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The Cauchy Problem for Nonlinear
Klein-Gordon Equations in the Sobolev Spaces

By

Makoto NAKAMURA* and Tohru OzAawaA**

Abstract

The local and global well-posedness for the Cauchy problem for a class of non-
linear Klein-Gordon equations is studied in the Sobolev space H® = H*(R™) with
s > n/2. The global well-posedness of the problem is proved under the following
assumptions: (1) Concerning the nonlinearity f, f(u) behaves as a power u'T#/™
near zero. At infinity f(u) has an exponential growth rate such as exp(x|ul”) with
k>0and 0 < v <2if s =n/2, and has an arbitrary growth rate if s > n/2. (2)
Concerning the Cauchy data (¢,v) € H* = H* @ H*™1, ||(¢,4); H/?| is relatively
small with respect to ||(¢,1); H*" ||, where s* is a number with s* = n/2 if s = n/2,
n/2 < s* < s if s > n/2, and the smallness of ||(¢,v); H"/?|| is also needed when
s=n/2and v = 2.

8§1. Introduction

We consider the local and global well-posedness in the Sobolev space H® =
H*(R™) = (1—A)~%/2L%(R") of fractional order s with s > n/2 for the Cauchy
problem for nonlinear Klein-Gordon equations of the form

(1.1) 0?u — Au+u = f(u)

in space-time I xR"™, where I = [T, T] with T' > 0 for local solutions and I = R
for global solutions. Here u is a complex-valued function of (t,z) € I x R™,
0?2 = 9%/0t%, A is the Laplacian in R", and f(u) is a nonlinear interaction
given by a complex-valued function f on C.
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There is a large literature on the Cauchy problem for (1.1) and on the
asymptotic behavior in time of global solutions. We only refer to [7, 11, 19]
at the level of H! and [2, 12] at the level of H? for global solutions of (1.1)
with some structural assumption on f(u), and to [20, 21, 23, 27, 28] for global
solutions of (1.1) at the level of H! with small data setting. In [29, 30], B. Wang
developed the H*-theory for (1.1) for 1/2 < s < n/2.

To state the main result precisely we introduce the following notation. H?*
denotes the Hilbert space H® @ H*~! with norm

(o, ) 1| = {lls |1 + [lws 7 H|PF2,

For any r with 1 < r < oo, L" = L"(R™) denotes the Lebesgue space on R"™.
For any s € R and any r with 1 < r < oo, H = (1 — A)~*/2L" denotes the
Sobolev space defined in terms of Bessel potentials. For any s € R and any r
with 1 < r < oo, Hﬁ = (=A)73/2L" denotes the homogeneous Sobolev space
defined in terms of Riesz potentials. To introduce the Besov space and the
homogeneous Besov space, let ¢y be a nonnegative function on R™ with

supp ¢o C {£ € R™ 5 1/2 < [¢] < 2}

such that {¢o(277-)}2 forms the Littlewood-Paley dyadic decomposition

j=—o0

on R™\ {0}. Let {¢;}>°, and ¢ be functions defined by
Fpi(€) = 6o(277€), FP(&) =1-> ¢o(277¢),
j=1

where F and F~! denote Fourier transform and its inverse, respectively. For
any s € R and any r,m with 1 <7 m < oo, we define

1/m
s Byl = S llb s us 7[™ (2% [[4y  ws L) ,
j=1
1/m
s Byl =5 D 291y = us LT|)™ ;
Jj=—00

where * denotes the convolution in R™. Then the Besov space B . and the

r,m

homogeneous Besov space Bﬁ’m are defined by

B} ={ue&R"); |lu; B}l < oo},
B}, ={u€S'[R")/PR"); |lu; B, < oo},
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where §'(R™) and P(R"™) denote the sets of tempered distributions and of the
polynomials on R"™, respectively. We refer to [1, 6, 26] for general information
on Besov and Triebel-Lizorkin spaces and their homogeneous counterparts. For
simplicity we make abbreviations such as H* = H3, H* = H25, B} = B;,, Bf =

.75,72. For any Banach spaces X and Y having a common dense subspace, we
put

lla; X N Y| = max{[|a; X[, [|a; Y|}

for any a € XNY. For any interval I C R and any Banach space X we denote by
C(I; X) the space of strongly continuous functions from I to X, by L4(I; X) the
space of measurable functions u from I to X such that ||u(-); X| € L4(I), and by
Cy(I; X)) the space (CNL*>)(I; X). To describe the free propagator which solves
the free Klein-Gordon equations, we define the operators U(t) = exp(itw),
K(t) = sin(tw)/w, K(t) = cos(tw), where w = (1 — A)'/2. For any r with
1 <r < oo, is the exponent dual to r defined by 1/r +1/r' = 1.

The Cauchy problem for the equation (1.1) with given data (¢,) will be
treated in the form of the integral equation

u(t) = ®(u)(t) = K(t)¢ + K () + [y K(t —7)f(u(r))dr. (NLKG)

To describe the nonlinear interaction f with large growth at infinity as well
as with a vanishing behavior as a power p at zero, we introduce the following
assumption N (s, u,p) withn/2 <s, 0<pu <sand 1 <p < oo.

N(s,u,p) : f € CH(C;C) and for all k with 0 < k < [u], f*) satisfies the
estimates | f*)(2)| < |z|®=F)+ M(|2|) and

£ (z1) — FUD (29))]
<{Zl—22p_[“]M(Zl\/ZQ|) if ,u<p<[,u]+17

|21 — 22|(]z1] V \22|)(p’[“]’1)+M(\21| V|z2|)  otherwise

for all z, 21,22 € C, where M (x) = C exp(x|z|”) with constants x > 0,
0<v<2 C>0if s =n/2, and M is a nonnegative, nondecreasing function
on Ry if s > n/2.

Here f(*) denotes any of the k-th order derivatives of f with respect to z and
z and |f®)| denotes the maximum of the moduli of those derivatives. We
note that for any pq, po and s with 0 < py < pe < s < oo and any p with
1 <p < oo, N(s,pu2,p) implies N (s, u1,p). For a,b € R we denote by aV b and
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a Ab the maximum and minimum of a and b, respectively, by a4 the maximum
of a and 0, and by [a] the greatest integer that is less than or equal to a. For
any 0 < sg < s* < s we define the set of data by

A% (Ys05v57) = {(B,0) € M 5 [[(,0); HO || < vsor [1(6,80); HE || < s}

We are now in a position to state our main theorem in this paper.

Theorem 1.1. Letn>1,s>n/2,1<p<oco. Let s* be a number with
s*=n/2ifs=mn/2, n/2 < s* <sifs>n/2. Let f satisfy N(s,(s—1)+,p).
Let ||(¢,1); H™?|| be sufficiently small for s =n/2 and v = 2 in the following
(1) and (3).

(1) (NLKG) has a unique local solution u with (u,dyu) € C([-T,T]; H?)
for any given initial data (p,) € H®, where T can be taken depending only on
the norm of (¢,1) in H*" .

(2) Let v < 2 if s = n/2. For any given initial data (¢,¢) € H® let u €
C((=Tx, T*); H®) be a solution of (NLKG) on the mazimal interval of existence
(=T, T*), To, T* > 0. If T* < 00 [resp. Tw < 0], then ||(u(t), dsu(t)); H*
blows up at t = T* [resp. t = —T,].

(3) Let 1 < p < 1+4/n. Moreover let f satisfy N(s,(s —3/2+n(p —
1)/4)4+,p) when 14+2/n <p. Then T, and T* are estimated from below as

(12)  ToAT 2 {[(6 ) K P H([[(6, ) 1 ()}~ =),

where sg is a number with 0 < so < 1/2, and H(-) is a nonnegative, non-
decreasing function on Ry. In particular if p # 1, then Ty and T* can be
made sufficiently large by taking ||(o,v); H*°|| sufficiently small with keeping
(p,10); H*" || bounded.

(4) Let ¢« > 0 be any number, but sufficiently small if s = n/2 and v = 2.
Letp > 1+44/n. Let f satisfy N(s,s—1/2,p). Then there exists 12 > 0 with
the following property.

(4a) For any initial data (¢,1) € A*(71/2,7s+), (NLKG) has a unique
global solution w in C(R; H®). Moreover the solution u satisfies (u,0wu) €
Cy(R; H®) and there exists unique two pairs (¢4,¥4) and (¢—, ) in H*® such
that

(1.3) |(w(t) — v (t),Ou(u(t) —vL(t)); H|| = 0 as t— too,

where v4 (t) = K(t) o+ + K (t).
(4b) For any data (¢p—,1p—) € A*(v1/2,7s+), there exists a unique global
solution u of (NLKG) in C(R; H®) and a unique state (¢+,v%+) € H® such
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that (1.3) holds. Moreover the scattering operator S : (¢—,¢_) — (¢4, ¢y) is
well-defined on A*(71/2,7s) to H® and is continuous in the following sense. If

{(¢7 07 )}, C A%(y1j2,7s+) satisfies

(1.4) [(p— — ¢, — 7 )y HY?| =0
as j — oo, then
(1.5) (s — & by — ) )i HM| — 0

as j — oo for any p with pu < s, where ( i,q/}i) = S((¢" ,970)).

(5) The solutions given by (1) and (4a) have the continuous dependence on
the initial data in the following sense. For any initial data (¢,v), {(¢;,15)}521
in A (Vso, Vs ), let u, {u;}52, be the corresponding solutions of (NLKG) given

by (1) or (4a). If {(¢;,v;)};2, satisfies
1(¢ — &5, 0 — ;) H™[ — 0
as j — oo, then
[1(w = wj, Oy (w — uy)); L(I; HY)|| — 0

as j — oo for any p with u < s, where I = [=T,T] for (1) and I =R, so = 1/2
for (4a).

Remark 1.1.  For s = n/2, the global case (4) in the theorem above
covers for instance the nonlinearities of the form

Fw) =™’ =1 = klul)u for n =1,
f(u) = C(eﬁlu‘2 — 1)u for n= 2’ 37
Flu)=c(er!"’ —1) for n > 4,

with ¢ € C, k > 0. To our knowledge, both in the local and global cases there is
no other work to treat Klein-Gordon equations with nonlinearity of exponential
growth in the H*-theory with s < n/2. In view of Trudinger’s inequality the
growth rate as erl=l” at infinity seems to be optimal at the level of H™/? (see
25)).

The method of proof of Theorem 1.1 depends on the Strichartz estimates
and on the Leibniz type estimate on the composite function fowu, both of which
are described in terms of Besov spaces. The former is given by Corollary 2.1
below, which extends the estimates in [29, Proposition 1.6]. The latter is given
by Proposition 3.1. In this paper, different positive constants might be denoted
by the same letter C.



260 MAKOTO NAKAMURA AND TOHRU OZAWA

§2. Strichartz Estimates for Klein-Gordon Equations

In order to describe our propositions in concise form, we use the geometric
notation, following T. Kato [8]. For any 0 < 6 < 1, let A and o be numbers
defined by

(2.1) A=n+1460)/2, n—1-0<oc<n—-1+460, 0>0.

Let O be the closed unit square in R? defined by 0 < z,y < 1. Let O, A, B, C, D,
E, F be the points, and T and Tj be the subsets of O given by

0=(0,0), A=(1,1), B=(0,1/2), C=(1/2 (o —2)/20),
D =(1/2,0), E=(1,(c —2)/20), F=(0,(c —2)/20),
(C=(0/4,0), E=(0/2,0), F=0 if o< 2),

T = {BYU(BEF), T' = {B'}U(B'E'F,

To = [OBCDN\{C} (T, = [OBC) if 0 < 2),

where (Q1Q2), (Q1Q2Q3), (Q1Q2Q3Q4) denote the interiors of the segment,
triangle, quadrangle in O determined by {Q,} in O, and [Q1Q2], [Q1Q2Q3],
[Q1Q2Q3Q4] denotes those closures, respectively. For any ¢ with 1 < ¢ < oo,
q' denotes the conjugate index of g given by 1/¢+ 1/¢' = 1, and for any Q =
(1/g,1/r) in O, Q" denotes the point Q' = (1/4¢’,1/r"). For any Q = (1/q,1/r)
and Q = (1/¢,1/7) in O, we call the pair (Q, Q) preadmissible pair if

(2.2) < C||h; LY(I; BD)||

/ Mh(S)CZS; LU(I; BY)
J w

for any intervals I, J C R, h € Li(I; Bf)7 and p, p € R with
(2.3) p+nalr)—2(n—N)/og=1+2(n—X)/o+ p+ na(F) — 2(n — N)/oq,

where «(r) = 1/2 — 1/r, the constant C' is independent of I,J, h, but may
be dependent on p and p. For any preadmissible pair (@, Q) we call the pair
admissible pair if

(2.4) 1U(t)e; L(1; BR)|| < Cll¢s H||
for any interval I C R, ¢ € H® and s, p € R with
(2.5) s =p+na(r) —2(n—M\)/og,

where the constant C is independent of I, ¢, but may be dependent on s and
p.
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Proposition 2.1.  Let Q = (1/4,1/7) in T'. Let Q = (1/q,1/r) satisfy
1/q¢<1/q and
1/fr+2/cqg=1/r+2/ocq+2/0,
1/r+1/oqg<1/2, 1/r > (0 —2)/0F.

Moreover let 1/q > 0 if Q € (B'C'E"). Then (Q,Q) is a preadmissible pair.

Remark 2.1.  Let 1< §<oo,1<7<ooandQ=(1/4,1/7F). If (Q,Q)
is a preadmissible pair, then (Q’,Q’) is also a preadmissible pair. This follows
from duality argument on (2.2).

Remark 2.2. Let Q = (1/¢,1/r), @1 = (1/¢,1/r1) in O with 1/r; <
1/r. For any preadmissible [resp. admissible] pair (Q,Q), (Q1,Q) is also a
preadmissible [resp. admissible] pair by the embedding Bf! — Bf which is
satisfied by p1 + na(ry) = p + na(r).

Proposition 2.2. Let 0 > 2. Let Q € (CD], Q € (C'D’]. Then (Q,Q)
s an admissible pair.

Corollary 2.1.  Letn > 1. Let Q and Q satisfy Q € Ty and Q' € Tp.
Then (Q, Q) is an admissible pair.

Proof of Proposition 2.1. Let ¢ and {1;};ez be as in the definition of
the Besov space in the introduction. We start from following estimates, which
are derived from the method of stationary phase (see [3, Theorem 3.2], [6,
Appendix]).

(2.6) || exp(itw)ep; L2 < Cmin{1, [t|~™/?},

(2.7) || exp(itw)i;; L) < €27 min{1, (27|¢t))~~Y/2} min{1, (277 |t|)"*/?}

for any j > 1, where the constant C' is independent of j and ¢. Therefore (2.7)
is rewritten as

lexp(itw)s; L < C2V[¢| =7/

for any j > 1. We denote by " the Fourier transform F. Since 1Z = (Y + 1)
and ’l/AJj = Zf;ifl 1&/&/33', we have
1) * exp(itw); L] < (|| exp(ita)d; L + | exp(itw)in; L)1 * 65 L1
< C(min{1, |7/} 4 226 77/%) ||+ 5 LY
< Cl72 |+ 65 L),
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j+1
1 % exp(itw)d; Lo < > || exp(itw)ibr; L®|[|v;  ¢; L'||
k=j—1
j+1
<C >0 2T 2y gy L
k=j—1

<OVt~ ||y x ¢, LY,

for any j > 1, where the constant C' is independent of j and ¢. Therefore by
the definition of the Besov space, we have

(2:8) |U#)¢: BEI| < Clt|=/2 ¢ B

Interpolating between (2.8) and the unitarity of U(¢) in L? = BS, we also have
(2.9) |U(0)6: BYI| < Ot =7 g B

for any 2 <1 < 0o. Now let g1 and ry satisfy 1 < ¢; < oo and

(2.10) 1/ri+2/oqn =1/2, 1/r1 > (0 —2)/20 (1/r1 >0 if 0 <2).

Then applying the Hardy-Littlewood-Sobolev inequality to (2.9) in the time
variable, we have

(2.11)

/ U(t — s)h(s)ds; L9 (I; B;AO‘(”))
J

] < s L9 (1, B0V

for any intervals I,J C R, where we have used the fact that for any p € R
and any r with 1 < r < oo the operator w* is an isomorphism on B? to B, *.
Especially by the unitarity of U(t) in L? and a duality argument, (2.11) also
shows

(2.12) ‘

/U(t—S)h(S)dS;Lw(I; BY)|| < C|lh; L9 (I; B;IM“U)H
J

for any intervals I, J C R, where we have used L? = BY with equivalent norms.
Interpolating between (2.11) and (2.12), and applying a duality argument on
U, we obtain for any (1/¢;,1/r;) € [BC) ((1/¢;,1/r;)€ [BC)ifto < 2), j =1, 2,

(2.13)

/ U(t — s)h(s)ds; L7 (I; B; ("))
J

‘ < Cllhs L% (1; B 09|

for any intervals I, J C R. On the other hand, if we consider the dual operator
U’ of U(+) on function spaces of space-time R!*™ of the form

(2.14) U’hE/]RU(—S)h(s)ds7
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then a similar argument on (2.12) shows the inequality

|U"h: BS| < Clhs L9 (13 B 0|
for any interval I C R. Applying duality for this inequality, we have
(2.15) U () L (1; B2 )| < Cls B3,

where we note that (2.15) also holds for ¢; = oo since in the case ¢; = oo, 71 is
equal to 2, so that the above inequality reduces to the unitary of U(¢) in L.
Consequently we have obtained the following lemma.

Lemma 2.1. Letn > 1. Let A\,o be as in (2.1). For j = 1,2, let
(1/g,1/r;) € [BC) ((1/q;,1/r;) € [BC) if 0 <2 ). Then for any s € R, U
satisfies the estimates

U ()¢ L (I; BE7 )| < Clps H |,

U t— ’ s—Aa(rh)—
[ syass o) | < el 1 B |
J w

for any intervals I,J CR, ¢ € H® and h € L% (I; Bi/_)‘a(ré)_l).

2

Now let Q and Q be as in the assumption of Proposition 2.1 with Q #+ B’
and 1/r < 1/#. Let n be the parameter given by n = —2a(7) (so that 0 <
n < 1),and let 11 = (1 —=n)r, 1/q1 = oa(r1)/2. Then (1/q1,1/r1) satisfies
(2.10). Therefore applying the complex interpolation between (2.8) and (2.15),
we have

(2.16) 1[¢]77/2U (t)h; LE(L; B 20| < ©|lb; BT,

where ¢ is given by 1/¢ = (1 — n)/q1. To estimate the integral operator in
space-time as in (2.2), we exploit the standard duality in (1 + n)-variables of

I= </J U(-— s)h(s)ds,h1>1+n.

Changing the variable by 7 = ¢t — s and applying duality in space-time to I, we

the form

have

T

11=C [ NP0 n(s) LB 77 2 (s-+ 7): L B s,
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where L’ denotes the L norm with respect to the variable 7. By (2.16) and
the Holder inequality in the variable s, we have

1] < Cllh; LIB D 17177/ (s + 7); LE BY || LT .

The second factor on the right hand side of the last inequality is rewritten as

1/¢
= H/'Tl 92|y (s + 1) BAT|| dry LT/

Now let r* be given by
1r*=40')qd = —tno/2+1,

then 1 > 1/r* > 1/r* = ¢'/§ > 0 and ¢’ = ¢'r*. Then we apply the Hardy-
Littlewood-Sobolev inequality to I; to obtain

)\ar 4 * 4 " al(r
I < C[|ha; BN L7 1YY = O ha; LY BT

So that we have
1] < C||h; LIB* D[k LE B

for any interval J. Equivalently we have

< C|h; LB 7|

/ U(t — s)h(s)ds; LB M)
J

for any interval J C R. Since for any p € R, w” is an isomorphism from B? to
B #with1 <r < oo, we obtain the required results except for the cases Q =B
or 1/r > 1/#. In the case Q = B’, we have obtained the required results by
Lemma 2.1. Since the assumptions in Proposition 2.1 hold with 1/r"” > 1/# for
the pair (Q’,Q’) in the case 1/r > 1/, by the above argument, we conclude
that (Q', Q') is a preadmissible pair. So that (Q, Q) is also a preadmissible pair
by Remark 2.1. O

Proof of Proposition 2.2. Let ¢ and {1;};cz be as in the definition of the
Besov space. We start from (2.6) and (2.7). Let A,o be those in (2.1) with
o > 2. Then

U ()j; || < Cmin{2, 2V [t ~7/%}
for any j > 1. Since 17} = (17} + 1/31)17}, we have

1 U ()3 L < (1U (003 L+ U (E)ebrs L)) * 5 L1
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Interpolating between the above inequality and the equality ||¢ * U (t)¢; L2 =
|4 % ¢; L?||, we have

[ U @) L[| < (U (t)d5 L)) 4 ([T (#)gbn; L2 [ 5 L |

for any 2 < r < oo. If r satisfies 0 <1/r <(o — 2)/20, then by a direct
calculation we have

1T (#)e; L2120 Li|| < Cnad(r)/ (ne(r) — 1),
and
1T (£ L2 Ly || < Coa(r)2@retot20mmlile j(ga(r) — 1)

for any j > 1, where the constant C' is independent of j. Therefore by the
Young inequality, we have

Hzﬂ*/U(t—s)h(s)ds;LfU < Ol * hy L2L||
J

for any interval J C R, where the constant C' is independent of J and h.
Similarly if we use 1; = Zf;i_l Yrabj, then we have

for any j > 1 and any interval J C R. So that by the definition of the Besov
norm, we have

< C2(2na(r)o+2()\—n))j/a'ij % h L?LT/”

(I /J U(t — s)h(s)ds; L2L"

(217) S CHh;L?Bffna(r)cﬂ*Z()\fn))/a”

/ U(t — s)h(s)ds; L2B°
J

for any interval J ¢ R. Now let Q = (1/q,1/r), Q = (1/4,1/7) with 7 = ¢/,
g = ¢ = 2. Then since (2.3) is rewritten as

p+1—p=(2na(r)e +2(x —n))/o.

so that (2.17) shows that (Q,Q) is a preadmissible pair. Taking r as 1/r —
(0 —2)/20 and considering Remark 2.2, we conclude (Q, Q) is a preadmissible
pair for any Q € (CD] and Q € (C'D']. For these (Q,Q), (2.4) with (2.5)
follows from the duality for the estimate

1U"hs H=#|| < ||hs LY B,
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which is derived from the unitarity of U(t). So that (Q, Q) is also an admissible
pair. O

Proof of Corollary 2.1. If ¢ < 2, then the conclusion is obtained by Lemma
2.1. We consider the case o > 2 in the following. The admissibility of the pair
(Q,Q) for any Q € [BC) and Q € [B'C") is shown by Lemma 2.1, while that
of the pair (Q,Q) for any Q € (CD] and Q € (C'D’] is shown by Proposition
2.2. Since (Q, Q) is a preadmissible pair for any Q € (BC) and Q € [C"D’] by
Proposition 2.1, while (B, Q) is a preadmissible pair for any Q € (C'D’] by the
duality and the estimate

| [ o= oniaszins | < cprzper ey

for Q = (1/§,1/7), where the last inequality is from (2.17), so that (Q, Q) is
a preadmissible pair for any Q € [BC) and Q € (C'D’]. Since any Q € [BC)
satisfies (2.4) with (2.5) by Lemma 2.1, (Q, Q) is an admissible pair for any
Q € [BC) and Q € (C'D']. The rest of the proof is completed by a duality of
the above results and Remark 2.2. O

§3. Estimates for Nonlinear Terms
In this section, we show estimates for nonlinear terms in Besov spaces.

Proposition 3.1. Let s >n/2, 0 < p<s,1 <p<oo. Let [ satisfy
N(s,u,p). Let 1 <7 <00, 2<7r<o0. Let 7 <r if s=n/2. For nonnegative
integers £ and k with 1 < k < [u]+1 and pVk—14+ vl > 0 let r,(¢) be a
number which satisfies 2 < i (£) < oo and

(3.1) 1/fr=p@Vk—1+vl)/r(l)+1/r.

And let m be a number with 2 <m < oo and 1/{ = (p—1)/m+1/r. Then for
s =n/2 the following estimates hold.

(3.2)

o 0
T K T —14v T T
Ify L7 <c ol L {OPP= s LT + C8(p — 1) Jus L7,
p712f1?2>0
(3.3)

Kt

If (B <C Y ﬁIIU;L”“)H”*HMIIU;Bﬁ‘ll+C5(p—1)|\U;B§H
ptrveso

if 0<pu<l,



NONLINEAR KLEIN-GORDON EQUATIONS 267

(3.4) [1f(w); B
o0 /1[ r > — v >
CZZ:O,p—1+U€>O W”U; Ln®n Bfl(e)ll” H ZHWBﬁ”
+Co(p = Dlw; BY| if 1<pand p<p,
+1 o K’ T > —14v 5
ngil D 0=0,pVk—140E50 FUWL HOn ng(Z)HPVk HE s BY||
+C3(p - V|lw BE|| if 1< pand p>p,

where 6(0) = 1 and 6(x) = 0 for x # 0, k and v are nonnegative constants
appearing in the assumption N(s,u,p) and C is a constant independent of u.
And for s > n/2 the following estimates hold.

(3.5) 1 () L < M (Jlas L) s L7l L7

(3.6) ||.f (w); BY||
M (flu; L)) |lu; ™7~ u; BE| if 0<p <2,

< M(Jlw; L0 B llw; By [P~ Hlws BEL - if - =2, m# oo,
M (||u; L 0 BN lus L 0 B P ws BNl if 1= 2, m = oo,
where |Ju; L% N BY|| = ||u; L®|| V ||u; B||. Moreover we may replace B with

B on the RHS of (3.3), (3.4) and (3.6).

Proof of Proposition 3.1. Estimates (3.2), (3.5) follow from the Holder
inequality. And (3.6) is shown in [14, Proposition 1.1]. We show the estimates
(3.3) as (A), (3.4) with 1 < p < 2 as (B), (3.4) with g > 2 as (C) in the
following. We use the equivalent norms of the homogeneous Besov space such
as

oo 1/m
(B.7) vBl =~ > {/ (t=1 sup aav_aaTyU;Lr)mdt/t}
0

o=l ful<t

for0<p<oowithpué¢Z,1<rm<oo,or

(3.8)||v; BL, |
o 1/m
~ { /O (t“‘]1“|SL|1pt80‘11—28“73,@+8“72yv;lf)mdt/t}
lor|=[u] -1 yi<

for 1 < p < oo, 1< r,m < oo, where 7, denotes the translation by y € R"
given by (7,v)(z)= v(y + x). We also use the embedding

(3.9) B!, < BF

r,mi1 r,Mm2
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forany p e R, 1 <r < oo, 1 <m; < mg < oo. We note that the constants
appearing to use the equivalent norms for (3.7) and (3.8) and to use embedding
for (3.9) are independent of r,m,m; and mo for any fixed p > 0 (see [1,
Theorems 6.3.1 and 6.3.2]).

(A) By the Taylor expansion of M, we have
o 0
K — 1%
[f(w) = flru) < CY 77l v myul)? =t “u—7yul,
=0

where the constant C' is independent of u. Applying the Holder inequality to
the last estimate with the equation

1/r=(p—-1+vl)/ri()+1/r
for p — 1+ v¢ > 0, we have
1f (u) = f(ryu); L7

e 4
K r —14v r T
<c > gl L Ol — s LT + C8(p = DJu = myu; L7
pfﬁi%>0

So that by (3.7) we obtain

& ¢
. K _ v . .
If ;B <C ) Il L= s B+ Co(p — 1) us BE.
£=0 :

p—1+4v£>0

(B) By the Taylor expansion of M with the equation
f(u) =2f(myu) + f(r2yu)

= f(ryu)(u — 21yu + T2yu)

1
+ [y = m) = () ry)ds
0

1
4 / (' (ryta + O(rays — 7y0)) — £ () (raye — ),
we have

(3.10) [ f(u) — 2f (ryu) + f(T2yu)|
4

o0

R _

- CZZ ﬂ|7—yu|p 1+u€‘u — 27Ty u + Tyl
=0

L OSE il v Iyl = myul? if p<p<2,
C> 5 ’%f(\u| V ryu|)P=2++E )y — 7 ul? otherwise.
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Since we have

lyl<t

= 17 (w) — 2/ (ryu) + f(ray )|

- 1/2
If(u); B <C {/0 (7 sup |[f(u) = 2f(myu) + f(szyU);LFII)th/t}

by (3.8), denoting by A1, A, A3 the first, second, third term, respectively, on
the RHS of (3.10), it suffices to show that |||A;|||, 1 < j < 3, are estimated by
the RHS of (3.4).

For A1 we have

& ¢
K _ v . .
ladii<c ) 1l L O BE|| + Co(p — 1) |Ju; BE|
£=0 :

p—14+v€>0

by the Hélder inequality with 1/7 = (p—1+vf)/r1(€)+1/r for p—1+v€ > 0.
For Az let 7(£) be a number given by

p/r(€) = (p—1)/r(€) + 1/r,

Then by the equation 1/7 = v€/r1(£) + p/r(£), we have

0 ¢
K T v. >
(3.11) A2l < &3 Fpllus L7 O Ylus BEE |1
=0

where we have used

lyl<t

- 1/2
{A uﬂwm>u—meM>w%w% < Cllws BYE L, 17

By the convex inequality

(3.12) s BEGS 5, | < s BE, oo I/ s Bl 17

and the embedding (3.9), we obtain
= K r1(£) 50 p—1+4vt oY)
1ol < OS2 S L0 0B, 7+ s B
=0

For Az let r(¢) be a number given by the equation

2/r(0) =1/ra(£) + 1/r.
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Then by the equation 1/7 = ((p —2)4 +vl)/ra(£) + 2/7(£), we have

T v 2
(3.13) Hmw<c§j wL“U@””ﬂmewﬁ

where we have used
N 1/2
{/ (t™" sup |lu — 1yu; LT(Z)H?)?dt/t} < Ol Bﬂ(/éi all
0 ly|<t

By the convex inequality

- 2
(3.14) s BEZ < s B,y oo 2 s B [

and (3.9), we obtain

IAs]]] < CZ IIu LO By, ) [PV s BY|.

rgl‘

We note that Ag is considered when p ¢ (p, 2).

(C) We have

If(w) BEll =~ > {/Ooo(t[“]l“ sup [[0%(f(u)) = 20%(f (ryu))

o=l -1 ful<t

1/2
+0%(f (T2yu)); L’:)2dt/t}

for any given > 1 and 1 < r < co. We have

(u]—1

=> > c(W-1E{BHI P HW%

k=1 p1++hp=a
181>1,1<5<k

where the constant C'([p] — 1, k, {ﬂj}) depends on [pu] — 1, k and 8;,1 < j <k,
but not on v and f. We put {uJ, 75 k}J gfor 1 <k<f[ul—1as

’S:f(k)( ), :f(k (Ty ), w :f( (T2yu)7
f Piu, vj —8517'yu wj —8ﬁ]T2yU

then we have

O%(f(w)) = 20%(f(ryw)) + 0%(f (rayu))
k

=Y Y ol -Lk8)) Huf—2Hv+Hw

k=1 B1+ +Bp=a 7=0
1Bj121,1<5<k
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In the following we proceed our argument with 1 < k < [u] — 1 fixed, and

remove k of uJ ] , k for simplicity. We have

k

k k
315 H 21_[0’Uj+l_lowj
J= J=

k k k k
= (uo — 2vp + ’lU()) H u; + Z(UO — wO)(uz - vz) H Uj H Uj
j=1 J=1,j i=1.j

=1 j=1,j<v  j=1,5>
k k k
+ (v —wo) (v, —w) [ v J[ w
=1 j=1,5<2 J=1,7>1
k k k
#oo [ TTws 21w+ T
Jj=1 Jj=1 Jj=1

Moreover the last term on the RHS of the above equation is rewritten as

k

k k k
vo(ur — 201 +wi) [T uj+ > volor —wi)(wi —vi) [ wi J[ v
j=2 =2

J=2,5<i  j=2,5>1

k k

k
+Zv0(vl—w1)(vi—wi) H Uj H wj

J=2,<i j=2,5>1
k k k
+ooor | [Tws =2]Tvs+ [T ws
Jj=2 Jj=2 Jj=2

With repeated use of the same calculation, the LHS of (3.15) is rewritten as a
linear combination of the terms such as

k k
A1 E(U0—200+w0)HUj, AQE(Uo—Uo)(ul—’Ul)H’Uj,
j=1 j=2
k k
Ag = U()(U1 — 2’[}1 —|—’LU1) H Uj, A4 = ’Uo(’Ul — wl)(u2 — UQ) H Vj,
Jj=2 7j=3

where H;n:zml z; is disregarded for mo < mq, and A4 appears only for k > 2.
It is sufficient to prove that

0o 1/2
(HE { | sup ||Aj;y)2dt/t}
0 lyl<t

is dominated by the RHS of (3.4) for any j = 1,2, 3, 4, since other terms similar
to A;, j =1,2,3,4, are estimated quite analogously.
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For A, we have

ug — 2v9 + wo
= 1) — 27 B (ry) + 1 ()

= f(kH) (Tyu)(u — 27y u + Toyu)

1
+/0 (f(k+1)(7yu +n(u — myu)) — f(k+l)(7'y“))d77(u — Tyu)

1
+/ (f(k+l)(7yu + n(r2yu — Tyu)) — f(k+1)(7'yu))d77(72y“ — Tyu).
0
Therefore by the definition of f, we have

|ug — 2vp + wo| < C|Tyu|(”7k*1)+ |u — 27yu + Toyu| M (|Tyul)

CAy fk+1=[y] and p<p<[pu]+1,
CAs otherwise,

where

A =u— Tyu|p_[“}+lM(|u| V| Tyul)
Hryu — Ty uP WM (| ryul Vo)),
Ag = ([u] V ryul) P24 ju — myul M (Jul V |7yul)

+(|ryul v |7'2yu|)(p7k72)+ |Tyu — TQyU|2M(‘TyU| V | mayul).

We estimate A; by considering contributions of A}, A%, A3 separately, where

k
A} = |ryu| P05 u = 27,0 + Toyul M (|7yul) T 10 ul
j=1
k
Af = = ryul? FE M (Ju| v 7yl TT 107l
j=1

k
A = (Ju] + [y u) =2 o — M (Ju] V [myul) TT 107l
j=1

and we show that ||[A7]||, 7 = 1,2,3, are dominated by the RHS of (3.4), so
that the required estimate on ||| A1[|| follows.
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We also have

k
| 42| < C(Jul V [ryul) P~ D% u = 1yul| 0% u — 87 ryul TT 10 7yl
j=2

M(Jul| V[ryul),

k
|As| < C|ryu|P=0+10% u — 207 7 u + 0% o, uf H 8% u| M (|7,u))

j=2
k
|[A4q] < C’|7'yu|(p7k)+ 1071 7y u — 0% 1oy u||072u — 027 u) H 0% u| M (|7,ul),
7=3

where the constant C' is independent of u. In the following, 6;, r;, j =
0,1,...,k, are defined respectively from the case Al to Ay.
For A}, by the Taylor expansion of M, we have

[ ¢ k
K ,
AL < €Y7 Il @D = 2myu ot oyl [T 107,
=0 j=1

where the constant C' is independent of u. Let 6;, r; be given by

o= (n— [ +1)/n,
0;=|83l/p for 1<j<k,
1rj=0Q—60;)/re1(€) +6;/r for 0<j<kE.

Then
k
1i=((p—k—1)4 +vl)/rega(0) + Y 1/r;.
j=0
Therefore applying the Holder inequality, we have

ooy k
[IEHIEe) 'Z—'Hu; L ) k=D TT 9% w; 17|
=0 =1

- 1/2
. {/ (=171 sup |lu — 27,u + Ty u; LT°)2dt/t} .
0

lyl<t

By (3.8), we have

- 1/2
{/0 (t[“]_l_“ sup |ju — 2Tyu+7'2yu;LT°||)2dt/t} < Ol Bﬁo‘%H,

lyl<t
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and by the embedding B‘Tfﬂ e, HlJBJ l, we also have
(3.16) 0% L)) < Cllu; B2 |

for 1 < j < k, where the constant C' in these inequalities is independent of ¢
since §; with 0 < j < k are in a compact set in (0,1) and therefore r; with
0 < j <k are also in a compact set in (1,00) because of r # oco. Applying the
convex inequalities such as

s BEP L < s BY, o 1= llus BE(I™

for 0 < j < k, we have

0 L
A1 < €7 Fllus L 0 BY
=0

R n (0 Hp\/(k+l) 1+v¢ HU B’u H

where we have used Z?:o 0; = 1. Since k+ 1 < [u], this is one of the estimates
that we have required.

For A2, we first note that A? is considered only for the case k + 1 = [y]
and u < p < [u] + 1. Therefore p # 1, so that p — 1 + v¢ > 0 and we have
ri(€) = - =rp-1(£) in (3.1). Let 0;, r; be given by

Oo=(n—[p]+1)/p 1),

(p—[u] +
0;=18jl/u for 1<j<k,
1/r;=1—0;)/ri(f)+6;/r for 0<j<k.

Then
1/7=vl/ri (¢ —|—Zl/r] 1] +1)/ro,

so that we have

11431 <CZ IIU L”“)H’”H 107 u; LT |

j=1

o 1/2
{/ (t1=12 sup u—Tyu;LT°||P-M+1>2dt/t} '
0

lyl<t

y (3.7) with

0<(u—[pl+1)/(p—I[ul+1)=bop <1,
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we have

1/2
)th/t}

lyl<t
S00u

{/ (t[#]*1*# sup ||u — ryu; L™ || p—[p]+1
0
< COllws B0 1

)||p—[u]+1_

By (3.9) with 2(p — [p] + 1) > 2, we have

.0 -
| u; Bfo,%(p_[u]+1)“ < Cllws By |,

where the constant C' in the last two inequalities are independent of ¢ since 8
is in a compact set in (0,1). We also have the estimates of the form (3.16) for

1 < j < k. Applying the convex inequalities such as
lus BEPA | < Nlws BY, 1'% llus BE||

for 0 < j < k, we have
x4
K r . R .
Najl<cy. oy llus OB P u; BE,
=0

where we have used 0p(p — [u] +1) + Zle 6; = 1. Since A% is considered only
for the case p < p, the above inequality is one of the estimates that we have

required.
For A%, let 6;, r; be given by
o= (n— [l +1)/2p,
0, =16l/n for 1<j<k,
1/ri=01—0;)/rpi20) +6;/r for 0<j<Ek.
Then

k
1/r=(p—k—=2)1 +v0)/rr12(0) +Zl/7"j +2/ro,

j=1

so that we have

0y k
K r ke v ) r
11 A43]|| SCZ@”“;L k+2(2)||(P k—2)4+ IZH 0P w; L7 |

=0 j=1

- 1/2
. / (=171 sup ||u — u; L0||?)%dt /t .
0 ly|<t
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By (3.7) with
0< (M—[M]+1)/2:00M<17

we have

- 1/2
{/ (=11 sup [|u — TyU;U“IIQ)Zdt/t} < Cllu; BRA|? < Cllus BR™|1?,
0

lyl<t

where we have used (3.9) for the last inequality, and the constant C' is inde-
pendent of ¢ since 6y is in a compact set in (0,1). We also have the estimates
of the form (3.16) for 1 < j < k. Applying the convex inequalities such as

lus BES (| < lus By, o I lus B

for 0 < j < k, we have
o 0
K Tk > —1+v -
Nnafl<cd’ ol L 2O BY [PV ED Ty BE
=0

Since k + 2 < [u] + 1, this is one of the estimates that we have required. We
note that A$ is not referred for the case k = [u] — 1 and p < p < [u] + 1.
For As, let 6;, r; be given by

Oo= (=[] +1)/2p, 61 = (u—[u]+1+201)/2u,
0; =65/, for 2<j<k
1/ri=1—0;)/ree1(€) +6;/r for 0<j<Ek.

Then
k
1i=(p—k=1)4 +v0)/rer(O) + Y 1/rj,
j=0

so that we have

0 g k
11| As]|| < CZ %Hu; er+1(€)H(P*k—l)++l/Z H Haﬁju;Lm’H
=0 j=2

00 1/2
{/ (t[“]_l_“ sup |lu — Tyu; LT"H||8B1u—8ﬂlTyu; LT1||)2dt/t} .
0

lyl<t
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By the Holder inequality and (3.7), we have

1/2
oo
/ =11 sup Jlu — myu; LT0))|0% u — 9%y u; L)) 2dt /t
0 ly|<t
1 1
. 6. - 0.
<CIT I BEAN < T lhus BES I
j=0 §=0
where we have used (3.9) for the last inequality, and the constant C' is inde-
pendent of ¢ since 6;,j = 0, 1, are in a compact set in (0,1). We also have the

estimates of the form (3.16) for 2 < j < k. Applying the convex inequalities
such as

r

b > —6; > 0,
lus BEP < Nlws By, o 1'% [lus B[

for 1 < j <k, we have

Tr41(€)

>y
K - —14v :
Al < C ﬁllu;LT’“““’ﬁB0 [PV D= s B,
=0

Since k + 1 < [u], this is one of the estimates that we have required.
For As, let 8,7 =1,... ,k, be given by

01=(p— [pl +1461)/p
0 =16jl/m, for 2<j <k

And for 1 < j <k let

1/r; = /7 if p=k=1 and £=0,
7T (1= 6;)/ri(£) + 0 /r otherwise.
Then
17 1/ry if p=k=1 and ¢ =0,
r =
((p—K)x +v0)/rp(l) + Z?Zl 1/r; otherwise,

so that we have

[ As]]] < C( Z IZ—'Hu;L”k“)H(P*kH*V‘f H 1% u; L9 |
£=0 : j=2

pVk—141v£>0

+3((p-1)V (k=1)) - As,
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where 6(0) =1, 6(z) = 0 for x # 0, and

lyl<t

N 1/2
Az = {/ (=171 sup |9%1u — 20% 7 u + 9% o, Lrl)th/t} ;
0

we note that pV k—14 vf =0 occurs if and only if p=%k =1 and ¢/ = 0. By
(3.8), we have
Az < Cllu; BEM,

where the constant C' is independent of ¢ since 6; is in a compact set in (0, 1].
We also have the estimates of the form (3.16) for 2 < j < k. Applying the
convex inequalities such as

Jus B9 | < {

for 1 < j <k, we have

Hu,BﬁH ' if p=k=1 and {=0,
|| ng(e) |1=% |ju; B¥||% otherwise,

© 4
K’/ e . _ v . .
A3l < €7 T llus 7O 0 BY, ) [PY5 s BE || + C8(p — 1)z B
=0

Since k < [u] — 1, this is one of the estimates that we have required.
For Ay, first we note that Ay is considered only for k > 2, so that pV k —
1+v0>0. Let 0, r;, j=1,...,k, be given by

0;=(u—[u]+1+2(8;])/2u for j=1,2,
0, =16;|/n for 3<j<k,
ry=1—=0;)/ru(6) +0;/r for 1<j<k.

Then
k
1 = ((p— K)o + vl fre€) + 3 1,
j=1

so that we have

o ¢ k
Al < CS s L@ || e—k)++ve &% LT3[ - Ay,
1
(=0 j=3
where

- 1/2
Ay= { / (=10 sup (97w — 9% s L7070 — 0% 7,u; L7 dt/ '5} ‘
0

lyl<t
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By the Holder inequality and (3.7), we have
2
A< C Tl BITAII < OH lus BE |

where we have used (3.9) for the last inequality, and the constant C is inde-
pendent of ¢ since 6;,j = 1,2, are in a compact set in (0,1). We also have the
estimates of the form (3.16) for 3 < j < k. Applying the convex inequalities
such as

lus BES | < lus By

vl % s BE%

for 1 < j <k, we have
> 0
K TR > —14v -
[[[Aall] < CZWHU;L KON BY ) IPVET fu; BY.

£=0

Since k < [u] — 1, this is the last one of the estimates that we have required.

At the end of the proof, we mention the last statement in the proposition.
If we use the embedding

(3.17) [u; Bl pull < Cllus Bl |

with > 0,1 <r,m < oo for (3.3)7 then we have

I f(w); BE| <C Z Iu LrO =l BE|| + Co(p — 1) |Ju; BY|
p— 1+Vz>0

for 0 < p < 1in addition to (3.3). Since the constant C'in (3.17) is independent

of 7 and m for any fixed p > 0, we can replace Bf(/;;gp, B:f(/f) 4 With B:f(/éz)),Qp’

B! (/5 4 in (3.11), (3.13), respectively. Then using the convex inequality
s By | < s BE o 11 llws BEZ 3 1

w=1=0)us +0usz, 1/r=1-0)/r1+6/ra, 1/m=(1—0)/m1+60/ma

for p,p1,p2 € Ry 1 < rym,ry,my,re,me < oo and 0 < 6 < 1 instead of (3.11)
and (3.13), we obtain

1 (w); BY|
oo K,Z T - v .
CZZ:O, p—1+v0>0 rllu; L 0N Bgl(e)”p Ml Bl
+Cé(p — 1)|lu; BE|| if 1<p<2 and p<p,
CZk L 0, pVE—14v6>0 T ||U Lre® ﬂBO ||ka_1+ye||U§ BE||
+Co(p — 1)|lu; BE|| if 1§u<2 and w>p.
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The same argument is also true for ;1 > 2 applying the embedding Bﬁjej — ijej
to (3.16), where the constant appearing in the embedding is independent of ¢
since #; is in a compact set in (0, 1], so that we can replace B with B on the
RHS of (3.4). And we also have the same result for (3.6). O

84. Proof of Theorem 1.1

Let o and A satisfy (2.1) with o = 2\ — 2 in the sequel. In particular we
can take o as any number which satisfies n — 1 < ¢ < n and o > 0. Taking
o = n in the following argument, we obtain the proof of Theorem 1.1. Let
n,s,s*,p be as in Theorem 1.1. Let py satisfy

1< po < (1+4/0)Ap for p>1,
po = 1+ (2/c)AN1Av for p=1.

There exist sg, p and an admissible pair ((1/qo, 1/r0), (1/4,1/7)) with 0 < 5o <
1/2, p < —sp and

(4.1) 0<1/qo<0/2(0+2)<1/rg<1/2,

(4.2) 1/2<1/r<(0+4)/2(c+2) <1/¢<1,

(4.3) 1/F=po/ro, 1/G=0+po/q, 6=1-(po—1)a/4,
(4.4) 0= —s0 +na(rg) — 2(n — \)/aqo

=14+2(n—A)/o+p+na(F) —2(n— X\)/oqg.

Indeed, the above sq, g, qo, 70, G, 7 are given by

4po

o (@2D)@po=D) i po < p, =1+ 2/0,
0= % otherwise,

_ -1 if Po < D,
r= —% + —U(pifl) otherwise,

1/qo =o0s0/(c+2), 1/ro =1/2—2/0qo, 1/7=po/ro, 1/G= 6+ po/qo,

where the admissibility follows from Corollary 2.1.
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For any interval I C R let X% (I), u = so, %, 5, be a function space defined
by

XE (1) = L>(I; H*) N L (I; B™)
with the norm
s X2 (D) = [l L (Z; ) 0 L9 (L B0

Then we show the existence of solutions of (NLKG) in the function space defined
by

X(I7 R807Rn/2)
X([a RSmRs*aRS)

{u; [Ju; XE (D] < Ry, p = s0,n/2} if s=mn/2,
{u; |’U,,X;)([)|| SR,LL’ MZS())S*)S} if S>TL/2,

for some R,, > 0, 1t = 50, 5", s, endowed with the metric

(4.5) d(u,v) = ||u — v; L°°(I; L?) N L% (I; L™)]|.

First we consider the proof for s = n/2. For any ¢ > 0 and k > 1 with
pVE—14+vl>01let 1/rpy(f) = (po—1)/(pVk —1+ vl)rg. Then we have

(4.6) 1/f=(pVk—1+vl)/ry(l)+1/r.

Let f satisfy N(n/2,(n/2 + p)+,p). Since ro, 7 satisfy 0 < 1/rg < 1/2,1/2 <
1/7 <1 and r(¢) satisfies 0 < 1/r(¢) < 1/r9, applying Proposition 3.1 to the
composite function f(u), for any p with —p < u < n/2 we have

(4.7)
[p+p]+1
I (w); BEFP < C Z Z H S LO N BY ) [PV s BR |

pVk— 1+1/Z>0

+Co(p —1)lu; BE .
Lemma 4.1 [17, Lemma 2.2].  The following estimates hold.

HU;LTH < 007,1/2%»(7“072)/27*””; Hn/2||17TO/THU;LTOHTO/T,
s B2 < Cor'/2+ro=2)/2r o /2 1=/ u; B, o/

for any ro,r with 0 < 1/r < 1/rg < 1, where the constant Cy is independent of
r, but may be dependent on rg.
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By Lemma 4.1, we have

lu; L™ 0 By, ol
T (€)
< Cork(£)1/2+(r0—2)/2rk(€)”u; Hn/2||1—ro/rk(€)Hu;Lro n BSOHTO/TIC(Z),

where the constant Cj is independent of ¢, so that the RHS of (4.7) is estimated
by

[u+p]+1 ) ~
SoST an()us BYRPYE oy BY ([P0 fu; B
k=1 £=0

pVk—141v£>0

+C6(p = D)llu; BE|,
where we define ay(€) by

¢
ap(l) = IZ_'Cng?—l-‘rVZTk(z)(p\/kf1+VZ)/2+(170*1)(T072)/27‘0'

Therefore by the fact 8 > 0, applying the Holder inequality in the time variable,
we have

(4.8) || f(u); LI(I; B

[n+p]+1 00
< Z ar () |lu; L= (I; Hn/2)||p\/k—1+112—(170—1)|]|9
k=1 =0

pVEk—1+1£>0
Jlus L9 (I; BY)|[Po~ |us L9 (I; B |
+CO(p — 1)|Ju; LU(T; BETP))||

for any interval I C R. Similarly, by (3.2) and the Holder inequality in space
and time variables we also have

(4.9) I (s LULLNI < D aa(O)us L (I HYZ) [Pt o g

£=0
p—14v£>0

Jlus L9 (I; L) ||Po~Hfu; L% (1; L) |
+C68(p — 1)|Ju; LI(IL; L7)||

Therefore by the embedding BY — L" for 2 < r < oo and the equivalence
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B, ,=LPNB, fors>0and1<p,q< oo, for any p with 1+ p > 0 we have

(4.10) || f(u); LA(I; BE4P)|
u+p]+1
Z Z ax (0)||u; L(I; HM2)|PVh=tve=o=1)| 1}o
pVk— 1+u2>0
flus L (15 B, )|[P~ s L (13 B0
+C5(p — 1)|I|||u; L(I; BY)|

where we have used the fact that ¢ = 1, 7 = 2 for p = 1, and the embeddings
HH* — BUtP Bli=s0 s BEFP. Therefore by (4.9) with the embedding L™ —
B§+ﬁ for p = sg or p=n/2 with p+ p < 0, and by (4.10) for p = n/2 with
w~+ p >0, we have

(411) () LULBE)| < (F(Ray) |1 RE™ + Co(p = DI R,
for any p1 = so,n/2, and any v € X (I, Rs,, R, /2), where F(-) is a nonnegative
series defined by

[u+p]+1

E Z Z k(()pp\/k—l—i-uf—(po—l).

pVk— 1+ul>0

Here we note that F'(p) exists for any p € [0, 00) if v < 2, for any p € [0, C(k))
if v = 2, where C(k) is a positive constant behaving as O(k~/2) both k — 0
and x — oo. This follows from the ratio test with

(4.12)
- ap(€ + 1)ppVh—tHviED=(r—1) [y if v<2,
500 ag () ppVE—1tvei=(po—1) 2C2errop?/(po — 1) if v=2.

Now, for any to € I and any data (¢,v) € A"/Z(VSO,’yn/g), let ®;, be an
operator defined as

O4 (w)(t) = K)o+ K () + [ K(t—s)f(uls))ds.

to

By the admissibility of ((1/qo,1/r0),(1/q,1/7)), we have

(4.13) || @y, (w); X2 (D) < Cll(d, ) HM || + C|| f (w); LI(T; BEP)|
< Cyp+ (F(Rpyo) IIRE ™ + Co(p — VIR

for j1 = s0,n/2, any (¢,9) € A2(ysy,Vns2) and any u € X(I, Rq,, Ry j2).-
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On the other hand, by the same argument as above, we also have
(414)  d(Pyy (u), Dy, (v)) < (F(Rp2)[1I"RE ™" + Co(p — 1)|I[)d(u, v)

for any u,v € X(I, Ry, Ry,/2). Indeed, by the embeddings H*° — L? and
BSO — L™ we have

d(q)to (bto

<C

(- $)(F(u(s)) — F(o(s)))ds; L (I H™) ﬂLqO(I;BSO)H |

Applying Corollary 2.1 to the RHS of the last inequality, we have
d(D1 (), B4, (v)) < C|If (u) = f(0); LUTL; B 7).

By the embedding L™ — B;°+ﬁ, we obtain

(4.15) d(®e, (u), Pry (v)) < Clf (u) = £(v); LIL; LT)]].

By the Holder inequality in space and time variables with (4.3) we have

(4.16) [|f(w) = f(v); LYT; L7)||
< F(|Jus (I3 HY2)|| V [|o; L(I; H2)|) ||
(llus L9 (I; L) || V [lvs L9 (I; L™0) | )P~ [l — vy L9 (I3 L) |
+Co(p — V)| [|u — v; L=(I; L?) .

Therefore we obtain (4.14).
By the above argument, if vy, > 0, R, > 0 and I C R satisfy

(4.17) (v — Z)ZCgenrgRim <po—1,
(4.18) O+ (F(Rp o)l 11°RE + Co(p — 1) INR,, < Ry,
(4.19) F(Ry o)/ 1|°RE + Co(p = 11| <1/2

for p = sg,m/2, where (4.17) which is from (4.12) ensures the existence of
F(R,/;) and is disregarded for v # 2, then ®;, is a contraction map on
X(I,Rsy, Ry, 2). Since X(I, Ry, R, /2) is a complete metric space, ®;, has
a unique fixed point in X (I, Ry, R,,/2) and the solution u of (NLKG) with the
data u(0) = ¢, 0;u(0) = 9 is given by the fixed point of ®g. Let R, = 2C~,,
i = sg,n/2. Then (4.17), (4.18) and (4.19) are rewritten as

(4.20) (v =2)vn/2 < Cr~Y2,
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(4.21) G292~  + Co(p — | <1

for a series G and a positive constant C' depending on pg but not on ¢ and ¥,
where (4.20) is disregarded for v # 2. We see that the fixed point u satisfies
(u, dpu) € Cy(I;H™?) by using Corollary 2.1 with (4.11) and the unitarity of
the operator U (t).

The following lemma gives the uniqueness of solutions of (NLKG) in
C(I; H™'?) with the same data at some point in 1.

Lemma 4.2.  Let u,v be the solutions of (NLKG) in C(I; H™'?) which
satisfy

(4.22) (u(t), Bu(t)) = (v(t), dv(t))  in H™?

for somet =1ty € I. If v < 2, then (4.22) holds for allt € I. When v =2, if
\|w; L°(I; H™?)|| is sufficiently small, then the same conclusion holds.

Proof of Lemma 4.2. Let u and v satisfy (4.22) for some t = t; € I. Then
u and v satisfy

wlt) = B(w)(t) = K(t — tyults) + K(t — tr)dyulty) + / K(t— ) f (w(s))ds

for w = w, v, where the last term on the RHS makes sense as a function with
values in L? by Corollary 2.1, an estimate similar to (4.9), and the embedding
H™? < L' with 2 < r < co. Let J be any compact interval with t; € J C I
and let

a = |lu L (J; H2)|| V |jo; L= (J; H?)|.

For ¢ > 0 let Iy, . = [t1 —&,t1 +¢] N J. By the embedding H"/? «— L"
for 2 < r < oo, u and v satisfy u(t),v(t) € L™ for ¢t € I;, . and moreover
u,v € C(I}, ;L") and

lw; L% (I, 5 L) || < Ca(2e)/®
for w = wu,v. Therefore similarly to (4.15) and (4.16) we have
lu = v; L%(Ity 3 L) N L% (I, o5 L)
< G(a)(2e)" @m0y — vy LU (I, o; L)
+C6(p — 1)2elu — v; L (I, ; L),

where 6 + (po — 1)/qo > 0 since 8 > 0, pg # 1 and 1/gg # 0. So that if v < 2,
then for sufficiently small ¢ > 0 we have u(t) = v(t) in L2NL" for any t € Iy, .,



286 MAKOTO NAKAMURA AND TOHRU OZAWA

which means u = v in C(I;, .; H"/?). Repeating this procedure, we have u = v
in C(J; H"?) and therefore in C(I; H"/?). When v = 2, if |Ju; L>(I; H"/?)||
is sufficiently small, then taking ¢ > 0 sufficiently small, ||v; L>°(I;, -; H™/?)| is
also sufficiently small, so that the above argument is valid and we obtain u = v
in C(I; H™/?) analogously. O

In the following argument let 7, /o > 0 be any number which satisfies (4.20).

(1) Let po < ps, to =0 and I = [-T,T], T > 0, in the above argument.
Then p = —1. Since 8 > 0 for py < 1+ 4/, there exists T > 0 which
satisfies (4.21) with 75, replaced by 7,/2. Then for any (¢,v) € H"/? with
(¢, 9); H™?|| < /2, (NLKG) has a unique solution u in X (I, Ry, R, /2)
and the solution u satisfies (u,du) € C(I; H"/?), where we have used the
inequality ||¢; H5'|| < ||¢; H®2|| for s; < s2. The solution u is also a unique
solution of (NLKG) in C(I; H"/?) by Lemma 4.2, where we note that when
v = 2, taking v,/o > 0 sufficiently small, R, > 0 is also sufficiently small,
so that ||u; L(I; H"/?)| is sufficiently small as required in the assumption in
Lemma 4.2.

(2) Let v < 2. We consider the case T* < oo. The proof for T, < oo
follows quite similarly. Let po < p. in the argument before (1). Now let

y= sup [[(u(t), du(t); H"?|| < oo.
0<t<T™

Let € > 0 be a number which satisfies
Gyt +Co(p - 1)|I| < 1,

where G is the same function appearing in (4.21). Let ¢y > 0 be a number such
that T* € (to,to +¢). Then by the same argument as in (1), the operator @y,
defined as
t
Pt u(v)(t) = K(t —to)u(to) + K(t —to)Owu(to) + [ K(t—s)f(v(s))ds

to
has a unique fixed point %y in C([tg,to + €]; H*/?). Let a(t) = u(t) for t €
[0,t0), u(t) = uy(t) for t € [tg,to + €]. Then @ is a solution of (NLKG) in
C([0,to + €]; H™?) with @(0) = u(0) and 9;a(0) = ;u(0). Since u = @ in
C([0,T*); H/?) by Lemma 4.2, u can be extended as @ beyond T* with value
in H"/2?, which contradicts the definition of T*.

(3) Let to =0and I = [-T,T), T >0. If 1 <p <1+4/0, then we can
take pg as pg = p. Let f satisfy N(n/2,(n/2+ p)+,p). Since § # 0, we can
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take T in (4.21) as any number with
(4.23) T < (W, Gloyny)) /7o),
So that we conclude (1.2) by (4.23).

(4) If p satisfies p > 14 4/0, then we can take py for pg = 1 + 4/0 and
therefore sp = 1/2 and 6 = 0. Since G in (4.21) is independent of I, therefore
there exists small v, such that

(4.24) G(my2)7al” < 1

holds corresponding to (4.21).

(4a) With above 74, > 0 fixed, for any (¢,1) € A"/2(’ysO,’yn/2) we see that
® is a contraction map on X (R, Ry, R,,/2) for some R, > 0, 1 = s9,n/2. The
fixed point u satisfies (u, d;u) € Cp(R;H"/?), and is unique in C(R; H"/?) by
Lemma 4.2, where we note that when v = 2, taking v,/ > 0 sufficiently small,
R, /2 > 0 s also sufficiently small, so that [ju; L>°(1; H"/?)|| is sufficiently small
as required in the assumption in Lemma 4.2.

Let (¢4,v4+) and (¢—,1p_) be defined by

+oo +oo
(425) ¢+ =9+ ; K(=s)f(u(s))ds, vz =v+ ; K(=s)f(u(s))ds.

Then (¢, 1) € H™2. Indeed, by Corollary 2.1, we have

s H < 63 2|+ | [ K (¢ = ) (u(s)dss L (B: H/2)|

(4.26) i e
< |lgs H"2|| + C||f (u); L3(R; B>,

where we have used the continuity of K *; f(u) with respect to the time variable.

Since the last term of the last inequality in (4.26) is estimated as (4.11) with |I|?

replaced by 1, ||¢+; H™/?| is finite. Tt follows that 1 € H™/?~1 analogously.
With these ¢4 and ¢4, (1.3) holds. Indeed, since vy are rewritten as

+oo
vi(t) = K(t)p + K (t)9 + | K- 9)f(u(s)ds,

by the same argument in (4.26) we have

lu(t) = v (0):; H2| < || [77 K (7 = ) f(u(s))ds; L ([t, 00); H™?)|

(4.27) < C||f(u); LA([t, 00); B2*TP))\.

Since the RHS of the last inequality is estimated by (4.11) with |I|? replaced
by 1, and is bounded uniformly in ¢, we conclude that u(t) — v () converges
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to zero in H"/? as t — oo. By an analogous argument for dyu(t) — d;v, (1),
u(t) — v_(t) and dyu(t) — dyv_(t), we conclude (1.3).

To show the uniqueness of the pairs (¢+,%+) in (1.3), it suffices to show
that

(428)  lim [|(K (D)0 + K (0o, (K ()0 + K (£)00) ) H"/2| = 0
implies ¢p = 1o = 0. If (4.28) holds, then we have
T [[U(£) (60 — i )s H(|V [U(~8) (60 + i )s || = 0,

where w = (1 — A)'/2. Therefore by the unitarity of U(t), we conclude ¢y =
o = 0.

(4b) For any data (¢p_,¢_) € A"/Q(’ysO,fyn/Q) let ®_, be an operator
defined as

D_oo(u)(t) = K(t)o_ + K(t)_ +1 K(t—s)f(u(s))ds.

By the argument before (1) in this section, ®_., has a unique fixed point u in
X (R, Rsy, Ry /2), where R, > 0, u = s9,n/2, are chosen to satisfy R, = 2C",,
i = So,n/2, with the same constant C appearing in (4.18). Let (¢,%) and
(¢+,%+) be defined by the equations (4.25). Then, as in the argument on
(4.26), we have (¢,v), (¢4,%4) € H™/?. Now u is rewritten as

u(t) = K(6)p+ K(t)b + / K(t— 5)f (u(s))ds.

which implies exactly that u is a solution of (NLKG) in X (R, R, Ry, /2) with
the data u(0) = ¢, du(0) = . w is also a unique solution of (NLKG) in
C(R; H™?) which satisfies

(4.29) I(u(t) = v-(t), B (ult) — v-(1))); H*?] — 0

as t — —oo, where v_(t) = K(t)¢_ + K(t)1_. Indeed, first we show u is a
unique solution of (NLKG) in C(R; H"/?) nxo/? (R) which satisfies (4.29). Let
v be a solution of (NLKG) in C(R; H"/?) ﬂXgO/Z(R) which satisfies (4.29) with
u replaced by v. Then v satisfies v = ®_,(v), and for sufficiently small ty < 0
v satisfies

[[v; XE (=00, o)) < Ry = 2C,
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for any pu = sg,n/2, since

(4.30)
i (o) B = o (6); BV [l19(); B = 9ro- (8); HY | = 0

by (4.29) with u replaced by v, and ||(v_(t), dyv—(t)); H*|| < ~y, by the unitarity
of the free propagator, namely

(4.31) [(v—(2), Do (£)); H*|| = [[(¢—, v ); H¥||
for any t € R. Therefore v is also a fixed point of ®_, in
X((—OO, t0]7 RS()7 Rn/2)

Since ®_ ., has a unique fixed point in X ((—o0,to], Rs,, Ry/2), we have u(t) =
v(t) for any ¢t € (—o0,tg]. Especially we have u(ty) = v(tg) and dwu(ty) =
dwv(tg). Therefore we conclude u = v in C(R; H"/?) by Lemma 4.2. Second we
show w is a unique solution of (NLKG) in C(R; H"/?) which satisfies (4.29). Let
v be a solution of (NLKG) in C(R; H"/?) which satisfies (4.29) with u replaced
by v. Then v satisfies

limsup,_, o [[(v(2), Orv(t)); H* || <

for any p = sg,n/2, by (4.30) and (4.31). Therefore there exists sufficiently
small ¢y < 0 such that

(4.32) G(ll(v(to), po(to) ) H* 2D (v(to), Brv(to)); | ¥ < 1
corresponding to (4.24). Now let &4, , be an operator defined by

Dy o (w) = K(t —to)v(to) + K(t — to)Orv(to) + /t K(t—s)f(w(s))ds.

Then by the condition (4.32) and the same argument in (4a), ®;, , has a unique
fixed point in X (R, R , R;L/Q) for some RL > 0, u = sp,n/2, and the fixed point
is in C(R; H"/?). Since v is a fixed point of ®;, , with v € C(R; H"/?), by the
uniqueness of solutions of (NLKG) in C(R; H"/?) v must satisfy

v e X(R7 R/sm ;7,/2) - X;)/2(R)
Therefore by the uniqueness in C(R; H™/?) N X;L/Q(R), we conclude u = v. So
that u is a unique solution of (NLKG) in C(R; H™/?) which satisfies (4.29).
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Similarly to the argument on (4.27) we have (1.3) for these u, (¢4,%4),
(¢p—,1_), and we also have the uniqueness of (¢4, 1) for (¢p—,_) with (1.3).
By the above argument, we are able to define the scattering operator S on

A"/Q(’ys(),’yn/g) to H™? as S((¢_,1_)) = (¢4,14) by way of a unique global
solution u of (NLKG) in C(R; H"™/?) with (1.3). Moreover, the correspondence
is given by (4.25) or equivalently by

(4.33)
br=oo+ [ K9fleNds, vi=vo+ [ Ko uls)ds
We show the continuity of the operator S. For any

{02 )20 € A2 (50, 90s2)
which satisfies (1.4), let {u7}52, be the fixed points in X (R, R, Ry/2) of the

operators {®’ _}%2, given by

t
7 (v)(t) = K(t)p! + K (t)y +/ K(t—s)f(v(s))ds
for j > 1. Then by Corollary 2.1 we have, as in (4.14),
AP o (1), B (1)) < ClNp- — 9 — ) 0] + F(Royo) BES (i, 09)

for any j > 1. Since (4.19) holds with |I|? replaced by 1, we conclude that
d(u,u’) — 0 as j — oo. On the other hand, by (4.33), we have

s — ¢’ H|| < ||p— — ¢ ; H*||

[ = 9 - e @)

for any j > 1. By Corollary 2.1, the same argument used on (4.16) shows that
the last term on the RHS of the last inequality is estimated by

F(Rn/g)RIS’g*ld(u, u?).

Therefore we have ||¢4 — (bi; H®°|| — 0 as j — oo. By the embedding H% —
HY for v < s9, we also have ||¢4 — ¢’ ; H”|| — 0 as j — oo for any v with
v < s9. By the convex inequality

gy — ¢ HY|
< H¢+ _ (bi;HSO||(n/2_y)/(n/2_80)”¢+ _ ¢i;Hn/2H(u—so)/(n/2—so)7
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we have [|¢4 — ﬂ_;H”H — 0 as j — oo for any v with sg < v < n/2. Analo-
gously we also have |[¢, — ) ; H'"!| — 0 as j — oo for any v with v < n/2.
Therefore we obtain (1.5).

(5) Let to = 0 and let [ = [T, T] for (1), I = R for (4a). Since {u;}32,
satisfies

wy(t) = K(0)d; + K(t); + / K(t — ) (uy(s))ds

for any j > 1, by Corollary 2.1 and the embedding L” < B2 for 1 < 7 < 2, we
have

(4.34)  d(u,uj) < Cl(d = 65,9 — ) 7| + CIlf (w) = f(uy); LT L)

for any j > 1, where the constant C' is independent of I, (¢,9), u, {(¢;,¥;)}724
and {u;}32;. As we have shown in (1) and (4a), for any given initial data in
A2 (Y4, Yny2) the unique solution of (NLKG) in C(R; H"/?) is given in the
restricted space X (I, Rs,, Ry,/2), where R, > 0, y = s9,n/2, are chosen to
satisfy R, = 2Cv,, p = so,n/2, and C is the same constant appearing in
(4.18). Therefore u, {u;}32; are in X (I, Rs,, R,/2). So that by the same
argument on (4.16), we have

Clf(w) = f(uz); LY L7)|| < (F(Ry )| TIPRE™Y + C6(p — 1)|1])d(u, uy),

where [I|® and C§(p — 1)|I] are disregarded for (4a). Since (4.19) holds for
these Ry, i = so,n/2, we conclude that d(u,u;) — 0 as j — oco. Especially we
obtain

(4.35) lu— s L H®)| = 0 as j— o,

from which |Ju — u;; L>(I; H”)|| — 0 as j — oo for v < n/2 follows by the
embedding and the convex inequality as in the last part in (4b) in this section.
Concerning

108 (w = ); L¥(I; HY )| — 0

as j — oo for any v with v < n/2, the proof is analogous and omitted. Conse-
quently we obtain the required results.

For s > n/2, the sufficient conditions to show that ®;, is a contraction
map on X (I, Rs,, Rs«, Rs) are given by

07u + M(Rs*)

I"RP'R, < R,,  M(Ry)|I|"RET! < 1/2
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for pu = so,s*,s, which could be rewritten as M (vs+)
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I|4P0=1 < 1 indepen-

dently of 75. The remaining proof for s > n/2 is carried out along the lines of
the proof for s = n/2. O
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