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The Cauchy Problem for Nonlinear
Klein-Gordon Equations in the Sobolev Spaces
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Makoto Nakamura∗ and Tohru Ozawa∗∗

Abstract

The local and global well-posedness for the Cauchy problem for a class of non-
linear Klein-Gordon equations is studied in the Sobolev space Hs = Hs(�n) with
s ≥ n/2. The global well-posedness of the problem is proved under the following
assumptions: (1) Concerning the nonlinearity f , f(u) behaves as a power u1+4/n

near zero. At infinity f(u) has an exponential growth rate such as exp(κ|u|ν ) with
κ > 0 and 0 < ν ≤ 2 if s = n/2, and has an arbitrary growth rate if s > n/2. (2)
Concerning the Cauchy data (φ,ψ) ∈ Hs ≡ Hs ⊕ Hs−1, ‖(φ, ψ);H1/2‖ is relatively
small with respect to ‖(φ, ψ); Ḣs∗‖, where s∗ is a number with s∗ = n/2 if s = n/2,
n/2 < s∗ ≤ s if s > n/2, and the smallness of ‖(φ, ψ); Ḣn/2‖ is also needed when
s = n/2 and ν = 2.

§1. Introduction

We consider the local and global well-posedness in the Sobolev space Hs =
Hs(Rn) = (1−∆)−s/2L2(Rn) of fractional order s with s ≥ n/2 for the Cauchy
problem for nonlinear Klein-Gordon equations of the form

∂2
t u− ∆u+ u = f(u)(1.1)

in space-time I×Rn, where I = [−T, T ] with T > 0 for local solutions and I = R

for global solutions. Here u is a complex-valued function of (t, x) ∈ I × Rn,
∂2

t = ∂2/∂t2, ∆ is the Laplacian in Rn, and f(u) is a nonlinear interaction
given by a complex-valued function f on C.
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There is a large literature on the Cauchy problem for (1.1) and on the
asymptotic behavior in time of global solutions. We only refer to [7, 11, 19]
at the level of H1 and [2, 12] at the level of H2 for global solutions of (1.1)
with some structural assumption on f(u), and to [20, 21, 23, 27, 28] for global
solutions of (1.1) at the level of H1 with small data setting. In [29, 30], B. Wang
developed the Hs-theory for (1.1) for 1/2 ≤ s < n/2.

To state the main result precisely we introduce the following notation. Hs

denotes the Hilbert space Hs ⊕Hs−1 with norm

‖(φ, ψ);Hs‖ ≡ {‖φ;Hs‖2 + ‖ψ;Hs−1‖2}1/2.

For any r with 1 ≤ r ≤ ∞, Lr = Lr(Rn) denotes the Lebesgue space on Rn.
For any s ∈ R and any r with 1 < r < ∞, Hs

r = (1 − ∆)−s/2Lr denotes the
Sobolev space defined in terms of Bessel potentials. For any s ∈ R and any r
with 1 < r < ∞, Ḣs

r = (−∆)−s/2Lr denotes the homogeneous Sobolev space
defined in terms of Riesz potentials. To introduce the Besov space and the
homogeneous Besov space, let φ0 be a nonnegative function on R

n with

supp φ0 ⊂ {ξ ∈ R
n ; 1/2 ≤ |ξ| ≤ 2}

such that {φ0(2−j ·)}∞j=−∞ forms the Littlewood-Paley dyadic decomposition
on Rn \ {0}. Let {ψj}∞−∞ and ψ̃ be functions defined by

Fψj(ξ) ≡ φ0(2−jξ), F ψ̃(ξ) ≡ 1 −
∞∑

j=1

φ0(2−jξ),

where F and F−1 denote Fourier transform and its inverse, respectively. For
any s ∈ R and any r,m with 1 ≤ r,m ≤ ∞, we define

‖u;Bs
r,m‖ ≡


‖ψ̃ ∗ u;Lr‖m +

∞∑
j=1

(2sj‖ψj ∗ u;Lr‖)m




1/m

,

‖u; Ḃs
r,m‖ ≡




∞∑
j=−∞

(2sj‖ψj ∗ u;Lr‖)m




1/m

,

where ∗ denotes the convolution in Rn. Then the Besov space Bs
r,m and the

homogeneous Besov space Ḃs
r,m are defined by

Bs
r,m ≡ {u ∈ S′(Rn) ; ‖u;Bs

r,m‖ <∞},
Ḃs

r,m ≡ {u ∈ S′(Rn)/P(Rn) ; ‖u; Ḃs
r,m‖ <∞},
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where S′(Rn) and P(Rn) denote the sets of tempered distributions and of the
polynomials on Rn, respectively. We refer to [1, 6, 26] for general information
on Besov and Triebel-Lizorkin spaces and their homogeneous counterparts. For
simplicity we make abbreviations such as Hs = Hs

2 , Ḣs = Ḣs
2 , Bs

r = Bs
r,2, Ḃ

s
r =

Ḃs
r,2. For any Banach spaces X and Y having a common dense subspace, we

put

‖a;X ∩ Y ‖ ≡ max{‖a;X‖, ‖a; Y ‖}

for any a ∈ X∩Y . For any interval I ⊂ R and any Banach spaceX we denote by
C(I;X) the space of strongly continuous functions from I toX , by Lq(I;X) the
space of measurable functions u from I toX such that ‖u(·);X‖ ∈ Lq(I), and by
Cb(I;X) the space (C∩L∞)(I;X). To describe the free propagator which solves
the free Klein-Gordon equations, we define the operators U(t) ≡ exp(itω),
K(t) ≡ sin(tω)/ω, K̇(t) ≡ cos(tω), where ω ≡ (1 − ∆)1/2. For any r with
1 ≤ r ≤ ∞, r′ is the exponent dual to r defined by 1/r + 1/r′ = 1.

The Cauchy problem for the equation (1.1) with given data (φ,ψ) will be
treated in the form of the integral equation

u(t) = Φ(u)(t) ≡ K̇(t)φ+K(t)ψ +
∫ t

0 K(t− τ)f(u(τ))dτ . (NLKG)

To describe the nonlinear interaction f with large growth at infinity as well
as with a vanishing behavior as a power p at zero, we introduce the following
assumption N(s, µ, p) with n/2 ≤ s, 0 ≤ µ ≤ s and 1 ≤ p <∞.

N(s, µ, p) : f ∈ C[µ](C; C) and for all k with 0 ≤ k ≤ [µ], f (k) satisfies the
estimates |f (k)(z)| ≤ |z|(p−k)+M(|z|) and

|f ([µ])(z1)− f ([µ])(z2)|

≤
{ |z1 − z2|p−[µ]M(|z1| ∨ |z2|) if µ < p < [µ] + 1,

|z1 − z2|(|z1| ∨ |z2|)(p−[µ]−1)+M(|z1| ∨ |z2|) otherwise

for all z, z1, z2 ∈ C, where M(x) ≡ C exp(κ|x|ν) with constants κ > 0,
0 < ν ≤ 2, C > 0 if s = n/2, and M is a nonnegative, nondecreasing function
on R+ if s > n/2.

Here f (k) denotes any of the k-th order derivatives of f with respect to z and
z̄ and |f (k)| denotes the maximum of the moduli of those derivatives. We
note that for any µ1, µ2 and s with 0 ≤ µ1 < µ2 ≤ s < ∞ and any p with
1 ≤ p <∞, N(s, µ2, p) implies N(s, µ1, p). For a, b ∈ R we denote by a∨ b and
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a∧ b the maximum and minimum of a and b, respectively, by a+ the maximum
of a and 0, and by [a] the greatest integer that is less than or equal to a. For
any 0 ≤ s0 ≤ s∗ ≤ s we define the set of data by

As(γs0 , γs∗)≡ {(φ, ψ) ∈ Hs ; ‖(φ, ψ);Hs0‖ ≤ γs0 , ‖(φ, ψ);Hs∗‖ ≤ γs∗}.

We are now in a position to state our main theorem in this paper.

Theorem 1.1. Let n ≥ 1, s ≥ n/2, 1 ≤ p <∞. Let s∗ be a number with
s∗ = n/2 if s = n/2, n/2 < s∗ ≤ s if s > n/2. Let f satisfy N(s, (s− 1)+, p).
Let ‖(φ, ψ);Hn/2‖ be sufficiently small for s = n/2 and ν = 2 in the following
(1) and (3).

(1) (NLKG) has a unique local solution u with (u, ∂tu) ∈ C([−T, T ];Hs)
for any given initial data (φ,ψ) ∈ Hs, where T can be taken depending only on
the norm of (φ,ψ) in Hs∗

.
(2) Let ν < 2 if s = n/2. For any given initial data (φ,ψ) ∈ Hs let u ∈

C((−T∗, T ∗);Hs) be a solution of (NLKG) on the maximal interval of existence
(−T∗, T ∗), T∗, T ∗ > 0. If T ∗ < ∞ [resp. T∗ < ∞], then ‖(u(t), ∂tu(t));Hs∗‖
blows up at t = T ∗ [resp. t = −T∗].

(3) Let 1 ≤ p < 1 + 4/n. Moreover let f satisfy N(s, (s − 3/2 + n(p −
1)/4)+, p) when 1 + 2/n ≤ p. Then T∗ and T ∗ are estimated from below as

T∗ ∧ T ∗ ≥ {‖(φ, ψ);Hs0‖p−1H(‖(φ,ψ);Hs∗‖)}−4/(4−n(p−1)),(1.2)

where s0 is a number with 0 < s0 ≤ 1/2, and H(·) is a nonnegative, non-
decreasing function on R+. In particular if p = 1, then T∗ and T ∗ can be
made sufficiently large by taking ‖(φ, ψ);Hs0‖ sufficiently small with keeping
‖(φ, ψ); Ḣs∗‖ bounded.

(4) Let γs∗ > 0 be any number, but sufficiently small if s = n/2 and ν = 2.
Let p ≥ 1 + 4/n. Let f satisfy N(s, s− 1/2, p). Then there exists γ1/2 > 0 with
the following property.

(4a) For any initial data (φ,ψ) ∈ As(γ1/2, γs∗), (NLKG) has a unique
global solution u in C(R;Hs). Moreover the solution u satisfies (u, ∂tu) ∈
Cb(R;Hs) and there exists unique two pairs (φ+, ψ+) and (φ−, ψ−) in Hs such
that

‖(u(t) − v±(t), ∂t(u(t) − v±(t)));Hs‖ → 0 as t→ ±∞,(1.3)

where v±(t) ≡ K̇(t)φ± +K(t)ψ±.
(4b) For any data (φ−, ψ−) ∈ As(γ1/2, γs∗), there exists a unique global

solution u of (NLKG) in C(R;Hs) and a unique state (φ+, ψ+) ∈ Hs such
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that (1.3) holds. Moreover the scattering operator S : (φ−, ψ−) �→ (φ+, ψ+) is
well-defined on As(γ1/2, γs∗) to Hs and is continuous in the following sense. If
{(φj

−, ψ
j
−)}∞j=1 ⊂ As(γ1/2, γs∗) satisfies

‖(φ− − φj
−, ψ− − ψj

−);H1/2‖ → 0(1.4)

as j → ∞, then

‖(φ+ − φj
+, ψ+ − ψj

+);Hµ‖ → 0(1.5)

as j → ∞ for any µ with µ < s, where (φj
+, ψ

j
+) = S((φj

−, ψ
j
−)).

(5) The solutions given by (1) and (4a) have the continuous dependence on
the initial data in the following sense. For any initial data (φ,ψ), {(φj , ψj)}∞j=1

in As(γs0 , γs∗), let u, {uj}∞j=1be the corresponding solutions of (NLKG) given
by (1) or (4a). If {(φj , ψj)}∞j=1 satisfies

‖(φ− φj , ψ − ψj);Hs0‖ → 0

as j → ∞, then

‖(u− uj , ∂t(u− uj));L∞(I;Hµ)‖ → 0

as j → ∞ for any µ with µ < s, where I = [−T, T ] for (1) and I = R, s0 = 1/2
for (4a).

Remark 1.1. For s = n/2, the global case (4) in the theorem above
covers for instance the nonlinearities of the form

f(u) = c(eκ|u|2 − 1 − κ|u|2)u for n = 1,

f(u) = c(eκ|u|2 − 1)u for n = 2, 3,

f(u) = c(eκ|u|2 − 1) for n ≥ 4,

with c ∈ C, κ > 0. To our knowledge, both in the local and global cases there is
no other work to treat Klein-Gordon equations with nonlinearity of exponential
growth in the Hs-theory with s ≤ n/2. In view of Trudinger’s inequality the
growth rate as eκ|z|2 at infinity seems to be optimal at the level of Hn/2 (see
[25]).

The method of proof of Theorem 1.1 depends on the Strichartz estimates
and on the Leibniz type estimate on the composite function f ◦u, both of which
are described in terms of Besov spaces. The former is given by Corollary 2.1
below, which extends the estimates in [29, Proposition 1.6]. The latter is given
by Proposition 3.1. In this paper, different positive constants might be denoted
by the same letter C.
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§2. Strichartz Estimates for Klein-Gordon Equations

In order to describe our propositions in concise form, we use the geometric
notation, following T. Kato [8]. For any 0 ≤ θ ≤ 1, let λ and σ be numbers
defined by

λ ≡ (n+ 1 + θ)/2, n− 1 − θ ≤ σ ≤ n− 1 + θ, σ > 0.(2.1)

Let � be the closed unit square in R2 defined by 0 ≤ x, y ≤ 1. Let O,A,B,C,D,
E, F be the points, and T and T0 be the subsets of � given by

O = (0, 0), A = (1, 1), B = (0, 1/2), C = (1/2, (σ − 2)/2σ),
D = (1/2, 0), E = (1, (σ − 2)/2σ), F = (0, (σ − 2)/2σ),
(C = (σ/4, 0), E = (σ/2, 0), F = O if σ < 2),
T = {B} ∪ (BEF ), T ′ = {B′} ∪ (B′E′F ′),
T0 = [OBCD]\{C} (T0 = [OBC] if σ < 2 ),

where (Q1Q2), (Q1Q2Q3), (Q1Q2Q3Q4) denote the interiors of the segment,
triangle, quadrangle in � determined by {Qj} in �, and [Q1Q2], [Q1Q2Q3],
[Q1Q2Q3Q4] denotes those closures, respectively. For any q with 1 ≤ q ≤ ∞,
q′ denotes the conjugate index of q given by 1/q + 1/q′ = 1, and for any Q =
(1/q, 1/r) in �, Q′ denotes the point Q′ = (1/q′, 1/r′). For any Q = (1/q, 1/r)
and Q̃ = (1/q̃, 1/r̃) in �, we call the pair (Q, Q̃) preadmissible pair if∥∥∥∥

∫
J

U(t− s)
ω

h(s)ds;Lq(I;Bρ
r )

∥∥∥∥ ≤ C‖h;Lq̃(I;Bρ̃
r̃ )‖(2.2)

for any intervals I, J ⊂ R, h ∈ Lq̃(I;Bρ̃
r̃ ), and ρ, ρ̃ ∈ R with

ρ+ nα(r) − 2(n− λ)/σq = 1 + 2(n− λ)/σ + ρ̃+ nα(r̃) − 2(n − λ)/σq̃,(2.3)

where α(r) ≡ 1/2 − 1/r, the constant C is independent of I, J, h, but may
be dependent on ρ and ρ̃. For any preadmissible pair (Q, Q̃) we call the pair
admissible pair if

‖U (t)φ;Lq(I;Bρ
r )‖ ≤ C‖φ;Hs‖(2.4)

for any interval I ⊂ R, φ ∈ Hs and s, ρ ∈ R with

s = ρ+ nα(r) − 2(n− λ)/σq,(2.5)

where the constant C is independent of I, φ, but may be dependent on s and
ρ.
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Proposition 2.1. Let Q̃ = (1/q̃, 1/r̃) in T ′. Let Q = (1/q, 1/r) satisfy
1/q < 1/q̃ and

1/r̃ + 2/σq̃ = 1/r + 2/σq + 2/σ,

1/r + 1/σq < 1/2, 1/r > (σ − 2)/σr̃′.

Moreover let 1/q > 0 if Q̃ ∈ (B′C′E′). Then (Q, Q̃) is a preadmissible pair.

Remark 2.1. Let 1 ≤ q̃ < ∞, 1 ≤ r̃ < ∞ and Q̃ = (1/q̃, 1/r̃). If (Q, Q̃)
is a preadmissible pair, then (Q̃′, Q′) is also a preadmissible pair. This follows
from duality argument on (2.2).

Remark 2.2. Let Q ≡ (1/q, 1/r), Q1 ≡ (1/q, 1/r1) in � with 1/r1 ≤
1/r. For any preadmissible [resp. admissible] pair (Q, Q̃), (Q1, Q̃) is also a
preadmissible [resp. admissible] pair by the embedding Bρ1

r1
↪→ Bρ

r which is
satisfied by ρ1 + nα(r1) = ρ+ nα(r).

Proposition 2.2. Let σ > 2. Let Q ∈ (CD], Q̃ ∈ (C′D′]. Then (Q, Q̃)
is an admissible pair.

Corollary 2.1. Let n ≥ 1. Let Q and Q̃ satisfy Q ∈ T0 and Q̃′ ∈ T0.
Then (Q, Q̃) is an admissible pair.

Proof of Proposition 2.1. Let ψ̃ and {ψj}j∈Z be as in the definition of
the Besov space in the introduction. We start from following estimates, which
are derived from the method of stationary phase (see [3, Theorem 3.2], [6,
Appendix]).

‖ exp(itω)ψ̃;L∞‖ ≤ Cmin{1, |t|−n/2},(2.6)

‖ exp(itω)ψj ;L∞‖ ≤ C2nj min{1, (2j|t|)−(n−1)/2}min{1, (2−j|t|)−1/2}(2.7)

for any j ≥ 1, where the constant C is independent of j and t. Therefore (2.7)
is rewritten as

‖ exp(itω)ψj ;L∞‖ ≤ C2λj |t|−σ/2

for any j ≥ 1. We denote by ˆ the Fourier transform F . Since ˆ̃
ψ = (ˆ̃ψ + ψ̂1)

ˆ̃
ψ

and ψ̂j =
∑j+1

k=j−1 ψ̂kψ̂j , we have

‖ψ̃ ∗ exp(itω)φ;L∞‖ ≤ (‖ exp(itω)ψ̃;L∞‖ + ‖ exp(itω)ψ1;L∞‖)‖ψ̃ ∗ φ;L1‖
≤C(min{1, |t|−n/2} + 2λ|t|−σ/2)‖ψ̃ ∗ φ;L1‖
≤C|t|−σ/2‖ψ̃ ∗ φ;L1‖,
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‖ψj ∗ exp(itω)φ;L∞‖ ≤
j+1∑

k=j−1

‖ exp(itω)ψk;L∞‖‖ψj ∗ φ;L1‖

≤C

j+1∑
k=j−1

2λk|t|−σ/2‖ψj ∗ φ;L1‖

≤C2λj |t|−σ/2‖ψj ∗ φ;L1‖,
for any j ≥ 1, where the constant C is independent of j and φ. Therefore by
the definition of the Besov space, we have

‖U (t)φ;B0
∞‖ ≤ C|t|−σ/2‖φ;Bλ

1 ‖.(2.8)

Interpolating between (2.8) and the unitarity of U(t) in L2 = B0
2 , we also have

‖U (t)φ;B0
r‖ ≤ C|t|−σα(r)‖φ;B2λα(r)

r′ ‖(2.9)

for any 2 ≤ r ≤ ∞. Now let q1 and r1 satisfy 1 < q1 <∞ and

1/r1 + 2/σq1 = 1/2, 1/r1 > (σ − 2)/2σ (1/r1 ≥ 0 if σ < 2).(2.10)

Then applying the Hardy-Littlewood-Sobolev inequality to (2.9) in the time
variable, we have∥∥∥∥

∫
J

U(t− s)h(s)ds;Lq1(I;B−λα(r1)
r1

)
∥∥∥∥ ≤ C‖h;Lq′

1(I;B−λα(r′
1)

r′
1

)‖(2.11)

for any intervals I, J ⊂ R, where we have used the fact that for any µ ∈ R

and any r with 1 ≤ r ≤ ∞ the operator ωµ is an isomorphism on B0
r to B−µ

r .
Especially by the unitarity of U(t) in L2 and a duality argument, (2.11) also
shows ∥∥∥∥

∫
J

U(t− s)h(s)ds;L∞(I;B0
2)

∥∥∥∥ ≤ C‖h;Lq′
1(I;B−λα(r′

1)

r′
1

)‖(2.12)

for any intervals I, J ⊂ R, where we have used L2 = B0
2 with equivalent norms.

Interpolating between (2.11) and (2.12), and applying a duality argument on
U , we obtain for any (1/qj, 1/rj) ∈ [BC) ((1/qj , 1/rj)∈ [BC] if σ < 2), j = 1, 2,∥∥∥∥

∫
J

U(t− s)h(s)ds;Lq1(I;B−λα(r1)
r1

)
∥∥∥∥ ≤ C‖h;Lq′

2(I;B−λα(r′
2)

r′
2

)‖(2.13)

for any intervals I, J ⊂ R. On the other hand, if we consider the dual operator
U ′ of U(·) on function spaces of space-time R1+n of the form

U ′h ≡
∫

R

U(−s)h(s)ds,(2.14)
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then a similar argument on (2.12) shows the inequality

‖U ′h;B0
2‖ ≤ C‖h;Lq′

1(I;B−λα(r′
1)

r′
1

)‖

for any interval I ⊂ R. Applying duality for this inequality, we have

‖U (t)φ;Lq1(I;B−λα(r1)
r1

)‖ ≤ C‖φ;B0
2‖,(2.15)

where we note that (2.15) also holds for q1 = ∞ since in the case q1 = ∞, r1 is
equal to 2, so that the above inequality reduces to the unitary of U(t) in L2.
Consequently we have obtained the following lemma.

Lemma 2.1. Let n ≥ 1. Let λ, σ be as in (2.1). For j = 1, 2, let
(1/qj, 1/rj) ∈ [BC) ((1/qj, 1/rj) ∈ [BC] if σ < 2 ). Then for any s ∈ R, U
satisfies the estimates

‖U (t)φ;Lq1(I;Bs−λα(r1)
r1

)‖ ≤C‖φ;Hs‖,
∥∥∥∥
∫

J

U(t− s)
ω

h(s)ds;Lq1(I;Bs−λα(r1)
r1

)
∥∥∥∥≤C‖h;Lq′

2(I;Bs−λα(r′
2)−1

r′
2

)‖

for any intervals I, J ⊂ R, φ ∈ Hs and h ∈ Lq′
2(I;Bs−λα(r′

2)−1

r′
2

).

Now let Q̃ and Q be as in the assumption of Proposition 2.1 with Q̃ = B′

and 1/r ≤ 1/r̃′. Let η be the parameter given by η = −2α(r̃) (so that 0 <

η < 1), and let r1 = (1 − η)r, 1/q1 = σα(r1)/2. Then (1/q1, 1/r1) satisfies
(2.10). Therefore applying the complex interpolation between (2.8) and (2.15),
we have

‖|t|ησ/2U(t)h;L�(I;B−λα(r)
r )‖ ≤ C‖h;B−λα(r̃)

r̃ ‖,(2.16)

where � is given by 1/� ≡ (1 − η)/q1. To estimate the integral operator in
space-time as in (2.2), we exploit the standard duality in (1 + n)-variables of
the form

I ≡
〈∫

J

U(· − s)h(s)ds, h1

〉
1+n

.

Changing the variable by τ = t− s and applying duality in space-time to I, we
have

|I| ≤ C

∫
‖|τ |ησ/2U(τ)h(s);L�

τB
−λα(r)
r ‖‖|τ |−ησ/2h1(s+ τ);L�′

τ B
λα(r)
r′ ‖ds,
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where L�
τ denotes the L� norm with respect to the variable τ . By (2.16) and

the Hölder inequality in the variable s, we have

|I| ≤ C‖h;Lq̃
sB

−λα(r̃)
r̃ ‖ · ‖‖|τ |−ησ/2h1(s+ τ);L�′

τ B
λα(r)
r′ ‖;Lq̃′

s ‖.

The second factor on the right hand side of the last inequality is rewritten as

I1 ≡
∥∥∥∥
∫

|τ |−�′ησ/2‖h1(s+ τ);Bλα(r)
r′ ‖�′dτ ;Lq̃′/�′

s

∥∥∥∥
1/�′

.

Now let r∗ be given by

1/r∗ − �′/q̃′ = −�′ησ/2 + 1,

then 1 > 1/r∗ > 1/r∗ − �′/q̃′ > 0 and q′ = �′r∗. Then we apply the Hardy-
Littlewood-Sobolev inequality to I1 to obtain

I1 ≤ C‖‖h1;B
λα(r)
r′ ‖�′ ;Lr∗

t ‖1/�′ = C‖h1;L
q′
t B

λα(r)
r′ ‖.

So that we have

|I| ≤ C‖h;Lq̃
tB

−λα(r̃)
r̃ ‖‖h1;L

q′
t B

λα(r)
r′ ‖

for any interval J . Equivalently we have∥∥∥∥
∫

J

U(t− s)h(s)ds;Lq
tB

−λα(r)
r

∥∥∥∥ ≤ C‖h;Lq̃
tB

−λα(r̃)
r̃ ‖

for any interval J ⊂ R. Since for any µ ∈ R, ωµ is an isomorphism from B0
r to

B−µ
r with 1 ≤ r ≤ ∞, we obtain the required results except for the cases Q̃ = B′

or 1/r > 1/r̃′. In the case Q̃ = B′, we have obtained the required results by
Lemma 2.1. Since the assumptions in Proposition 2.1 hold with 1/r′′ > 1/r̃′ for
the pair (Q̃′, Q′) in the case 1/r > 1/r̃′, by the above argument, we conclude
that (Q̃′, Q′) is a preadmissible pair. So that (Q, Q̃) is also a preadmissible pair
by Remark 2.1. �

Proof of Proposition 2.2. Let ψ̃ and {ψj}j∈Z be as in the definition of the
Besov space. We start from (2.6) and (2.7). Let λ, σ be those in (2.1) with
σ > 2. Then

‖U (t)ψj ;L∞‖ ≤ Cmin{2nj, 2λj |t|−σ/2}

for any j ≥ 1. Since ˆ̃ψ = (ˆ̃ψ + ψ̂1)
ˆ̃ψ, we have

‖ψ̃ ∗ U(t)φ;L∞‖ ≤ (‖U(t)ψ̃;L∞‖ + ‖U (t)ψ1;L∞‖)‖ψ̃ ∗ φ;L1‖.
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Interpolating between the above inequality and the equality ‖ψ̃ ∗U(t)φ;L2‖ =
‖ψ̃ ∗ φ;L2‖, we have

‖ψ̃ ∗ U(t)φ;Lr‖ ≤ (‖U(t)ψ̃;L∞‖2α(r) + ‖U (t)ψ1;L∞‖2α(r))‖ψ̃ ∗ φ;Lr′‖

for any 2 ≤ r ≤ ∞. If r satisfies 0 ≤1/r <(σ − 2)/2σ, then by a direct
calculation we have

‖‖U (t)ψ̃;L∞‖2α(r);L1
t‖ ≤ Cnα(r)/(nα(r) − 1),

and

‖‖U (t)ψj;L∞‖2α(r);L1
t‖ ≤ Cσα(r)2(2nα(r)σ+2(λ−n))j/σ/(σα(r) − 1)

for any j ≥ 1, where the constant C is independent of j. Therefore by the
Young inequality, we have∥∥∥∥ψ̃ ∗

∫
J

U(t− s)h(s)ds;L2
tL

r

∥∥∥∥ ≤ C‖ψ̃ ∗ h;L2
tL

r′‖

for any interval J ⊂ R, where the constant C is independent of J and h.
Similarly if we use ψ̂j =

∑j+1
k=j−1 ψ̂kψ̂j , then we have

∥∥∥∥ψj ∗
∫

J

U(t− s)h(s)ds;L2
tL

r

∥∥∥∥ ≤ C2(2nα(r)σ+2(λ−n))j/σ‖ψj ∗ h;L2
tL

r′‖

for any j ≥ 1 and any interval J ⊂ R. So that by the definition of the Besov
norm, we have∥∥∥∥

∫
J

U(t− s)h(s)ds;L2
tB

0
r

∥∥∥∥ ≤ C‖h;L2
tB

(2nα(r)σ+2(λ−n))/σ
r′ ‖(2.17)

for any interval J ⊂ R. Now let Q ≡ (1/q, 1/r), Q̃ ≡ (1/q̃, 1/r̃) with r̃ ≡ r′,
q = q̃ ≡ 2. Then since (2.3) is rewritten as

ρ̃+ 1 − ρ = (2nα(r)σ + 2(λ− n))/σ,

so that (2.17) shows that (Q, Q̃) is a preadmissible pair. Taking r as 1/r →
(σ− 2)/2σ and considering Remark 2.2, we conclude (Q, Q̃) is a preadmissible
pair for any Q ∈ (CD] and Q̃ ∈ (C′D′]. For these (Q, Q̃), (2.4) with (2.5)
follows from the duality for the estimate

‖U ′h;H−s‖ ≤ ‖h;L2
tB

−ρ
r′ ‖,
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which is derived from the unitarity of U(t). So that (Q, Q̃) is also an admissible
pair. �

Proof of Corollary 2.1. If σ < 2, then the conclusion is obtained by Lemma
2.1. We consider the case σ ≥ 2 in the following. The admissibility of the pair
(Q, Q̃) for any Q ∈ [BC) and Q̃ ∈ [B′C′) is shown by Lemma 2.1, while that
of the pair (Q, Q̃) for any Q ∈ (CD] and Q̃ ∈ (C′D′] is shown by Proposition
2.2. Since (Q, Q̃) is a preadmissible pair for any Q ∈ (BC) and Q̃ ∈ [C′D′] by
Proposition 2.1, while (B, Q̃) is a preadmissible pair for any Q̃ ∈ (C′D′] by the
duality and the estimate∥∥∥∥

∫
U(t− s)h(s)ds;L2

tB
0
r̃′

∥∥∥∥ ≤ C‖h;L2
tB

(2nα(r̃′)σ+2(λ−n))/σ
r̃ ‖

for Q̃ ≡ (1/q̃, 1/r̃), where the last inequality is from (2.17), so that (Q, Q̃) is
a preadmissible pair for any Q ∈ [BC) and Q̃ ∈ (C′D′]. Since any Q ∈ [BC)
satisfies (2.4) with (2.5) by Lemma 2.1, (Q, Q̃) is an admissible pair for any
Q ∈ [BC) and Q̃ ∈ (C′D′]. The rest of the proof is completed by a duality of
the above results and Remark 2.2. �

§3. Estimates for Nonlinear Terms

In this section, we show estimates for nonlinear terms in Besov spaces.

Proposition 3.1. Let s ≥ n/2, 0 < µ ≤ s, 1 ≤ p < ∞. Let f satisfy
N(s, µ, p). Let 1 ≤ r̃ < ∞, 2 ≤ r < ∞. Let r̃ < r if s = n/2. For nonnegative
integers � and k with 1 ≤ k ≤ [µ] + 1 and p ∨ k − 1 + ν� > 0 let rk(�) be a
number which satisfies 2 ≤ rk(�) <∞ and

1/r̃ = (p ∨ k − 1 + ν�)/rk(�) + 1/r.(3.1)

And let m be a number with 2 ≤ m ≤ ∞ and 1/� = (p− 1)/m+ 1/r. Then for
s = n/2 the following estimates hold.

(3.2)

‖f (u);Lr̃‖ ≤C
∞∑

�=0
p−1+ν�>0

κ�

�!
‖u;Lr1(�)‖p−1+ν�‖u;Lr‖ + Cδ(p− 1)‖u;Lr̃‖,

(3.3)

‖f (u); Ḃµ
r̃ ‖ ≤C

∞∑
�=0

p−1+ν�>0

κ�

�!
‖u;Lr1(�)‖p−1+ν�‖u; Ḃµ

r ‖ + Cδ(p− 1)‖u; Ḃµ
r̃ ‖

if 0 < µ < 1,
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‖f (u); Ḃµ
r̃ ‖(3.4)

≤




C
∑∞

�=0,p−1+ν�>0
κ�

�! ‖u;Lr1(�) ∩ Ḃ0
r1(�)

‖p−1+ν�‖u; Ḃµ
r ‖

+Cδ(p− 1)‖u; Ḃµ
r̃ ‖ if 1 ≤ µ and µ < p,

C
∑[µ]+1

k=1

∑∞
�=0,p∨k−1+ν�>0

κ�

�! ‖u;Lrk(�) ∩ Ḃ0
rk(�)‖p∨k−1+ν�‖u; Ḃµ

r ‖
+Cδ(p− 1)‖u; Ḃµ

r̃ ‖ if 1 ≤ µ and µ ≥ p,

where δ(0) = 1 and δ(x) = 0 for x = 0, κ and ν are nonnegative constants
appearing in the assumption N(s, µ, p) and C is a constant independent of u.
And for s > n/2 the following estimates hold.

‖f (u);L�‖ ≤M(‖u;L∞‖)‖u;Lm‖p−1‖u;Lr‖,(3.5)

‖f (u); Ḃµ
� ‖(3.6)

≤



M(‖u;L∞‖)‖u;Lm‖p−1‖u; Ḃµ

r ‖ if 0 < µ < 2,
M(‖u;L∞ ∩ Ḃ0

∞‖)‖u; Ḃ0
m‖p−1‖u; Ḃµ

r ‖ if µ ≥ 2, m = ∞,

M(‖u;L∞ ∩ Ḃ0
∞‖)‖u;L∞ ∩ Ḃ0

∞‖p−1‖u; Ḃµ
r ‖ if µ ≥ 2, m = ∞,

where ‖u;L∞ ∩ Ḃ0∞‖ = ‖u;L∞‖ ∨ ‖u; Ḃ0∞‖. Moreover we may replace Ḃ with
B on the RHS of (3.3), (3.4) and (3.6).

Proof of Proposition 3.1. Estimates (3.2), (3.5) follow from the Hölder
inequality. And (3.6) is shown in [14, Proposition 1.1]. We show the estimates
(3.3) as (A), (3.4) with 1 ≤ µ < 2 as (B), (3.4) with µ ≥ 2 as (C) in the
following. We use the equivalent norms of the homogeneous Besov space such
as

‖v; Ḃµ
r,m‖ �

∑
|α|=[µ]

{∫ ∞

0

(t[µ]−µ sup
|y|<t

‖∂αv − ∂ατyv;Lr‖)mdt/t

}1/m

(3.7)

for 0 < µ <∞ with µ /∈ Z, 1 ≤ r,m ≤ ∞, or

‖v; Ḃµ
r,m‖(3.8)

�
∑

|α|=[µ]−1

{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖∂αv − 2∂ατyv + ∂ατ2yv;Lr‖)mdt/t

}1/m

for 1 ≤ µ < ∞, 1 ≤ r,m ≤ ∞, where τy denotes the translation by y ∈ Rn

given by (τyv)(x)= v(y + x). We also use the embedding

Ḃµ
r,m1

↪→ Ḃµ
r,m2

(3.9)
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for any µ ∈ R, 1 ≤ r ≤ ∞, 1 ≤ m1 < m2 ≤ ∞. We note that the constants
appearing to use the equivalent norms for (3.7) and (3.8) and to use embedding
for (3.9) are independent of r,m,m1 and m2 for any fixed µ > 0 (see [1,
Theorems 6.3.1 and 6.3.2]).

(A) By the Taylor expansion of M , we have

|f(u) − f(τyu)| ≤ C
∞∑

�=0

κ�

�!
(|u| ∨ |τyu|)p−1+ν�|u− τyu|,

where the constant C is independent of u. Applying the Hölder inequality to
the last estimate with the equation

1/r̃ = (p− 1 + ν�)/r1(�) + 1/r

for p− 1 + ν� > 0, we have

‖f (u) − f(τyu);Lr̃‖

≤C
∞∑

�=0
p−1+ν�>0

κ�

�!
‖u;Lr1(�)‖p−1+ν�‖u− τyu;Lr‖ + Cδ(p− 1)‖u− τyu;Lr̃‖.

So that by (3.7) we obtain

‖f (u); Ḃµ
r̃ ‖ ≤C

∞∑
�=0

p−1+ν�>0

κ�

�!
‖u;Lr1(�)‖p−1+ν�‖u; Ḃµ

r ‖ + Cδ(p− 1)‖u; Ḃµ
r̃ ‖.

(B) By the Taylor expansion of M with the equation

f(u) − 2f (τyu) + f(τ2yu)

= f ′(τyu)(u− 2τyu+ τ2yu)

+
∫ 1

0

(f ′(τyu+ θ(u− τyu)) − f ′(τyu))(u− τyu)dθ

+
∫ 1

0

(f ′(τyu+ θ(τ2yu− τyu)) − f ′(τyu))(τ2yu− τyu)dθ,

we have

|f(u)− 2f (τyu) + f(τ2yu)|(3.10)

≤C
∞∑

�=0

κ�

�!
|τyu|p−1+ν�|u− 2τyu+ τ2yu|

+

{
C

∑∞
�=0

κ�

�! (|u| ∨ |τyu|)ν�|u − τyu|p if µ < p < 2,

C
∑∞

�=0
κ�

�! (|u| ∨ |τyu|)(p−2)++ν�|u− τyu|2 otherwise.
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Since we have

‖f (u); Ḃµ
r̃ ‖ ≤C

{∫ ∞

0

(t−µ sup
|y|<t

‖f (u) − 2f (τyu) + f(τ2yu);Lr̃‖)2dt/t
}1/2

≡ |||f(u) − 2f (τyu) + f(τ2yu)|||

by (3.8), denoting by Λ1,Λ2,Λ3 the first, second, third term, respectively, on
the RHS of (3.10), it suffices to show that |||Λj|||, 1 ≤ j ≤ 3, are estimated by
the RHS of (3.4).

For Λ1 we have

|||Λ1||| ≤C

∞∑
�=0

p−1+ν�>0

κ�

�!
‖u;Lr1(�)‖p−1+ν�‖u; Ḃµ

r ‖ + Cδ(p− 1)‖u; Ḃµ
r̃ ‖

by the Hölder inequality with 1/r̃ = (p− 1 + ν�)/r1(�) + 1/r for p− 1 + ν� > 0.
For Λ2 let r(�) be a number given by

p/r(�) = (p− 1)/r1(�) + 1/r.

Then by the equation 1/r̃ = ν�/r1(�) + p/r(�), we have

|||Λ2||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lr1(�)‖ν�‖u; Ḃµ/p

r(�),2p‖p,(3.11)

where we have used{∫ ∞

0

(t−µ sup
|y|<t

‖u− τyu;Lr(�)‖p)2dt/t

}1/2

≤ C‖u; Ḃµ/p
r(�),2p‖p.

By the convex inequality

‖u; Ḃµ/p
r(�),2p‖ ≤ ‖u; Ḃ0

r1(�),∞‖1−1/p‖u; Ḃµ
r,2‖1/p(3.12)

and the embedding (3.9), we obtain

|||Λ2||| ≤ C
∞∑

�=0

κ�

�!
‖u;Lr1(�) ∩ Ḃ0

r1(�)
‖p−1+ν�‖u; Ḃµ

r ‖.

For Λ3 let r(�) be a number given by the equation

2/r(�) = 1/r2(�) + 1/r.
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Then by the equation 1/r̃ = ((p− 2)+ + ν�)/r2(�) + 2/r(�), we have

|||Λ3||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lr2(�)‖(p−2)++ν�‖u; Ḃµ/2

r(�),4‖2,(3.13)

where we have used{∫ ∞

0

(t−µ sup
|y|<t

‖u− τyu;Lr(�)‖2)2dt/t

}1/2

≤ C‖u; Ḃµ/2
r(�),4‖.

By the convex inequality

‖u; Ḃµ/2
r(�),4‖ ≤ ‖u; Ḃ0

r2(�),∞‖1/2‖u; Ḃµ
r,2‖1/2(3.14)

and (3.9), we obtain

|||Λ3||| ≤ C
∞∑

�=0

κ�

�!
‖u;Lr2(�) ∩ Ḃ0

r2(�)‖p∨2−1+ν�‖u; Ḃµ
r ‖.

We note that Λ3 is considered when p /∈ (µ, 2).

(C) We have

‖f (u); Ḃµ
r̃ ‖ �

∑
|α|=[µ]−1

{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖∂α(f(u)) − 2∂α(f(τyu))

+∂α(f(τ2yu));Lr̃‖)2dt/t
}1/2

for any given µ ≥ 1 and 1 ≤ r ≤ ∞. We have

∂α(f(u)) =
[µ]−1∑
k=1

∑
β1+···+βk=α

|βj |≥1,1≤j≤k

C([µ] − 1, k, {βj})f (k)(u)
k∏

j=1

∂βju,

where the constant C([µ] − 1, k, {βj}) depends on [µ] − 1, k and βj , 1 ≤ j ≤ k,
but not on u and f . We put {uk

j , v
k
j , w

k
j }k

j=0 for 1 ≤ k ≤ [µ] − 1 as

uk
0 = f (k)(u), vk

0 = f (k)(τyu), wk
0 = f (k)(τ2yu),

uk
j = ∂βju, vk

j = ∂βjτyu, wk
j = ∂βjτ2yu,

then we have

∂α(f(u))− 2∂α(f(τyu)) + ∂α(f(τ2yu))

=
α∑

k=1

∑
β1+···+βk=α

|βj |≥1,1≤j≤k

C([µ] − 1, k, {βj})

 k∏

j=0

uk
j − 2

k∏
j=0

vk
j +

k∏
j=0

wk
j


 .
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In the following we proceed our argument with 1 ≤ k ≤ [µ] − 1 fixed, and
remove k of uk

j , vk
j , wk

j for simplicity. We have

k∏
j=0

uj − 2
k∏

j=0

vj +
k∏

j=0

wj(3.15)

= (u0 − 2v0 + w0)
k∏

j=1

uj +
k∑

ı=1

(v0 − w0)(uı − vı)
k∏

j=1,j<ı

uj

k∏
j=1,j>ı

vj

+
k∑

ı=1

(v0 − w0)(vı − wı)
k∏

j=1,j<ı

vj

k∏
j=1,j>ı

wj

+v0


 k∏

j=1

uj − 2
k∏

j=1

vj +
k∏

j=1

wj


 .

Moreover the last term on the RHS of the above equation is rewritten as

v0(u1 − 2v1 + w1)
k∏

j=2

uj +
k∑

i=2

v0(v1 − w1)(ui − vi)
k∏

j=2,j<i

uj

k∏
j=2,j>i

vj

+
k∑

i=2

v0(v1 − w1)(vi − wi)
k∏

j=2,j<i

vj

k∏
j=2,j>i

wj

+ v0v1


 k∏

j=2

uj − 2
k∏

j=2

vj +
k∏

j=2

wj


 .

With repeated use of the same calculation, the LHS of (3.15) is rewritten as a
linear combination of the terms such as

A1 ≡ (u0 − 2v0 + w0)
k∏

j=1

uj, A2 ≡ (u0 − v0)(u1 − v1)
k∏

j=2

vj ,

A3 ≡ v0(u1 − 2v1 + w1)
k∏

j=2

uj , A4 ≡ v0(v1 − w1)(u2 − v2)
k∏

j=3

vj ,

where
∏m2

j=m1
zj is disregarded for m2 < m1, and A4 appears only for k ≥ 2.

It is sufficient to prove that

|||Aj ||| ≡
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖Aj ;Lr̃‖)2dt/t
}1/2

is dominated by the RHS of (3.4) for any j = 1, 2, 3, 4, since other terms similar
to Aj , j = 1, 2, 3, 4, are estimated quite analogously.
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For A1, we have

u0 − 2v0 + w0

= f (k)(u) − 2f (k)(τyu) + f (k)(τ2yu)

= f (k+1)(τyu)(u− 2τyu+ τ2yu)

+
∫ 1

0

(f (k+1)(τyu+ η(u− τyu)) − f (k+1)(τyu))dη(u− τyu)

+
∫ 1

0

(f (k+1)(τyu+ η(τ2yu− τyu)) − f (k+1)(τyu))dη(τ2yu− τyu).

Therefore by the definition of f , we have

|u0 − 2v0 + w0| ≤C|τyu|(p−k−1)+ |u− 2τyu+ τ2yu|M (|τyu|)

+

{
CΛ1 if k + 1 = [µ] and µ < p < [µ] + 1,
CΛ2 otherwise,

where

Λ1 ≡ |u− τyu|p−[µ]+1M(|u| ∨ |τyu|)
+|τyu− τ2yu|p−[µ]+1M(|τyu| ∨ |τ2yu|),

Λ2 ≡ (|u| ∨ |τyu|)(p−k−2)+ |u− τyu|2M(|u| ∨ |τyu|)
+(|τyu| ∨ |τ2yu|)(p−k−2)+ |τyu− τ2yu|2M(|τyu| ∨ |τ2yu|).

We estimate A1 by considering contributions of A1
1, A

2
1, A

3
1 separately, where

A1
1 ≡ |τyu|(p−k−1)+ |u− 2τyu+ τ2yu|M (|τyu|)

k∏
j=1

|∂βju|

A2
1 ≡ |u− τyu|p−[µ]+1M(|u| ∨ |τyu|)

k∏
j=1

|∂βju|

A3
1 ≡ (|u| + |τyu|)(p−k−2)+ |u− τyu|2M(|u| ∨ |τyu|)

k∏
j=1

|∂βju|

and we show that |||Aj
1|||, j = 1, 2, 3, are dominated by the RHS of (3.4), so

that the required estimate on |||A1||| follows.
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We also have

|A2| ≤C(|u| ∨ |τyu|)(p−k−1)+ |u− τyu||∂β1u− ∂β1τyu|
k∏

j=2

|∂βjτyu|

·M(|u| ∨ |τyu|),

|A3| ≤C|τyu|(p−k)+ |∂β1u− 2∂β1τyu+ ∂β1τ2yu|
k∏

j=2

|∂βju|M (|τyu|)

|A4| ≤C|τyu|(p−k)+ |∂β1τyu− ∂β1τ2yu||∂β2u− ∂β2τyu|
k∏

j=3

|∂βju|M (|τyu|),

where the constant C is independent of u. In the following, θj , rj , j =
0, 1, . . . , k, are defined respectively from the case A1

1 to A4.
For A1

1, by the Taylor expansion of M , we have

|A1
1| ≤ C

∞∑
�=0

κ�

�!
|τyu|(p−k−1)++ν�|u− 2τyu+ τ2yu|

k∏
j=1

|∂βju|,

where the constant C is independent of u. Let θj , rj be given by

θ0 ≡ (µ− [µ] + 1)/µ,

θj ≡ |βj |/µ for 1 ≤ j ≤ k,

1/rj ≡ (1 − θj)/rk+1(�) + θj/r for 0 ≤ j ≤ k.

Then

1/r̃ = ((p− k − 1)+ + ν�)/rk+1(�) +
k∑

j=0

1/rj .

Therefore applying the Hölder inequality, we have

|||A1
1||| ≤C

∞∑
�=0

κ�

�!
‖u;Lrk+1(�)‖(p−k−1)++ν�

k∏
j=1

‖∂βju;Lrj‖

·
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− 2τyu+ τ2yu;Lr0‖)2dt/t
}1/2

.

By (3.8), we have

{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− 2τyu+ τ2yu;Lr0‖)2dt/t
}1/2

≤ C‖u; Ḃµθ0
r0

‖,
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and by the embedding Ḃ|βj |
rj ↪→ Ḣ

|βj|
rj , we also have

‖∂βju;Lrj‖ ≤ C‖u; Ḃµθj
rj

‖(3.16)

for 1 ≤ j ≤ k, where the constant C in these inequalities is independent of �
since θj with 0 ≤ j ≤ k are in a compact set in (0, 1) and therefore rj with
0 ≤ j ≤ k are also in a compact set in (1,∞) because of r = ∞. Applying the
convex inequalities such as

‖u; Ḃµθj
rj

‖ ≤ ‖u; Ḃ0
rk+1(�)

‖1−θj‖u; Ḃµ
r ‖θj

for 0 ≤ j ≤ k, we have

|||A1
1||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lrk+1(�) ∩ Ḃ0

rk+1(�)
‖p∨(k+1)−1+ν�‖u; Ḃµ

r ‖,

where we have used
∑k

j=0 θj = 1. Since k+1 ≤ [µ], this is one of the estimates
that we have required.

For A2
1, we first note that A2

1 is considered only for the case k + 1 = [µ]
and µ < p < [µ] + 1. Therefore p = 1, so that p − 1 + ν� > 0 and we have
r1(�) = · · · = r[µ]−1(�) in (3.1). Let θj , rj be given by

θ0 ≡ (µ− [µ] + 1)/µ(p− [µ] + 1),

θj ≡ |βj |/µ for 1 ≤ j ≤ k,

1/rj ≡ (1 − θj)/r1(�) + θj/r for 0 ≤ j ≤ k.

Then

1/r̃ = ν�/r1(�) +
k∑

j=1

1/rj + (p− [µ] + 1)/r0,

so that we have

|||A2
1||| ≤C

∞∑
�=0

κ�

�!
‖u;Lr1(�)‖ν�

k∏
j=1

‖∂βju;Lrj‖

·
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− τyu;Lr0‖p−[µ]+1)2dt/t

}1/2

.

By (3.7) with

0 < (µ− [µ] + 1)/(p− [µ] + 1) = θ0µ < 1,
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we have{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− τyu;Lr0 ‖ p−[µ]+1)2dt/t

}1/2

≤C‖u; Ḃθ0µ
r0,2(p−[µ]+1)‖p−[µ]+1.

By (3.9) with 2(p− [µ] + 1) ≥ 2, we have

‖u; Ḃµθ0
r0,2(p−[µ]+1)‖ ≤ C‖u; Ḃµθ0

r0
‖,

where the constant C in the last two inequalities are independent of � since θ0
is in a compact set in (0, 1). We also have the estimates of the form (3.16) for
1 ≤ j ≤ k. Applying the convex inequalities such as

‖u; Ḃµθj
rj

‖ ≤ ‖u; Ḃ0
r1(�)

‖1−θj‖u; Ḃµ
r ‖θj

for 0 ≤ j ≤ k, we have

|||A2
1||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lr1(�) ∩ Ḃ0

r1(�)‖p−1+ν�‖u; Ḃµ
r ‖,

where we have used θ0(p− [µ] + 1) +
∑k

j=1 θj = 1. Since A2
1 is considered only

for the case µ < p, the above inequality is one of the estimates that we have
required.

For A3
1, let θj , rj be given by

θ0 ≡ (µ− [µ] + 1)/2µ,

θj ≡ |βj |/µ for 1 ≤ j ≤ k,

1/rj ≡ (1 − θj)/rk+2(�) + θj/r for 0 ≤ j ≤ k.

Then

1/r̃ = ((p− k − 2)+ + ν�)/rk+2(�) +
k∑

j=1

1/rj + 2/r0,

so that we have

|||A3
1||| ≤C

∞∑
�=0

κ�

�!
‖u;Lrk+2(�)‖(p−k−2)++ν�

k∏
j=1

‖∂βju;Lrj‖

·
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− τyu;Lr0‖2)2dt/t

}1/2

.
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By (3.7) with

0 < (µ− [µ] + 1)/2 = θ0µ < 1,

we have

{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− τyu;Lr0‖2)2dt/t

}1/2

≤ C‖u; Ḃθ0µ
r0,4‖2 ≤ C‖u; Ḃθ0µ

r0
‖2,

where we have used (3.9) for the last inequality, and the constant C is inde-
pendent of � since θ0 is in a compact set in (0, 1). We also have the estimates
of the form (3.16) for 1 ≤ j ≤ k. Applying the convex inequalities such as

‖u; Ḃµθj
rj

‖ ≤ ‖u; Ḃ0
rk+2(�)

‖1−θj‖u; Ḃµ
r ‖θj

for 0 ≤ j ≤ k, we have

|||A3
1||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lrk+2(�) ∩ Ḃ0

rk+2(�)
‖p∨(k+2)−1+ν�‖u; Ḃµ

r ‖.

Since k + 2 ≤ [µ] + 1, this is one of the estimates that we have required. We
note that A3

1 is not referred for the case k = [µ] − 1 and µ < p < [µ] + 1.
For A2, let θj , rj be given by

θ0 ≡ (µ− [µ] + 1)/2µ, θ1 ≡ (µ− [µ] + 1 + 2β1)/2µ,

θj ≡ |βj |/µ, for 2 ≤ j ≤ k

1/rj ≡ (1 − θj)/rk+1(�) + θj/r for 0 ≤ j ≤ k.

Then

1/r̃ = ((p− k − 1)+ + ν�)/rk+1(�) +
k∑

j=0

1/rj,

so that we have

|||A2||| ≤C

∞∑
�=0

κ�

�!
‖u;Lrk+1(�)‖(p−k−1)++ν�

k∏
j=2

‖∂βju;Lrj‖

·
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u− τyu;Lr0‖‖∂β1u− ∂β1τyu;Lr1‖)2dt/t
}1/2

.
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By the Hölder inequality and (3.7), we have

{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖u − τyu;Lr0‖‖∂β1u− ∂β1τyu;Lr1‖)2dt/t
}1/2

≤C

1∏
j=0

‖u; Ḃµθj

rj,4‖ ≤ C

1∏
j=0

‖u; Ḃµθj
rj

‖,

where we have used (3.9) for the last inequality, and the constant C is inde-
pendent of � since θj , j = 0, 1, are in a compact set in (0, 1). We also have the
estimates of the form (3.16) for 2 ≤ j ≤ k. Applying the convex inequalities
such as

‖u; Ḃµθj
rj

‖ ≤ ‖u; Ḃ0
rk+1(�)

‖1−θj‖u; Ḃµ
r ‖θj

for 1 ≤ j ≤ k, we have

|||A2||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lrk+1(�) ∩ Ḃ0

rk+1(�)
‖p∨(k+1)−1+ν�‖u; Ḃµ

r ‖.

Since k + 1 ≤ [µ], this is one of the estimates that we have required.
For A3, let θj , j = 1, . . . , k, be given by

θ1 ≡ (µ− [µ] + 1 + β1)/µ,

θj ≡ |βj |/µ, for 2 ≤ j ≤ k.

And for 1 ≤ j ≤ k let

1/rj ≡
{

1/r̃ if p = k = 1 and � = 0,
(1 − θj)/rk(�) + θj/r otherwise.

Then

1/r̃ =

{
1/r1 if p = k = 1 and � = 0,
((p− k)+ + ν�)/rk(�) +

∑k
j=1 1/rj otherwise,

so that we have

|||A3||| ≤C
( ∞∑

�=0
p∨k−1+ν�>0

κ�

�!
‖u;Lrk(�)‖(p−k)++ν�

k∏
j=2

‖∂βju;Lrj‖

+δ((p− 1) ∨ (k − 1))
)
· Λ3,
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where δ(0) = 1, δ(x) = 0 for x = 0, and

Λ3 ≡
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖∂β1u− 2∂β1τyu+ ∂β1τ2yu;Lr1‖)2dt/t
}1/2

,

we note that p ∨ k − 1 + ν� = 0 occurs if and only if p = k = 1 and � = 0. By
(3.8), we have

Λ3 ≤ C‖u; Ḃµθ1
r1

‖,
where the constant C is independent of � since θ1 is in a compact set in (0, 1].
We also have the estimates of the form (3.16) for 2 ≤ j ≤ k. Applying the
convex inequalities such as

‖u; Ḃµθj
rj

‖ ≤
{
‖u; Ḃµ

r̃ ‖ if p = k = 1 and � = 0,
‖u; Ḃ0

rk(�)‖1−θj‖u; Ḃµ
r ‖θj otherwise,

for 1 ≤ j ≤ k, we have

|||A3||| ≤ C
∞∑

�=0

κ�

�!
‖u;Lrk(�) ∩ Ḃ0

rk(�)‖p∨k−1+ν�‖u; Ḃµ
r ‖ + Cδ(p− 1)‖u; Ḃµ

r̃ ‖.

Since k ≤ [µ] − 1, this is one of the estimates that we have required.
For A4, first we note that A4 is considered only for k ≥ 2, so that p ∨ k −

1 + ν� > 0. Let θj , rj , j = 1, . . . , k, be given by

θj ≡ (µ− [µ] + 1 + 2|βj |)/2µ for j = 1, 2,

θj ≡ |βj |/µ for 3 ≤ j ≤ k,

1/rj ≡ (1 − θj)/rk(�) + θj/r for 1 ≤ j ≤ k.

Then

1/r̃ = ((p− k)+ + ν�)/rk(�) +
k∑

j=1

1/rj ,

so that we have

|||A4||| ≤ C
∞∑

�=0

κ�

�!
‖u;Lrk(�)‖(p−k)++ν�

k∏
j=3

‖∂βju;Lrj‖ · Λ4,

where

Λ4≡
{∫ ∞

0

(t[µ]−1−µ sup
|y|<t

‖∂β1u− ∂β1τyu;Lr1‖‖∂β2u− ∂β2τyu;Lr2‖)2dt/t
}1/2

.
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By the Hölder inequality and (3.7), we have

Λ4 ≤ C

2∏
j=1

‖u; Ḃµθj

rj,4‖ ≤ C

2∏
j=1

‖u; Ḃµθj
rj

‖,

where we have used (3.9) for the last inequality, and the constant C is inde-
pendent of � since θj , j = 1, 2, are in a compact set in (0, 1). We also have the
estimates of the form (3.16) for 3 ≤ j ≤ k. Applying the convex inequalities
such as

‖u; Ḃµθj
rj

‖ ≤ ‖u; Ḃ0
rk(�)‖1−θj‖u; Ḃµ

r ‖θj

for 1 ≤ j ≤ k, we have

|||A4||| ≤ C

∞∑
�=0

κ�

�!
‖u;Lrk(�) ∩ Ḃ0

rk(�)‖p∨k−1+ν�‖u; Ḃµ
r ‖.

Since k ≤ [µ] − 1, this is the last one of the estimates that we have required.

At the end of the proof, we mention the last statement in the proposition.
If we use the embedding

‖u; Ḃµ
r,m‖ ≤ C‖u;Bµ

r,m‖(3.17)

with µ > 0, 1 ≤ r,m ≤ ∞ for (3.3), then we have

‖f (u); Ḃµ
r̃ ‖ ≤C

∞∑
�=0

p−1+ν�>0

κ�

�!
‖u;Lr1(�)‖p−1+ν�‖u;Bµ

r ‖ + Cδ(p− 1)‖u;Bµ
r̃ ‖

for 0 < µ < 1 in addition to (3.3). Since the constant C in (3.17) is independent
of r and m for any fixed µ > 0, we can replace Ḃµ/p

r(�),2p, Ḃ
µ/2
r(�),4 with B

µ/p
r(�),2p,

B
µ/2
r(�),4 in (3.11), (3.13), respectively. Then using the convex inequality

‖u;Bµ
r,m‖ ≤ ‖u;Bµ1

r1,m1
‖1−θ‖u;Bµ2

r2,m2
‖θ

µ = (1 − θ)µ1 + θµ2, 1/r = (1 − θ)/r1 + θ/r2, 1/m = (1 − θ)/m1 + θ/m2

for µ, µ1, µ2 ∈ R, 1 ≤ r,m, r1,m1, r2,m2 ≤ ∞ and 0 ≤ θ ≤ 1 instead of (3.11)
and (3.13), we obtain

‖f (u) ; Ḃµ
r̃ ‖

≤




C
∑∞

�=0, p−1+ν�>0
κ�

�! ‖u;Lr1(�) ∩B0
r1(�)

‖p−1+ν�‖u;Bµ
r ‖

+Cδ(p− 1)‖u;Bµ
r̃ ‖ if 1 ≤ µ < 2 and µ < p,

C
∑2

k=1

∑∞
�=0, p∨k−1+ν�>0

κ�

�! ‖u;Lrk(�) ∩B0
rk(�)‖p∨k−1+ν�‖u;Bµ

r ‖
+Cδ(p− 1)‖u;Bµ

r̃ ‖ if 1 ≤ µ < 2 and µ ≥ p.
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The same argument is also true for µ ≥ 2 applying the embedding Bµθj
rj ↪→ Ḃ

µθj
rj

to (3.16), where the constant appearing in the embedding is independent of �
since θj is in a compact set in (0, 1], so that we can replace Ḃ with B on the
RHS of (3.4). And we also have the same result for (3.6). �

§4. Proof of Theorem 1.1

Let σ and λ satisfy (2.1) with σ = 2λ − 2 in the sequel. In particular we
can take σ as any number which satisfies n − 1 ≤ σ ≤ n and σ > 0. Taking
σ = n in the following argument, we obtain the proof of Theorem 1.1. Let
n, s, s∗, p be as in Theorem 1.1. Let p0 satisfy

1 < p0 ≤
{

(1 + 4/σ) ∧ p for p > 1,
1 + (2/σ) ∧ 1 ∧ ν for p = 1.

There exist s0, ρ̃ and an admissible pair ((1/q0, 1/r0), (1/q̃, 1/r̃)) with 0 < s0 ≤
1/2, ρ̃ ≤ −s0 and

0 < 1/q0 ≤ σ/2(σ + 2) ≤ 1/r0 < 1/2,(4.1)

1/2 ≤ 1/r̃ ≤ (σ + 4)/2(σ + 2) ≤ 1/q̃ ≤ 1,(4.2)

1/r̃ = p0/r0, 1/q̃ = θ + p0/q0, θ ≡ 1 − (p0 − 1)σ/4,(4.3)

0 =−s0 + nα(r0) − 2(n− λ)/σq0(4.4)

= 1 + 2(n− λ)/σ + ρ̃+ nα(r̃) − 2(n− λ)/σq̃.

Indeed, the above s0, ρ̃, q0, r0, q̃, r̃ are given by

s0 ≡
{

(σ+2)(p0−1)
4p0

if p0 < p∗ ≡ 1 + 2/σ,
1
2 otherwise,

ρ̃≡
{
−1 if p0 < p∗,
− 3

2 + σ(p0−1)
4 otherwise,

1/q0 ≡ σs0/(σ + 2), 1/r0 ≡ 1/2 − 2/σq0, 1/r̃ ≡ p0/r0, 1/q̃ ≡ θ + p0/q0,

where the admissibility follows from Corollary 2.1.
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For any interval I ⊂ R let Xµ
s0

(I), µ = s0, s
∗, s, be a function space defined

by

Xµ
s0

(I) ≡ L∞(I;Hµ) ∩ Lq0(I;Bµ−s0
r0

)

with the norm

‖u;Xµ
s0

(I)‖ ≡ ‖u;L∞(I;Hµ) ∩ Lq0(I;Bµ−s0
r0

)‖.

Then we show the existence of solutions of (NLKG) in the function space defined
by

X(I, Rs0 , Rn/2)≡ {u ; ‖u;Xµ
s0

(I)‖ ≤ Rµ, µ = s0, n/2} if s = n/2,

X(I, Rs0 , Rs∗ , Rs)≡ {u ; ‖u;Xµ
s0

(I)‖ ≤ Rµ, µ = s0, s
∗, s} if s > n/2,

for some Rµ > 0, µ = s0, s
∗, s, endowed with the metric

d(u, v) ≡ ‖u− v;L∞(I;L2) ∩ Lq0(I;Lr0)‖.(4.5)

First we consider the proof for s = n/2. For any � ≥ 0 and k ≥ 1 with
p ∨ k − 1 + ν� > 0 let 1/rk(�) ≡ (p0 − 1)/(p ∨ k − 1 + ν�)r0. Then we have

1/r̃ = (p ∨ k − 1 + ν�)/rk(�) + 1/r0.(4.6)

Let f satisfy N(n/2, (n/2 + ρ̃)+, p). Since r0, r̃ satisfy 0 < 1/r0 < 1/2, 1/2 ≤
1/r̃ ≤ 1 and rk(�) satisfies 0 < 1/rk(�) ≤ 1/r0, applying Proposition 3.1 to the
composite function f(u), for any µ with −ρ̃ < µ ≤ n/2 we have

(4.7)

‖f (u); Ḃµ+ρ̃
r̃ ‖ ≤C

[µ+ρ̃]+1∑
k=1

∞∑
�=0

p∨k−1+ν�>0

κ�

�!
‖u;Lrk(�) ∩B0

rk(�)‖p∨k−1+ν�‖u;Bµ+ρ̃
r0

‖

+Cδ(p− 1)‖u;Bµ+ρ̃
r̃ ‖.

Lemma 4.1 [17, Lemma 2.2]. The following estimates hold.

‖u;Lr‖ ≤ C0r
1/2+(r0−2)/2r‖u;Hn/2‖1−r0/r‖u;Lr0‖r0/r,

‖u;B0
r‖ ≤ C0r

1/2+(r0−2)/2r‖u;Hn/2‖1−r0/r‖u;B0
r0
‖r0/r

for any r0, r with 0 < 1/r ≤ 1/r0 ≤ 1, where the constant C0 is independent of
r, but may be dependent on r0.
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By Lemma 4.1, we have

‖u;Lrk(�) ∩ B0
rk(�)‖

≤C0rk(�)1/2+(r0−2)/2rk(�)‖u;Hn/2‖1−r0/rk(�)‖u;Lr0 ∩B0
r0
‖r0/rk(�),

where the constant C0 is independent of �, so that the RHS of (4.7) is estimated
by

[µ+ρ̃]+1∑
k=1

∞∑
�=0

p∨k−1+ν�>0

ak(�)‖u;Hn/2‖p∨k−1+ν�−(p0−1)‖u;B0
r0
‖p0−1‖u;Bµ+ρ̃

r0
‖

+Cδ(p− 1)‖u;Bµ+ρ̃
r̃ ‖,

where we define ak(�) by

ak(�) ≡ κ�

�!
Cp∨k−1+ν�

0 rk(�)(p∨k−1+ν�)/2+(p0−1)(r0−2)/2r0 .

Therefore by the fact θ ≥ 0, applying the Hölder inequality in the time variable,
we have

‖f (u);Lq̃(I; Ḃµ+ρ̃
r̃ )‖(4.8)

≤
[µ+ρ̃]+1∑

k=1

∞∑
�=0

p∨k−1+ν�>0

ak(�)‖u;L∞(I;Hn/2)‖p∨k−1+ν�−(p0−1)|I|θ

·‖u;Lq0(I;B0
r0

)‖p0−1‖u;Lq0(I;Bµ+ρ̃
r0

)‖
+Cδ(p− 1)‖u;Lq̃(I;Bµ+ρ̃

r̃ )‖

for any interval I ⊂ R. Similarly, by (3.2) and the Hölder inequality in space
and time variables we also have

‖f (u);Lq̃(I;Lr̃)‖ ≤
∞∑

�=0
p−1+ν�>0

a1(�)‖u;L∞(I;Hn/2)‖p−1+ν�−(p0−1)|I|θ(4.9)

·‖u;Lq0(I;Lr0)‖p0−1‖u;Lq0(I;Lr0)‖
+Cδ(p− 1)‖u;Lq̃(I;Lr̃)‖

Therefore by the embedding B0
r ↪→ Lr for 2 ≤ r < ∞ and the equivalence
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Bs
p,q = Lp ∩ Ḃs

p,q for s > 0 and 1 ≤ p, q ≤ ∞, for any µ with µ+ ρ̃ ≥ 0 we have

‖f (u);Lq̃(I;Bµ+ρ̃
r̃ )‖(4.10)

≤
[µ+ρ̃]+1∑

k=1

∞∑
�=0

p∨k−1+ν�>0

ak(�)‖u;L∞(I;Hn/2)‖p∨k−1+ν�−(p0−1)|I|θ

·‖u;Lq0(I;B0
r0

)‖p0−1‖u;Lq0(I;Bµ−s0
r0

)‖
+Cδ(p− 1)|I|‖u;L∞(I;Bµ

r̃ )‖

where we have used the fact that q̃ = 1, r̃ = 2 for p = 1, and the embeddings
Hµ ↪→ Bµ+ρ̃

2 , Bµ−s0
r0

↪→ Bµ+ρ̃
r0

. Therefore by (4.9) with the embedding Lr̃ ↪→
Bµ+ρ̃

r̃ for µ = s0 or µ = n/2 with µ + ρ̃ < 0, and by (4.10) for µ = n/2 with
µ+ ρ̃ ≥ 0, we have

‖f (u);Lq̃(I;Bµ+ρ̃
r̃ )‖ ≤ (F (Rn/2)|I|θRp0−1

s0
+ Cδ(p− 1)|I|)Rµ(4.11)

for any µ = s0, n/2, and any u ∈ X(I, Rs0 , Rn/2), where F (·) is a nonnegative
series defined by

F (ρ) ≡
[µ+ρ̃]+1∑

k=1

∞∑
�=0

p∨k−1+ν�>0

ak(�)ρp∨k−1+ν�−(p0−1).

Here we note that F (ρ) exists for any ρ ∈ [0,∞) if ν < 2, for any ρ ∈ [0, C(κ))
if ν = 2, where C(κ) is a positive constant behaving as O(κ−1/2) both κ → 0
and κ→ ∞. This follows from the ratio test with

lim
�→∞

ak(�+ 1)ρp∨k−1+ν(�+1)−(p0−1)

ak(�)ρp∨k−1+ν�−(p0−1)
=

{
0 if ν < 2,
2C2

0eκr0ρ
2/(p0 − 1) if ν = 2.

(4.12)

Now, for any t0 ∈ Ī and any data (φ,ψ) ∈ An/2(γs0 , γn/2), let Φt0 be an
operator defined as

Φt0(u)(t) ≡ K̇(t)φ+K(t)ψ +
∫ t

t0

K(t− s)f(u(s))ds.

By the admissibility of ((1/q0, 1/r0), (1/q̃, 1/r̃)), we have

‖Φt0(u);X
µ
s0

(I)‖ ≤C‖(φ, ψ);Hµ‖ + C‖f (u);Lq̃(I;Bµ+ρ̃
r̃ )‖(4.13)

≤Cγµ + (F (Rn/2)|I|θRp0−1
s0

+ Cδ(p− 1)|I|)Rµ

for µ = s0, n/2, any (φ,ψ) ∈ An/2(γs0 , γn/2) and any u ∈ X(I, Rs0 , Rn/2).
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On the other hand, by the same argument as above, we also have

d(Φt0 (u),Φt0(v)) ≤ (F (Rn/2)|I|θRp0−1
s0

+ Cδ(p− 1)|I|)d(u, v)(4.14)

for any u, v ∈ X(I, Rs0 , Rn/2). Indeed, by the embeddings Hs0 ↪→ L2 and
B0

r0
↪→ Lr0 , we have

d(Φt0(u),Φt0(v))

≤ C

∥∥∥∥
∫ t

t0

K(t− s)(f(u(s)) − f(v(s)))ds;L∞(I;Hs0) ∩ Lq0(I;B0
r0

)
∥∥∥∥ .

Applying Corollary 2.1 to the RHS of the last inequality, we have

d(Φt0(u),Φt0(v)) ≤ C‖f (u)− f(v);Lq̃(I;Bs0+ρ̃
r̃ )‖.

By the embedding Lr̃ ↪→ Bs0+ρ̃
r̃ , we obtain

d(Φt0(u),Φt0(v)) ≤ C‖f (u) − f(v);Lq̃(I;Lr̃)‖.(4.15)

By the Hölder inequality in space and time variables with (4.3) we have

‖f (u)− f(v);Lq̃(I;Lr̃)‖(4.16)

≤ F (‖u;L∞(I;Hn/2)‖ ∨ ‖v;L∞(I;Hn/2)‖)|I|θ
·(‖u;Lq0(I;Lr0)‖ ∨ ‖v;Lq0(I;Lr0)‖)p0−1‖u− v;Lq0(I;Lr0)‖
+Cδ(p− 1)|I|‖u− v;L∞(I;L2)‖.

Therefore we obtain (4.14).
By the above argument, if γµ > 0, Rµ > 0 and I ⊂ R satisfy

δ(ν − 2)2C2
0eκr0R

2
n/2 < p0 − 1,(4.17)

Cγµ + (F (Rn/2)|I|θRp0−1
s0

+ Cδ(p− 1)|I|)Rµ ≤ Rµ,(4.18)

F (Rn/2)|I|θRp0−1
s0

+ Cδ(p− 1)|I| ≤ 1/2(4.19)

for µ = s0, n/2, where (4.17) which is from (4.12) ensures the existence of
F (Rn/2) and is disregarded for ν = 2, then Φt0 is a contraction map on
X(I, Rs0 , Rn/2). Since X(I, Rs0 , Rn/2) is a complete metric space, Φt0 has
a unique fixed point in X(I, Rs0 , Rn/2) and the solution u of (NLKG) with the
data u(0) = φ, ∂tu(0) = ψ is given by the fixed point of Φ0. Let Rµ ≡ 2Cγµ,
µ = s0, n/2. Then (4.17), (4.18) and (4.19) are rewritten as

δ(ν − 2)γn/2 < Cκ−1/2,(4.20)
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G(γn/2)|I|θγp0−1
s0

+ Cδ(p− 1)|I| ≤ 1(4.21)

for a series G and a positive constant C depending on p0 but not on φ and ψ,
where (4.20) is disregarded for ν = 2. We see that the fixed point u satisfies
(u, ∂tu) ∈ Cb(I;Hn/2) by using Corollary 2.1 with (4.11) and the unitarity of
the operator U(t).

The following lemma gives the uniqueness of solutions of (NLKG) in
C(I;Hn/2) with the same data at some point in I.

Lemma 4.2. Let u, v be the solutions of (NLKG) in C(I;Hn/2) which
satisfy

(u(t), ∂tu(t)) = (v(t), ∂tv(t)) in Hn/2(4.22)

for some t = t1 ∈ I. If ν < 2, then (4.22) holds for all t ∈ I. When ν = 2, if
‖u;L∞(I;Hn/2)‖ is sufficiently small, then the same conclusion holds.

Proof of Lemma 4.2. Let u and v satisfy (4.22) for some t = t1 ∈ I. Then
u and v satisfy

w(t) = Φ(w)(t) = K̇(t− t1)u(t1) +K(t− t1)∂tu(t1) +
∫ t

t1

K(t− s)f(w(s))ds

for w = u, v, where the last term on the RHS makes sense as a function with
values in L2 by Corollary 2.1, an estimate similar to (4.9), and the embedding
Hn/2 ↪→ Lr with 2 ≤ r < ∞. Let J be any compact interval with t1 ∈ J ⊂ I

and let

a ≡ ‖u;L∞(J ;Hn/2)‖ ∨ ‖v;L∞(J ;Hn/2)‖.
For ε > 0 let It1,ε ≡ [t1 − ε, t1 + ε] ∩ J . By the embedding Hn/2 ↪→ Lr

for 2 ≤ r < ∞, u and v satisfy u(t), v(t) ∈ Lr0 for t ∈ It1,ε and moreover
u, v ∈ C(It1,ε;Lr0) and

‖w;Lq0(It1,ε;Lr0)‖ ≤ Ca(2ε)1/q0

for w = u, v. Therefore similarly to (4.15) and (4.16) we have

‖u− v;L∞(It1,ε;L2) ∩ Lq0(It1,ε;Lr0)‖
≤G(a)(2ε)θ+(p0−1)/q0‖u− v;Lq0(It1,ε;Lr0)‖

+Cδ(p− 1)2ε‖u− v;L∞(It1,ε;L2)‖,
where θ + (p0 − 1)/q0 > 0 since θ ≥ 0, p0 = 1 and 1/q0 = 0. So that if ν < 2,
then for sufficiently small ε > 0 we have u(t) = v(t) in L2∩Lr0 for any t ∈ It1,ε,
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which means u = v in C(It1,ε;Hn/2). Repeating this procedure, we have u = v

in C(J ;Hn/2) and therefore in C(I;Hn/2). When ν = 2, if ‖u;L∞(I;Hn/2)‖
is sufficiently small, then taking ε > 0 sufficiently small, ‖v;L∞(It1,ε;Hn/2)‖ is
also sufficiently small, so that the above argument is valid and we obtain u = v

in C(I;Hn/2) analogously. �

In the following argument let γn/2 > 0 be any number which satisfies (4.20).

(1) Let p0 < p∗, t0 = 0 and I = [−T, T ], T > 0, in the above argument.
Then ρ̃ = −1. Since θ > 0 for p0 < 1 + 4/σ, there exists T > 0 which
satisfies (4.21) with γs0 replaced by γn/2. Then for any (φ,ψ) ∈ Hn/2 with
‖(φ, ψ);Hn/2‖ ≤ γn/2, (NLKG) has a unique solution u in X(I, Rs0 , Rn/2)
and the solution u satisfies (u, ∂tu) ∈ C(I;Hn/2), where we have used the
inequality ‖φ;Hs1‖ ≤ ‖φ;Hs2‖ for s1 ≤ s2. The solution u is also a unique
solution of (NLKG) in C(I;Hn/2) by Lemma 4.2, where we note that when
ν = 2, taking γn/2 > 0 sufficiently small, Rn/2 > 0 is also sufficiently small,
so that ‖u;L∞(I;Hn/2)‖ is sufficiently small as required in the assumption in
Lemma 4.2.

(2) Let ν < 2. We consider the case T ∗ < ∞. The proof for T∗ < ∞
follows quite similarly. Let p0 < p∗ in the argument before (1). Now let

γ ≡ sup
0≤t<T∗

‖(u(t), ∂tu(t));Hn/2‖ <∞.

Let ε > 0 be a number which satisfies

G(γ)εθγp0−1 + Cδ(p− 1)|I| ≤ 1,

where G is the same function appearing in (4.21). Let t0 > 0 be a number such
that T ∗ ∈ (t0, t0 + ε). Then by the same argument as in (1), the operator Φt0,u

defined as

Φt0,u(v)(t) ≡ K̇(t− t0)u(t0) +K(t− t0)∂tu(t0) +
∫ t

t0

K(t− s)f(v(s))ds

has a unique fixed point ũ+ in C([t0, t0 + ε];Hn/2). Let ũ(t) = u(t) for t ∈
[0, t0), ũ(t) = ũ+(t) for t ∈ [t0, t0 + ε]. Then ũ is a solution of (NLKG) in
C([0, t0 + ε];Hn/2) with ũ(0) = u(0) and ∂tũ(0) = ∂tu(0). Since u = ũ in
C([0, T ∗);Hn/2) by Lemma 4.2, u can be extended as ũ beyond T ∗ with value
in Hn/2, which contradicts the definition of T ∗.

(3) Let t0 = 0 and I = [−T, T ], T > 0. If 1 < p < 1 + 4/σ, then we can
take p0 as p0 = p. Let f satisfy N(n/2, (n/2 + ρ̃)+, p). Since θ = 0, we can
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take T in (4.21) as any number with

T ≤ (γp−1
s0

G(γn/2))−4/(4−σ(p−1)).(4.23)

So that we conclude (1.2) by (4.23).

(4) If p satisfies p ≥ 1 + 4/σ, then we can take p0 for p0 = 1 + 4/σ and
therefore s0 = 1/2 and θ = 0. Since G in (4.21) is independent of I, therefore
there exists small γs0 such that

G(γn/2)γ4/σ
s0

< 1(4.24)

holds corresponding to (4.21).
(4a) With above γs0 > 0 fixed, for any (φ,ψ) ∈ An/2(γs0 , γn/2) we see that

Φ is a contraction map on X(R, Rs0 , Rn/2) for some Rµ > 0, µ = s0, n/2. The
fixed point u satisfies (u, ∂tu) ∈ Cb(R;Hn/2), and is unique in C(R;Hn/2) by
Lemma 4.2, where we note that when ν = 2, taking γn/2 > 0 sufficiently small,
Rn/2 > 0 is also sufficiently small, so that ‖u;L∞(I;Hn/2)‖ is sufficiently small
as required in the assumption in Lemma 4.2.

Let (φ+, ψ+) and (φ−, ψ−) be defined by

φ± = φ+
∫ ±∞

0

K(−s)f(u(s))ds, ψ± = ψ +
∫ ±∞

0

K̇(−s)f(u(s))ds.(4.25)

Then (φ±, ψ±) ∈ Hn/2. Indeed, by Corollary 2.1, we have

‖φ±;Hn/2‖ ≤ ‖φ;Hn/2‖ + ‖ ∫ ±∞
t

K(t− s)f(u(s))ds;L∞(R;Hn/2)‖
≤ ‖φ;Hn/2‖ + C‖f (u);Lq̃(R;Bn/2+ρ̃

r̃ )‖,(4.26)

where we have used the continuity of K∗tf(u) with respect to the time variable.
Since the last term of the last inequality in (4.26) is estimated as (4.11) with |I|θ
replaced by 1, ‖φ±;Hn/2‖ is finite. It follows that ψ± ∈ Hn/2−1 analogously.

With these φ± and ψ±, (1.3) holds. Indeed, since v± are rewritten as

v±(t) = K̇(t)φ+K(t)ψ +
∫ ±∞

0

K(t− s)f(u(s))ds,

by the same argument in (4.26) we have

‖u(t) − v+(t);Hn/2‖ ≤ ‖ ∫ ∞
τ
K(τ − s)f(u(s))ds;L∞

τ ([t,∞);Hn/2)‖
≤C‖f (u);Lq̃([t,∞);Bn/2+ρ̃

r̃ )‖.(4.27)

Since the RHS of the last inequality is estimated by (4.11) with |I|θ replaced
by 1, and is bounded uniformly in t, we conclude that u(t) − v+(t) converges
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to zero in Hn/2 as t → ∞. By an analogous argument for ∂tu(t) − ∂tv+(t),
u(t) − v−(t) and ∂tu(t) − ∂tv−(t), we conclude (1.3).

To show the uniqueness of the pairs (φ±, ψ±) in (1.3), it suffices to show
that

lim
t→∞ ‖

(
K̇(t)φ0 +K(t)ψ0, ∂t(K̇(t)φ0 +K(t)ψ0)

)
;Hn/2‖ = 0(4.28)

implies φ0 = ψ0 = 0. If (4.28) holds, then we have

lim
t→∞ ‖U (t)(φ0 − iω−1ψ0);Hn/2‖ ∨ ‖U (−t)(φ0 + iω−1ψ0);Hn/2‖ = 0,

where ω ≡ (1 − ∆)1/2. Therefore by the unitarity of U(t), we conclude φ0 =
ψ0 = 0.

(4b) For any data (φ−, ψ−) ∈ An/2(γs0 , γn/2) let Φ−∞ be an operator
defined as

Φ−∞(u)(t) ≡ K̇(t)φ− +K(t)ψ− +
∫ t

−∞
K(t− s)f(u(s))ds.

By the argument before (1) in this section, Φ−∞ has a unique fixed point u in
X(R, Rs0 , Rn/2), where Rµ > 0, µ = s0, n/2, are chosen to satisfy Rµ = 2Cγµ,
µ = s0, n/2, with the same constant C appearing in (4.18). Let (φ,ψ) and
(φ+, ψ+) be defined by the equations (4.25). Then, as in the argument on
(4.26), we have (φ,ψ), (φ+, ψ+) ∈ Hn/2. Now u is rewritten as

u(t) = K̇(t)φ+K(t)ψ +
∫ t

0

K(t− s)f(u(s))ds,

which implies exactly that u is a solution of (NLKG) in X(R, Rs0 , Rn/2) with
the data u(0) = φ, ∂tu(0) = ψ. u is also a unique solution of (NLKG) in
C(R;Hn/2) which satisfies

‖(u(t) − v−(t), ∂t(u(t) − v−(t)));Hn/2‖ → 0(4.29)

as t → −∞, where v−(t) ≡ K̇(t)φ− + K(t)ψ−. Indeed, first we show u is a
unique solution of (NLKG) in C(R;Hn/2)∩Xn/2

s0 (R) which satisfies (4.29). Let
v be a solution of (NLKG) in C(R;Hn/2)∩Xn/2

s0 (R) which satisfies (4.29) with
u replaced by v. Then v satisfies v = Φ−∞(v), and for sufficiently small t0 < 0
v satisfies

‖v;Xµ
s0

((−∞, t0])‖ ≤ Rµ = 2Cγµ
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for any µ = s0, n/2, since

lim
t→−∞

∣∣∣‖v(t);Hµ‖ − ‖v−(t);Hµ‖
∣∣∣ ∨ ∣∣∣‖∂tv(t);Hµ−1‖ − ‖∂tv−(t);Hµ−1‖

∣∣∣ = 0

(4.30)

by (4.29) with u replaced by v, and ‖(v−(t), ∂tv−(t));Hµ‖ ≤ γµ by the unitarity
of the free propagator, namely

‖(v−(t), ∂tv−(t));Hµ‖ = ‖(φ−, ψ−);Hµ‖(4.31)

for any t ∈ R. Therefore v is also a fixed point of Φ−∞ in

X((−∞, t0], Rs0 , Rn/2).

Since Φ−∞ has a unique fixed point in X((−∞, t0], Rs0 , Rn/2), we have u(t) =
v(t) for any t ∈ (−∞, t0]. Especially we have u(t0) = v(t0) and ∂tu(t0) =
∂tv(t0). Therefore we conclude u = v in C(R;Hn/2) by Lemma 4.2. Second we
show u is a unique solution of (NLKG) in C(R;Hn/2) which satisfies (4.29). Let
v be a solution of (NLKG) in C(R;Hn/2) which satisfies (4.29) with u replaced
by v. Then v satisfies

limsupt→−∞‖(v(t), ∂tv(t));Hµ‖ ≤ γµ

for any µ = s0, n/2, by (4.30) and (4.31). Therefore there exists sufficiently
small t0 < 0 such that

G(‖(v(t0), ∂tv(t0));Hn/2‖)‖(v(t0), ∂tv(t0));Hs0‖4/σ < 1(4.32)

corresponding to (4.24). Now let Φt0,v be an operator defined by

Φt0,v(w) ≡ K̇(t− t0)v(t0) +K(t− t0)∂tv(t0) +
∫ t

t0

K(t− s)f(w(s))ds.

Then by the condition (4.32) and the same argument in (4a), Φt0,v has a unique
fixed point inX(R, R′

s0
, R′

n/2) for some R′
µ > 0, µ = s0, n/2, and the fixed point

is in C(R;Hn/2). Since v is a fixed point of Φt0,v with v ∈ C(R;Hn/2), by the
uniqueness of solutions of (NLKG) in C(R;Hn/2) v must satisfy

v ∈ X(R, R′
s0
, R′

n/2) ⊂ Xn/2
s0

(R).

Therefore by the uniqueness in C(R;Hn/2) ∩Xn/2
s0 (R), we conclude u = v. So

that u is a unique solution of (NLKG) in C(R;Hn/2) which satisfies (4.29).
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Similarly to the argument on (4.27) we have (1.3) for these u, (φ+, ψ+),
(φ−, ψ−), and we also have the uniqueness of (φ+, ψ+) for (φ−, ψ−) with (1.3).

By the above argument, we are able to define the scattering operator S on
An/2(γs0 , γn/2) to Hn/2 as S((φ−, ψ−)) = (φ+, ψ+) by way of a unique global
solution u of (NLKG) in C(R;Hn/2) with (1.3). Moreover, the correspondence
is given by (4.25) or equivalently by

φ+ = φ− +
∫ ∞

−∞
K(−s)f(u(s))ds, ψ+ = ψ− +

∫ ∞

−∞
K̇(−s)f(u(s))ds.

(4.33)

We show the continuity of the operator S. For any

{(φj
−, ψ

j
−)}∞j=1 ⊂ An/2(γs0 , γn/2)

which satisfies (1.4), let {uj}∞j=1 be the fixed points in X(R, Rs0 , Rn/2) of the
operators {Φj

−∞}∞j=1 given by

Φj
−∞(v)(t) ≡ K̇(t)φj

− +K(t)ψj
− +

∫ t

−∞
K(t− s)f(v(s))ds

for j ≥ 1. Then by Corollary 2.1 we have, as in (4.14),

d(Φj
−∞(u),Φj

−∞(uj)) ≤ C‖(φ− − φj
−, ψ− − ψj

−);Hs0‖ + F (Rn/2)Rp0−1
s0

d(u, uj)

for any j ≥ 1. Since (4.19) holds with |I|θ replaced by 1, we conclude that
d(u, uj) → 0 as j → ∞. On the other hand, by (4.33), we have

‖φ+ − φj
+;Hs0‖ ≤ ‖φ− − φj

−;Hs0‖

+
∥∥∥∥
∫ ∞

−∞
K(t− s)(f(u(s)) − f(uj(s)))ds;L∞(R;Hs0)

∥∥∥∥
for any j ≥ 1. By Corollary 2.1, the same argument used on (4.16) shows that
the last term on the RHS of the last inequality is estimated by

F (Rn/2)Rp0−1
s0

d(u, uj).

Therefore we have ‖φ+ − φj
+;Hs0‖ → 0 as j → ∞. By the embedding Hs0 ↪→

Hν for ν ≤ s0, we also have ‖φ+ − φj
+;Hν‖ → 0 as j → ∞ for any ν with

ν ≤ s0. By the convex inequality

‖φ+ − φj
+;Hν‖

≤ ‖φ+ − φj
+;Hs0‖(n/2−ν)/(n/2−s0)‖φ+ − φj

+;Hn/2‖(ν−s0)/(n/2−s0),
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we have ‖φ+ − φj
+;Hν‖ → 0 as j → ∞ for any ν with s0 ≤ ν < n/2. Analo-

gously we also have ‖ψ+ − ψj
+;Hν−1‖ → 0 as j → ∞ for any ν with ν < n/2.

Therefore we obtain (1.5).

(5) Let t0 = 0 and let I = [−T, T ] for (1), I = R for (4a). Since {uj}∞j=1

satisfies

uj(t) = K̇(t)φj +K(t)ψj +
∫ t

0

K(t− s)f(uj(s))ds

for any j ≥ 1, by Corollary 2.1 and the embedding Lr̃ ↪→ B0
r̃ for 1 < r̃ ≤ 2, we

have

d(u, uj) ≤ C‖(φ− φj , ψ − ψj);Hs0‖ + C‖f (u) − f(uj);Lq̃(I;Lr̃)‖(4.34)

for any j ≥ 1, where the constant C is independent of I, (φ,ψ), u, {(φj , ψj)}∞j=1

and {uj}∞j=1. As we have shown in (1) and (4a), for any given initial data in
An/2(γs0 , γn/2) the unique solution of (NLKG) in C(R;Hn/2) is given in the
restricted space X(I, Rs0 , Rn/2), where Rµ > 0, µ = s0, n/2, are chosen to
satisfy Rµ = 2Cγµ, µ = s0, n/2, and C is the same constant appearing in
(4.18). Therefore u, {uj}∞j=1 are in X(I, Rs0 , Rn/2). So that by the same
argument on (4.16), we have

C‖f (u) − f(uj);Lq̃(I;Lr̃)‖ ≤ (F (Rn/2)|I|θRp0−1
s0

+ Cδ(p− 1)|I|)d(u, uj),

where |I|θ and Cδ(p − 1)|I| are disregarded for (4a). Since (4.19) holds for
these Rµ, µ = s0, n/2, we conclude that d(u, uj) → 0 as j → ∞. Especially we
obtain

‖u− uj ;L∞(I;Hs0)‖ → 0 as j → ∞,(4.35)

from which ‖u − uj;L∞(I;Hν)‖ → 0 as j → ∞ for ν < n/2 follows by the
embedding and the convex inequality as in the last part in (4b) in this section.
Concerning

‖∂t(u− uj);L∞(I;Hν−1)‖ → 0

as j → ∞ for any ν with ν < n/2, the proof is analogous and omitted. Conse-
quently we obtain the required results.

For s > n/2, the sufficient conditions to show that Φt0 is a contraction
map on X(I, Rs0 , Rs∗ , Rs) are given by

Cγµ +M(Rs∗)|I|κRp0−1
s0

Rµ ≤ Rµ, M(Rs∗)|I|κRp0−1
s0

≤ 1/2
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for µ = s0, s
∗, s, which could be rewritten as M(γs∗)|I|θγp0−1

s0
≤ 1 indepen-

dently of γs. The remaining proof for s > n/2 is carried out along the lines of
the proof for s = n/2. �
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