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Certain Anticipative Transformations
of Geometric Brownian Motions

By

Catherine Donati-Martin∗, Hiroyuki Matsumoto∗∗ and Marc Yor∗ ∗ ∗

Abstract

We present some absolute continuity relationships between the probability laws
of a geometric Brownian motion e(µ) = {e(µ)

t , t � 0} and its images by certain trans-
forms Tα involving e(µ) and its quadratic variation {〈e(µ)〉t, t � 0}. These results are
derived from, and shown to be closely related to, our previous results about the gen-
eralized Dufresne’s identity and the exponential type extensions of Pitman’s 2M −X
theorem for X, a Brownian motion with constant drift µ, and its one-sided supre-
mum M . These absolute continuity results are then shown to be particular cases
of those by Ramer–Kusuoka for non-linear transformations of the Wiener space and
by Buckdahn–Föllmer for solutions of certain stochastic differential equations with
anticipative drifts.

§1. Introduction

1.1. Let B = {Bt, t � 0} denote a one-dimensional Brownian motion starting
from 0 and set At =

∫ t

0 exp(2Bs)ds; more generally, for µ ∈ R, we consider the
Brownian motion B(µ) with constant drift µ and the corresponding exponential
functional defined by

B
(µ)
t = Bt + µt and A

(µ)
t ≡ At(B(µ)) =

∫ t

0

exp(2B(µ)
s ) ds, t � 0,
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respectively.
In a series of papers ([12], [13], [14]), the main results of which have been

summarized in [11], we obtained the following:

(a) The identity in law{
1

A
(−µ)
t

, t � 0

}
(law)
=

{
1

A
(µ)
t

+
1

Ã
(−µ)
∞

, t � 0

}
(1.1)

holds for every µ > 0, where Ã(−µ)
∞ is a copy of A(−µ)

∞ = limt→∞A
(−µ)
t , inde-

pendent of {A(µ)
t , t � 0}. This result extends that of Dufresne [7], who obtained

the identity in law for any fixed time. Moreover one has

A(−µ)
∞

(law)
=

1
2γµ

(1.2)

for a Gamma(µ) random variable γµ ([6], [20]).

(b) The stochastic processes {Z(µ)
t ≡ exp(−B(µ)

t )A(µ)
t , t � 0} and {Z(−µ)

t ≡
exp(−B(−µ)

t )A(−µ)
t , t � 0} have the same distribution, precisely that of a dif-

fusion process with infinitesimal generator

1
2
z2 d

2

dz2
+
{(

1
2
− µ

)
z +

(
K1+µ

Kµ

)(
1
z

)}
d

dz
,(1.3)

where Kν is the usual modified Bessel (Macdonald) function. As discussed
in [11], [13] and [14], this result should be considered as an extension and an
analogue of Pitman’s celebrated 2M −X theorem.

(c) For any fixed t > 0, the conditional probability law of e(µ)
t ≡ exp(B(µ)

t ) given
Z(µ)

t ≡ σ{Z(µ)
s , s � t} is a generalized inverse Gaussian (GIG) distribution;

more precisely, it is given by

P (e(µ)
t ∈ dx|Z(µ)

t , Z
(µ)
t = z)(1.4)

=
1

2Kµ(1/z)
xµ−1 exp

(
− 1

2z

(
x+

1
x

))
dx, x > 0.

The identity (1.4) has played a key role in our previous proof of the result
mentioned in (b) above and, in particular, it shows that Z(µ)

t is strictly included
in Bt ≡ σ{Bs, s � t}. Moreover, one has Bt = Z(µ)

t ∨ σ{Bt}.
Before we discuss any further, we emphasize that we found the Lamperti

relationship
e
(µ)
t = R

(µ)

A
(µ)
t

, t � 0,



� �

�

�

�

�

Anticipative Brownian Transformations 297

where {R(µ)
u , u � 0} is a Bessel process of index µ or of dimension δ = 2(1+µ),

starting from 1, to be an essential tool in our derivation of the above mentioned
results.

1.2. The origin of the present work has been our desire to give a more direct
proof of (1.4) than in [13], [14], using only (1.1) and the following well-known
Doob h-transform relation between the respective distributions P (µ) and P (−µ)

of B(µ) and B(−µ) considered on C(R+,R):

P (µ)|Ft = exp(2µXt)P (−µ)|Ft ,(1.5)

where Ft = σ{Xs, s � t} and Xt = Xt(w) = w(t) for w ∈ C(R+,R).
For this purpose we show the following relationship, which is the main new

result in this work and which is of interest by itself.

Theorem 1.1. Let µ ∈ R, α ∈ R+ and F : C(R+,R) → R+ be an
adapted functional. Then, for every t > 0, it holds that

E[F (B(µ)
s − log(1 + αA(µ)

s /e
(µ)
t ), s � t)] = E[F (B(µ)

s , s � t)Γ(µ)
α (e(µ)

t , Z
(µ)
t )],

(1.6)

where Γ(µ)
α (x, z) = (1 + αz)µΓα(x, z) and

Γα(x, z) = exp
(
−α

2

(
x− 1

(1 + αz)x

))
.

It may be convenient to present the following variant of the identity (1.6).

Corollary 1.2. For every t > 0, it holds that

E[F (B(µ)
s − log(1 + αA(µ)

s /e
(µ)
t ), s � t)Γ̃(µ)

α (e(µ)
t , Z

(µ)
t )] = E[F (B(µ)

s , s � t)],

(1.7)

where Γ̃(µ)
α (x, z) = Γ(−µ)

α (1/x, z).

The following consequences of Theorem 1.1 are easily obtained; in particu-
lar, the next result may be considered as a companion to formula (1.1), but the
reader should beware that it involves only A(µ) and not the pair (A(µ), A(−µ)).

Corollary 1.3. Under the same notations as in Theorem 1.1, the fol-
lowing relationship holds:

E

[
F

(
1

A
(µ)
s

+
(
α/e

(µ)
t

)
, s � t

)]
= E

[
F

(
1

A
(µ)
s

, s � t

)
Γ(µ)

α (e(µ)
t , Z

(µ)
t )

]
.

(1.8)
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Corollary 1.4. The identity (1.4) holds.

We shall give a detailed proof of Corollary 1.4 in Section 5 below.

1.3. We now comment on the title of the present paper. To do this, let us
introduce the Tα-transform of B(µ) defined by

Tα(B(µ))s ≡ B(µ)
s − log(1 + αA(µ)

s ), s � 0.

Then we see that the expectation on the left hand side of (1.6) is that for
T

α/e
(µ)
t

(B(µ))s, s � t, and it is natural to call such a transform anticipative

since, at time s, it involves B(µ)
t for t � s.

This remark being made, Theorem 1.1 is some kind of Maruyama–Girsanov
theorem involving an anticipative transform of B(µ). Note also that we have an
unusual absolutely continuity relationship between the laws of {1/A(µ)

s , s � t}
and its (random) translate {1/A(µ)

s + α/e
(µ)
t , s � t} given by (1.8).

1.4. It is now natural to look for some analogue of Theorem 1.1 which
involves the simpler transform Tα instead of T

α/e
(µ)
t

. This is the content of the
following.

Theorem 1.5. For any adapted non-negative functional G and any µ �
0, it holds that

E[G(Tα(B(µ))s, s � t)] = E[G(B(µ)
s , s � t)∆(µ)

α (e(µ)
t , αA

(µ)
t )],(1.9)

where ∆(µ)
α (v, u) = (1 − u)−µ∆α(v, u) and

∆α(v, u) =
1{u<1}
1 − u

exp
(
−α

2

(
v2

1 − u
− 1
))

.

Moreover, there is an analogue of the Lamperti relation:

exp(Tα(B(µ))t) = R
(µ,1/α)

A(Tα(B(µ)))t
,(1.10)

where {R(µ,1/α)
u , u � 1/α} is a Bessel bridge with dimension δ = 2(1 + µ),

starting from 1 at time 0 and conditioned to be at 0 at time 1/α.

Remark 1.1. It should be mentioned that the law of {Tα(B)s, s � t}
cannot be equivalent to that of B because

1
A(Tα(B))t

=
1

A(B)t
+ α, hence A(Tα(B))t <

1
α
.
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This also implies that the local martingale {Mt, t � 0} given by

Mt = exp

(∫ t

0

α exp(2Bs)
1 + αAs

dBs −
1
2

∫ t

0

(
α exp(2Bs)
1 + αAs

)2

ds

)

is not a martingale. In fact, if it were a martingale under the probability
measure P , then, denoting by Q the probability measure such that Q|Bt =
Mt · P |Bt and noting that {Tα(B)t, t � 0} is a Brownian motion under Q, we
would have P (A(B)t < 1/α) = Q(A(Tα(B))t < 1/α) = 1 for all t, which is
wrong.

1.5. We now compare Theorems 1.1 and 1.5 from the point of view of
changes of probability measures. Formula (1.9) in Theorem 1.5 looks like a
particular case of the Maruyama–Girsanov theorem (see Remark 1.1 above),
whereas Theorem 1.1 or Corollary 1.2 is a particular case of the Ramer–Kusuoka
formula ([17], [9]) for anticipative transforms of Brownian motion.

In fact, applying the Ramer–Kusuoka formula, we have the following: if
ξ = {ξt, t � 0} denotes the solution of

ξt = w(t) +
∫ t

0

ks(ξ(w), w(1)) ds,(1.11)

where k only anticipates by the end point w(1) of the Brownian path {w(t), 0 �
t � 1}, then, under some conditions, the probability law Pξ of ξ is absolutely
continuous with respect to the Wiener measure P and the density is given by

dPξ

dP
= |dc(DH)| exp

(
δ(H) − 1

2

∫ 1

0

H2
s ds

)
,(1.12)

where H = {Hs} is given by Hs = ks(w, η1(w)) for the inverse transform η of
ξ, dc(DH) is the Carleman–Fredholm determinant of the Malliavin derivative
DH and δ(H) is the Skorohod integral of H .

Moreover, Buckdahn–Föllmer [4] have proved the following specialization
of (1.12): under some regularity and integrability conditions,

dPξ

dP
=
∣∣∣∣1 +

∫ 1

0

k′s(w, η1(w)) ds
∣∣∣∣
−1

(1.13)

× exp
(∫ 1

0

ks(w, η1(w)) dw(s) − 1
2

∫ 1

0

ks(w, η1(w))2ds
)
,

where k′s(w, y) = d
dyks(w, y) and η1(w) denotes the value at time 1 of the inverse

transform η of w �→ ξ(w).
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In Section 8 below, we shall show that

ξt(w) = w(t) − log(1 + αA(w)t/e(w)1), t � 1,

is precisely the solution of an equation of the form (1.11) and that formula
(1.6) (for µ = 0 and t = 1 for simplicity) can be understood as a particular
case of (1.13), which we call the Buckdahn–Föllmer formula. Moreover, using
Theorem 1.1, we will show that, in this case, all terms on the right hand side
of (1.12) are expressed in explicit form.

1.6. At this point of the discussion, we find it important to explain more
precisely why we got interested in the complicated transform T

α/e
(µ)
t

rather
than in the simpler Tα. Indeed, as we already noticed in Proposition 2.4 in [12]
(see also [13], Section 14), there is a variant and an extension of the identity
(1.1), which is presented as follows: for any t > 0, one has

(γµ exp(−B(−µ)
t ), {B(−µ)

s , s � t})(1.14)
(law)
= (γµ exp(B(µ)

t ), {B(µ)
s − log(1 + 2γµA

(µ)
s ), s � t}),

where, on both hand sides, µ is positive and γµ denotes a Gamma(µ) random
variable which is independent of B(−µ) on the left hand side and of B(µ) on the
right hand side.

Now the conditional probability law of {B(µ)
s − log(1 + 2γµA

(µ)
s ), s � t}

given γµ exp(B(µ)
t ) = y is obviously that of {T

2y exp(−B
(µ)
t )

(B(µ))s, s � t} given

γµ exp(B(µ)
t ) = y. A more detailed discussion is provided in Section 3.

Another way to relate the studies of the stochastic processes
{T

α/e
(µ)
t

(B(µ))s, s � t} and {Tα(B(µ))s, s � t} is to look for a condition
on a non-negative random variable X which ensures that the laws of
{TX(B(µ))s, s � t} and {B(µ)

s , s � t} are equivalent. Besides Theorem 1.1,
which asserts that X = α exp(−B(µ)

t ) satisfies this property, we also find, as a
consequence of either Theorem 1.1 or Theorem 1.5, that, if X is independent
of B(µ) and if the law of X is equivalent to the Lebesgue measure on R+, then
X also satisfies this property and we can write down the density. This question
is treated at the end of Section 6.

1.7. The rest of this paper is organized as follows. In Section 2 we dis-
cuss some properties and characterizations of the transform Tα, which helps us
considerably in our proofs of Theorems 1.1 and 1.5. In Section 3 we discuss
the result (1.14) and its consequences. In Section 4 we prove Theorem 1.1. In
Section 5 we show how the generalized inverse Gaussian distribution presented
in (1.4) follows from Theorem 1.1. In Section 6 we prove Theorem 1.5 and we
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compare it to Theorem 1.1. In Section 7 we study the “pseudo” martingale
properties of the density Γ(µ)

α (e(µ)
t , Z

(µ)
t ) featured in (1.6). This density is not

a martingale with respect to the natural filtration Ft ≡ σ{B(µ)
s , s � t}, but it

has some “similar” properties, hence we call it a pseudo martingale. In Section
8 we give the details of the relation of our work with the Ramer–Kusuoka and
the Buckdahn–Föllmer formulae. Finally, Section 9 consists of several questions
and remarks strongly motivated by Theorems 1.1 and 1.5.

§2. The Tα Transforms

2.1. Algebraic properties of Tα. The studies made in the present pa-
per and also in our previous papers [12], [13], [14] are best understood if we
introduce the following transforms from C(R+,R) to itself: to a given con-
tinuous function φ : R+ → R, we associate Zt(φ) = exp(−φ(t))At(φ), where
At(φ) =

∫ t

0 exp(2φ(s))ds, as well as Tα(φ)t = φ(t) − log(1 + αAt(φ)).
We then note the easily proven properties.

Proposition 2.1. For every φ ∈ C(R+,R) and α > 0, one has

(i)
d

dt

(
1

At(φ)

)
= − 1

Zt(φ)2
, (ii)

1
At(Tα(φ))

=
1

At(φ)
+ α, t � 0,

(iii) Z ◦ Tα = Z, (iv) Tα ◦ Tβ = Tα+β.

Proof. (i) and (ii) are immediate. (iii) is then deduced from (ii) by taking
the derivatives of both hand sides in (ii) and by using (i). (iv) is now easily
deduced since, as a consequence of (ii), A ◦Tα ◦Tβ = A ◦ Tα+β obviously holds
and A is injective.

Remark 2.1. It is also possible to define the transform T−α, for α >

0, at least on Tα(C(R+,R)) since, if φ belongs to this subset of C(R+,R),
At(φ) < 1/α, hence log(1 − αAt(φ)) is well-defined. Furthermore, one obtains
(iv)′ T−α ◦ Tβ = Tβ−α for β � α.

2.2. Characterization of Tα. Given the essential role played by the trans-
form Tα in the previous section, it is natural to look for some characterization
of this transform. This is provided by the following.

Proposition 2.2. Consider two continuous functions φ, φ̃ : R+ → R
such that φ(0) = φ̃(0), φ(t) > φ̃(t) and Zt(φ) = Zt(φ̃) for every t > 0. Then
there exists α > 0 such that φ̃(t) = φ(t) − log(1 + αAt(φ)), or, in other words,
φ̃(t) = Tα(φ)t, t > 0.
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Proof. Set Φ(t) = φ(t) − φ̃(t). Then our hypothesis entails

exp(Φ(t))
∫ t

0

exp(2(φ(u) − Φ(u))) du =
∫ t

0

exp(2φ(u)) du ≡ At(φ), t > 0.

Therefore, setting ψt = exp(Φ(t)) (which is C1 on (0,∞)), we may write∫ t

0

dAu(φ)
ψ2

u

=
At(φ)
ψt

.

Taking differentials on both hand sides, we obtain

dψt

ψt − 1
=
dAt(φ)
At(φ)

.

Note that, thanks to our hypothesis, the left hand side is well defined. Hence,
there exists a constant a ∈ R such that log(ψt −1) = a+log(At(φ)), t > 0, and
we obtain Φ(t) = log(1 + eaAt(φ)).

Remark 2.2. We realize that our discussion of the transforms Tα and, in
particular, the fact that Z ◦ Tα = Z fulfills, in our set-up, the program devel-
oped by Beneš ([1], [2], [3]) of relating the non-injectivity of Z and the loss of
information it involves. Beneš’ works are strongly motivated by Tsirel’son’s cel-
ebrated stochastic differential equation (see also the discussion in [18], Chapter
IX, Proposition 3.6).

2.3. Filtrations. We now consider the filtrations generated by {Tα(B)s, s �
0} and the σ-fields of {Tα/et

(B)s, s � t}, since equalities of σ-fields or rather
inclusions (corresponding to loss of information) play essential roles through-
out our paper. As far as information is concerned, the stochastic processes
{Tα(B)s, s � 0} and B = {Bs, s � 0} are equivalent. More precisely, we show
the following.

Proposition 2.3. For any α > 0, the natural filtration Fα
t of {Tα(B)s,

s � 0} is equal to that of B. Moreover, for any α > 0 and t > 0, the σ-field
Gα

t ≡ σ{Tα/et
(B)s, s � t} is equal to Ft ≡ σ{Bs, s � t}, up to negligible sets.

Proof. The knowledge of {Tα(B)s, s � t} entails that of Zs(Tα(B)) =
Zs(B) ≡ As/es, s � t. Hence, by taking the logarithm and considering its
difference from Tα(B)s, we see that the variable log(As/(1 + αAs)) is Fα

t -
measurable. Consequently, for s � t, As and Zs are Fα

t -measurable. Therefore
es = exp(Bs) = As/Zs is also Fα

t -measurable, so that Fα
t = Ft.
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Likewise, the stochastic process {Zs(B), s � t} is measurable with respect
to Gα

t ; hence, the variable Bt is Gα
t -measurable since Bt = Tα/et

(B)t + log(1 +
αZt(B)). Consequently, Ft = Zt ∨ σ{Bt} is identical with Gα

t .

§3. Amplification of the Generalized Dufresne’s Identity (1.1)

3.1. A new derivation of (1.1). The identity (1.14) presented in the
Introduction is an extension of the identity (1.1): indeed, the identity in law
between the second members on both hand sides of (1.14) tells us

B(−µ) (law)
= T2γµ(B(µ)),

which is equivalent to (1.1). Here we show that, conversely, (1.14) may be
derived from (1.1).

For this purpose we remark that the left hand side of (1.14) may be rep-
resented as(

exp(−B(−µ)
t )∫∞

t
exp(2(B(−µ)

u −B
(−µ)
t ))du

, {B(−µ)
s , s � t}

)
(3.1)

(law)
=

(
exp(−(B(µ)

t − log(1 + 2γµA
(µ)
t )))

∆
, {B(µ)

s − log(1 + 2γµA
(µ)
t ), s � t}

)
,

where

∆ =
∫ ∞

t

exp(2(B(µ)
u − log(1 + 2γµA

(µ)
u )))

exp(2(B(µ)
t − log(1 + 2γA(µ)

t )))
du

and we have used the relationship {B(−µ)
s , s � 0} (law)

= {B(µ)
s − log(1+2γµA

(µ)
s ),

s � 0} which follows from (1.1). Then it is easy to show

exp(−(B(µ)
t − log(1 + 2γµA

(µ)
t )))

∆
= 2γµ exp(B(µ)

t ),

which finally yields (1.14).

3.2. Some consequences of (1.14). The identity in law (1.14) being
derived anew, we make a list of some of its consequences, in particular, in order
to explain our interest in the transform T

α/e
(µ)
t

, where e(µ)
t = exp(B(µ)

t ).

Proposition 3.1. Let µ > 0 and let γµ denote a Gamma(µ) random
variable, independent of B. Then, for any non-negative adapted functional F



� �

�

�

�

�

304 C. Donati-Martin, H. Matsumoto and M. Yor

and for any y > 0, the following quantities are equal :

(i) E[F (B(µ)
s − log(1 + 2γµA

(µ)
s ), s � t)|2γµe

(µ)
t = y],

(ii)
(
E

[
exp

(
− y

2et

)])−1

E

[
F (Bs − log(1 + yAs/et), s � t) exp

(
− y

2et

)]
,

(iii) E[F (B(−µ)
s , s � t)|2γµ/e

(−µ)
t = y],

(iv) E[F (B(−µ)
s , s � t)|+Z(−µ)

t = 1/y],

where +Z
(−µ)
t = exp(−B(−µ)

t )
∫∞

t (e(−µ)
s )2ds.

Proof. Let us denote L(µ)
s,t (y) = B

(µ)
s − log(1+ yA

(µ)
s /e

(µ)
t ). Then we have

E[F (L(µ)
s,t (2γµe

(µ)
t ), s � t)f(2γµe

(µ)
t )]

=
1

Γ(µ)

∫ ∞

0

xµ−1e−xE[F (L(µ)
s,t (2xe(µ)

t ), s � t)f(2xe(µ)
t )] dx

=
1

Γ(µ)
E

[∫ ∞

0

yµ−1 exp(−y/2e(µ)
t )

(2e(µ)
t )µ

F (L(µ)
s,t (y), s � t)f(y)

]
dy

=
exp(−µ2t/2)

2µΓ(µ)

∫ ∞

0

yµ−1E[exp(−y/2et)F (L(0)
s,t (y), s � t)]f(y) dy,

where the second equality is obtained with the help of the Cameron–Martin
relationship between B and B(µ). The equality between the first and the last
quantities in the preceding sequence of equalities yields the following two re-
sults:

P (2γµe
(µ)
t ∈ dy) = e−µ2t/2 yµ−1

2µΓ(µ)
E

[
exp

(
− y

2et

)]
dy,

and

E[F (L(µ)
s,t (2γµe

(µ)
t ), s � t)|2γµe

(µ)
t = y](3.2)

=
(
E

[
exp

(
− y

2et

)])−1

E

[
F (L(0)

s,t (y), s � t) exp
(
− y

2et

)]
.

The identity (3.2) is precisely the equality between (i) and (ii) in the propo-
sition. The equality between (i) and (iii) follows immediately from (1.14).
Finally, the equality between (iii) and (iv) follows from the explanation given
above in Subsection 3.1 for (1.14).
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§4. Proof of Theorem 1.1

4.1. Proof of Theorem 1.1. We now engage ourselves truly into a proof
of Theorem 1.1, which we shall decompose into three steps.

Step 1. To deduce from (1.1) and (1.5) the identity

E

[
exp(−ηet)F

(
1
As
, s � t

)]
= E

[
exp(−η/et)F

(
1
As

+ 2η/et, s � t

)](4.1)

for every η > 0. From Proposition 2.1, we see that this identity is equivalent
to the following:

E[exp(−ηet)F (Bs, s � t)] = E[exp(−η/et)F (T2η/et
(B)s, s � t)].(4.2)

Step 2. To deduce from (4.2) the identity (1.6) for µ = 0.

Step 3. To prove (1.6) for a general µ.

4.2. Proof of Step 2. a) We proceed to Step 2, assuming that Step 1
has already been performed. Replacing F on the right hand side of (4.2) by
F exp(ηet), we have

E[F (Bs, s � t)] = E[exp(−η/et) exp(η exp(Bt − log(1 + 2ηAt/et)))

× F (T2η/et
(B)s, s � t)],

which, replacing 2η by α, is equivalent to

E[F (Bs, s � t)] = E[Γ̃α(et, Zt)F (Tα/et
(B)s, s � t)],(4.3)

where

Γ̃α(x, z) = exp
(
α

2

(
x

1 + αz
− x−1

))
.

We note that (4.3) is precisely (1.7) for µ = 0 and that the general case is
obtained with the help of the Cameron–Martin formula, just as we do in Step
3.

b) In order to derive (1.6) for µ = 0 from (4.3), we seek a function ϕ on
R × R+ such that

E[ϕ(Bt, At)F (Bs, s � t)] = E[F (Tα/et
(B)s, s � t)].(4.4)
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Thus, in order that (4.4) is satisfied, we need

ϕ

(
Bt − log(1 + αZt),

At

1 + αZt

)
Γ̃α(et, Zt) = 1

because we have from the definitions of Tβ , A and Z

∫ t

0

exp(2Tα/et
(B)s) ds =

∫ t

0

(es)2

(1 + α(et)−1As)2
ds =

At

1 + αZt
.

This can be accomplished without difficulty and it is sufficient to set

ϕ(b, u) = exp
(
−α

2

(
eb − 1

eb + αu

))
.

Noting that

ϕ(Bt, At) = exp
(
−α

2

(
et −

1
(1 + αZt)et

))
= Γα(et, Zt),

we complete the proof of (1.6) for µ = 0.

4.3. Proof of Step 3. For this purpose, we apply the Cameron–Martin
theorem and replace, in formula (1.6) for µ = 0, the functional F (φ(s), s � t)
by F (φ(s), s � t) exp(µφ(t)). Then, using Z(Tα/et

(B))t = Z(B)t, we obtain

E[F (T
α/e

(µ)
t

(B(µ))s, s � t)] = E[F (Tα/et
(B)s, s � t)eµBt−µ2t/2]

= E[F (Bs, s � t)Γα(et, Zt)(1 + αZt)µeµBt−µ2t/2]

= E[F (B(µ)
t , s � t)Γ(µ)

α (e(µ)
t , Z

(µ)
t )].

4.4. Proof of Step 1. At first we rewrite (1.1) in the equivalent form:

E

[
F

(
1

A
(µ)
s

+
1

Ã
(−µ)
∞

, s � t

)]
= E

[
F

(
1

A
(−µ)
s

, s � t

)]
.(4.5)

Then, with the help of (1.2) and (1.5), the left hand side of (4.5) may be written
as

1
Γ(µ)

∫ ∞

0

ηµ−1e−ηE

[
F

(
1

A
(µ)
s

+ 2η, s � t

)]
dη

=
1

Γ(µ)

∫ ∞

0

ηµ−1e−ηE

[
F

(
1

A
(−µ)
s

+ 2η, s � t

)
(e(−µ)

t )2µ

]
dη,

which is equal to E[F (1/A(−µ)
s , s � t)].
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We then use the Cameron–Martin relationship to transform the last two
expressions into related ones involving Brownian motion without drift. Thus
we obtain∫ ∞

0

e−ηηµ−1E

[
F

(
1
As

+ 2η, s � t

)
(et)µ

]
dη

=
∫ ∞

0

e−ηηµ−1E

[
F

(
1
As
, s � t

)
(et)−µ

]
dη

or, equivalently,∫ ∞

0

e−ηE

[
F

(
1
As

+ 2η, s � t

)
(ηet)µ

]
dη

η

=
∫ ∞

0

e−ηE

[
F

(
1
As
, s � t

)(
η

et

)µ]
dη

η
.

Since this equality is true for every µ > 0, we also obtain∫ ∞

0

e−ηE

[
f(ηet)F

(
1
As

+ 2η, s � t

)]
dη

η

=
∫ ∞

0

e−ηE

[
f(η/et)F

(
1
As
, s � t

)]
dη

η

for every non-negative Borel function f on R+. Therefore, using the Fubini
theorem and by obvious changes of variables, we get∫ ∞

0

E

[
exp(−η/et)F

(
1
As

+ 2η/et, s � t

)]
f(η)

dη

η

=
∫ ∞

0

E

[
exp(−ηet)F

(
1
As
, s � t

)]
f(η)

dη

η
,

which yields the identity (4.1).

§5. Relationship with the GIG Laws

5.1. Proof of the identity (1.4). a) We first prove the identity for
µ = 0. We start again from (4.1) or (4.2). With the help of Proposition 2.1,
we see that this identity is in fact true for the (regular) conditional probability
distribution given Zt, Q

ω,z
t = P ( · |Zt, Zt(ω) = z):

EQω,z
t [exp(−ηet)F (Bs, s � t)](5.1)

= EQω,z
t [exp(−η/et)F (T2η/et

(B)s, s � t)], η > 0,
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where et = exp(Bt). In particular, for F = ϕ(1/At), we have

EQω,z
t

[
exp(−ηet)ϕ

(
1
zet

)]
= EQω,z

t

[
exp(−η/et)ϕ

(
2η + 1/z

et

)]
.(5.2)

Let us assume (for simplicity) that, under Qω,z
t , et admits a density gz(x).

Then we deduce from (5.2) that

gz((2η + 1/z)v)(2η + 1/z) exp
(
− η

(2η + 1/z)v

)
= gz(v/z)z−1 exp(−ηv/z).

(5.3)

Taking v = 1 and writing u = 2η + 1/z, we obtain

gz(u) = Cz
1
u

exp
(
− 1

2z

(
u+

1
u

))
, u > 1/z,(5.4)

where

Cz = gz(1/z)z−1 exp
(

1 + z−2

2

)
.

Next, in (5.3), we consider η, v satisfying (2η + 1/z)vz = 1. Then, setting
u = v/z and noting

0 < u =
1

z + 2ηz2
<

1
z

and η =
1
2

(
1
z2u

− 1
z

)
,

we obtain

gz(u) = gz(1/z)z−1 exp(−zη) 1
u

exp(ηu)

=Cz
1
u

exp
(
− 1

2z

(
u+

1
u

))
, 0 < u < 1/z,

and (1.4) for µ = 0 since gz(u) is a probability density and the normalizing
constant Cz is, from (5.6) below, equal to (2K0(1/z))−1.

b) We then obtain the general result (1.4) for any µ by using the Cameron–
Martin theorem. In fact, by using (1.4) for µ = 0, we obtain for every non-
negative Borel function f and a non-negative adapted functional F

E[f(e(µ)
t )F (Z(µ)

s , s � t)]

= E[E[f(et) exp(µBt)|Zt]F (Zs, s � t)e−µ2t/2]

= e−µ2t/2E

[
1

2K0(1/Zt)
F (Zs, s � t)

∫ ∞

0

f(x)xµ−1 exp
(
− 1

2Zt

(
x+

1
x

))
dx

]

= E

[
(e(µ)

t )−µ

2K0(1/Z
(µ)
t )

F (Z(µ)
s , s � t)

∫ ∞

0

f(x)xµ−1 exp

(
− 1

2Z(µ)
t

(
x+

1
x

))
dx

]
.
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Therefore we obtain

P (e(µ)
t ∈ dx|Z(µ)

t , Z
(µ)
t = z)

=
E[(e(µ)

t )−µ|Z(µ)
t , Z

(µ)
t = z]

2K0(1/z)
xµ−1 exp

(
− 1

2z

(
x+

1
x

))
dx

and the constant term on the right hand side equals (2Kµ(1/z))−1.

5.2. The GIG laws. We check that the absolute continuity relationship
(1.6) agrees with our formula (1.4) for the conditional law of e(µ)

t ≡ exp(B(µ)
t )

given Z(µ)
t . The general result for every µ follows from the special case of µ = 0

as we have seen in the previous section, and we assume µ = 0 in this subsection.
It is easily shown that (1.6) entails

E

[
exp

(
−α

2

(
et −

1
(1 + αz)et

))
|Zt, Zt = z

]
= 1.(5.5)

We can show that this property is implied by (1.4) as a consequence of the
following elementary lemma.

Lemma 5.1. Assume that a random variable X is distributed as in
(1.4) with ξ = 1/z and µ = 0. Then, for a, b > 0, in order that

E

[
exp

(
−aX

2
+

b

2X

)]
= 1

holds, one must have (a+ ξ)(ξ − b) = ξ2. Consequently, (5.5) holds.

Proof. The lemma follows easily from the identity

K0(mn) =
1
2

∫ ∞

0

exp
(
−1

2

(
m2u+

n2

u

))
du

u
, m, n > 0,(5.6)

that is, the integral on the right hand side only depends on the product mn.

§6. Proof of Theorem 1.5 and Comparison to Theorem 1.1

6.1. Proof of Theorem 1.5 in the case µ = 0. From the previous
discussions about the transform Tα and the associated σ-fields, it suffices for
the proof of (1.9) for µ = 0 to consider the functionals of the form

G(φ(s), s � t) = F (Zs(φ), s � t)f(exp(φ(t)))(6.1)
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for a generic non-negative functional F and a Borel non-negative function f .
Thus, using (6.1) and the fact that Z ◦ Tα = Z, we see that the equality

(1.9) for µ = 0, with ∆α in place of ∆α(et, αAt), is equivalent to

E

[
f

(
et

1 + αetZt

)
|Zt

]
= E[f(et)∆α|Zt],

where Zt = Z(0)
t . As a consequence, it suffices to find a function ∆α,z(v) such

that

E

[
f

(
et

1 + αetZt

)
|Zt, Zt = z

]
= E[f(et)∆α,z(et)|Zt, Zt = z].(6.2)

We now use (1.4) for µ = 0. Then some elementary computations lead us
to the conclusion that the function

∆α,z(v) =
1{αzv<1}
(1 − αzv)

exp
(
−α

2

(
v2

1 − αzv
− 1
))

satisfies (6.2). The rest of the proof is easy.

6.2. Bessel processes and bridges. The form of the Radon–Nikodym
density in (1.9) for µ = 0 leads us to relate Theorem 1.5 for µ = 0 to the
Lamperti (implicit) representation of geometric Brownian motions in terms of
the Bessel processes: there exists a Bessel process R(µ) = {R(µ)

t , t � 0} of
dimension δ = 2(1 + µ) or of index µ starting from 1 such that

exp(B(µ)
t ) = R

(µ)

A
(µ)
t

, t � 0.(6.3)

Indeed, the form of the function ∆α(v, u) in the statement of Theorem 1.5 for
µ = 0 invites to relate this quantity to the martingale

Dα
u =

1
1 − αu

exp
(
−α

2

(
R2

u

1 − αu
− 1
))

, u < 1/α,(6.4)

where R = R(0) is a two-dimensional Bessel process starting from 1.
We now recall the well known Laplace transform formula for the distribu-

tion of the squared Bessel process, which will imply the martingale property
of {Dα

u , 0 � u < 1/α}: letting Xx = {Xx
t , t � 0} be a δ-dimensional squared

Bessel process starting from x, one has

E[exp(−λXx
t )] = (1 + 2λt)−δ/2 exp

(
− λx

1 + 2λt

)
(6.5)

for λ > 0 (see [18], p.441). Then we can characterize the martingales of the
form (6.4) for the squared Bessel processes.
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Lemma 6.1. Let T > 0 be fixed and h, k : [0, T ) → R+ be two deter-
ministic functions such that

Mh,k
u = k(u) exp(−h(u)Xu), u < T,

is a martingale with respect to the law Qδ
x of Xx and Ru ≡ σ{Xs, s � u}. Then

there exist positive constants C and K such that

h(u) =
1

2(C − u)
and k(u) = K(C − u)−δ/2,

so that {Mh,k
u } is defined on [0, C) (i.e., the optimal value of T is C). Moreover

it holds that
EQδ

x [Mh,k
u ] = KC−δ/2 exp

(
− x

2C

)
.

Proof. By formula (6.5), we have

EQδ
x [k(u) exp(−h(u)Xu)|Rs]

=
k(u)

(1 + 2h(u)(u− s))δ/2
exp

(
− h(u)Xs

1 + 2h(u)(u− s)

)

for s < u < T and the assumption implies

k(s) =
k(u)

(1 + 2k(u)(u− s))δ/2
and h(s) =

h(u)
1 + 2h(u)(u− s)

.

In particular, we have
1

h(s)
+ 2s =

1
h(u)

+ 2u,

that is, the function (h(u))−1 + 2u, u < T, is constant. Therefore there exists
a constant C > 0 such that

h(u) =
1

2(C − u)
.

The rest of the proof is easy and is omitted.

We now fix x > 0 and T > 0. Noting that the squared Bessel process
X = {Xx

u} of dimension δ is given as the solution of the stochastic differential
equation

dXu = 2
√
Xu dwu + δ du ; X0 = x,

for a standard Brownian motion {wu, u � 0} and that we have

Xu

T − u
− x

T
=
∫ u

0

2
√
Xs

T − s
dws +

∫ u

0

Xs

(T − s)2
ds+ δ log

(
T

T − u

)
, u < T,
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we consider the martingale probability density

∆T
u = (1 − u/T )−δ/2 exp

(
−1

2

(
Xu

T − u
− x

T

))
, u < T,

with respect to (Qδ
x,Ru). Then, recalling that the squared Bessel bridge

Xδ,x,T = {Xδ,x,T
u , u � T } of dimension δ which starts from x at time 0 and ends

at 0 at time T is given as the solution of the stochastic differential equation

dXu = 2
√
Xu dwu + δ du− 2Xu

T − u
du

(cf. [18], p.468), we can show, as a consequence of a simple application of
the Maruyama–Girsanov theorem, that, if we consider the probability measure
Qδ,T

x given by
Qδ,T

x |Ru = ∆T
u ·Qδ

x|Ru , u < T,

then Qδ,T
x gives rise to the distribution of the squared Bessel bridge.

6.3. Proof of Theorem 1.5 for general µ � 0. Formula (1.9) is proved
in the same way as we did in Subsection 6.1. Then, we deduce (1.10) from it
because, letting τ (µ)

u be the inverse function of A(µ)
t and using (6.3), we have

∆(µ)
α (e(µ)

τ
(µ)
u

, αA
(µ)

τ
(µ)
u

) =
1{αu<1}

(1 − αu)µ+1
exp

(
−1

2

(
(R(µ)

u )2

α−1 − u
− 1
α−1

))
.

6.4. Comparison of Theorems 1.1 and 1.5. We now present a further
effort to synthesize the contents of both Theorems 1.1 and 1.5 and to compare
them. We set

g(µ)
z (x) =

1
2Kµ(1/z)

xµ−1 exp
(
− 1

2z

(
x+

1
x

))

(in agreement with our notation in (5.4) for µ = 0), which is the density of the
GIG law appearing on the right hand side of (1.4).

Proposition 6.2. (i) For all x > 0 satisfying αzx < 1, one has

1
(1 − αzx)2

g(µ)
z

(
x

1 − αzx

)
= g(µ)

z (x)∆(µ)
α (x,αzx)(6.6)

and

E

[
G(Tα(B(µ))s, s� t)|e(µ)

t =
x

1 − αzx
, Z

(µ)
t = z

]
(6.7)

=E[G(B(µ)
s , s � t)|e(µ)

t = x,Z
(µ)
t = z].
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(ii) For every x, z > 0, one has

(1 + αz)g(µ)
z ((1 + αz)x) = g(µ)

z (x)Γ(µ)
α (x, z)(6.8)

and

E[G(T
α/e

(µ)
t

(B(µ))s, s � t)|e(µ)
t = (1 + αz)x,Z(µ)

t = z](6.9)

=E[G(B(µ)
s , s � t)|e(µ)

t = x,Z
(µ)
t = z].

Proof. Although one might argue that the whole contents of the above
identities may essentially be found in our proofs of Theorems 1.5 and 1.1, we
find it convenient to give a few details for, say, (6.6) and (6.7).

From formula (1.9), we deduce

E

[
G(Tα(B(µ))s, s� t)f(Z(µ)

t )h

(
e
(µ)
t

1 + αA
(µ)
t

)]
(6.10)

=E[G(B(µ)
s , s � t)f(Z(µ)

t )h(e(µ)
t )∆(µ)

α (e(µ)
t , αA

(µ)
t )]

for every non-negative adapted functional G and for all non-negative measur-
able functions f and h. Then, writing both hand sides of (6.10) as the integrals
with respect to the joint law of (e(µ)

t , Z
(µ)
t ) and using (1.4), we obtain (6.6) and

(6.7) after routine manipulations.

We now compare the identities (6.7) and (6.9). For this purpose we remark
that the left hand side of (6.9) may be written as

E[G(T α
(1+αz)x

(B(µ))s, s � t)|e(µ)
t = (1 + αz)x,Z(µ)

t = z].

Then, making the change of variables: β = α((1 + αz)x)−1, we obtain from
(6.9)

E

[
G(Tβ(B(µ))s, s� t)|e(µ)

t =
x

1 − βzx
, Z

(µ)
t = z

]

=E[G(B(µ)
s , s � t)|e(µ)

t = x,Z
(µ)
t = z]

for βzx < 1. This is nothing else but formula (6.7).

6.5. Adding an independent “drift” to {1/A
(µ)
t , t > 0}. We show

that, if X is a non-negative random variable independent of B(µ), then, for any
t > 0, the probability law of {(A(µ)

s )−1 + X, s � t} is absolutely continuous
with respect to that of {(A(−µ)

s )−1, s � t}, and hence with respect to that of
the same quantity for Brownian motion.
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Proposition 6.3. Let µ � 0 and let X be a non-negative random vari-
able, independent of B(µ), with density p(x) which is positive a.e. Then, for
any non-negative adapted functional F, one has

E

[
F

(
1

A
(µ)
s

+X, s � t

)]
= E

[
F

(
1

A
(−µ)
s

, s � t

)
Λµ(A(−µ)

t , (e(µ)
t )2)

]
,

(6.11)

where, setting hµ(x) = xµ−1e−x/2 and qµ(x) = p(x)/hµ(x),

Λµ(a, y) = 2µ

∫ ∞

0

kµ−1e−k/2qµ

(
1

a+ y/2k

)
dk.

Proof. At first we assume µ > 0 and use (1.1). One has

(6.12)

E

[
F

(
1

A
(µ)
s

+X, s � t

)]
=
∫ ∞

0

E

[
F

(
1

A
(µ)
s

+ x, s � t

)]
p(x) dx

=
∫ ∞

0

q̃µ(x)E
[
F

(
1

A
(µ)
s

+ x, s � t

)]
h̃µ(x) dx

=E

[
f

(
1

A
(µ)
s

+
1

Ã
(−µ)
∞

, s � t

)
q̃µ

(
1

Ã
(−µ)
∞

)]
,

where h̃µ(x) = (2µΓ(µ))−1xµ−1e−x/2 is the density of 2γµ and q̃µ(x) =
p(x)/h̃µ(x). Since identity (1.1) implies

({
1

A
(−µ)
t

, t > 0

}
,

1

A
(−µ)
∞

)
(law)
=

({
1

A
(µ)
t

+
1

Ã
(−µ)
∞

, t > 0

}
,

1

Ã
(−µ)
∞

)
,

the expectation (6.12) is equal to

E

[
F

(
1

A
(−µ)
s

, s � t

)
q̃µ

(
1

A
(−µ)
∞

)]
.

It then remains to compute E[q̃µ((A(−µ)
∞ )−1)|Bt], where Bt = σ{B(−µ)

s , s �
t}. For this we note

A(−µ)
∞ = A

(−µ)
t +

∫ ∞

t

(e(−µ)
s )2 ds = A

(−µ)
t + (e(−µ)

t )2Ã(−µ)
∞ ,
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where Ã(−µ)
∞ is a copy of A(−µ)

∞ , independent of Bt. Then one obtains

E

[
q̃µ

(
1

Ã
(−µ)
∞

)
|Bt

]
=E

[
q̃µ

(
1

A
(−µ)
t + (e(−µ)

t )2Ã(−µ)
∞

)
|Bt

]

=
∫ ∞

0

q̃µ

(
1

A
(−µ)
t + (e(−µ)

t )2/2k

)
1

Γ(µ)
kµ−1e−k dk

=
∫ ∞

0

2µqµ

(
1

A
(−µ)
t + (e(−µ)

t )2/2k

)
kµ−1e−k dk

and the result (6.11) for µ > 0.
To deal with the case µ = 0, it suffices to let µ ↓ 0 in formula (6.11) for

µ > 0.

Remark 6.1. Clearly, it is possible to unify the result in the independent
case given in the preceding proposition with that of Theorem 1.1 under the
more general condition that the conditional law of X given Z(µ)

t is equivalent
to the Lebesgue measure. We leave the details for the interested reader.

§7. Pseudo Martingale Properties of the Densities Γ(µ)
α (e(µ)

t , Z
(µ)
t )

7.1. (Z(µ)
t )-anticipative martingales. Since the left hand side of (1.6)

involves e(µ)
t , the stochastic process {Γ(µ)

α (e(µ)
t , Z

(µ)
t ), t � 0} is not a (Bt)-

martingale (see Subsection 7.2 below for a more precise discussion). Nonethe-
less, as we discussed in Subsection 3.2, there is the relation

E[Γ(µ)
α (e(µ)

t , Z
(µ)
t )|Z(µ)

t ] = 1.(7.1)

More generally, we would like to introduce the notion of a (Z(µ)
t )-anticipative

martingale as a stochastic process {Mt, t � 0} such that E[Mt|Z(µ)
t ] is a (Z(µ)

t )-
martingale. Thus, in particular, we claim that {Γ(µ)

α (e(µ)
t , Z

(µ)
t ), t � 0} is a

(Z(µ)
t )-anticipative martingale, but is not a (Bt)-martingale. In fact, by using

Itô’s formula, we can write

Γ(µ)
α (e(µ)

t , Z
(µ)
t ) −

∫ t

0

γ(µ)
α (e(µ)

s , Z(µ)
s ) ds

is a (Bt)-martingale for some function γ
(µ)
α , which, as a consequence of (7.1),

is equivalent to

E[γ(µ)
α (e(µ)

s , Z(µ)
s )|Z(µ)

s ] = 0,
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or, with the help of (1.4),

∫ ∞

0

γ(µ)
α (x, z)xµ−1 exp

(
− 1

2z

(
x+

1
x

))
dx = 0, z > 0,

and these identities provide us with further (Z(µ)
t )-anticipative martingales.

The above discussion is a very particular case of the following well known
fact (see, e.g., [10]).

Lemma 7.1. Let Gt ⊆ Ft, t � 0, be two filtrations and {Xt, t � 0}
and {xt, t � 0} be two (Ft)-adapted measurable stochastic processes such that
{Xt −

∫ t

0
xsds} is an (Ft)-martingale. Then

E[Xt|Gt] −
∫ t

0

E[xs|Gs] ds, t � 0,

is a (Gt)-martingale. In particular, if E[Xt|Gt] does not depend on t and if
{E[xs|Gs], s � 0} admits a continuous version, then this version is identically
equal to 0.

Proof. For s < t and Gs ∈ Gs, we have

E

[
1Gs

(
Xt −Xs −

∫ t

s

xu du

)]
= 0.

On the other hand, this expectation is equal to

E

[
1Gs

(
E[Xt|Gt] − E[Xs|Gs] −

∫ t

s

E[xu|Gu] du
)]

.

Hence we obtain the result.

The following remarks may also be useful.

Proposition 7.2. (i) Assume that, for a function f : R × R+ → R,
{f (B(µ)

t , Z
(µ)
t ), t � 0} is an anticipative (Z(µ)

t )-martingale. Then, one has
E[f(B(µ)

t , Z
(µ)
t )|Z(µ)

t ] = f(0, 0).
(ii) Assume µ = 0. Then, if a function ϕ : R+ × R+ → R satisfies ϕ(x, z) =
−ϕ(1/x, z), one has E[ϕ(et, Zt)|Zt] = 0.

Proof. (i) From formula (1.4), we know that there exists a function f̃ :
R → R (which we could write explicitly in terms of f) such that

E[f(B(µ)
t , Z

(µ)
t )|Z(µ)

t ] = f̃(Z(µ)
t ).
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But, the only functions such that {ϕ(Z(µ)
t ), t � 0} is a (Z(µ)

t )-martingale are
constant functions. Indeed, ϕ is then an affine transform of a scale function S
for {Z(µ)

t } and {S(Z(µ)
t ), t � 0} is not a martingale.

(ii) This follows from the fact that the conditional law of et ≡ exp(Bt) given
Zt is invariant under the mapping x→ 1/x.

7.2. Loss of martingale property of the density. We now discuss pre-
cisely the loss of martingale property for {Γ(µ)

α (e(µ)
t , Z

(µ)
t ), t � 0}, which in fact

is replaced by an interesting interplay between the respective infinitesimal gen-
erators L(µ) and L(µ) of the two-dimensional diffusion process {(B(µ)

t , Z
(µ)
t ), t �

0} and of the one-dimensional Brownian motion B(µ) = {B(µ)
t } with drift µ:

L(µ) =
1
2
∂2

∂b2
+

1
2
z2 ∂

2

∂z2
− z

∂2

∂b∂z
+ µ

∂

∂b
+
{(

1
2
− µ

)
z + eb

}
∂

∂z
,

and

L(µ) =
1
2
d2

dβ2
+ µ

d

dβ
.

In order to proceed further, we need to introduce a few notations. If
Fβ(u, v) is a function of three real arguments, we shall write (P (µ)

t F )β(u, v)
for P (µ)

t (F�(u, v))(β), where {P (µ)
t } is the semigroup of B(µ). We also write

Γ̂(µ)
y (u, v) for Γ(µ)

exp(−y)(u, v).
We may now state the following.

Theorem 7.3. Denote by {Q(µ)
t } and {P (µ)

t } the respective semigroups
of {(B(µ)

t , Z
(µ)
t )} and B(µ). Moreover let L(µ) and L(µ) be the restrictions of

their infinitesimal generators to C2 functions. Then the following identities are
satisfied:

(Q(µ)
t Γ̂(µ)

β )(b, z) = (P (µ)
t Γ̂(µ))β(b, z)(7.2)

and, consequently,

L(µ)Γ̂(µ)
β (b, z) = (L(µ)Γ̂(µ)

� )β(b, z).(7.3)

Proof. We start from writing formula (1.6) for two times s and t, s � t,
as follows:

E[F (B(µ)
u − log(1 + α(e(µ)

t )−1A(µ)
u ), u� s)](7.4)

= E[F (B(µ)
u , u� s)Γ(µ)

α (e(µ)
t , Z

(µ)
t )].
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Since, on the left hand side, we can write

1 + α(e(µ)
t )−1A(µ)

u = 1 +
α

exp(B(µ)
t −B

(µ)
s )

(e(µ)
s )−1A(µ)

u ,

and B(µ)
t −B

(µ)
s is independent of {B(µ)

u , u � s}, we obtain that the left hand
side of (7.4) is, thanks to (1.6) again, equal to

E[F (B(µ)
u , u � s)Γ(µ)

α exp(−(B
(µ)
t −B

(µ)
s ))

(e(µ)
s , Z(µ)

s )],(7.5)

so that, comparing the right hand side of (7.4) and (7.5), we obtain (7.2).
Formula (7.3) follows from (7.2).

It may be worth while presenting the discussion of the preceeding theorem
in the following general framework.

Proposition 7.4. Let (Ft, t � 0) be a filtration and, with respect to it,
let {ξt, t � 0} be a Lévy process with semigroup {Pt} and let {Yt, t � 0} be a
Markov process with semigroup {Qt}, respectively. Assume that there exists a
family of transforms {Sx, x ∈ R} and a function Γx(y) of two variables such
that

E[F (Sx+ξt(Y )s, s � t)] = E[F (Ys, s � t)Γx(Yt)]

holds for every non-negative adapted functional F. Then it holds that

Qt(Γx)(y) = Pt(Γy)x,

where Γy = Γ�(y).

§8. Formula (1.6) as an Anticipative Change
of Probability Measures

For simplicity, we consider formula (1.6) for t = 1 and µ = 0. We also find
it convenient to use the same notations as those in [4]. For example, we denote
a Brownian motion by {w(t), t � 1} instead of {Bt, t � 1} and also denote by
{et(w)}, {At(w)}, {Zt(w)} and so on the corresponding stochastic processes
considered so far. Hence, using these notations, we show that the stochastic
process ξ given by

ξt(w) = Tα/e1(w)(w)t, t � 1,(8.1)

solves a stochastic differential equation of the form (1.11) and we also identify
the drift ks(ξ, y), as well as {ηt(w), t � 1}, the inverse transform of ξ.
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Proposition 8.1. (i) The stochastic process ξ = {ξt, t � 1} defined by
(8.1) is a solution of

dξt = dw(t) + kt(ξ(w), w(1)) dt,(8.2)

where

kt(ξ, y) = − α exp(2ξt)
ey − αAt(ξ)

.(8.3)

(ii) It holds that

ηt(w) = w(t) − log(1 − αe−η1(w)At(w))(8.4)

and

η1(w) = w(1) + log(1 + αZ1(w)).(8.5)

(iii) It holds that

∫ 1

0

k′t(w, η1(w)) dt = αZ1(w),(8.6)

where k′t(w, y) = d
dykt(w, y).

(iv) It holds that

exp
(∫ 1

0

ks(w, η1(w)) dw(s) − 1
2

∫ 1

0

ks(w, η1(w))2ds
)

(8.7)

= (1 + αZ1(w)) exp
(
−α

2

(
e1(w) − 1

e1(w) + αA1(w)

))
.

Remark 8.1. For the stochastic integral on the left hand side of (8.7),
see the explanation given on page 324, [4].

The following corollary follows immediately from formula (1.13), using the
proposition.

Corollary 8.2. In the particular case where ξ solves the equation (1.13)
with the drift k given by (8.3), formula (1.13) becomes

dPξ

dP
= exp

(
−α

2

(
e1(w) − 1

e1(w) + αA1(w)

))
,

that is, precisely formula (1.6).
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Proof of Proposition 8.1. (i) We set β = α/e1(w) for simplicity. Since we
have ξt = Tβ(w)t, it follows from Proposition 2.1 (see also Remark 2.1) that

w(t) = T−β(ξ)t = ξt − log(1 − βAt(ξ)).(8.8)

Hence we obtain

ξt = w(t) + log(1 − βAt(ξ)) = w(t) − β

∫ t

0

exp(2ξs)
1 − βAs(ξ)

ds

= w(t) − α

∫ t

0

exp(2ξs)
e1(w) − αAs(ξ)

ds.

Thus we obtain (8.2).
(ii) Identity (8.8) above yields (8.4). Using again the facts that ξ1(w) = w(1)−
log(1 + αZ1(w)) and that Zt(w) = Zt(ξ), t � 1, we obtain

w(1) = ξ1(w) + log(1 + αZ1(ξ))

and, therefore, formula (8.5).
(iii) From formula (8.3), we obtain

k′t(w, y) =
αey(et(w))2

(ey − αAt(w))2
=

d

dt

(
ey

ey − αAt(w)

)
.

Consequently, we get ∫ 1

0

k′t(w, y) dt =
ey

ey − αA1(w)
− 1.

Then, replacing ey by exp(η1(w)) = e1(w) + αA1(w), we obtain (8.6).
(iv) Let us denote

θt(w) = exp
(∫ t

0

ks(w, η1(w)) dw(s) − 1
2

∫ t

0

ks(w, η1(w))2ds
)

≡ exp
(
Mt −

1
2
〈M〉t

)

with obvious notation. Moreover we set m = e1(w) + αA1(w) for simplicity.
Then, since we have from formulae (8.3) and (8.5)

ks(w, η1(w)) = − α(es(w))2

m− αAs(w)
,

we obtain

Mt = −α
∫ t

0

α(es(w))2

m− αAs(w)
dw(s).
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Noting that {wt, t � 1} is a semimartingale with respect to the enlarged fil-
tration obtained by adding σ{w(1), A1(w)} to the original filtration ([4]) and
using Itô’s formula to develop −(α/2)(m− αAt(w))−1(et(w))2, we obtain

θt =
1

1 − αAt(w)/m
exp

(
−α

2

(
(et(w))2

m− αAt(w)
− 1
m

))
.

Finally, taking t = 1 in this expression and recalling the definition of m, we
arrive at

θ1 = (1 + αZ1(w)) exp
(
−α

2

(
e1(w) − 1

e1(w) + αA1(w)

))
,

which is precisely formula (8.7).

Now we go back to the Ramer–Kusuoka formula (1.12). For details about
the anticipating stochastic calculus, we refer to Nualart [15]. Recall the relation
between the Skorohod integral δ(H) and the generalized Stratonovich integral:

δ(H) =
∫ 1

0

Hs ◦ dw(s) − 1
2

∫ 1

0

((D+H)s + (D−H)s) ds,

where Hs = ks(w, η1(w)),

(D+H)s = lim
u↓s

DsHu and (D−H)s = lim
u↑s

DsHu.

Moreover the Stratonovich integral on the right hand side is given by∫ 1

0

Hs ◦ dw(s) =
∫ 1

0

ks(w, y) ◦ dw(s)
∣∣∣
y=η1(w)

in terms of the usual Stratonovich integral. Therefore, using Itô’s formula, we
obtain

exp
(∫ 1

0

Hs ◦ dw(s) − 1
2

∫ 1

0

H2
s ds

)

= exp
(
−α

2

(
e1(w) − 1

(1 + αZ1(w))e1(w)

))
= Γα(e1(w), Z1(w)),

which implies, by the identification of (1.6) and (1.12),

|dc(DH)| = exp
(

1
2

∫ 1

0

((D+H)s + (D−H)s) ds
)
.(8.9)
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The right hand side of (8.9) is computed as follows. Since Dsw(u) = 1 if
s � u, = 0 if s > u, we have

DsHu =



α(eu(w))2[e1(w) + 2α(A1(w) −As(w))]

(e1(w) + α(A1(w) −Au(w)))2
, s > u,

−αe1(w)(eu(w))2

(e1(w) + α(A1(w) −Au(w)))2
, s � u,

and

(D+H)s + (D−H)s =
2α2(A1(w) −As(w))(es(w))2

(e1(w) + α(A1(w) −As(w)))2
,

which gives

|dc(DH)|= exp
(
α2

∫ 1

0

(es(w))2(A1(w) −As(w))
(e1(w) + α(A1(w) −As(w)))2

ds

)
(8.10)

= (1 + αZ1(w)) exp
(
− αZ1(w)

1 + αZ1(w)

)
.

We end this section by giving further remarks on the Ramer–Kusuoka
formula, the Buckdahn–Föllmer formula and our results.

Remark 8.2. The comparison of (1.12) and (1.13) provides the following
expression for the Carleman–Fredholm determinant:

|dc(DH)| =
(

1 +
∫ 1

0

k′s(w, η1(w)) ds
)−1

exp
(∫ 1

0

(D−H)s ds

)
(8.11)

since the two stochastic integrals in (1.12) and (1.13) satisfy

∫ 1

0

Hs dw(s) = δ(H) +
∫ 1

0

(D−H)s ds,

where, on the left hand side, the stochastic integral is obtained by enlargement
of filtration and can be identified with the forward integral (see [19], [15]).
Formula (8.11) coincides with the expression given in (8.10).

Remark 8.3. We recall that Buckdahn and Föllmer have obtained (1.13)
by using a conditional Girsanov transformation, that is, the behavior of the
solution (1.11) is studied under the law of a Brownian bridge ending at y.
Then, by identification with the Ramer–Kusuoka formula (1.12), they deduced
the explicit formula (8.11). In our particular case, we would like to compute
directly the Carleman–Fredholm determinant to give another proof of (1.6).
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Note that, in our case, we also have a Ramer–Kusuoka formula for the density
dPη/dP :

dPη

dP
= |dc(DK)| exp

(
δ(K) − 1

2

∫ 1

0

K2
s ds

)
,(8.12)

where

Ks =
α(es(w))2

e1(w) + αAs(w)
.

Since
dPη

dP
=
(
dPξ

dP

)−1

◦ ξ

and the exponent on the right hand side of (8.12) is easily computed as before,
we obtain

|dc(DH)||dc(DK)| ◦ ξ = (1 + αZ1(w))2 exp
(
− 2αZ1(w)

1 + αZ1(w)

)
,(8.13)

with

DsKu =



− α(eu(w))2e1(w)

(e1(w) + αAu(w))2
, s > u,

α(eu(w))2(e1(w) + 2α2As(w))
(e1(w) + αAu(w))2

, s < u.

Note the similarity of the two expressions for DK and DH . In order to deduce
the value of |dc(DK)| and |dc(DH)| from (8.13), it would be enough to prove
that |dc(DK)| = |dc(DH)| holds and that these quantities are invariant under
the transform ξ (this is indeed the case since, by (8.10), |dc(DH)| is a function
of Z1). Unfortunately, we have not succeeded in proving this fact.

Remark 8.4. The Ramer–Kusuoka formula is a powerful tool to study
the Markov field property of the solutions of stochastic differential equations
with boundary conditions (i.e., a relation between the initial value and the final
value at time 1). For example, see [5] and [16]. In these works, the Carleman–
Fredholm determinant may be computed explicitly, using the following series
expansion which involves the finite dimensional determinants:

dc(A) = 1 +
∞∑

n=2

(−1)n

n!

∫
[0,1]n

det(Â(si, sj)) ds1 · · · dsn,(8.14)

where Â(si, sj) = A(si, sj) if i 
= j and Â(si, si) = 0. In formula (8.14), we
have identified the Hilbert–Schmidt operator on L2([0, 1]) with a square inte-
grable integral kernel. We have not succeeded in computing |dc(DH)| for the
transform (8.1) from the expression (8.14).
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§9. Concluding Remarks

9.1. Transforms of Brownian motion with no loss of information.
In this subsection we present a number of transforms of geometric Brownian
motion exp(Bt) which have the same filtrations as Bt ≡ σ{Bs, s � t}. We
assume µ = 0 for simplicity.

Proposition 9.1. For every m < 3/4, the stochastic process E(m) =
{E(m)

t , t � 0} given by
E(m)

t = exp(Bt)(At)−m

has the same filtration as (Bt).

Remark 9.1. Recall that 〈exp(B)〉t =
∫ t

0
exp(2Bs)ds ≡ At. Hence,

E(m) represents the process {exp(Bt)} “normalized” by a power of its bracket
(i.e.,“intrinsic time”).

Proof. In [13] Proposition 7.1, we have shown the following: for any
c < 3/2, the filtration of the process {exp(−Bt)

∫ t

0
exp(cBs)ds, t � 0} is the

same as (Bt). From the scaling argument, this is equivalent to the filtration of
{exp(−2Bt/c)At, t � 0} being the same as (Bt) for any c < 3/2; equivalently,
the filtration of {exp(−Bt)(At)c/2, t � 0} is the same as (Bt). Hence we obtain
the statement of the proposition.

We now extend the validity of Proposition 9.1. by replacing the function
x �→ xm by a more general increasing function.

Proposition 9.2. Let f : (0,∞) → (0,∞) be continuous and increas-
ing, and assume that f(x)−2 is integrable near x = 0. Then, the filtration of
the process {E(f)

t , t > 0} given by

E(f)
t = exp(Bt)(f(At))−1, t > 0,

is equal to (Ft).

Proof. Note that
∫ t

0
(E(f)

s )2ds =
∫ At

0
(f(x))−2dx is adapted to the natural

filtration of E(f); hence, so is At and, finally, Bt.

9.2. Another discussion. A different kind of discussion consists in look-
ing at the filtration of the stochastic process defined by

Zϕ,H
t ≡ ϕ(Bt)(Ht(B))−1, t > 0,

for a regular function ϕ and an adapted, increasing continuous process {Ht(B),
t � 0}.
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Proposition 9.3. Denote by T the class of C1 functions ϕ : R → R
which are strictly increasing and such that ϕ/ϕ′ is injective. Then, for any
ϕ ∈ T , the natural filtration of {Zϕ,H

t , t � 0} is identical to (Bt) for all ϕ ∈ T .

Proof. Note that

〈Zϕ,H〉t − 〈Zϕ,H〉s =
∫ t

s

(
ϕ′(Bu)
Hu(B)

)2

du.

Hence, the process {ϕ′(Bu)(Hu(B))−1, u > 0} is adapted to the filtration of
{Zϕ,H

t }, and so is {(ϕ/ϕ′)(Bu), u � 0}. The result now follows from the injec-
tivity of ϕ/ϕ′.

Examples of functions ϕ belonging to T are: ϕ1(x) = exp(ax) + b (a >
0, b 
= 0), ϕ2(x) = sinh(ax) (a > 0), ϕ3(x) = x2k−1 (k ∈ N), whereas obviously
the function of most interest to us, ϕ0(x) = exp(ax) (a > 0), does not belong
to T .
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