $p(A_5)$ . Since ux = xu, the action of u gives a diffeomorphism of  $X^{C_2}$  fixing  $p(A_5)$  and  $p(A_4)$  and interchanging  $p(D_{2m})$  and  $p(uD_{2m}u)$  for m = 3 and 5. Hence, on  $X^{C_2}$ , we must meet the intersection points p(H) in one of the following order. (Note: In each case, we do not specify a direction.)



**Definition 5.4.** Let  $C_2$ ,  $A_4$ ,  $D_6$ ,  $D_{10}$ ,  $uD_6u$  be the specified subgroups of  $A_5$  as in Definition 5.1. We say that  $X \in \mathfrak{M}^3$  is of  $type\ (A_5 - D_6 - D_{10} - A_4)$ ,  $(A_5 - D_6 - uD_{10}u - A_4)$ ,  $(A_5 - D_{10} - D_6 - A_4)$  or  $(A_5 - D_{10} - uD_6u - A_4)$  according as the figure of  $X^{C_2}$  is (1), (2), (3) or (4) above.

The type of the Poincaré sphere with standard action is determined in [9, Theorem 1.13]. Let  $\rho: A_5 \to SO(3)$  be a nontrivial representation. Then the Poincaré sphere  $\Sigma(\rho)$  with standard action is of type  $(A_5 - D_6 - uD_{10}u - A_4)$ 

if  $\chi_{\rho}(z) = (1 + \sqrt{5})/2$ , and  $(A_5 - D_6 - D_{10} - A_4)$  if  $(1 - \sqrt{5})/2$ , where  $\chi_{\rho}$  is the character associated with  $\rho$ .

**Theorem 5.5.** For any nontrivial real representation  $\rho: A_5 \to SO(3)$  of  $A_5$  and any type  $\gamma$  of the singular set, there exists a smooth action X of  $A_5$  on a 3-dimensional homology sphere with exactly one fixed point such that the tangential representation at the unique fixed point is isomorphic to  $V(\rho)$ , the type of the singular set of X is  $\gamma$ , and X is  $A_5$ -cobordant to  $\Sigma(\rho)$ , where  $V(\rho)$  is the  $A_5$ -module associated with  $\rho$ .

Proof. The tangential representation of  $\Sigma(\rho)$  at the unique  $A_5$ -fixed point  $p(A_5)$  is isomorphic to  $V(\rho)$ . Take a closed  $A_5$ -disk neighborhood  $D(V(\rho))$  around  $p(A_5)$  in  $\Sigma(\rho)$ . Pinching the outside of Int  $D(V(\rho))$ , we obtain an  $A_5$ -map  $f'': \Sigma(\rho) \to Y$  of degree one, where  $Y = S(\mathbb{R} \oplus V(\rho))$  and  $f''(p(A_5)) = (1,0)$ . It is easy to see that f'' can be converted by  $A_5$ -surgeries of isotropy type  $(C_2)$  to an  $A_5$ -map  $f: X \to Y$  such that  $X \in \mathfrak{M}^3$  is of type  $\gamma$  (by the same argument as [9, Proof of Lemma 2.4]). Since the employed surgeries are of isotropy type  $(C_2)$ , they do not change the fixed point sets of  $A_5$ ,  $A_4$ ,  $(D_4)$ ,  $D_6$  and  $D_{10}$ . By Theorem 1.3, the  $A_5$ -surgery obstruction  $\sigma(f)$  to converting  $f: X \to Y$  to a homology equivalence keeping  $f_s: X_s \to Y_s$  fixed, lies in the group  $W_3(\mathbb{Z}[A_5], max; triv)$ . Since by [2, Corollary 6] this group is trivial, we can perform  $A_5$ -surgery, and obtain a homology equivalence  $f': X' \to Y$ . Here  $X' \in \mathfrak{M}^3$  is the  $A_5$ -manifold required in Theorem 5.5. Q.E.D.

#### References

- [1] Bak, A., K-Theory of Forms, Princeton University Press, Princeton, 1981.
- [2] Bak, A. and Morimoto, M., Equivariant surgery and applications, Proceedings of Topology Hawaii 1990 (ed K. Dovermann) p.13-25, World Scientific Publ., Singapore, 1992.
- [3] Cohen, M. M., A Course in Simple Homotopy Theory, Graduate Texts in Math., 21 Springer, Berlin-Heidelberg-New York, 1973.
- [4] tom Dieck, T., Transformation Groups and Representation Theory, Lect. Notes in Math., 766 Springer Berlin-Heidelberg-New York, 1979.
- [5] Morimoto, M., Bak groups and equivariant surgery, K-Theory, 2 (1989), 465-483.
- [6] ——, Bak groups and equivariant surgery II, K-Theory, 3 (1990), 505–521.
- [7] ——, A geometric quadratic form of 3-dimensional normal maps, Top. Its Appl., 83 (1998), 77-102.
- [8] Morimoto, M. and Iizuka, K., Extendibility of G-maps to pseudo-equivalences to finite G-CW-complexes whose fundamental groups are finite, Osaka J. Math., 21 (1984), 59– 60
- [9] Morimoto, M. and Uno, K., Remarks on one fixed point A<sub>5</sub>-actions on homology spheres, Proceedings of Algebraic Topology Poznań, 1989 (eds S. Jackowski, B. Oliver and K. Pawałowski), Lect. Notes in Math., 1474 (1991), 337–364, Springer, Berlin-Heidelberg-New York.