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Asymptotic Exponential Stability for Diffusion

Processes Driven by Stochastic Differential
Equations in Duals of Nuclear Spaces

By

Kai Liu∗ and Tomás Caraballo∗∗

Abstract

The main objective of this paper is to investigate the asymptotic stability for
diffusion processes driven by a class of Itô stochastic differential equations in duals of
nuclear spaces. A coercivity condition imposed on this sort of equation plays the role
of an exponential stability criterion. An example is studied to illustrate our theory.

§1. Introduction

In the paper we shall study the exponential stability of stochastic diffusion
equations in duals of nuclear spaces. These equations naturally arise in the
research of chemical reaction-diffusion equations, neurophysiology and turbu-
lence, especially, in the recent river pollution model researches (see [11], [15]
and [16]). Roughly speaking, we shall consider the following stochastic diffusion
equation:

Xt = X0 +
∫ t

0

A(s,Xs)ds+
∫ t

0

B(s,Xs)dWs(1.1)

where A : R+×Φ′ → Φ′, B : R+×Φ′ → L(Φ′,Φ′) are two measurable mappings
and Wt is a Φ′-valued Wiener process. Here Φ′ is the dual space of a certain
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countably Hilbertian nuclear space and L(Φ′,Φ′) is the space of all bounded
linear operators from Φ′ into itself.

Diffusion equations of the type (1.1) have been studied by a number of
authors, for instance, G. Kallianpur and R. L. Wolpert [10], G. Kallianpur and
J. Xiong [11], H. Tuckwell [15] and J. B. Walsh [16] among others. The reader
is referred to G. Kallianpur and J. Xiong [11] for further details concerning
certain properties of the solutions (1.1) and some related topics. In the paper,
we are particularly interested in the criteria of exponential stability in the sense
of mean square and pathwise with probability one of the strong solutions to
the equations (1.1).

It is a long history for the investigation of the exponential stability of
stochastic differential equations in finite dimensional spaces and, more recently,
of stochastic evolution equations in Hilbert spaces. For infinite dimensional
cases, we should mention U. G. Haussmann [6] (linear case) and A. Ichikawa
[7] (semilinear case) for their fundamental work on this aspect. Nevertheless,
for nuclear space-valued stochastic differential equation situations, to the best
of our knowledge it seems that nobody ever carried out the study of exponen-
tial stability either in the sense of mean square or pathwise with probability
one. This is the main task in this paper to fill this gap. It is particularly worth
pointing out that our approaches, which are devoted to the consideration of the
stochastic differential equations in duals of nuclear spaces (1.1), could even be
used to extend the results of [6], [7] to cover general non-autonomous Hilbert
space-valued stochastic differential systems. Firstly, we shall give sufficient
conditions for the exponential stability in mean square of the strong solutions
to the equations (1.1). Next, we obtain exponential stability of paths with
probability one. Our argument is based on a coercivity condition which plays
a key role for the existence and uniqueness of the equations (1.1). As a con-
sequence, we will observe how a suitable coercivity condition may be regarded
as an exponential stability criterion.

The exposition is as follows. In Section 2, we shall briefly collect some
notions and notations which are essential for our stability analysis. Section 3
is devoted to the investigation of exponentially asymptotic stability of strong
solutions. Finally, in Section 4 we will illustrate the theorems derived in the
last section by studying an example.

§2. Preliminaries

In this section we are going to state some basic notions and notations in a
suitable way. In particular, the reader is strongly referred to G. Kallianpur and
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J. Xiong [11] for a systematic and detailed statement concerning the material
in this section.

Let Φ be a separable Fréchet space which is a countably Hilbertian space,
that is, its topology is given by an increasing sequence ‖·‖n, n ≥ 0, of compatible
Hilbertian norms. In particular, throughout this paper we suppose Φ is nuclear,
precisely, for each n ≥ 0 there exists m > n such that the canonical injection
from Φm into Φn is Hilbert-Schmidt. Here Φn is the completion of Φ with
respect to ‖ · ‖n. Let Φ′ be the collection of all continuous linear maps from
Φ to R, i.e., the dual space of Φ. We could show that {Φn}n≥0 is a sequence
of decreasing Hilbertian spaces and Φ = ∩∞

n=0Φn. Identifying Φ′
0 with Φ0 by

Riesz’s representation theorem, we denote Φ′
n by Φ−n with norms ‖·‖−n, n ≥ 0.

Then {Φ−n}n≥0 is a sequence of increasing Hilbertian spaces, Φ′ is sequentially
complete and Φ′ = ∪∞

n=0Φ−n. In the latter case, we shall denote by {φp
j} ⊂ Φ

a complete orthonormal system, or simply, CONS of Φp and {φ−p
j } the CONS

of Φ−p conjugate to {φp
j} for p ≥ 0. Let θp be the isometry from Φ−p to Φp

such that θpφ
−p
j = φp

j , ∀j ≥ 1.
A class of important examples of countably Hilbertian spaces can be de-

scribed appropriately as follows. Let H be a real separable Hilbert space with
inner product 〈·, ·〉H , and A = −L a closed densely defined self-adjoint operator
on H such that 〈−Lφ, φ〉H ≤ 0 for φ ∈ Dom (L), the domain of L. Let {Tt}
be the semigroups on H determined by A. Further assume that some power of
the resolvent of L is a Hilbert-Schmidt operator, i.e.,

∃r1 such that (λI + L)−r1 is Hilbert-Schmidt.(2.1)

This condition enables us to prove that there exist 0 ≤ λ1 ≤ λ2 ≤ · · · and
{φj} ⊂ H , a CONS of H , such that

Lφj = λjφj , for any j ≥ 1.

Define

Φ =
{
φ ∈ H : ‖(I + L)rφ‖2

H <∞, ∀r ∈ R
}

=
{
φ ∈ H :

∞∑
j=1

(1 + λj)2r〈φ, φj〉2H <∞, ∀r ∈ R
}
,

and the inner product 〈·, ·〉r on Φ by

〈φ,ψ〉r =
∞∑

j=1

(1 + λj)2r〈φ, φj〉H〈ψ, φj〉H



� �

�

�

�

�

242 Kai Liu and Tomás Caraballo

and
‖φ‖2

r = 〈φ, φ〉r .
Let Φr be the ‖ · ‖r-completion of Φ. We then have

Φ =
⋂
r

Φr, Φ′ =
⋃
r

Φr

and for r ≤ s, φ ∈ Φ, ‖φ‖r ≤ ‖φ‖s and furthermore Φs ⊂ Φr with Φ0 = H .
Condition (2.1) implies that the injection from Φq into Φp is Hilbert-Schmidt
for q ≥ p+ r1 and therefore Φ is a countably Hilbertian nuclear space, simply,
CHNS. As usual, we also call the compatible family (Φ,H, Tt) or (Φ,H, L) a
special compatible family.

We assume throughout that (Ω,F , {Ft}t≥0, P ) is a complete probability
space with a right continuous filtration {Ft}t≥0. A map X : Ω → Φ′ is a Φ′-
valued random variable if it is F/B(Φ′)-measurable, where B(Φ′) is the Borel
field of the topological space Φ′ (in the sense of strong topology). A family
{Xt; t ∈ R+} of Φ′-valued random variables is called a Φ′-process.

In the rest of this paper, we shall concern with Φ′-valued martingales. In
particular, we have the following:

Definition 2.1. A Φ′-valued process M = {Mt}t≥0 is a Φ′-martingale
with respect to {Ft}t≥0 if for each φ ∈ Φ, Mt[φ] is a martingale with respect
to {Ft}. It is called a Φ′-square-integrable-martingale if, in addition,

E
(
Mt[φ]2

)
<∞, ∀φ ∈ Φ, t ≥ 0.(2.2)

We let M(Φ′) (resp. M2(Φ′)) denote the collection of all Φ′-martingales (resp.
Φ′-square-integrable-martingales). We also let

M2,c(Φ′) =
{
M ∈ M2(Φ′) : Mt[φ] has a continuous version for each φ ∈ Φ

}
.

Definition 2.2. A continuous (in the sense of strong topology) Φ′-
valued stochastic process W = (Wt)t≥0 on (Ω,F , P ) is called a centered Φ′-
Wiener process with Q(·, ·) if W satisfies the following three conditions:

a) W0 = 0 a.s.;
b) W has independent increments, i.e., the random variables

Wt1 [φ1], (Wt2 −Wt1)[φ2], . . . , (Wtn −Wtn−1)[φn](2.3)

are independent for any φ1, φ2, . . ., φn ∈ Φ, 0 ≤ t1 ≤ · · · ≤ tn, n ≥ 1;
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c) For each t ≥ 0 and φ ∈ Φ

E
(
eiWt[φ]

)
= e−tQ(φ,φ)/2(2.4)

whereQ is a covariance functional, i.e., a positive definite symmetric continuous
bilinear form on Φ × Φ.

Clearly, W ∈ M2,c(Φ′), {Wt[φ] : φ ∈ Φ, t ≥ 0} is a centered Gaussian
system and

E
(
Wt[ψ]Ws[φ]

)
= (s ∧ t)Q(ψ, φ), ψ, φ ∈ Φ, s, t ≥ 0.(2.5)

Definition 2.3. Let H be a separable Hilbert space with norm ‖ · ‖H .
A family {Bt(h) : t ≥ 0, h ∈ H} of real-valued random variables is called
a cyclindrical Brownian motion (c.B.m) on H with covariance Σ if Σ is a
continuous self-adjoint positive definite operator on H such that the following
conditions hold:

i) For each h ∈ H such that h �= 0, 〈Σh, h〉−1/2
H Bt(h) is a one-dimensional

standard Wiener process;
ii) For each t ≥ 0, α1, α2 ∈ R and f1, f2 ∈ H

Bt(α1f1 + α2f2) = α1Bt(f1) + α2Bt(f2) a.s.;

iii) For each h ∈ H , {Bt(h)} is an FB
t -martingale, where

FB
t = σ{Bs(h) : s ≤ t, h ∈ H}.

{Bt(h) : t ≥ 0, h ∈ H} is called a standard H-c.B.m or simply, H-c.B.m. if it
is a H-c.B.m. with covariance Σ = I.

For each φ ∈ Φ, let ıφ := Q(φ, ·). Then ı is an injective linear operator from
Φ onto a linear subspace R(ı) of Φ′. In particular, for arbitrary v1, v2 ∈ R(ı),
let 〈v1, v2〉HQ := Q(ı−1v1, ı

−1v2). Then 〈·, ·〉HQ is an inner product on R(ı).
Let ‖·‖HQ be the norm on R(ı) determined by the inner product 〈·, ·〉HQ and let
HQ be the completion of R(ı) with respect to ‖ · ‖HQ . Then HQ is a separable
Hilbert space and HQ ⊂ Φ′. It could also be shown that there exists a one-to-
one correspondence between a Φ′-valued Wiener process W with covariance Q
and an HQ-c.B.m. B :

Wt =
∞∑

j=1

Bt(fj)fj(2.6)

where {fj} is a CONS of HQ;

Bt(v) = lim
n→∞Wt[ı−1vn], ∀v ∈ HQ(2.7)
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where {vn} ⊂ R(ı) converges to v in HQ.
Consider the following stochastic diffusion equation (see [11] for further

details on stochastic integral and related properties)

Xt = X0 +
∫ t

0

A(s,Xs)ds+
∫ t

0

B(s,Xs)dWs(2.8)

where A : R+×Φ′ → Φ′, B : R+×Φ′ → L(Φ′,Φ′) are two measurable mappings
and Wt is a Φ′-valued Wiener process. Here L(Φ′,Φ′) denotes the collection of
all continuous linear mappings from Φ′ into Φ′.

Definition 2.4. Let (Ω,F , {Ft}t≥0, P ) be the stochastic basis and Wt

a Φ′-valued Wiener process with covariance function Q. Suppose that X0 is a
Φ−p-valued random variable such that E‖X0‖2−p < ∞. Then by a Φ−p-valued
strong solution on Ω to the SDE (2.8) for t ∈ [0, T ] we mean a process Xt

defined on Ω such that
(a) Xt is a Φ−p-valued Ft-measurable random variable;
(b) Xt ∈ C([0, T ],Φ−p), a.s.;
(c) There exists a sequence (σn) of bounded stopping times on Ω increasing

to infinity such that ∀n ≥ 1

E

∫ T∧σn

0

‖A(s,Xs)‖−qds <∞,(2.9)

and

E

∫ T∧σn

0

‖B(s,Xs)‖2
L(2)(HQ,Φ−p)ds <∞.(2.10)

Here L(2)(HQ,Φ−p) denotes the class of all Hilbert-Schmidt operators from HQ

into Φ−p and q will be introduced in the following assumption (H1);
(d) The SDE (2.8) is satisfied for all t ∈ [0, T ] and almost all ω ∈ Ω.

If T is replaced by ∞, we call Xt a global strong solution of (2.8).

As we are mainly interested in the stability analysis, one always assumes
that the equation (2.8) has a unique global strong solution. In particular, for
this purpose we shall make the following assumption (H1) [11]:

There exists an index p0 > 0 such that, ∀p ≥ p0, ∃q ≥ p and a constant
K = K(p, q) > 0 such that

(D1) (Continuity) ∀t ∈ R+, the maps v ∈ Φ−p → A(t, v) ∈ Φ−q and
v ∈ Φ−p → B(t, v) ∈ L(2)(HQ,Φ−p) are continuous;

(D2) (Coercivity) ∀t ∈ R+ and v ∈ Φ−p, we have

2A(t, v)[θpv] + ‖B(t, v)‖2
L(2)(HQ,Φ−p) ≤ K(1 + ‖v‖2

−p);(2.11)
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(D3) (Growth) ∀t ∈ R+ and v ∈ Φ−p, we have

‖A(t, v)‖2
−q ≤ K(1 + ‖v‖2

−p);(2.12)

(D4) (Lipschitz) ∀t ∈ R+, v1, v2 ∈ Φ−p, we have

‖A(t, v1) −A(t, v2)‖−q ≤ K‖v1 − v2‖−p(2.13)

and

‖B(t, v1) −B(t, v2)‖L(2)(HQ,Φ−p) ≤ K‖v1 − v2‖−p.(2.14)

§3. Main Results

In this section, we shall devote ourselves to the investigation of exponen-
tial stability of the equation (2.8). For simplicity, throughout this section we
take the special compatible family (Φ,H, L) described in Section 1 as our ba-
sic CHNS. In particular, to our end we shall make the following additional
assumption (H2):

∀t ∈ R+, v ∈ Φ−p, p ≥ p0, there exist positive constants ν > 0, µ > 0,
p ≤ r ≤ q and positive function γ(t), t ∈ R+, such that

2A(t, v)[θqv] + ‖B(t, v)‖2
L(2)(HQ,Φ−r) ≤ −ν‖v‖2

−r + γ(t)e−µt(3.1)

where p0, q are introduced as in the assumption (H1) and γ(t) satisfies that
for arbitrary δ > 0, γ(t) = o(eδt), as t→ ∞, i.e., limt→∞ γ(t)/eδt = 0.

Before proceeding to our stability arguments, let us first make the following
comments on the condition (H2):

Remark 1. As is well known, the coercivity condition (2.11) plays an es-
sential role in the establishment of the existence and uniqueness of the equation
(2.8). The further restrictive coercivity condition (3.1) will play the role of an
exponential stability criterion as described below.

Remark 2. The exponential decay term appearing on the right hand side
of (3.1) is of the essence for our stability purposes. In fact, to see this, let us
simply consider the following one dimensional linear Itô equation:

Example 3.1. Assume Xt satisfies the following

dXt = −pXtdt+ (1 + t)−qdWt, t ≥ 0
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with initial data X0 = 0, where p, q > 0 are two positive constants and Wt is
a one-dimensional standard Brownian motion.

Clearly, the left-hand side of the coercivity type condition (3.1) now turns
out to be

2〈−pv, v〉 +
[
(1 + t)−q

]2

= −2pv2 + (1 + t)−2q.(3.2)

where 〈·, ·〉 denotes the standard inner product in R. However, since the last
term (1 + t)−2q is not exponentially decreasing, the solution is exponentially
unstable. Indeed, it is easy to obtain the explicit solution

Xt = e−pt

∫ t

0

eps · (1 + s)−qdWs =: e−ptMt, t ≥ 0,

which immediately implies that for arbitrarily given q > 0 Lyapunov exponent

lim
t→∞

logE|Xt|2
t

= 0.

In the meantime, noticing the law of the iterated logarithm

lim sup
t→∞

Mt√
2〈Mt〉 log log〈Mt〉

= 1 a.s.

and

lim sup
t→∞

log
( ∫ t

0
e2ps(1 + s)−2qds

)
t

= 2p,

we therefore get Lyapunov exponent

lim sup
t→∞

1
t

log |Xt| = 0 a.s.

That is, in spite of the typical stability of an ordinary differential equation

dXt = −pXtdt,

the polynomial type decay of the noise term is not sufficient to ensure the
exponential stability of its stochastically perturbed system.

Now we are in a position to obtain our main results in the paper.

Theorem 3.2. Suppose Xt is a solution to the equation (2.8) satisfying
(H1). Furthermore we assume the coercivity condition (3.1) holds. Then there
exist constants τ > 0, C > 0 such that

E‖Xt‖2
−r ≤ C · e−τt, ∀t ≥ 0.(3.3)

That is, the strong solution is exponentially stable in mean square. In partic-
ular, constant τ > 0 can be taken as follows: τ < µ, if µ ≤ ν and τ = ν, if
µ > ν.
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Proof. For arbitrary φ ∈ Φ, we have

Xt[φ] =
∫ t

0

A(s,Xs)[φ]ds(3.4)

+
∑

j

∫ t

0

〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ],

where {vj} ⊂ R(ı) is a CONS of HQ and ı is defined as in Section 2. Here
B(s, ·)′ denotes the dual operator of B(s, ·) ∈ L(HQ,Φ−r), s ≥ 0. It follows
from Itô’s formula and Definition 2.4 that for arbitrary δ > 0 with µ − δ > 0,
we have

e(µ−δ)t∧σnXt∧σn [φ]2 −X0[φ]2

= (µ− δ)
∫ t∧σn

0

e(µ−δ)sXs[φ]2ds+ 2
∫ t∧σn

0

e(µ−δ)sXs[φ]A(s,Xs)[φ]ds

+2
∑

j

∫ t∧σn

0

e(µ−δ)sXs[φ]〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ]

+
∫ t∧σn

0

e(µ−δ)sQ(B(s,Xs)′φ,B(s,Xs)′φ)ds

where (σn) is the sequence of stopping times defined as in Definition 2.4. Now,
since

∫ t∧σn

0
e(µ−δ)sXs[φ]〈B(s,Xs)′φ, vj〉HQdWt[ı−1vj ], t ∈ R+, is a continuous

martingale, it follows that

E

(∫ t∧σn

0

e(µ−δ)sXs[φ]〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ]
)

= 0, t ∈ R+.

Therefore, letting φ = φr
k, n→ ∞, k ∈ N and then adding on index k ∈ N, we

can deduce by Fatou’s lemma and the condition (3.1)

Ee(µ−δ)t‖Xt‖2
−r(3.5)

≤ E‖X0‖2
−r + (µ− δ − ν)

∫ t

0

e(µ−δ)sE‖Xs‖2
−rds+

∫ t

0

γ(s)e−δsds.

If µ− ν ≤ 0, we therefore deduce

Ee(µ−δ)t‖Xt‖2
−r ≤ E‖X0‖2

−r +
∫ t

0

γ(s)e−δsds,

that is, letting k(δ) =
∫∞
0 γ(s)e−δsds, we have

E‖Xt‖2
−r ≤

(
E‖X0‖2

−r + k(δ)
)
e−(µ−δ)t.
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On the other hand, if µ− ν > 0, it is always possible to choose a suitable δ > 0
such that µ− ν − δ > 0. Then, by virtue of Gronwall’s lemma we easily derive
from (3.5) that

Ee(µ−δ)t‖Xt‖2
−r ≤

(
E‖X0‖2

−r +
∫ t

0

γ(s)e−δsds

)
e(µ−δ−ν)t.

Hence, letting δ > 0 small enough immediately yields that there exists a con-
stant k(δ) > 0 such that

E‖Xt‖2
−r ≤

(
E‖X0‖2

−r + k(δ)
)
e−νt.

Combining the arguments above, we thus obtain our conclusion.

Theorem 3.3. Assume the assumptions in Theorem 3.2 hold. Then
there exist positive constants M , β and a subset Ω0 ⊂ Ω with P (Ω0) = 0 such
that, for each ω �∈ Ω0, there exists a positive random number T (ω) such that
the following holds:

‖Xt‖2
−r ≤M · e−βt, ∀t ≥ T (ω).(3.6)

That is, the strong solution is almost surely stable.

Proof. Our proofs are divided into the following several steps.

Step 1. We firstly claim that there exists a constant C > 0, independent
of t ∈ R+, such that∫ t

s

E‖B(u,Xu)‖2
L(2)(HQ,Φ−r)du ≤ C <∞, 0 ≤ s ≤ t.(3.7)

Indeed, applying Itô’s formula as in Theorem 3.2 to (2.8), we can get (3.5) once
more. If µ− ν ≤ 0, we therefore deduce

∫ t

0

e(µ−δ)sE‖Xs‖2
−rds ≤

E‖X0‖2
−r +

∫ t

0
γ(s)e−δsds

ν + δ − µ
.(3.8)

On the other hand, letting v = 0 in (3.1) yields that for any t ≥ 0,

‖B(t, 0)‖2
L(2)(HQ,Φ−r) ≤ γ(t)e−µt,

which, together with (2.14) and (3.8), immediately implies∫ t

0

e(µ−δ)sE‖B(s,Xs)‖2
L(2)(HQ,Φ−r)ds
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≤ 2
∫ t

0

e(µ−δ)sE‖B(s, 0)‖2
L(2)(HQ,Φ−r)ds+ 2K2

∫ t

0

e(µ−δ)sE‖Xs‖2
−rds

≤ 2
∫ ∞

0

γ(s)e−δsds+
2K2

ν + δ − µ

(
E‖X0‖2

−r +
∫ ∞

0

γ(s)e−δsds

)
=: C(δ),

and, for 0 ≤ s ≤ t, we get∫ t

s

e(µ−δ)uE‖B(u,Xu)‖2
L(2)(HQ,Φ−r)du ≤ C(δ),(3.9)

and

e−(µ−δ)s

∫ t

s

e(µ−δ)uE‖B(u,Xu)‖2
L(2)(HQ,Φ−r)du ≤ C(δ) · e−(µ−δ)s, 0 ≤ s ≤ t.

Therefore, ∫ t

s

E‖B(u,Xu)‖2
L(2)(HQ,Φ−r)du(3.10)

≤
∫ t

s

e(µ−δ)(u−s)E‖B(u,Xu)‖2
L(2)(HQ,Φ−r)du

≤ C(δ) · e−(µ−δ)s, 0 ≤ s ≤ t.

On the other hand, if µ− ν > 0, it is always possible to choose a suitable δ > 0
such that µ− ν− δ > 0. Then, by virtue of Gronwall’s lemma we easily deduce
from (3.5) that

Ee(µ−δ)t‖Xt‖2
−r ≤

(
E‖X0‖2

−r +
∫ t

0

γ(s)e−δsds

)
e(µ−δ−ν)t.

Hence, letting δ > 0 small enough immediately yields that∫ t

0

e(ν−δ)sE‖Xs‖2
−rds ≤

(
E‖X0‖2

−r +
∫ t

0

γ(s)e−δsds

)∫ t

0

e−δsds.(3.11)

A similar argument as above once more yields that there exists a C(δ) > 0 such
that ∫ t

s

E‖B(u,Xu)‖2
L(2)(HQ,Φ−r)du ≤ C(δ) · e−(ν−δ)s, 0 ≤ s ≤ t,(3.12)

and hence our claim is proved.

Step 2. Next we claim that there exists a positive constant M > 0 such
that

E

(
sup

0≤t<T
‖Xt‖2

−r

)
≤M
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for any T > 0. Indeed, applying Itô’s formula and Fatou’s lemma to (3.4) yields
that for arbitrary φ ∈ Φ,

Xt[φ]2 −X0[φ]2(3.13)

≤ 2
∫ t

0

Xs[φ]A(s,Xs)[φ]ds+
∫ t

0

Q(B(s,Xs)′φ,B(s,Xs)′φ)ds

+2
∑

j

∫ t

0

Xs[φ]〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ]

where {vj} ⊂ R(ı) is a CONS of HQ and ı is defined as above.
On the other hand, by virtue of Burkholder-Davis-Gundy’s inequality, for

any T ∈ R+ we obtain

E


 sup

t∈[0,T ]

∣∣∣∣∣∣
∑

j

∫ t

0

Xs[φ]〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ]

∣∣∣∣∣∣

(3.14)

≤ C1E




∑

j

∫ T

0

|Xs[φ]|2 〈B(s,Xs)′φ, vj〉2HQ
ds




1
2



≤ C1E


 sup

0≤s≤T
|Xs[φ]|

[∫ T

0

‖B(s,Xs)′φ‖2
HQ
ds

] 1
2




≤ 1
2
E

(
sup

0≤s≤T
|Xs[φ]|2

)
+ C2

∫ T

0

E‖B(s,Xs)′φ‖2
HQ
ds

where C1, C2 are two positive constants. Therefore, letting φ = φr
k, k ∈ N and

then adding on index k ∈ N, we immediately deduce by (3.1) and (3.3) that

E

(
sup

0≤s≤T
‖Xs‖2

−r

)
(3.15)

≤ E‖X0‖2
−r +

∫ T

0

γ(s)e−µsds

+
1
2
E

(
sup

0≤s≤T

∥∥Xs

∥∥2

−r

)
+K2

∫ T

0

E‖B(s,Xs)‖2
L(2)(HQ,Φ−r)ds.

Now we can easily obtain our claim by (3.1) and (3.7).
Step 3. Now we are in a position to prove our main results. Firstly, by

virtue of the coercivity condition (3.1) and a similar argument to (3.13), we
can get for any φ ∈ Φ with ‖φ‖r = 1,
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sup
t∈[N,N+1]

Xt[φ]2(3.16)

≤ XN [φ]2 +
∫ N+1

N

γ(s)e−µsds

+2


 sup

t∈[N,N+1]

∣∣∣∑
j

∫ t

N

Xs[φ]〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ]
∣∣∣



where N is a natural number. In particular, letting N > 0 large enough, we
have for any εN > 0,

P
{

sup
t∈[N,N+1]

Xt[φ]2 ≥ ε2N

}
(3.17)

≤ ε−2
N E

[
sup

t∈[N,N+1]

Xt[φ]2
]

≤ ε−2
N

{
EXN [φ]2 +

∫ N+1

N

γ(s)e−µsds

+2E
[

sup
t∈[N,N+1]

∣∣∣∑
j

∫ t

N

Xs[φ]〈B(s,Xs)′φ, vj〉HQdWs[ı−1vj ]
∣∣∣]



which, by a similar argument to (3.14) and using (3.16), immediately deduces
there exists a constant K1 > 0 such that

P
{

sup
t∈[N,N+1]

Xt[φ]2 ≥ ε2N

}
≤ K1ε

−2
N

[
EXN [φ]2 +

∫ N+1

N

γ(s)e−µsds

+
∫ N+1

N

E‖B(s,Xs)′φ‖2
HQ
ds

]
.

Therefore, by using (3.3) and (3.12), we can deduce that there exists a constant
K2 > 0 such that

EXN [φ]2 +
∫ N+1

N

γ(s)e−µsds+
∫ N+1

N

E‖B(s,Xs)′φ‖2
HQ
ds ≤ K2 · e−τN/2,

which, letting ε2N = e−τN/4, immediately implies there exists a constant K3 > 0
such that

P
{

sup
t∈[N,N+1]

Xt[φ]2 ≥ ε2N

}
≤ K3 · e−τN/4.

Finally, a Borel-Cantelli’s lemma type argument completes the proof.
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§4. An Example

In this section, we shall investigate a semilinear stochastic differential equa-
tion driven by nuclear space-valued Wiener processes to illustrate the results
derived in the last section.

Example 4.1. [11]White noise current injection at a point (d > 1). Let
L = −∆ + I be an operator on H , where

H =

{
h ∈ L2(X , dx) :

∂h

∂xi

∣∣∣∣
xi=0

=
∂h

∂xi

∣∣∣∣
xi=π

= 0

}
, i = 1, 2, . . . , d

and X = [0, π]d. Then L is a nonnegative-definite and self-adjoint operator on
the separable Hilbert space H with discrete spectrum. Let λj1,...,jd

, φj1,...,jd
,

j1, . . . , jd ≥ 0 be the eigenvalues and eigenvectors of L, respectively, i.e.,

λj1,...,jd
= j21 + · · · + j2d + 1, φj1,...,jd

(x) = φj1(x1) · · ·φjd
(xd)

and

φ0(xk) =
( 1
π

)1/2

, φjk
(xk) =

( 2
π

)1/2

cos(jkxk), jk ≥ 1.

For r ∈ R and h ∈ H , let

‖h‖2
r :=

∑
j1,...,jd

〈h, φj1,...,jd
〉2H(1 + λj1,...,jd

)2r

and
Φ := {h ∈ H : ‖h‖r <∞, ∀r ∈ R}

where 〈·, ·〉H is the inner product on H . For each r, let Φr be the completion
of Φ with respect to the norm ‖ · ‖r. Let Φ′ be the union of all Φr, r ∈ R. Note
that Φ0 = H . Then Φ is a countably Hilbertian space and Φ′ its dual space.
Likewise, it can be easily proved that the canonical injection from Φq into Φp

is Hilbert-Schmidt for some r1 > 0 with q ≥ p+ r1 and therefore Φ is a CHNS.
Suppose process ξt is the unique solution of equation

dξt = −L′ξtdt+ (1 + t2)e−t/2g(ξt)dWt, ξ0 = 0,

where L′ is the dual of L and g(·) : Φ′ → R is a bounded, Lipschitz continuous
function in a strong sense. Wt is a Φ′-valued Wiener process with EWt[φ] = 0
and

EWt[φ]Ws[ψ] = (t ∧ s)φ(x0)ψ(x0), φ, ψ ∈ Φ.
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Wt is Φ′-valued in a degenerate sense for we may take Wt = Ztδx0 where Zt is
a real-valued standard Wiener process and δx0 is the Dirac measure at x0.

For the equation (2.8), at the moment A(t, v) = −L′v and B(t, v) = (1 +
t2)e−t/2g(v)I, where v ∈ Φ′ and I is the identity operator from Φ′ into Φ′. For
simplicity of notation we denote (j1, . . . , jd) by �j. It could be proved [11] that
∀p ≥ 0, ∃q = p+ 1 such that A is a continuous map from Φ−p into Φ−q and

‖A(t, v)‖−q ≤ ‖v‖−p, ∀v ∈ Φ−p.

As

|φ�j(x)| ≤
( 2
π

)d/2

, ∀x ∈ [0, π]d,

we have

|φ(x0)|2 ≤
( 2
π

)d ∑
�j

〈φ, φ�j〉2H(1 + λ�j)
2r2

∑
�j

(1 + λ�j)
−2r2 ≡ θ‖φ‖2

r2

for r2 > d/4. Then for p > d/2, the canonical injection from HQ to Φ−p is
Hilbert-Schmidt, i.e., B(·, ·) is a continuous map from Φ−p to L(2)(HQ,Φ−p).
It could also be proved that ξ· ∈ C([0, T ],Φ−p), ∀T ∈ R+ (cf. [11]).

Note that, for CONS (φ�j) and v ∈ Φ−p∑
�j

(1 + λ�j)
−2(p+1)〈−L′v, φ�j〉H〈v, φ�j〉H(4.1)

=
∑
�j

−λ�j

1 + λ�j

(1 + λ�j)
−2(p+1/2)〈v, φ�j〉2H

≤ −1/2‖v‖2
−(p+1/2)

which immediately yields that for any v ∈ Φ−p there exists a positive constant
M(p) > 0 such that

2〈A(t, v), v〉−(p+1) + ‖B(t, v)‖2
L(2)(HQ,Φ−(p+1/2))

(4.2)

≤−‖v‖2
−(p+1/2) +M(p)(1 + t2)2e−t.

Therefore, applying Theorem 3.2 to (4.2) immediately implies that the strong
solution is exponentially stable in mean square. Moreover, there exist constants
τ > 0, C(p) > 0 such that

E‖ξt‖2
−(p+1/2) ≤ C(p) · e−τt(4.3)

where p > d/2. In the meantime, by Theorem 3.3 the solution is also almost
surely stable.
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