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Hartogs’ Phenomena for Microfunctions with
Holomorphic Parameters

By

Otto LiEss} Yasunori OKADA** and Nobuyuki TOSE* * *

81. Statement of the Results

1. Hyperfunctions and microfunctions with holomorphic parameters have been
considered in classical microlocalization and they play an important role in
second microlocalization. Our main aim in this paper is to prove a microlocal
variant of the Malgrange-Zerner theorem in hyperfunctions with holomorphic
parameters. See Theorem 2.1 below and for a classical version of Malgrange-
Zerner type theorem, see H. Komatsu [6]. The interest in the theorem lies
in the fact that it shows that microfunctions with holomorphic parameters
are pointwise determined. The corresponding theorem for hyperfunctions with
holomorphic parameters has been obtained before by K. Kataoka and indepen-
dently by T. Oshima; actually their result is somewhat stronger. They studied
the problem for hyperfunctions with real analytic parameters (see Corollary
1.2 and Theorem 2.8). It was not published, but it was included with proof as
Theorem 4.4.7’ in A. Kaneko [3].

Before we state the main result, let us fix the situation where we work:

Let M’ be a real analytic manifold with complexification X’ and let X"
be a complex manifold. Local coordinates of M’, X', and X" are denoted by
z', 2, and 2" respectively. We consider the embedding N := M’ x X" — X =
X' x X" and identify the conormal bundle 7% X along N with T3, X’ x X".
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The canonical projection from 7% X to N (resp. Ty, X' to M) is denoted by 7y
(resp. mpr). We introduce the sheaf COn of microfunctions with holomorphic
parameter z” on T\ X by

(1.1) COpn = MN(OX)®OT‘N/X[dimRMI]
and the sheaf BOy of hyperfunctions with holomorphic parameter 2’ on N by
(1.2) BON = CON‘N.

Here Ox denotes the sheaf of holomorphic functions on X, pnx Sato’s microlo-
calization functor along N, and ory,x the relative orientation sheaf. For any
fixed point 2" € X", we can define the restriction morphisms

(13) BON‘{Z”::%”} — BM’7 u — U/‘Z”:é”
and
(14) CON|{ZII=Z',II} — CM’, u u‘z”:z'”

under the identifications M’ x {#"} ~ M’ and T, X' x {"} ~ T;,X'. Here
we denote by By the sheaf of hyperfunctions on M’ and by Cj;+ that of mi-
crofunctions on T3, X’.

Now we state our main theorem:

Theorem 1.1.  Let ¢’ € T3, X' be a point and U" C X" an open subset.
The map

(1.5) con({d}xU") = T[] Cuw

ey’

defined by u s (u|r—zr)zneyn is injective.
We give explicitly two corollaries of Theorem 1.1.

Corollary 1.2.  Let &' € M’ be a point, U" C X" an open subset and
u € BOn({2'} x U") a hyperfunction with holomorphic parameter z" defined
in a neighborhood of {&'} x U". Assume that for any 2" € U", the restriction
u|,=zr =0 at &'. Then u =0 in a neighborhood of {&'} x U".

Corollary 1.3. Let Q' C M’ and U" C X" be two open subsets and
u € BON(QY x U") a hyperfunction with holomorphic parameter. Assume that
for any 2" € U", the restriction u|,—z» € By () is real analytic. Then u
itself is an analytic function on ' x U", i.e., there exist a neighborhood U C X
of O x U" and a holomorphic function f € Ox(U) with u = f|q v -
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We remark that Corollary 1.2 can be obtained from a result due to Kataoka
and Oshima given in Theorem 2.8, in which u(z’, 2") is assumed to have =’ as
real analytic parameters.

Let us consider moreover the case where X" is the complexification of some
real analytic manifold M”. In this situation, we give a stronger result:

Theorem 1.4. Let ¢ € Ty, X' be a point and U” C X" a connected
open set. Assume that M NU" is non-empty. Then the map

CON({(],} X UH) — H CM’.q"

2eM"NU"’

deﬁned by (g (U|Z//=j;”):i-//EM”r‘|U” 18 injective.

Note that since we can argue locally, Theorem 1.1 will be a consequence
of Theorem 1.4.

2. Let us next consider the sequence of embeddings
M:=M xM"< N < X,
which defines the sheaf
A% = CON|s
of second analytic functions defined on the real regular involutive submanifold
Yi=TyX xpx TR X.

It is again a consequence of Theorem 1.4 that the sections of A% are determined
pointwisely:

Corollary 1.5. Let ¢ € T;;, X' be a point, Q" C M" an open subset,
and u € AL({¢'} x Q") a second analytic function. Assume that u|yr—z» = 0
for any fixzed " € Q". Then u=0.

The following particular case of Theorem 1.4 will be the main intermediate
step in the argument. We denote in it by 7%, X' = Ti;, X'\ M’ the conormal
bundle to M’ with the zero section removed and by 7+ the canonical projection
from T, X' to M'.

Theorem 1.6.  Let ' C M’ be an open subset, U"' C X" a connected
open subset with U" N M" # 0, and Z C 7, () a closed conic subset such
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that for each base point &' € Q' the intersection Z N7y} (&) consists of only
one direction. Also consider a fized point ¢' in Z.
Assume that a section u € CON(7y () x U") satisfies the condition

(1.6) supp(u) C Z x U"

and that w|n—zr = 0 at ¢ for any " € U' N M". Then we have u =0 in a
neighborhood of {¢'} x U".

§2. Local Forms of the Main Results

1. The theorems above in Section 1 are of a local nature. We may argue
therefore in local coordinates and assume that X’ = C%, X" = C* ¢ for some
d and n. We shall identify X' x X" with C" in a natural way: if z = (21,...,25)
are the coordinates in C", we write 2’ for (z1,...,zq4) and 2” for (z441,.-.,2n)-
Thus, z = (2/,2") and X' = {z € C";2" =0}, X" = {2z € C";2' = 0}. We
denote M = {z € X;Imz = 0} = R", regarded as a real analytic submanifold
in C* and consider its partial complexification N = {z € X;Imz = 0} =
R? x C"~<, Variables in M shall be written as # = (2/,2"), 2’ = (21,...,24q),
2" = (®a41,...,2,). Coordinates of ThX = Ty, C* x C*~? are denoted by
(z/,2";¢ - da') or (2,2";¢') under the identification T3, C* ~ /—1T*R* ~
T*R?.

The sheaf BO  is in this situation isomorphic to the sheaf associated with
the following presheaf F: for open sets ' C R? and U” c C"~,

(2.1)

F@xu)= || Y FiFe0({zeU xU"Im € Gi}) b/ ~,

uay,...an =t

where U’ runs through the set of all open complex neighborhoods of €' in C?,
and (GY,...,G%) runs through all the finite collections of open convex cones
in RY. Here >_; Fj ~ 0 means that there exist a complex neighborhood U’
of ' in U’, open convex cones é; CC @) (7 =1,2,...,s), and holomorphic
functions Fj, € O({z € U'xU";Im 2" € G+ G\ }) (j,k =1,2,..., s) satisfying
Fjr = —Fyj (V4,Vk) and F; =Y 7 _, Fji (j =1,2,...,s). We denote the class
of FeO({zeU' xU";Imz € G'}) in BON (Y x U") by b(F). Thus a section
u of BOy locally admits a “boundary value representation”

(2.2) u= Z b(Fy).
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For any point 2" € C"~“, the restriction map (1.3) is written as u = ) b(F}) —
Ulpr=zr = 3 b(Fjlar=zr). (IFF € Oz € ChRez € ,Imz2 € G'}), we
denote by b(F), or by F(z' ++/—1G'0), the hyperfunctional boundary value of

For a section u of BOn, we define the singular spectrum WF 4(u) C TH X
of u as follows: a point (2/,2";€') € T%X does not belong to WF 4(u) if
and only if there exists a boundary value representation u =} B(Fj), (F; €
O({z € U'xU";Im2" € G;})) in a neighborhood of (', 2”) so that ¢ ¢ G’ for
any j. (Cf. [3].) In view of this definition and of the definition of the singular
spectrum for standard hyperfunctions, it is immediate that

(2.3) WE A (ularesn) x {27} € WF4(u) N {2 = 3"}

for any 2”. It is a consequence of our main result that the converse is also
almost true: if (i',€') ¢ WF u(-,2") for all complex z” close to Z”, then
(i, 2" €) ¢ WF 4 u.

The sheaf COy is isomorphic to the sheaf associated with the following
conical presheaf G: for any conical open subset U in T3 X,

(2.4) GU) :=BON(mn(U))/{u € BON(rn(U)); WEA(u) NU = 0}.

Let (2;€') be a fixed point in 17,C* and U” an open subset in C"~¢. A section
u of COp defined in a neighborhood of {(&', 2”;&"); 2" € U"”} admits, locally in
the 2" variables for 2’/ near z”’, a boundary value representation

(25) u=bF),FeO({zeC%|s -1 |<eImz € G, |2" - 2| <e})

for a suitable £ > 0 and a suitable open convex cone G' C R? with & € G'+.
Using this representation, the restriction map (1.4) is written as u = b(F) —
Wl = b(F| o).

We also denote the space of germs of hyperfunctions at 0 € R? by By and
fix some vector £ € R4 = R? \ {0}.

It is instructive to rewrite Theorem 1.1 in local variables and in terms of
defining functions:

Theorem 2.1.  Assume that h € O({z € C";|Z| < ¢,Imz’ € G, 7" €
C"=4 |2"| < 6}) and denote by u the hyperfunction with holomorphic parame-
ters on {(z',2");|2'| < e,|2"| < 8} associated with h. Also consider £ € G'*
and assume that (0,€') ¢ WF 4 u(-,2"), for any 2" with |2"| < 8. Then there
are ' >0, §' > 0, open convex cones G',...,G". in R? so that ¢ ¢ G}L and
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holomorphic functions h; defined on‘{z € C [ <€,y € Gy, |2"] < &'} so

that w is for |2"| < &' equal to Z;Zl b(h;).

We also give a version of Theorem 1.6 in local coordinates:

Theorem 2.2. Let G' € R? be an open convex cone and h a holomor-
phic function defined on {z € C";|2'| < e,y € G',|2"| < €}. Assume that for
every @' € R"=% with |#"| < e, the holomorphic function h(-,&") = h|,n_z»
defined on {2’ € C%;|2'| < e,y € G'} extends holomorphically to a neighbor-
hood of 0 € C?. Then h extends holomorphically to a neighborhood of the set
{zeC"; 2 =0,]"| < e}.

Remark 2.3.  As a consequence of Corollary 1.2 it is possible to recast
the definition of hyperfunctions (respectively microfunctions) with holomorphic
parameters considered above as follows. Let again U” C C"~% be some open
subset. A function h : U” — By is then a hyperfunction with holomorphic
parameter 2’/ precisely if for any 3 € U” there is an open neighborhood U” =
Us» of 2, e > 0, a finite collection of open convex cones G; C R, j=1,...,s,
and holomorphic functions h; € O(z;|2'| <e,Im 2" € G}, 2" € U"), so that for

any 2" € U", h(2") is equal to > i1 b(hi (5 2"))-

Likewise, a function h : U” — Coo.ér) (C(o,éf) denotes here the set of germs
of microfunctions at the point (0, ¢ )) will be a microfunction with holomorphic
parameter 2’ precisely if for any 2 € U” there is an open neighborhood U” =
Us» of 3, ¢ > 0, an open cone G' C R? which contains £ and a holomorphic
function h € O(z;]2'| < e,Imz' € G',2" € U"), so that for any 3 € U",
h(z") is the microfunction defined by the microfunctional boundary value of
the holomorphic function 2’ — h(z', "), |2'| < &,Im 2’ € G'. We shall call h a
local defining function for h (near 2’'). When we want to make the dependence
of h on 3" explicit, we shall occasionally write Az .

Remark 2.4. Tt is a significant fact that the local defining functions hz»
associated with the various z” do not always admit a common holomorphic
extension for all 2’ € U”. (IL.e., in general there will exist no f € O(z;]7| <
e,Imz € G, 2" € U") with (0,€') ¢ WEA(V[f(-,2") — h(z")]), V=" € U".)

Remark 2.5.  Let us consider Corollary 1.3 again. This corollary says
that the real analyticity of u(a’, 2”")|,—;~ for each 2" implies the real analyticity
of u. It is important in this result that 2" is allowed to vary in an open set in
C™. Indeed, there is no analogous result when we only have assumptions for 2"
real. This is the content of the following
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Lemma 2.6.  Let u be the hyperfunction on R? defined by

w(zr, ) = —2
D e el 0

Then
(2.6) WF 4(u) = {(0,0;1,0)}.

In particular the restrictions of u with respect to the xo variable are well-defined.
All these restrictions are real analytic (in one variable), but u itself is not real
analytic.

Proof. All statements are simple. Indeed, when x; # 0 or x5 # 0, u is
obviously real analytic near (z1,x2) and near (0,0) u is the boundary value of
the holomorphic function h(z) = 23/(21+i23) along the cone G = {y € R?;y; >
glyz|}, for any e. This gives in particular WF 4(u) C {(0,0;1,0)}. The opposite
inclusion is also clear since w is not real analytic. As for the restrictions of u
to X = &g, (which exist in view of (2.6)) we did already mention that they are
real analytic for @2 # 0. In the remaining case, when we restrict to zo = 0,
U|,—0 vanishes identically, so it is trivially real analytic. O

We remark that a similar example was already obtained in A. Kaneko [2].
We also give the following

Example 2.7. Consider a holomorphic function

oo

(—izp)?
21722 Z Z1+’L Z2+j_3-7>)

on {(z1,22) € C?;Imz; > (Im22)%? — (Re 22)?}. The boundary value u(z1, z2)
of h satisfies

(1) for any @ and any k = 0,1,2,..., 9% u|y,—s, is well-defined and real

analytic,

(2) WFa(u) = {(0,0;1,0)}.

In fact, the property (1) and the inclusion WF4(u) C {(0,0;1,0)} is easy.
We can also show the opposite inclusion as follows. Note that at the point
(iy1,iy2) with y; > 93, the value h(iyy,iy2) = Z;ilj_jy%/(yl —ys+573) s
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positive real number and in particular at the point z(k) = (iy1(k), iy2(k)) =
(i(k=2 + k~3F),ik~1), we have

() = Wi (k). 12(k) = 3 s
> 1 _ e
(kj)i(k=3k 4+ j=37) lj= 2~

Since limy, z(k) = (0, 0), the estimate above shows that h is not bounded in any
neighborhood of the origin.

2. We give a remark.

As is included with proof as Theorem 4.4.7” in A. Kaneko [3], we have the
following result due to Kataoka and Oshima about a property of hyperfunctions
with real analytic parameters. To state it, we define the sheaf

L d
(2.7) BA := 4, (OX‘X/XM”) ,

which was introduced by M. Sato [10]. We remark that M. Sato discussed
about restriction of hyperfunctions in [10] with the aid of the sheaf B.A before
the notion of singular spectrum came to being. In this situation, we have

Theorem 2.8 (K. Kataoka and T. Oshima).  Let Q' and Q" be open
subsets of M' and M'" respectively. Let u(x',z") € BA(QY x Q") and assume
that
(2.8) u(z’, 2") =0

x”:ZE)/
for any x € Q. Then it follows that u = 0.

3. It follows from the above discussion that all results mentioned so far will be
reduced to Theorem 2.2. We shall therefore start the part of “proofs” of this
paper with the proof of this theorem: see Section 3. In Section 4 we shall then
prove Theorem 1.6 and in Section 5 we shall then prove Theorem 1.4.

§3. Proof of Theorem 2.2

1. In this section, we give a proof of Theorem 2.2. The argument will be based
on several tools: a characterization of extendability of holomorphic functions
by duality, Baire’s principle, a theorem of Hartogs’ type, and the unique con-
tinuation property of singularities along holomorphic parameters.
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2. First we shall prove a very simple result on extendability of holomorphic
functions. Before we can state the result we need to introduce some additional
notations and conventions. We shall in fact denote by B’(§) the polydisc {2z’ €
C%; 12| < 6,¥j} in C* and shall use, for subsets U’, V' C C%, the conventions:

(3.1) Hy/(¢'):= sup Re(—i(z', (")), U +V':={+7;2 €U eV}
z/e ’

It is immediate that Hyyp(s)(¢') = Hyr(¢') +6 Y27, |¢;]. Finally, if U C C
is an open set, we denote by Or,(U’) the space of analytic functionals on
Oca (U"). For simplicity we shall assume that U’ is convex. It is well-known that
analytic functionals v in Og, (U’) are characterized by the fact their Fourier-
Borel transform

satisfies an estimate of form
[0(¢")| < cexp [Hg(()]
for some constant C' and some compact set Q C U’.

Theorem 3.1 (Holomorphic extensions and Duality).  Let U’ C C? be
a bounded open convex domain and h € Oca (U') a holomorphic function defined
on U'. Then h extends holomorphically to U' + B'(8) if and only if for any &'
with 0 < &' < § there exists a constant cs: satisfying

(32  Yoe Ou(U), 10| < exp{Hyr ()} = [v(h)] < e

Theorem 3.1 is essentially well-known, but we give a proof to make this
article self-contained. The argument is based on the following two propositions.

Proposition 3.2. Let 0 < § < & be given and consider f € Oga(C?)
such that

(3.3) [F(¢D] < exp [ ¢']]-

Denote by f;(¢") = Z‘algj(a/ag')af(o)g'a/a! the Taylor-polynomial of f of
order j calculated at 0. Then

(34) sup /(¢ = L exp [FI = 0 (G = +o0).
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Proof. This is a folklore. The statement is in fact trivial in case that

F(¢) = exp [i(z"", ()]

for some fixed 2'Y with |2/ < 4. For

((F=F) =] D (=i O)F/RY < > 16k /R < (6/67) exp [8']C|)-
[k|=j+1 [k|=j+1

From this observation, the statement follows for general f if we write f in the
form

(¢ = l¢) = / exp(—il', ¢'))dA(Z')

Cd

by using a continuous function p with support in {|2'| < (§ + ¢")/2}. We can

then argue as before with f; replaced by f;(¢") = [ Zlklgj[(—i(z',C'»k/
ENp(z")dA(2). (One can prove the proposition in another way using the
Cauchy integral formula and Stirling’s formula.) O

Proposition 3.3. Let 0 < § < &' be given and assume f € Oca(C?)
satisfies | f(¢')| < exp [Hyryp(5)(¢")]. Then we can find ¢, 2',...,2'* € U,
and fi € Oca(C?) so that f=3"7_, f,

|f1(¢)] < cexp[—Re(i(="*, (")) +&'[¢]].
In the sequel we shall denote by |f| 4 for A’ C C? the quantity:

[flar = sup |£(¢")]/ exp [Har(C)]-
¢'ecd

Combining Propositions 3.2 and 3.3, we now obtain:
Proposition 3.4. Let 0 < § < ¢ be given. Assume that f € Oca(C?)

satisfies | f(¢")] < exp [Hyr4p1()(¢')]. Then there is a sequence f; € Oga(C?)
such that

(3.5) sup 1F(S") = £ ()] expHy 455 (¢)] = 0,
and for which

(36) |fj‘U’ < 00.
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If we take into account of the characterization of analytic functionals by
their Fourier-Borel transform, this proposition is considered to be as a quan-
titative version of the elementary fact that analytic functionals on U’ + B’(¢')
can be approximated in O'(U’ + B’(4")) by analytic functionals supported by
U'.

Proof of Theorem 3.1. We consider 2z’ € U’ + B'(4), and fix some U’, ¢’
and §" satisfying the conditions U’ CC U’, §" < §' < & and 2’ € U’ + B'(5").
Thus 0. € Og, (U" + B'(5")) and we can find a sequence f; € Oca(C?) by
Proposition 3.4 so that |f;(¢")| < Cjexp[Hg (¢")], |f = filur+Br@y — 0 for
f = b... In particular, F~'f; € O¢:(U'). We shall then define a function
H by setting H(2') = lim;joo(F~1f;)(h). (The fact that the limit exists is
immediate in that f; is a Cauchy-sequence in the norm |-|U/+B/(5r), so that also
(F~1f;)(h) must be a Cauchy-sequence in view of (3.2).) The proof will come
to an end if we can show that H is well-defined, holomorphic, and extends
h. The fact that H is well-defined means that the definition of H does not
depend on the choice of the sequence f; associated with f = 5, above. This
is clearly a consequence of the assumptions on h, in that if f; and fJ’ are both
in Oca (C?) and satisfy |f; — filurssrsy — 0, f‘lfj,}'_lf]‘ € Opa(U'), then
F~'(fj = f})(h) = 0. The fact that H is well-defined also proves that H is an
extension of h. As for the fact that H is analytic, we first notice that the same
construction defines H as a functional on O, (U’ 4+ B'(d)) and that as such
H((0/0z;,)6./) is the limit of H((0/0z})F 1f;) = 0, where the f; approximate
exp [—i(2’, ("}] as before. O

3. We next prove a modified version of Hartogs’ theorem. We only consider
the case of convex sets.

Theorem 3.5 (Hartogs-type theorem).  Let U’ C C¢ and U"” c C*~¢
be bounded open convex domains with 0 € OU’, U" N R*~4 £ () and h €
Ocn (U x U") a holomorphic function defined on U' x U". Assume that for
any ="' € U" "R, there exists a positive number §(z"") > 0 for which the
function h(-,z") € Oca(U') extends holomorphically to B'(6(z")). Then we
can find an open ball B" C U" centered at some point " € U" NR** and a
constant § > 0 in such a way that h extends holomorphically to B'(§) x B".

Before we enter the proof of Theorem 3.5, we recall a local variant of the
Phragmén-Lindelof principle.

Lemma 3.6.  Let B” be the unit disc in C*=% and let p : B" — R be
a plurisubharmonic function on B". Assume that p(z"”) < 1 on B"” and that



232 OTTO LIESS, YASUNORI OKADA AND NOBUYUKI TOSE

p(z") <0 for " € R* 1N B". Then there is a constant C independent of p
satisfying p(2") < C|Imz"| for |2 <1/2.

For a proof of this result cf. e.g. Meise-Taylor-Vogt [9]. Note that the
lemma implies in a trivial way the following remark:

Remark 3.7.  Assume that p : B’(¢) — R is plurisubharmonic but as-
sume now that p(z") < c on B”(g) whereas p(z") < ¢’ for 2/ € R*~?NB'(¢) for
some constants ¢,c’. Then p(2”") < ¢ 4+ ¢C|Im 2"| for |2”| < /2. In particular
it follows that if we fix ¢’ > ¢’ that there is ¢’ (which depends on ¢ and C' but
not on p) so that p(z") < " if |2"| < &'.

Proof of Theorem 3.5. Take any compact convex set K’ CC U’ whose
interior Int K’ is non-empty and denote by K’ the convex hull of the set {0}UK'
in C?. Then we have:

e 0K,
e h is holomorphic in Int K’ x U”,

e forany z” € U'NR"?, h(.,2"") extends holomorphically to a neighborhood
of K.

Thus by shrinking U’ to Int K’ and by also shrinking §(z") suitably, we may
assume, from the beginning, that for any z” € U” NR"~<, the function h(-, z")
extends holomorphically to U’ + B/ (d(z")).

Set

Ej = N {z" € U" NR"~%; |u(h(-,2"))| < j}.
VEOL, (U),|0(¢")|<exp Hyr g1y 5)(C)

By Theorem 3.1, we have that U/ NR*~¢ = U; E. We can also see that every
Bl cu” NR"~ is closed. Thus from Baire’s principle, some E} must include
an open ball E” := {2 € R"~%; |z" — 3"| < £}. By shrinking ¢, we can assume
that " 4+ B" () cC U"”. We define § by § = 1/(450), take a point 2’ € U’ with
|| < 4, and also take a positive constant ¢’ with 2’ + B’(§’) CC U’. From the
considerations above, our function h satisfies:

e h is holomorphic in a neighborhood of the closure of (2’ + B'(¢')) x (2" +
B"(e)),
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e cach h(-,2") satisfies |[v(h(-,2"))| < jo for any v € Og, (2" + B'(4)) with
0(¢")| < exp Hzry pr(zs) ()

It follows from the second property that for any z”/ € R*~? with |2” — 2| <
g, h(-,2") extends holomorphically to Z’ + B’(3§). This remark provides an
alternative way to the result if we apply Lemma 4.4.8 of A. Kaneko [3]. We
give, however, the following proof to make this article more transparent.

Take the Taylor expansion of A in the variables 2’ around 2':

(3.7) h(z) = an(2")(2' — ).

Now we will estimate the functions z” — |an(2")] in two ways. Our aim is to
show that a,(z") satisfy estimates which are good enough to ensure that the
function A is analytic on a larger domain than its initial domain of definition.

First we use Cauchy’s integral formula in the variables 2z’ on the domain
z' + B'(¢’) and obtain:

(3.8) laa (z")| < C18" 1%l for any 2 € & 4+ B"(¢) and any «,

where Cl = supze(é,+B,(5,))X(i,urBu(E)) |h(2)|
On the other hand, a stronger estimate can be obtained for the a,(2") for
real arguments. Here we start from the expression:

aa(2") = va(h(-2")),

where v, is the analytic functional vy: f — va(f) := (1/a!)((0/02" ) f)| =2
Hence it follows that 9,(¢") = (1/a!)(—i¢’)* exp(—i(2’,¢’)) and that

aa

d
1
AQ ! *H},}I ’ ! = — taj *3(5t ==
5’2&'” () exp(—Hzrpp(35)(C")) a!gigg exp(—36t) al(30e)1

(using k! > exp flk log xdx = kFel=F)

1

< .
= 3e)
These considerations show that

(3.9)
lan (z")] < C2(36)711 for any z” € R*~? with |z — #"| < ¢ and any a,
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where Cy := joe*d.
In this situation we apply Remark 3.7 to the plurisubharmonic functions
" 1 1 " N/
2" = un(2") = —(log|an (2" + 2")| — log C),

Il

where C' = max(C4,C5). The estimates (3.8) and (3.9) proved above show that

uq(2") < —logd’  on B"(e),
uo (z") < —log(38) on B"(e)NR" 2,

We can now apply Remark 3.7 to obtain that
uq(z") < —log(28) on B"(¢'),
with some constant £’. We have therefore obtained the estimate
laa(2")| < C(26)71¢1  for any 2" € & + B"(¢').

This estimate shows that for any 2" € &” + B"(¢’), the Taylor series (3.7) con-
verges at least on 2’ + B’(2§) and that our function h extends holomorphically
to the domain (2'+ B'(26)) x (" 4+ B" (¢')), which includes B'(6) x (" +B" (¢')).
Thus we have the desired result if we take ©” + B”(¢’) for B”. O

4. Now we give a proof of Theorem 2.2.

Proof of Theorem 2.2. Let us then assume that h is a holomorphic func-
tion satisfying the assumption of Theorem 2.2. For each #” € R"~¢ with
|#"| < e, the restriction h(-,Z") extends holomorphically to a set of type
{2';]2'| < §(2"")} with some positive number §(z").

Then from Theorem 3.5, we can take a positive constant § and an open
ball B” C {2 € C"%;|2"| < €} centered at some point &” € R* ¢ such that h
extends holomorphically to B’(§) x B”. Let us consider the boundary value u =
b(h) € BO({(z,2");|a'| < &,|2"| < €}). From the domain of holomorphy of ,
we can see that u is real analytic on the domain {(z/,2");|2'| < 6,2 € B"}.
Then from the unique continuation property for the analytic wave front sets
along holomorphic parameters, we can conclude that u is real analytic on the
domain {(z',z");|2'| < d,|2""| < e}. Since there is only one defining function h
in the boundary value representation u = i)(h), the real analyticity of u asserts
that h extends holomorphically to this domain {(z’,2");|z'| < 4,]2"| < €}.
This completes the proof. ]
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84. Proof of Theorem 1.6

We shall show that Theorem 1.6 follows from Theorem 2.2. We may assume
that M/ =R?, X" =C*4,0€ 2, 0€ U"NM", and that ¢’ = (0;dx;). By
shrinking ' to a sufficiently small neighborhood of 0 = 75/ (¢’), we may assume
that

(4.1) Z c{(z',¢); & > 0}.

From the assumptions (1.6) and (4.1), it is easy to see that u admits a repre-
sentation

w=">b(h) on {(z',2";€"); 2| <e,|2"| < e & #0}
for some small € > 0, some holomorphic function
h(z) € O({z || <e,y € G, |27 <e})

and some conic neighborhood G’ € R? \ {0} of (1,0,...,0).

From the assumption u|,»—z» = b(h(-,2")) = 0 at ¢’ for any & € U"NM",
it is immediate that h(-, ") = h|,»—;» extends holomorphically to a neighbor-
hood of 0 € C%, for every i” € R? with |¢”| < ¢. Thus we can deduce that
h satisfies all the assumptions of Theorem 2.2. It follows therefore from that
theorem that b(h) is 0 as a microfunction with holomorphic parameters on
{(z',2";");2" = 0,|2"| < &,& # 0}. In particular v = 0 in a neighborhood
of {¢'} x {#"";|2"| < e}. This gives the desired result in view of the unique
continuation property for microfunctions with holomorphic parameters.

85. Proof of Theorem 1.4

1. In this section we will reduce Theorem 1.4 to Theorem 1.6. Since we have
already proved Theorem 1.6, this will conclude the proof of all results mentioned
in the introduction. The argument is based on two morphisms due to Kashiwara
and which were used in the proof of the flabbiness of the sheaf of microfunctions.

Remark 5.1.  Actually, it is possible to avoid the use of the Kashiwara
morphisms in the proof of Theorem 1.4. The basic idea is to use Baire’s theorem
in combination with a microlocal characterization of WF 4 by duality (based
on O. Liess [7], [8]), rather than in combination with Theorem 3.1. This leads
to a proof in which one obtains directly Theorem 1.4, without passing through
1.6.
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To turn to the proofs, we first observe that it suffices to prove the Theorem
1.4 in the case when ¢’ & M’.

In fact, in case of ¢ € M’, we may assume that u is defined in a neighbor-
hood of 73,5 (¢") x U" since COy is conic. For any point ¢ € 73,4 (¢’) we can
apply the theorem for u and ¢/, and get u = 0 in a neighborhood of 7'1';41, (¢")xU".
This means that u is real analytic in a neighborhood of {¢'} x U”, and we get
the desired result from the unique continuation property of real analytic func-
tions.

2. Now we concentrate on the case when ¢’ ¢ M’. Since the sheaf of microfunc-
tions with holomorphic parameter is conic, we may work on conormal sphere
bundles instead of conormal bundles.

Let S%, X' := T3, X' /Ry be the conormal sphere bundle along M’ and
v Trp X' — Sip X' the canonical projection. We use the identifications
Sip X' = /-1S*M’' ~ S*M’' and S{X ~ S*M’ x X", and the convention
Y= ’}// X idX//.

In this section, we denote the sheaves v,Cps7, 7.COn by C};, respectively
by COY.

Now we recall the Kashiwara morphisms briefly.

Let L:=R% and Y := S*L ~ R? x S9!, regarded as real analytic mani-
folds with coordinates z’ and (z’, &) respectively. We define two closed subsets
Z and Zj in S*Y by

(5.1) Z={(2',&¢ -da')},  Zo ={(0,¢;¢ - da’)}.

We denote by my the canonical projection S*Y — Y.

We cite the following result. (Refer to Sato-Kawai-Kashiwara [11, Chap. I11,
Corollary 2.1.5, p.473] or Kashiwara-Kawai-Kimura [4, Chap. III, Theorem
3.7.1)).

Lemma 5.2.  There exist two microfunctions K(z',¢"),T(x',¢&') €
Cy (S*Y), such that

(5.2) supp K C Zy, suppT C Zy,

and that
(53) L L =y exw.exue) = i),

(We have denoted by w the volume element on S4=1.)
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Using these microfunctions, we can define the following sheaf morphisms.
Lemma 5.3. LetU' CY and U" C X" be two open subsets. Here X"

denotes an arbitrary complex manifold with local coordinates z".
(1) For a section u(z',2") € COy x»(U' x U"), the integral

(5.4) /K(a:' -y, &y, 2")dy'
becomes a section of Ty xn (5 (U )xU",CO%, xn). This defines a sheaf
morphism

(55) P . COILXxu — WY*FZXXHCOIYXXN.

(2) For a section v(z',€',2") € Tzyxn(ny (U') x U",COY xn), the integral
(5:6) [ 1@ v el €y (e

becomes a section of COy, xn(U' x U"). This defines a sheaf morphism
(5.7) VU my Lz xinCOYy o xn — COLL xon.
(3) The morphisms ® and ¥ satisfy that
(5.8) Tod=id.

(4) The morphisms ® and ¥ commute with the restriction -| =z with respect
to 2" variable.

3. Finally we prove Theorem 1.4 assuming that Theorem 1.6 is already known
to be true. Since the Theorem 1.4 is of a local nature, we may assume that the
manifold M’ in the theorem is L = R?. We will identify sections of COpyx xn
defined outside of L x X" with those of CO’, ,, x». We also identify ¢’ with v'(¢’).
Let u be a section of COp,« x satisfying the assumptions in the theorem.
From the assumption, u|,—;» = 0 at ¢’ for any " € U”" N M". Then from
Lemma 5.3 (4), ®(u)|,#—; is also 0 at 7y'(¢'). Thus we can apply Theorem
1.6 to ®(u) in case of M’ =Y at a point 7y, '(¢') N Z and get ®(u) = 0 on
7y (¢') x U". Applying ¥, we have u = 0 in a neighborhood of {¢'} x U".
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