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Abstract

We present a generalized non-isospectral dispersive water wave hierarchy in 2+1
dimensions. We characterize our entire hierarchy and its underlying linear problem
using a single equation together with its corresponding non-isospectral scattering
problem. This then allows a straightforward construction of linear problems for the
entire generalized 2 + 1 hierarchy. Reductions of this hierarchy then yield new inte-
grable hierarchies in 1+1 dimensions, and also new integrable hierarchies of ordinary
differential equations, all together with their underlying linear problems. In particu-
lar, we obtain a generalized PIV − PII hierarchy; this includes as special cases both
a hierarchy of ODEs having the fourth Painlevé equation as first member, and also
a hierarchy of ODEs having the second Painlevé equation as first member. All of
these hierarchies of ordinary differential equations, as well as their underlying linear
problems, are new; both the PIV hierarchy and the PII hierarchy obtained here are
different from those which have previously been given.

§1. Introduction

Out of the huge variety of different kinds of completely integrable systems
that are known today, one particular class has in recent years been attracting
increasing interest, namely those associated to non-isospectral scattering prob-
lems [1]–[17]. There are many reasons for this interest; one is the connection
that exists between non-isospectral scattering problems and linear problems
for ODEs [9]; another is the fact that very little appears to be understood
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about the actual process of Inverse Scattering for such systems [1]–[3]; a third
reason is, as observed in [13], [14], that it is possible to characterize an entire
hierarchy and its underlying linear problem using a single associated partial
differential equation (PDE) in 2 + 1 dimensions together with its underlying
non-isospectral scattering problem. This last idea was used in [13], [14] to
construct new hierarchies of PDEs in 2 + 1 dimensions, together with their
non-isospectral scattering problems, along with new hierarchies of PDEs in
1+1 dimensions having non-isospectral or isospectral scattering problems, and
also new hierarchies of ordinary differential equations (ODEs) together with
their underlying linear problems.

In the present paper we use the methodology developed in [13], [14] in
order to construct a new non-isospectral variant of the dispersive water wave
(DWW) hierarchy. Details of the standard 1 + 1-dimensional hierarchy, in
various different coordinates, can be found in [18]–[25]. Here we follow the
choice of coordinates adopted in [24]. Reductions of our non-isospectral DWW
hierarchy to ODEs then give new hierarchies of integrable systems of ODEs,
together with their underlying linear problems. In particular we note that we
obtain a generalized PIV –PII hierarchy; this includes as special cases both a
hierarchy of ODEs having the fourth Painlevé equation (PIV ) as first member,
and also a hierarchy of ODEs having the second Painlevé equation (PII) as
first member. All of these results are new; in particular, we note that the PIV

hierarchy and the PII hierarchy obtained here are different from those which
have previously been given, in [14] and [26], [27] respectively.

The layout of the paper is as follows. In Section 2 we construct our 2 +
1-dimensional DWW hierarchy, together with its corresponding hierarchy of
scalar and matrix linear problems, and also discuss reductions to hierarchies
in 1 + 1 dimensions. In Section 3 we consider reductions in components, and
in Section 4 reductions to systems of ODEs; it is in Section 4 that we present
our generalized PIV –PII hierarchy, along with our PIV and PII hierarchies
which appear as special cases, all together with their underlying scalar and
matrix linear problems. In Section 5 we consider as explicit examples the first
two members of these hierarchies. Section 6 is devoted to a summary and
conclusions.

§2. A Non-Isospectral 2+1 DWW Hierarchy

Following the approach introduced in [13], [14], we begin by considering
the (2 + 1)-dimensional system

ut = Ruτ + G(1)
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where u = (u, v)T , R is the recursion operator of the DWW hierarchy, G =
(g, 0)T , and g is an arbitrary function of t and τ . This function g is introduced
into the system (1) by the non-isospectral condition, that is, by the equation
satisfied by the spectral parameter in the corresponding Lax pair. The recursion
operator of the DWW hierarchy is

R =
1
2

(
∂xu∂

−1
x − ∂x 2

2v + vx∂
−1
x u+ ∂x

)
.(2)

This can be written as the quotient of two Hamiltonian operators B1 and B2,

R = B2B
−1
1 ,(3)

where B1 and B2 are given by

B2 =
1
2

(
2∂x ∂xu− ∂2

x

u∂x + ∂2
x v∂x + ∂xv

)
(4)

B1 =

(
0 ∂x

∂x 0

)
.(5)

We note that in fact the DWW hierarchy is tri-Hamiltonian. However, we do
not make use of the third Hamiltonian structure in this paper.

The system (1) has the Lax pair

ψxx =

[(
λ− 1

2
u

)2

+
1
2
ux − v

]
ψ,(6)

ψt = λψτ +
1
2
(
∂−1

x uτ

)
ψx − 1

4
uτψ,(7)

where the spectral parameter λ = λ(τ, t) satisfies the condition

λt = λλτ +
1
2
g.(8)

We note that the system (1) is equivalent to an extension of the classical Boussi-
nesq system having a non-isospectral scattering problem first given in [11], to-
gether with its Lax pair and Darboux transformation. In the case g = 0 it is
also equivalent to the 2 + 1-dimensional extension of the nonlinear Schrödinger
equation given in [2].

We now use the system (1) and the corresponding non-isospectral scatter-
ing problem (6)–(7) to generate our (2+1)-dimensional DWW hierarchy and at
the same time the corresponding hierarchy of non-isospectral scattering prob-
lems. The idea [13], [14] is that, for suitably specified flow times t and τ , the
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system (1) can be understood as representing a generic member of the hierar-
chy and (6)–(7) its underlying scattering problem. We then use these equations
to iterate between succesive flows and also their linear problems; note that we
also iterate on the function G. We take as base equation for this proccess of
iteration the system

ut1 = Ruy + R2G0 + RG1 + G2.(9)

When performing the iteration each Gi = (gi, 0)T and λ are considered to be
functions of all possible flow times tj and y, but not of x. The system (9) can
be written locally by setting u = wx;

wxt1 =
1
2
[
(wxwy − wxy)x + 2vy

]
(10)

+
1
4
g0
(
(xw2

x − xwxx − wx)x + 4v + 2xvx

)
+

1
2
g1 (xwx)x + g2,

vt1 =
1
2

[vxwy + 2vwxy + wxvy + vxy](11)

+
1
4
g0 (2xwxxv + 2xwxvx + 4wxv +xvxx + 3vx) +

1
2
g1 (2v + xvx) .

This system has the linear problem

ψxx =

[(
λ− 1

2
wx

)2

+
1
2
wxx − v

]
ψ,(12)

ψt1 = λψy +
1
2

(
λg0x+ wy +

1
2
g0xwx + g1x

)
ψx(13)

−1
4

(
λg0 + wxy +

1
2
g0(xwx)x + g1

)
ψ,

where the spectral parameter λ satisfies the non-isospectral condition

λt1 = λλy +
1
2
λ2g0 +

1
2
λg1 +

1
2
g2.(14)

In order to iterate between successive flows of our hierarchy, and their corre-
sponding scattering problems, we begin by writing a generic member of our
(2 + 1)-dimensional hierarchy as

utn = Mn = (Mn, Nn)T ,(15)

and the corresponding generic evolution equations for the eigenfunction ψ and
the spectral parameter λ as

ψtn = Γnψy +
1
2
Pnψx − 1

4
Pn,xψ,(16)

λtn = Λn.(17)
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We then obtain from (1), (7) and (8) the recursion relations

Mn =RMn−1 + Gn+1(18)

Γn = λΓn−1(19)

Λn = λΛn−1 +
1
2
gn+1(20)

Pn = λPn−1 + ∂−1
x Mn−1(21)

where Mn = (Mn, Nn)T and Gn = (gn, 0)T . These recursion relations, to-
gether with the base equation (9) and its scattering problem and corresponding
constraint on λ, then yield the hierarchy

utn = Mn = Rnuy +
n+1∑
i=0

Rn+1−iGi,(22)

and the corresponding hierarchy of spectral problems

ψxx =

[(
λ− 1

2
u

)2

+
1
2
ux − v

]
ψ,(23)

ψtn = λnψy +
1
2
Pnψx − 1

4
Pn,xψ,(24)

where Pn is given by

Pn = ∂−1
x

n−1∑
i=−1

λn−1−iMi,(25)

and the spectral parameter λ satisfies

λtn = λnλy +
1
2

n+1∑
i=0

λn+1−igi.(26)

Here we have set M0 = (uy + (1/2)g0(xu)x + g1, vy + (1/2)g0(2v + xvx))T and
M−1 = (g0, 0)T . Note that here we have used the notation M−1 for convenience
only; this is not meant to denote the inverse flow.

The hierarchy (22) is our generalized 2 + 1-dimensional DWW hierarchy;
this hierarchy is not to be found in the literature, although subcases have been
discussed in [28]. We note that the second term on the right-hand side of (22)
represents a non-isospectral deformation which gives rise to non-autonomous
terms; we note also that for n > 1 these are in the general case non-local.
Linear combinations of the above flows can be obtained by allowing τ in (1) to
be a vector. This then makes it trivial to add to (22) flows in 1 + 1 dimensions
(see Sections 4 and 5 later).
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Given a scalar linear problem, it is straightforward, as noted in [13], [14], to
write down a corresponding matrix linear problem. Thus, corresponding to the
scalar linear problem (23), (24), we have the matrix non-isospectral scattering
problem

Ψx = FΨ,(27)

Ψtn = λnΨy +GΨ,(28)

where Ψ = (ψ1, ψ2)
T , the matrices F and G are given by

F =

(
− 1

2 (2λ− u) 1
−v 1

2 (2λ− u)

)
(29)

G=




− 1
4 ((2λ− u)Pn + Pn,x) 1

2Pn

1
2

∑n+1
i=0 λ

n+1−igi + 1
2λ

nuy − 1
2Mn

1
4 ((2λ− u)Pn + Pn,x)

− 1
4 ((2λ− u)Pn + Pn,x)x − 1

2vPn


(30)

and where λ satisfies (26). This is a matrix non-isospectral scattering problem
of the form discussed in [11], where the case n = 1 and g0 = g1 = 0 can be found.
We note that in the expression for G there is a cancellation of terms in unx,y

betweenMn and Pn,xx (in the corresponding flow, utn = (−1/2)nunx,y+· · · and
vtn = (1/2)nvnx,y + · · ·). Suitable gauge transformations yield other canonical
forms of linear problem [11].

Reductions of the system (22) to PDEs in 1 + 1 dimensions include non-
isospectral deformations of standard 1 + 1 DWW flows (∂y = ∂x), and also
reductions to non-isospectral deformations of inverse DWW flows (∂tn = 0),
all of which are obtained together with corresponding scalar and matrix linear
problems.

§3. Reductions in Components

The hierarchy (22) is a two-component hierarchy of PDEs in 2 + 1 dimen-
sions. We now consider reductions of this hierarchy to one component.

We begin by noting that in the case v = 0 the recursion operator (2)
becomes

R =
1
2

(
∂xu∂

−1
x − ∂x 2
0 u+ ∂x

)
.(31)

It then follows that in the reduction v = 0, the hierarchy (22) becomes the
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(entirely local under u = wx) scalar hierarchy

utn = R̃nuy +
n+1∑
i=0

R̃n+1−igi,(32)

where the operator R̃ = (1/2)∂x(u − ∂x)∂−1
x is the recursion operator of the

Burgers hierarchy. Thus we obtain a non-isospectral deformation of a 2 + 1-
dimensional non-isospectral Burgers hierarchy; special cases of this are dis-
cussed in [7] and [11].

Equation (32) is linearized by the transformation u = −ϕx/ϕ onto

ϕtn =
(
−1

2

)n

ϕnx,y −
n+1∑
i=0

(
−1

2

)i

gn+1−i

(
iϕ(i−1)x + xϕix

)
.(33)

We now consider the reduction u = 0. In this case we find that

R2 =

(
R̂ 0

1
4 (2vx + vxx∂

−1
x ) R̂

)
,(34)

where R̂ = (1/4)(∂2
x + 4v+ 2vx∂

−1
x ) is the recursion operator of the Korteweg-

de Vries (KdV) hierarchy. Thus we obtain a reduction of the even flows of the
hierarchy (22) to

vt2n = R̂nvy +
n∑

k=0

R̂n−k+1g2k,(35)

where in taking this reduction we have also set g2k+1 = 0 for k = 0, . . . , n.
This then gives a non-isospectral deformation of the 2+1 non-isospectral KdV
hierarchy.

If we now consider reductions to 1 + 1 dimensions, then we see that we
obtain, in the reduction v = 0, non-isospectral deformations of both the Burg-
ers hierarchy and of inverse Burgers flows, and in the reduction u = 0, non-
isospectral deformations of both the KdV hierarchy and of inverse KdV flows.
We also obtain, for all of these, corresponding scalar and matrix linear prob-
lems.

We note that in the special case of the standard 1 + 1-dimensional DWW
hierarchy, i.e. for ∂y = ∂x and all gi = 0 in (22), the reductions to the Burg-
ers and KdV hierarchies, which follow from the reductions obtained here, are
known.
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§4. A Generalized PIV –PII Hierarchy

We now consider reductions of the hierarchy (22) to systems of ODEs. We
take ∂tn = 0 and ∂y = ∂x, which then yields

Rnux +
n+1∑
i=0

Rn+1−iGi = (0, 0)T ,(36)

where all gi are now constant parameters. Following the approach in [9] we are
able to use our non-isospectral scattering problems to obtain linear problems
for the hierarchy of ODEs (36). We thus obtain the linear problem

ψxx =

[(
λ− 1

2
u

)2

+
1
2
ux − v

]
ψ,(37)

(
1
2

n+1∑
i=0

λn+1−igi

)
ψλ =

(
λn +

1
2
Pn

)
ψx − 1

4
Pn,xψ,(38)

where we assume that not all gi are zero. Here Pn is given by (25), where now

Mi = Riux +
i+1∑
j=0

Ri+1−jGj ,(39)

M0 = (ux + (1/2)g0(xu)x + g1, vx + (1/2)g0(2v + xvx))T , and as before M−1

= (g0, 0)T .
We also obtain the matrix linear problem

Ψx = FΨ,(40) (
1
2

n+1∑
i=0

λn+1−igi

)
Ψλ =HΨ = (λnF +G)Ψ,(41)

where now the matrices F and G are given by

F =

(
− 1

2 (2λ− u) 1
−v 1

2 (2λ− u)

)
(42)

G=




− 1
4 ((2λ− u)Pn + Pn,x) 1

2Pn

1
2

∑n+1
i=0 λ

n+1−igi + 1
2λ

nux − 1
2Mn

1
4 ((2λ− u)Pn + Pn,x)

− 1
4 ((2λ− u)Pn + Pn,x)x − 1

2vPn


(43)

and where Pn and Mn are as described above.
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We note that the solution of ODEs using associated linear problems is
discussed in [27] and [29]–[31]. Here we present linear problems for hierarchies
of ODEs.

In the local case gi = 0, i = 0, 1, . . . , n− 2, the hierarchy (36) reads

Rnux +
1
4
gn−1

(
(xu2 − xux − u)x + 4v + 2xvx

2xuxv + 2xuvx + 4vu+ xvxx + 3vx

)
(44)

+
1
2
gn

(
(xu)x

2v + xvx

)
+ gn+1

(
1
0

)
=

(
0
0

)
,

where we now assume that at least one of gn−1, gn, or gn+1 is nonzero. We note
that in the case gn−1 = gn+1 = 0 the hierarchy (44) is the similarity reduction
of the DWW hierarchy utn = Rnux under

(45)

u =
U(X)

[12 (n+ 1)gntn]
1

n+1
, v =

V (X)

[12 (n+ 1)gntn]
2

n+1
, X =

x

[12 (n+ 1)gntn]
1

n+1
.

Thus we see that the hierarchy (44) is more general than that which would be
obtained using the scaling reduction (45). More general still is the hierarchy
(36) which, although written here nonlocally, can always be written locally
using suitable auxiliary variables. Notwithstanding, it is the hierarchy (44)
that we define here as a generalized PIV –PII hierarchy; scalar and matrix
linear problems follow easily from those given above for (36). As we shall see,
this hierarchy has as special cases both a hierarchy having PIV as first member,
and also a hierarchy having PII as first member. Both (36) and (44) are new
hierarchies of integrable ODEs.

Reductions in components of (36) follow easily from the discussion in Sec-
tion 3. In the case v = 0 we obtain a hierarchy of linearizable ODEs (∂y = ∂x

and ∂tn = 0 in (32)), and in the case u = 0 we obtain a generalized P34 hierar-
chy (∂y = ∂x and ∂tn = 0 in (35)); the standard P34 hierarchy is as defined in
[32].

We now consider the special case gn−1 = 0 of our generalized PIV –PII

hierarchy (44). It is in this special case that we obtain our PIV and PII hier-
archies, according as to whether gn �= 0 or gn = 0 respectively. Both of these
hierarchies are new.
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§4.1. A PIV hierarchy: gn−1 = 0 and gn �= 0

In this case the hierarchy (44) has the first integral (In, Jn)T given by

(
In
Jn

)
=


 Ln,x − 2Kn −

(
u+ 2 gn+1

gn

)
Ln

LnKn,x + vL2
n +K2

n − Ln,xKn +
(
u+ 2 gn+1

gn

)
LnKn


(46)

where (
Kn

Ln

)
=B−1

1

[
Rn−1ux + gn

(
1
0

)
+

n−2∑
i=0

(−gn+1

gn

)n−i−1

Riux

]
(47)

+2
(−gn+1

gn

)n
(

0
1

)
.

In order to see this we note that

∂

∂x

(
In
Jn

)
=

(
−2 0
2Kn 2Ln

)[
B2 +

gn+1

gn
B1

](
Kn

Ln

)
(48)

=

(
−2 0
2Kn 2Ln

)[
Rnux + gnR

(
1
0

)
+ gn+1

(
1
0

)]

=

(
0
0

)
.

We define two constants of integration αn and βn by(
In
Jn

)
=

(
gn − 2αn(

1
2gn − αn

)2 − 1
4β

2
n

)
(49)

and thus obtain the equivalent system of first integrals

Ln,x = 2Kn +
(
u+ 2

gn+1

gn

)
Ln + (gn − 2αn),(50)

Kn,x =

(
Kn + 1

2gn − αn

)2 − 1
4β

2
n

Ln
− vLn.(51)

It is the system (49), or equivalently (50), (51), that is our PIV hierarchy; as we
shall see, in the case n = 1 this system of equations is just the fourth Painlevé
equation PIV . This PIV hierarchy is different from that presented in [14]. That
is, the system (50), (51) represents a new PIV hierarchy. Linear problems for
this hierarchy follow from those presented above for (36).
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§4.2. A PII hierarchy: gn−1 = 0 and gn = 0

In this case each component of our hierarchy (44) integrates immediately
to give (

∂−1
x 0
0 ∂−1

x

)
Rnux + gn+1

(
x

0

)
=

(
γn

δn

)
,(52)

where γn and δn are two constants of integration, and where we now assume
that gn+1 �= 0; this assumption then allows us to take γn = 0.

It is this hierarchy that is our PII hierarchy; as we shall see, in the case
n = 1 this system of equations is just the second Painlevé equation PII . We
note, however, that higher members of this hierarchy are different from those of
the PII hierarchy presented in [26], [27]. That is, the system (52) represents a
new PII hierarchy. Again, linear problems for this hierarchy follow from those
presented above for (36).

Remark 1. It is a simple matter to generalise our PDE and ODE hierar-
chies to include lower order DWW flows. Thus corresponding to the local case
(44) we obtain

Rnux +
n−2∑
i=0

ciRiux + gn−1R2

(
1
0

)
+ gnR

(
1
0

)
+ gn+1

(
1
0

)
=

(
0
0

)
,(53)

where without loss of generality we have taken cn−1 = 0, together with cor-
responding scalar and matrix linear problems. We also obtain corresponding
generalizations of our PIV and PII hierarchies, again with their corresponding
linear problems.

Remark 2. Thus far we have assumed that not all gi are zero. In the case
where all gi vanish then the coefficients in λ of the determinant of H in (41)
give constants of integration of the system (44). Similarly for the corresponding
linear problem of (52) in the case gn+1 = 0, and for the more general PIV –PII

and PII hierarchies discussed in Remark 1 above. (Note that in any linear
problem we always replace higher derivatives of u and v using the corresponding
equations; see [13], [14].)



� �

�

�

�

�

338 P. R. Gordoa, N. Joshi and A. Pickering

§5. Examples

§5.1. n = 1

In the case n = 1 we obtain the system of PDEs (9), or equivalently (10)
and (11). Corresponding to (44) we obtain

Rux + g0R2

(
1
0

)
+ g1R

(
1
0

)
+ g2

(
1
0

)
=

(
0
0

)
,(54)

i.e.

(55)
1
2
(
2v + u2 − ux

)
x

+
1
4
g0
(
(xu2 − xux − u)x + 4v + 2xvx

)
+

1
2
g1(xu)x + g2 = 0

(56)
1
2

(2uv + vx)x +
1
4
g0 (2xuxv + 2xuvx + 4vu+ xvxx + 3vx) +

1
2
g1 (2v + xvx) = 0

together with the matrix linear problem (40), (41) with F and H given by

F =

(
− 1

2 (2λ− u) 1
−v 1

2 (2λ− u)

)
,(57)

H =




−λ2 + 1
4 (u2 − ux) + 1

4g1 (xu λ+ 1
2u+ 1

2xg1
−2xλ− 1) + 1

8g0
(
xu2 + 1

4g0(xu+ 2xλ)
−xux − u− 4xλ2 − 2λ

)
−λv − 1

2 (vx + uv) − 1
2xg1v λ2 − 1

4 (u2 − ux) − 1
4g1 (xu

− 1
4g0(xvx + xuv + 2xλv + 2v) −2xλ− 1) − 1

8g0
(
xu2

−xux − u− 4xλ2 − 2λ
)



.(58)

This system of ODEs is the first member of our generalized PIV –PII hierarchy.
In the case g0 = 0 and g1 �= 0 we obtain first integrals as in Section 4.1,

with K1 and L1 given by(
K1

L1

)
=

(
v

u+ g1x− 2(g2/g1)

)
.(59)

Corresponding to (50), (51) we thus obtain

ux = 2v + u2 + g1xu+ 2g2x− 2α1 − 4(g2/g1)2,(60)

vx =

[
v − α1 + 1

2g1
]2 − 1

4β
2
1

[u+ g1x− 2(g2/g1)]
− v[u+ g1x− 2(g2/g1)],(61)
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where α1 and β1 are two independent constants of integration. Solving the first
of these for v,

v =
1
2
[
ux − u2 − g1xu− 2g2x+ 2α1 + 4(g2/g1)2

]
,(62)

and substituting into the second then yields a scalar second order ODE in u

which, under the change of variables

u(x) = y(z) − g1z − 2(g2/g1)(63)

x= z + 4(g2/g2
1)(64)

becomes

yzz =
1
2
y2

z

y
+

3
2
y3 − 2g1zy2 + 2[(g2

1z
2/4) − α1]y − 1

2
β2

1

y
.(65)

Setting g1 = −2, which can be done without loss of generality for g1 �= 0,
gives

yzz =
1
2
y2

z

y
+

3
2
y3 + 4zy2 + 2(z2 − α1)y − 1

2
β2

1

y
,(66)

which is just the fourth Painlevé equation PIV . Thus we see that (49), or
equivalently (50), (51), is indeed a PIV hierarchy. Corresponding to (40), (41)
we obtain for (66) the linear problem

F =

(
1
2 (y − zg1 − 2µ) 1

1
2

(
y2 − yz − zg1y + g1 − 2α1

) − 1
2 (y − zg1 − 2µ)

)
,(67)

H =




1
4

(
y2 − yz − zg1y − 2zµg1 − 4µ2

)
1
2 (2µ+ y)

1
8

[
2yyz − y2

z

y − y3 + 4µ(y2 − yz) − 1
4

(
y2 − yz − zg1y

−z2g2
1y + 2g1

(
zy2 − zyz + 2µ −2zµg1 − 4µ2

)
−2zµy) + β2

1
y − 8α1µ

]



,(68)

where we have set λ = µ− (g2/g1) [this change also needs to be made in (41)].
In the case g0 = g1 = 0 we obtain corresponding to (52) the system

v +
1
2
(u2 − ux) + xg2 − γ1 = 0,(69)

uv +
1
2
vx − δ1 = 0,(70)
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where γ1 and δ1 are two independent constants of integration. This system is
equivalent to the second order ODE

uxx = 2u3 + 4xg2u− 4γ1u+ 2(g2 + 2δ1),(71)

which for g2 �= 0 (in which case we can take γ1 = 0) is just the second Painlevé
equation PII . Thus we see that our hierarchy (52) is indeed a PII hierarchy.
Corresponding to (40), (41) we obtain for (71) the linear problem

F =

(
−λ+ 1

2u 1
1
2 (u2 − ux) + xg2 − γ1 λ− 1

2u

)
,(72)

H =




1
4

(
u2 − ux − 4λ2

)
λ+ 1

2u

1
4

[
uux − u3 + 2λ(u2 − ux) + 2γ1u − 1

4

(
u2 − ux − 4λ2

)
+2xg2(2λ− u) − 4γ1λ− 4δ1]


 .(73)

We note that in the case where all gi = 0 the determinant of H gives for
both (54) and (71) a quartic in λ with coefficients constants of integration of
the equations.

§5.2. n = 2

In the case n = 2 we obtain the system of PDEs

(74)

wxt2 =
1
4
[(
w2

xwy − wxxwy − 2wxwxy + wxxy

)
x

+2 (zxxwy + 2zxwxy + 2wxzxy + wxxzy)]

+
1
4
g1
(
(xw2

x − xwxx − wx)x + 4zx + 2xzxx

)
+

1
2
g2(xwx)x + g3

(75)

zxt2 =
1
4

[2zxwxxwy + 4zxwxwxy + 2zxxwxy + zxxxwy + wxxzxy + wxzxxy

+4zxzxy + 2zxxzy + w2
xzxy + 2wxwyzxx + wxzxxy + zxxxy

]
+

1
4
g1 (2xwxxzx + 2xwxzxx + 4wxzx + xzxxx + 3zxx) +

1
2
g2(2zx + xzxx)

where we have set u = wx and v = zx, together with corresponding scalar and
matrix linear problems. In the above system, and throughout this section, we
have set g0 = 0 in order to consider only the local case of our PDEs and ODEs
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(that is, without the use of auxiliary variables). To the above system we can
readily add terms cux and cvx so that we obtain as ODE reduction the system

R2ux + cux + g1R2

(
1
0

)
+ g2R

(
1
0

)
+ g3

(
1
0

)
=

(
0
0

)
,(76)

as explained in Remark 1 (and where we have relabelled c0 as c).
This system of ODEs is

1
4
(
uxx − 3uux + u3 + 6uv

)
x

+ cux(77)

+
1
4
g1
(
(xu2 − xux − u)x + 4v + 2xvx

)
+

1
2
g2(xu)x + g3 = 0,

1
4
(
vxx + 3v2 + 3uvx + 3u2v

)
x

+ cvx(78)

+
1
4
g1 (2xuxv + 2xuvx + 4vu+ xvxx + 3vx) +

1
2
g2 (2v + xvx) = 0,

and is (with c = 0) the second member of our generalized PIV –PII hierarchy.
We obtain for this system the matrix linear problem (40), (41) with F and

G given by

F =

(
−λ+ 1

2u 1
−v λ− 1

2u

)
,(79)

H =

(
H11 H12

H21 −H11

)
,(80)

where

H11 =−λ3 + c

(
1
2
u− λ

)
+

1
8
(
uxx − 2vx + u3 − 3uux + 2uv − 4λv

)
(81)

+
1
4
g2 (xu− 2xλ− 1) − 1

8
g1
(
4xλ2 + 2λ+ u− xu2 + xux

)
,

H12 = λ2 +
1
2
λu+ c+

1
4
(
u2 − ux + 2v

)
+

1
2
xg2 +

1
4
g1 (2xλ+ xu) ,(82)

H21 =−λ2v − 1
2
λ (uv + vx) − cv − 1

4
(
vxx + vux + 2uvx + u2v + 2v2

)
(83)

−1
2
xg2v − 1

4
g1 (2xλv + 2v + xuv + xvx) .

In the case g1 = 0 and g2 �= 0 we obtain first integrals as in Section 4.1,
with K2 and L2 given by(

K2

L2

)
=

(
uv + 1

2vx − (g3/g2)v
v + 1

2u
2 − 1

2ux + g2x− (g3/g2)u+ 2(g3/g2)2 + 2c

)
.(84)
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Corresponding to (50), (51) we thus obtain

(85)

uxx = 3uux − u3 − 6uv − 2g2xu− 4g3x+ 4α2 − 8(g3/g2)3 − 4c (u+ 2(g3/g2)) ,

vxx = 2

( [
uv + 1

2vx − (g3/g2)v − α2 + 1
2g2
]2 − 1

4β
2
2

v + 1
2u

2 − 1
2ux + g2x− (g3/g2)u+ 2(g3/g2)2 + 2c

)
(86)

−2v
(
v +

1
2
u2 − 1

2
ux + g2x− (g3/g2)u+ 2(g3/g2)2 + 2c

)
−2(uv)x + 2(g3/g2)vx,

where α2 and β2 are two independent constants of integration. Solving the first
of these for v,

v =− 1
6u
[
uxx − 3uux + u3 + 2g2xu+ 4g3x(87)

− 4α2 + 8(g3/g2)3 + 4c(u+ 2(g3/g2))
]
,

and substituting into the second then yields a scalar fourth order ODE in u

which is too long to give here. The system (85), (86), or equivalently this scalar
ODE in u, is the second member of our new PIV hierarchy. This system may
also be written as (where the first of these defines w)

uxx = 2u3 − 6(g3/g2)u2 + 4[2c+ 3(g3/g2)2]u+ 4g2xu− 4g3x+ w(88)

+4[α2 − 2c(g3/g2) − 2(g3/g2)3],

wxx =
1
2
w2

x

w
+
ux

u
wx +

4
3u
w2 − 3u2

x

2u2
w +

7
2
u2w − 6(g3/g2)uw(89)

+4
(
α2 − g3x− 2c(g3/g2) − 2(g3/g2)3

) w
u
− 18β2

2

u2

w

+6
(
g2x+ 2c+ 3(g3/g2)2

)
w,

corresponding to which we have a matrix linear problem (40), (41) with

F =


 −λ+ 1

2u 1
2c+ g2x+ 2(g3/g2)2 − (g3/g2)u λ− 1

2u

+(1/2)(u2 − u′) + (w/6u)


 ,(90)

H =

(
H11 H12

H21 −H11

)
,(91)

where

H11 = (1/(24g2
2u

2))[24λg2
3u

2 − 24λ3g2
2u

2 − 12λg2g3u3 − 12g2
3u

3(92)
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+6λg2
2u

4 + 6g2g3u4 + 2λg2
2uw − g2

2u
2w − 6λg2

2u
2ux

−6g2g3u2ux − g2
2wux + g2

2uwx],

H12 = (1/(12g2
2u))[12λ2g2

2u− 12g2
3u+ 6λg2

2u
2 + 6g2g3u2 − g2

2w],(93)

H21 = (1/(48g3
2u

3w))[96cλ2g2
2u

3w − 36β2
2g

3
2u

4 − 48α2λg
3
2u

3w(94)

+24λg4
2u

3w + 48λ2g4
2xu

3w − 48α2g
2
2g3u

3w + 96cλg2
2g3u

3w

+24g3
2g3u

3w + 48λg3
2g3xu

3w + 96λ2g2g
2
3u

3w + 96λg3
3u

3w

−48cλg3
2u

4w − 24λg4
2xu

4w − 48cg2
2g3u

4w − 48λ2g2
2g3u

4w

−24g3
2g3xu

4w − 96λg2g2
3u

4w − 48g3
3u

4w + 24λ2g3
2u

5w

+48λg2
2g3u

5w + 24g2g2
3u

5w − 12λg3
2u

6w − 12g2
2g3u

6w

+8λ2g3
2u

2w2 − 4g2g2
3u

2w2 − 8λg3
2u

3w2 − 4g2
2g3u

3w2

+g3
2u

4w2 − 24λ2g3
2u

3wux − 24λg2
2g3u

3wux + 12λg3
2u

4wux

+12g2
2g3u

4wux − 4λg3
2uw

2ux + 2g3
2u

2w2ux + g3
2w

2u2
x

+4λg3
2u

2wwx − 2g3
2u

3wwx − 2g3
2uwuxwx + g3

2u
2w2

x].

The Painlevé analysis of our fourth order ODE in u is of particular interest
since it presents a previously unseen difficulty for Painlevé classification; this
will be discussed in a later paper.

In the case g1 = g2 = 0, we obtain corresponding to (52) the system

1
4
(
uxx − 3uux + u3 + 6uv

)
+ cu+ g3x− γ2 = 0,(95)

1
4
(
vxx + 3v2 + 3uvx + 3u2v

)
+ cv − δ2 = 0,(96)

where γ2 and δ2 are two independent constants of integration. Solving the first
of these for v,

v = − 1
6u
[
uxx − 3uux + u3 + 4cu+ 4g3x− 4γ2

]
,(97)

and substituting into the second, we see that this system is equivalent to the
fourth order ODE

uxxxx = 2
uxxxux

u
+

3
2
u2

xx

u
− 2

uxxu
2
x

u2
+ 5u2uxx − 8(γ2 − g3x)

uxx

u
(98)

+
5
2
uu2

x + 8(γ2 − g3x)
u2

x

u2
+ 8g3

ux

u
− 5

2
u5 − 12cu3

+8(γ2 − g3x)u2 − 4(2c2 + 6δ2 + 3g3)u+ 8
(γ2 − g3x)2

u
,

where in the case g3 �= 0 we can set γ2 = 0. The system (95), (96), or equiv-
alently this scalar ODE in u, is the second member of our new PII hierarchy.
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Corresponding to the ODE (98) we have the matrix linear problem (40), (41)
with

F =


 −λ+ 1

2u 1
4(g3x− γ2) + 4cu λ− 1

2u

+uxx − 3uux + u3


 ,(99)

H =

(
H11 H12

H21 −H11

)
,(100)

where

H11 = (1/(24u2))[4g3u− 8λγ2u+ 8λg3xu+ 4γ2u
2 − 16λcu2(101)

−24λ3u2 − 4g3xu2 + 8cu3 + 2λu4 + 2u5 + 4γ2ux − 4g3xux

−6λu2ux − 4u3ux + 2λuuxx − u2uxx − uxuxx + uuxxx],

H12 = (1/(12u))[4γ2 − 4g3x+ 8cu+ 12λ2u+ 6λu2 + 2u3 − uxx],(102)

H21 = (1/(144u2))[16γ2
2 − 32γ2g3x+ 16g2

3x
2 − 32cγ2u− 96λ2γ2u(103)

+48λg3u+ 32cg3xu+ 96λ2g3xu+ 16c2u2 − 144δ2u2

−48λγ2u
2 + 96λ2cu2 − 24g3u2 + 48λg3xu2 + 40γ2u

3 + 48λcu3

−40g3xu
3 − 40cu4 + 24λ2u4 + 12λu5 − 11u6 + 48λγ2ux

−48λg3xux − 24γ2uux + 24g3xuux − 72λ2u2ux − 12λu3ux

+24u4ux − 9u2u2
x − 8γ2uxx + 8g3xuxx + 8cuuxx + 24λ2uuxx

−24λu2uxx + 8u3uxx − 12λuxuxx + 6uuxuxx + u2
xx

+12λuuxxx − 6u2uxxx].

We believe that it is likely that (for g3 �= 0) this fourth order ODE defines a
new transcendent; we note in particular that this ODE is not of polynomial
form.

Defining ε by 2c2 + 6δ2 + 3g3 = ε/4 and assuming g3 �= 0, so that we may
take γ2 = 0, we note that this ODE takes the particularly elegant form

uxxxx = 2
uxxxux

u
+

3
2
u2

xx

u
− 2

uxxu
2
x

u2
+ 5u2uxx + 8g3x

uxx

u
+

5
2
uu2

x(104)

−8g3x
u2

x

u2
+ 8g3

ux

u
− 5

2
u5 − 12cu3 − 8g3xu2 − εu+ 8

g2
3x

2

u

for which the linear problem follows from that given above.
We note that in the case where all gi = 0 the determinant of H gives for

both (76), (98) a polynomial in λ of degree six with coefficients constants of
integration of the equations.
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§6. Conclusions

We have given a generalized 2 + 1-dimensional non-isospectral DWW hi-
erarchy, together with underlying scalar and matrix linear problems. For this
hierarchy we have discussed reductions to PDEs in 1 + 1 dimensions, reduc-
tions in components, and also reductions to ODEs. In the case of reductions to
ODEs we have obtained a new generalized PIV –PII hierarchy, and as special
cases of this a new PIV hierarchy and a new PII hierarchy. For all of these
we have corresponding scalar and matrix linear problems. It is worth noting
the advantages of our approach over standard Painlevé classification. First,
in the non-local case, recovering our hierarchies requires the use of auxiliary
variables. Second, it appears unlikely that one of the ODEs obtained here can
be obtained by classification based on the standard Painlevé test (as will be
discussed in a later paper). Third, to date the only Painlevé classifications
of ODEs appearing in the literature are for scalar equations rather than for
systems, and in the case of ODEs of order greater than two are for equations
of polynomial type. Here we obtain new hierarchies of systems of ODEs, and
also higher order scalar ODEs of rational type; we draw particular attention to
the simplest of our new examples (104). This then shows the strengths of the
methodology developed in [13], [14].
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